supplementary figure 2....supplementary figure 7. relaxation of 2h-tas2 compared to experiment...

30
1 Formula Spacegroup ICSD (ID) TaSe2 194 651950 TaS2 194 651092 TaS2 164 651089 NbTe2 164 645529 NbS2 160 645309 NbSe2 194 645369 SiTe2 164 652385 PtTe2 164 649747 PtSe2 164 649589 PdTe2 164 649016 NiTe2 164 159382 IrTe2 164 33934 RhTe2 164 650448 CoTe2 164 625401 HfTe2 164 638959 ZrTe2 164 653213 TiTe2 164 653071 TiSe2 164 173923 AlCl2 164 155670 SUPPLEMENTARY TABLE 1. List of 19 metals from Ref. [1] We have only included the materials which crystallize in the 1T, 2H (AB and AA’) or 3R structure with spacegroups 164, 194 and 160, respectively. Note that 2H-TaS2 stacks in the AA’ structure. Note also that some materials are semiconducting in their monolayer structure but metallic in their bulk structure which would not be indicated in the data-mining paper. This transition is due to the broadening of the valence and conduction bands. 0 1 2 ¯ (eV) 10 -3 10 -2 10 -1 10 0 Electric field fraction in metal (a) Single interface 0 1 2 ¯ (eV) 10 -3 10 -2 10 -1 10 0 Electric field fraction in metal (b) Insulator-5nm Metal-Insulator (IMI) 1T-AlCl 2 2H-TaS 2 Ag 2H-TaS 2 (HSE) HfBrS HfBrS (HSE) SUPPLEMENTARY FIGURE 1. Electric field fraction in metal and insulator-metal-insulator (IMI) SPP waveg- uides The fraction of the SPP electric field within the metallic structure of the single-interface SPP-waveguide and the thin-film waveguide (IMI). (a) Fraction of the electric field of a single interface SPP compared to (b) the electric field fraction of a thin film plasmon.

Upload: others

Post on 20-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Formula Spacegroup ICSD (ID)TaSe2 194 651950TaS2 194 651092TaS2 164 651089

    NbTe2 164 645529NbS2 160 645309NbSe2 194 645369SiTe2 164 652385PtTe2 164 649747PtSe2 164 649589PdTe2 164 649016NiTe2 164 159382IrTe2 164 33934RhTe2 164 650448CoTe2 164 625401HfTe2 164 638959ZrTe2 164 653213TiTe2 164 653071TiSe2 164 173923AlCl2 164 155670

    SUPPLEMENTARY TABLE 1. List of 19 metals from Ref. [1] We have only included the materials which crystallizein the 1T, 2H (AB and AA’) or 3R structure with spacegroups 164, 194 and 160, respectively. Note that 2H-TaS2 stacks inthe AA’ structure. Note also that some materials are semiconducting in their monolayer structure but metallic in their bulkstructure which would not be indicated in the data-mining paper. This transition is due to the broadening of the valence andconduction bands.

    0 1 2

    h̄ω (eV)

    10−3

    10−2

    10−1

    100

    Ele

    ctri

    cfie

    ldfr

    acti

    onin

    met

    al

    (a)

    Single interface

    0 1 2

    h̄ω (eV)

    10−3

    10−2

    10−1

    100

    Ele

    ctri

    cfie

    ldfr

    acti

    onin

    met

    al

    (b)

    Insulator-5nm Metal-Insulator (IMI)

    1T-AlCl22H-TaS2

    Ag2H-TaS2 (HSE)

    HfBrSHfBrS (HSE)

    SUPPLEMENTARY FIGURE 1. Electric field fraction in metal and insulator-metal-insulator (IMI) SPP waveg-uides The fraction of the SPP electric field within the metallic structure of the single-interface SPP-waveguide and the thin-filmwaveguide (IMI). (a) Fraction of the electric field of a single interface SPP compared to (b) the electric field fraction of a thinfilm plasmon.

  • 2

    4 3 2 1 0 1 2 3 4E - EF

    0

    1

    2

    3

    4

    5

    6

    DO

    S

    HSEPBE + scissor = ±0.55 eVPBE

    SUPPLEMENTARY FIGURE 2. Calculated DOS for 2H-TaS2 with HSE and PBE By calculating the density of stateswith and without HSE06 we see that the primary effect is to increase the size of the gaps between the conduction bands andother bands. It is also seen that it is possible to reproduce the HSE06 DOS by applying a scissor operator on top of the PBEground state. The effect of HSE on 2H-TaS2 is essentially to increase the size of the gaps isolating the conduction band of2H-TaS2. We have modelled this by a scissor operator on top of PBE which is seen to reproduce the HSE-DOS well.

  • 3

    Formula Hull (eV) HOF (eV)HfClO -27.84 -28.58HfClS -19.78 -19.66HfClSe -18.14 -17.62TiClO -24.50 -28.05TiClSe -16.09 -16.58ZrClO -28.13 -30.32TiClS -17.43 -18.51ZrClSe -18.79 -19.31ZrClS -20.29 -21.29HfBrO -23.43 -25.64HfBrSe -13.72 -14.78HfBrS -15.36 -16.94TiBrO -21.84 -24.93ZrBrO -26.50 -27.45TiBrS -14.77 -15.69TiBrSe -13.44 -13.78ZrBrSe -17.16 -16.55ZrBrS -18.66 -18.55HfIO -22.30 -22.35HfISe -12.60 -12.01TiIO -19.63 -21.40HfIS -14.24 -14.05ZrIO -23.08 -24.29TiIS -12.57 -12.90ZrIS -15.24 -15.87TiISe -11.23 -10.99ZrISe -13.74 -13.89

    SUPPLEMENTARY TABLE 2. Stability analysis: Calculated heat of formation and hull energies for chalcogen-halogen mixtures The stability analysis of the chalcogen-halogen mixtures as well as for the halides have been based on thematerial’s monolayer stabilities. In this way we are restricting ourselves to materials that are stable in both monolayer and bulkphases. The heat of formation were calculated using mBEEF functional with the corrected reference energies[2]. The monolayerstabilities of the chalcogen-halogen mixtures were evaluated based on the convex hull of the competing phases. The competingphases were determined using the Open Quantum Materials Database (OQMD). The Brillouin zone of the competing bulkphases was sampled with 33a−1x × 33a−1y × 33a−1z k-point sampling where ax, ay and az represent the lattice constants in unitsof Angstrom. The wavefunctions were expanded on the a real space grid with the grid spacing of 0.16 Å. The halides are allstable with respect to standard phases but they are not expected to be stable with respect to the convex hull, even though wehave not investigated this in detail.

  • 4

    −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10Ealloy − Ehull (eV / atom)

    TiClO

    TiBrO

    TiIO

    ZrClO

    ZrBrO

    ZrIO

    HfClO

    HfBrO

    HfIO

    TiClS

    TiBrS

    TiIS

    ZrClS

    ZrBrS

    ZrIS

    HfClS

    HfBrS

    HfIS

    TiClSe

    TiBrSe

    TiISe

    ZrClSe

    ZrBrSe

    ZrISe

    HfClSe

    HfBrSe

    HfISe

    SUPPLEMENTARY FIGURE 3. Stability of chalcogen-halogen mixtures with respect to the convex hull. Thefigure is based on the data in Supplementary Figure 2.

  • 5

    SUPPLEMENTARY FIGURE 4. Calculated density of states for the MXY compounds Monolayer (blue) and bulk(green) density of states for the MXY compounds. The bulk materials were relaxed with the optB88-vdW xc-functional.

  • 6

    Γ M K Γ

    k-vector

    −7

    −6

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4E−EF

    (eV

    )

    (a)

    0 1 2 3 4 5

    h̄ω (eV)

    0

    2

    4

    6

    8

    10

    ε(ω

    )

    Re

    Im

    (b)

    0.5 1.0 1.5 2.0 2.5 3.0 3.5

    h̄ω (eV)

    10−1

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    1010

    FO

    MT

    O

    2H-TaS2

    1T-GaCl2

    2H-AlBr2

    Ag

    Au

    (c)

    SUPPLEMENTARY FIGURE 5. Plasmonic properties of halides Some halides have essentially ideal bandstructures forloss-less plasmonics. For example, GaCl2 has the properties necessary for a loss-less plasmonic metal. It has an intermediateband separated by large gaps which leads to a high interband onset and a sufficiently narrow conduction band (a) which limitintraband losses to lower frequencies. (b) The calculated dielectric shows that losses are essentially zero at frequencies largerthan 1 eV. This is due to its special bandstructure. (c) Figure of merit for the halides for applications within transformationoptics.

  • 7

    Γ M K Γ

    k-vector

    −3

    −2

    −1

    0

    1

    2

    3

    E−EF

    (eV

    )

    NO SOC

    SOC

    (a)

    Γ M K Γ

    k-vector

    −3

    −2

    −1

    0

    1

    2

    3

    E−EF

    (eV

    )

    NO SOC

    SOC

    (b)

    SUPPLEMENTARY FIGURE 6. Effect of spin-orbit coupling Bandstructure of (a) 2H-TaS2 and (b) HfBrS with andwithout spin-orbit coupling (SOC). The SOC was calculated non-self-consistently with GPAW which generally is found to besufficient. The general effect is a splitting of the conduction bands at the K-point most significant for 2H-TaS2. The bandwidthof the conduction bands is unchanged and the Fermi-velocities are essentially unchanged. From these results we conclude theSOC to be non-essential for the plasmonic properties of metals included in this study.

    11.5 12.0 12.5 13.0 13.5 14.0c (Å)

    0.05

    0.00

    0.05

    0.10

    E (A

    rb. u

    nit)

    BEEF-vdW: 13.0 ÅoptB88-vdW: 12.04 Å

    Expt.: 12.1 Å

    SUPPLEMENTARY FIGURE 7. Relaxation of 2H-TaS2 compared to experiment Comparing the performance of thevan der Waals DFT functionals optB88-vdW and BEEF-vdW for predicting the out-of-plane lattice constant of 2H-TaS2. Therelaxation was done by fixing the relative atomic positions within a layer and varying the interlayer distance. The BEEF-vdW functional overestimates the out-of-plane lattice constant by approximately 1 Åcompared to experiment, whereas theoptB88-vdW functional give a more accurate description of the interlayer bonding distance.

  • 8

    TiC

    lO

    ZrC

    lO

    HfC

    lO

    TiC

    lS

    ZrC

    lS

    HfC

    lS

    TiC

    lSe

    ZrC

    lSe

    HfC

    lSe

    TiB

    rO

    ZrB

    rO

    HfB

    rO

    TiB

    rS

    ZrB

    rS

    HfB

    rS

    TiB

    rSe

    ZrB

    rSe

    HfB

    rSe

    TiI

    O

    ZrIO

    HfI

    O

    TiI

    S

    ZrIS

    HfI

    S

    TiI

    Se

    ZrIS

    e

    HfI

    Se

    12.0

    12.5

    13.0

    13.5

    14.0

    14.5

    15.0

    15.5

    16.0

    16.5

    Out

    -of-

    plan

    ela

    ttic

    eco

    nsta

    nt(Å

    )

    SUPPLEMENTARY FIGURE 8. Calculated out-of-plane lattice constant for the chalcogen-halogen 2H-MXY com-pounds The structures were relaxed using the optB88-vdW functional using the same procedure as described in SupplementaryFigure 6.

  • 9

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0.0006

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    η(e

    V)

    2H-TaS2 (HSE)

    SUPPLEMENTARY FIGURE 9. Data sheet for 2H-TaS2 with HSE06 scissor operator applied Dielectric function (ε),density of states (DOS), joint density of states (JDOS) and scattering rate (η).

  • 10

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    η(e

    V)

    2H-TaS2

    SUPPLEMENTARY FIGURE 10. Data sheet for 2H-TaS2 Dielectric function (ε), density of states (DOS), joint density ofstates (JDOS) and scattering rate (η).

  • 11

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    0.0014

    0.0016

    0.0018

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    η(e

    V)

    Ag

    SUPPLEMENTARY FIGURE 11. Data sheet for silver Dielectric function (ε), density of states (DOS), joint density ofstates (JDOS) and scattering rate (η).

  • 12

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    0.0014

    0.0016

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    η(e

    V)

    2H-NbSe2

    SUPPLEMENTARY FIGURE 12. Data sheet for 2H-NbSe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 13

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    η(e

    V)

    1T-CoTe2

    SUPPLEMENTARY FIGURE 13. Data sheet for 1T-CoTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 14

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0.0006

    0.0007

    0.0008

    0.0009

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    η(e

    V)

    1T-IrTe2

    SUPPLEMENTARY FIGURE 14. Data sheet for 1T-IrTe2 Dielectric function (ε), density of states (DOS), joint density ofstates (JDOS) and scattering rate (η).

  • 15

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    η(e

    V)

    1T-NiTe2

    SUPPLEMENTARY FIGURE 15. Data sheet for 1T-NiTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 16

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0.0006

    0.0007

    0.0008

    0.0009

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    η(e

    V)

    1T-PdTe2

    SUPPLEMENTARY FIGURE 16. Data sheet for 1T-PdTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 17

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0.0006

    0.0007

    0.0008

    0.0009

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    η(e

    V)

    1T-PtTe2

    SUPPLEMENTARY FIGURE 17. Data sheet for 1T-PtTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 18

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00000

    0.00005

    0.00010

    0.00015

    0.00020

    0.00025

    0.00030

    0.00035

    0.00040

    0.00045

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    η(e

    V)

    1T-SiTe2

    SUPPLEMENTARY FIGURE 18. Data sheet for 1T-SiTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 19

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    η(e

    V)

    1T-TiTe2

    SUPPLEMENTARY FIGURE 19. Data sheet for 1T-TiTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 20

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    η(e

    V)

    1T-NbTe2

    SUPPLEMENTARY FIGURE 20. Data sheet for 1T-NbTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 21

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    η(e

    V)

    1T-ZrTe2

    SUPPLEMENTARY FIGURE 21. Data sheet for 1T-ZrTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 22

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0.0006

    0.0007

    0.0008

    0.0009

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    η(e

    V)

    1T-HfTe2

    SUPPLEMENTARY FIGURE 22. Data sheet for 1T-HfTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 23

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0.0006

    0.0007

    0.0008

    0.0009

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    η(e

    V)

    1T-RhTe2

    SUPPLEMENTARY FIGURE 23. Data sheet for 1T-RhTe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 24

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    0.0014

    0.0016

    0.0018

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    η(e

    V)

    1T-TiSe2

    SUPPLEMENTARY FIGURE 24. Data sheet for 1T-TiSe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 25

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    η(e

    V)

    1T-PtSe2

    SUPPLEMENTARY FIGURE 25. Data sheet for 1T-PtSe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 26

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    η(e

    V)

    1T-TaS2

    SUPPLEMENTARY FIGURE 26. Data sheet for 1T-TaS2 Dielectric function (ε), density of states (DOS), joint density ofstates (JDOS) and scattering rate (η).

  • 27

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    0.0014

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    η(e

    V)

    2H-TaSe2

    SUPPLEMENTARY FIGURE 27. Data sheet for 2H-TaSe2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 28

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.00000

    0.00005

    0.00010

    0.00015

    0.00020

    0.00025

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    η(e

    V)

    1T-AlCl2

    SUPPLEMENTARY FIGURE 28. Data sheet for 1T-AlCl2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 29

    1 2 3 4 5

    h̄ω (eV)

    −30

    −20

    −10

    0

    10

    20

    30

    ε

    Re εxIm εxRe εzIm εz

    −4 −2 0 2 4E − EF (eV)

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    DO

    S(Å−

    3)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    0.0014

    0.0016

    0.0018

    JDO

    S(Å−

    6)

    0 1 2 3 4 5

    h̄ω (eV)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    η(e

    V)

    3R-NbS2

    SUPPLEMENTARY FIGURE 29. Data sheet for 3R-NbS2 Dielectric function (ε), density of states (DOS), joint densityof states (JDOS) and scattering rate (η).

  • 30

    SUPPLEMENTARY REFERENCES

    [1] Lebègue, S., Björkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filteringand Ab Initio calculations. Physical Review X 3, 1–7 (2013).

    [2] Pandey, M. & Jacobsen, K. W. Heats of formation of solids with error estimation: The mBEEF functional with and withoutfitted reference energies. Physical Review B 91, 235201 (2015).

    Supplementary References