susan hanft project analyst - cngspw.com...market research report membrane technology for liquid and...

51
MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street Wellesley, MA 02481 Phone: 866-285-7215 (sales) Web Address: www.bccresearch.com E-mail: [email protected] ISBN: 1-59623-631-0

Upload: others

Post on 23-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MARKET RESEARCH REPORT

MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS

MST041E

Susan Hanft Project Analyst

BCC Research 35 Walnut Street

Wellesley, MA 02481 Phone: 866-285-7215 (sales)

Web Address: www.bccresearch.com E-mail: [email protected]

ISBN: 1-59623-631-0

Page 2: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com ii

ABOUT BCC

BCC Research is a leading information resource producing high-quality market research reports, newsletters, and conferences. BCC�s information products explore major market, economic, scientific, and technological developments for business leaders in industrial, pharmaceutical, and high technology organizations. Industry analysis and market forecasts for advanced materials, high-tech systems and components, nanotechnology and novel processing methods are at the forefront of the company�s expertise. For more than 35 years, BCC�s market analysis has provided businesses with the insight needed to make intelligent and strategic business decisions. BCC Research is a unit of Eli Research, which is based in Durham, N.C.

CONDITIONS OF PURCHASE

The purchase of the bound or electronic copy of this report constitutes a contractual agreement between BCC Research and the purchaser. This report is intended for use solely by the person who made the purchase. The report and its contents are not to be made available to other persons, autonomous divisions, foreign subsidiaries of the same company, or other companies. Reproduction of any material in this report is strictly forbidden without written permission of the publisher. In turn, BCC Research will regard the identity of the report�s purchaser as confidential.

ADDITIONAL COPIES

Additional bound copies of this report, intended for use by the operating division for which the first copy is purchased, may be obtained from BCC at discounted prices. Additional bound copy prices do not apply to reports purchased for use at separate locations. Licenses for use of electronic copies by additional persons or locations are available. Please call BCC for pricing.

CUSTOM ANALYSES

BCC provides custom research studies tailored to our clients� needs in areas related to the subject research material, but perhaps not covered in detail in this report. Please contact BCC regarding the terms and conditions of such services.

DISCLAIMER

This publication provides informative material of a professional nature. It does not constitute managerial, legal or accounting advice, nor should it serve as a corporate policy guide, laboratory manual or an endorsement of any product. This information is intended to be as accurate as possible at the time of publication, but BCC Inc. assumes no responsibility for any losses or damages that might result because of reliance on this material.

Copyright 2010 by BCC Research Wellesley, MA 02481

Reproduction of any material in this report is strictly forbidden without express permission of the Publisher.

To receive a complete catalog of BCC studies, please visit our Web site at www.bccresearch.com

AUGUST 2010

Page 3: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com iii

CHAPTER ONE: INTRODUCTION ............................................................................ 1STUDY GOAL AND OBJECTIVES ................................................................... 1REASONS FOR DOING THE STUDY .............................................................. 1INTENDED AUDIENCE .................................................................................... 1SCOPE OF REPORT .......................................................................................... 2INFORMATION SOURCES ............................................................................... 2ANALYST CREDENTIALS ................................................................................ 2RELATED BCC PUBLICATIONS ..................................................................... 2BCC ONLINE SERVICES .................................................................................. 3DISCLAIMER ..................................................................................................... 3

CHAPTER TWO: EXECUTIVE SUMMARY ............................................................... 4EXECUTIVE SUMMARY ................................................................................... 4

EXECUTIVE SUMMARY (CONTINUED) ............................................. 5 SUMMARY TABLE VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES USED IN GAS AND LIQUID SEPARATIONS, THROUGH 2015 ($ MILLIONS) ........................................................................ 6

SUMMARY FIGURE PROJECTED VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES USED IN GAS AND LIQUID SEPARATIONS, 2002�2015 ($ MILLIONS) ...................................................... 6

CHAPTER THREE: INDUSTRY OVERVIEW ............................................................ 7HISTORY OF THE INDUSTRY ......................................................................... 7

TABLE 1 A BRIEF HISTORY OF MEMBRANE DEVELOPMENT ......................... 8 TABLE 1 (CONTINUED) .............................................................................................. 9

MEMBRANE TECHNOLOGY ........................................................................... 9MEMBRANE MATERIALS ..................................................................... 9

Cellulosics .................................................................................... 10Polycarbonates ............................................................................. 10Polysulfones ................................................................................. 10Fluorinated Polymers .................................................................. 10Polyamides ................................................................................... 11Inorganics .................................................................................... 11

Ceramic ............................................................................. 12Metal.................................................................................. 12

Stainless Steel ............................................................ 12Palladium .................................................................... 13

Carbon ............................................................................... 13Carbon Nanotubes ..................................................... 13

Zeolite and Other Novel Inorganic Membranes .............. 13Mixed Matrix Materials .............................................................. 14

Page 4: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com iv

MODULES.............................................................................................. 14CONFIGURATION ................................................................................ 14

Plate and Frame .......................................................................... 15Tubular Membranes .................................................................... 15Spiral-wound Membranes ........................................................... 15Hollow-fiber Membranes ............................................................. 15

MOLECULAR WEIGHT CUTOFF ....................................................... 16FLUX ...................................................................................................... 16FOULING ............................................................................................... 17

METHODS OF FILTRATION .......................................................................... 17DIRECT-FLOW FILTRATION .............................................................. 17CROSSFLOW FILTRATION ................................................................. 17

Crossflow Filtration (Continued) ................................................ 18

CHAPTER FOUR: MEMBRANE TECHNOLOGY TYPES ...................................... 19REVERSE OSMOSIS........................................................................................ 19

APPLICATIONS ..................................................................................... 19 TABLE 2 APPLICATIONS FOR REVERSE OSMOSIS MEMBRANES ........... 20

MANUFACTURERS .............................................................................. 20 TABLE 3 MANUFACTURERS OF REVERSE OSMOSIS MEMBRANES ........ 20

TRENDS AND TECHNICAL DEVELOPMENTS ................................ 21Organic/Inorganic Nanocomposites ............................................ 21Carbon Nanotube Membranes .................................................... 22Boron Nitride Nanotube Membranes ......................................... 23Aquaporins ................................................................................... 23Oxidant-resistant Membranes .................................................... 24Chlorine-tolerant Materials ........................................................ 25Forward Osmosis ......................................................................... 25Pressure-retarded Osmosis ......................................................... 26Concentrate Management, Reuse, Mining ................................. 27

Beneficial Brine Reuse ...................................................... 27Concentrate Minimization ................................................ 27Zero Liquid Discharge ...................................................... 28Recovery, Resale of Salts in Desalination Brine ............. 28

NANOFILTRATION ......................................................................................... 29APPLICATIONS ..................................................................................... 29

TABLE 4 APPLICATIONS FOR NANOFILTRATION MEMBRANES ............. 30 MANUFACTURERS .............................................................................. 30

TABLE 5 MANUFACTURERS OF NANOFILTRATION MEMBRANES ......... 31 TRENDS AND TECHNICAL DEVELOPMENTS ................................ 31

The Long Beach Method .............................................................. 31

Page 5: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com v

ULTRAFILTRATION ....................................................................................... 32APPLICATIONS ..................................................................................... 32

TABLE 6 APPLICATIONS FOR ULTRAFILTRATION MEMBRANES ........... 33 MANUFACTURERS .............................................................................. 33

TABLE 7 MANUFACTURERS OF ULTRAFILTRATION MEMBRANES ....... 34 TRENDS AND TECHNICAL DEVELOPMENTS ................................ 34

Fouling Resistant Membranes for Oil Industry Wastewater Treatment .......................................................... 34

Reducing the Fat Content of Breaded Fried Foods .................... 35MICROFILTRATION ....................................................................................... 36

APPLICATIONS ..................................................................................... 36 TABLE 8 APPLICATIONS FOR MICROFILTATION MEMBRANES .............. 37

MANUFACTURERS .............................................................................. 37 TABLE 9 MANUFACTURERS OF MICROFILTRATION MEMBRANES ........ 37 TABLE 9 (CONTINUED) ....................................................................................... 38

TRENDS AND TECHNICAL DEVELOPMENTS ................................ 38Micromachined Silicon Membranes ............................................ 38Microsieve Filtration of Beer ...................................................... 39

ELECTROCHEMICAL PROCESSES .............................................................. 39ELECTRODIALYSIS ............................................................................. 39ELECTRODIALYSIS REVERSAL ........................................................ 40ELECTROLYSIS .................................................................................... 41

Chloralkali Production ................................................................ 41ELECTRODEIONIZATION ................................................................... 41MEMBRANE CHROMATOGRAPHY ................................................... 42MEMBRANE ADSORBERS .................................................................. 42APPLICATIONS ..................................................................................... 43

TABLE 10 APPLICATIONS FOR ION EXCHANGE MEMBRANES ................ 43 MANUFACTURERS .............................................................................. 44

TABLE 11 MANUFACTURERS AND ION EXCHANGE MEMRANE PRODUCTS ....................................................................................................... 44

TRENDS AND TECHNICAL DEVELOPMENTS ................................ 44Nanoparticle Composites ............................................................ 44Bipolar ED ................................................................................... 45Salinity Gradient Power .............................................................. 46Electrolysis for Hydrogen Production ......................................... 46

VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS USED IN LIQUID SEPARATIONS BY MEMBRANE TYPE .......................................................................... 46

Reverse Osmosis .......................................................................... 47Nanofiltration .............................................................................. 48

Page 6: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com vi

Nanofiltration (Continued) ............................................... 49Ultrafiltration .............................................................................. 50Microfiltration .............................................................................. 51

Microfiltration (Continued) .............................................. 52Microfiltration (Continued) .............................................. 53

Electrochemical............................................................................ 54 TABLE 12 VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS USED IN LIQUID SEPARATIONS BY TECHNOLOGY TYPE, THROUGH 2015 ($ MILLIONS) .......................................................... 55

FIGURE 1 PROJECTED U.S. MARKET FOR MEMBRANE PRODUCTS USED IN LIQUID SEPARATIONS BY TECHNOLOGY TYPE, 2002�2015 ($ MILLIONS) ............................................................................................ 56GAS SEPARATION .......................................................................................... 56

APPLICATIONS ..................................................................................... 57 TABLE 13 APPLICATIONS FOR GAS SEPARATION MEMBRANES ............ 57

MANUFACTURERS .............................................................................. 58 TABLE 14 MANUFACTURERS AND MEMBRANE PRODUCTS FOR GAS SEPARATION ........................................................................................... 58

TRENDS AND TECHNICAL DEVELOPMENTS ................................ 58Thermally Rearranged Polymers ................................................ 59Zeolites, Carbon Molecular Sieves .............................................. 59

CMS Hybrids ..................................................................... 60Carbon Nanotube Membranes .................................................... 60Mixed Ionic and Electronic Conducting Materials ..................... 61Facilitated Transport .................................................................. 61CO2 Capture ................................................................................. 62Natural Gas Dehydration ............................................................ 62

VALUE OF THE MARKET FOR GAS SEPARATION MEMBRANES................................................................................... 63

Value of the Market for Gas � (Continued) ............................... 64 TABLE 15 VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS USED IN GAS SEPARATIONS, THROUGH 2015

($ MILLIONS) .................................................................................................... 65 FIGURE 2 VALUE OF THE U.S. MARKET FOR MEMBRANE

PRODUCTS USED IN GAS SEPARATIONS, 2002�2015 ($ MILLIONS) ......................................................................................................... 65PERVAPORATION ........................................................................................... 65

APPLICATIONS ..................................................................................... 66 TABLE 16 APPLICATIONS FOR PERVAPORATION MEMBRANES ............. 66

MANUFACTURERS .............................................................................. 67 TABLE 17 MANUFACTURERS AND MEMBRANE PRODUCTS FOR

Page 7: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com vii

PERVAPORATION ............................................................................................ 67 TRENDS AND TECHNICAL DEVELOPMENTS ................................ 67

High-temperature Polymer/Ceramic Hybrid .............................. 68Bioethanol Recovery .................................................................... 69Natural Flavor, Aroma Manufacture ......................................... 69

VALUE OF THE MARKET FOR PERVAPORATION MEMBRANES................................................................................... 70

Value of the Market for Pervaporation �(Continued) .............. 71 TABLE 18 PROJECTED VALUE OF THE U.S. MARKET FOR PERVAPORATION MEMBRANES, THROUGH 2015 .................................. 72

FIGURE 3 PROJECTED VALUE OF THE U.S. MARKET FOR PERVAPORATION MEMBRANES, 2002-2015 ($ MILLIONS) ...................... 72NOVEL MEMBRANES .................................................................................... 72

MEMBRANE CONTACTORS ............................................................... 73 TABLE 19 APPLICATIONS FOR MEMBRANE CONTRACTORS ................... 73

APPLICATIONS ..................................................................................... 73MANUFACTURERS .............................................................................. 74

TABLE 20 MEMBRANE CONTRACTOR MANUFACTURERS AND PRODUCTS ....................................................................................................... 74

LIQUID MEMBRANES ......................................................................... 74APPLICATIONS ..................................................................................... 75

TABLE 21 APPLICATIONS FOR LIQUID MEMBRANES ................................ 75 MANUFACTURERS .............................................................................. 75TRENDS AND TECHNICAL DEVELOPMENTS ................................ 76

Biofuels Processing ...................................................................... 76Gas Separation Using Facilitated Transport Membranes

(FTMs) .................................................................................... 77Carbon Nanotube Mediated Membrane Extraction ................... 77

VALUE OF THE MARKET FOR NOVEL MEMBRANE PRODUCTS ....................................................................................... 78

TABLE 22 VALUE OF THE U.S. MARKET FOR NOVEL MEMBRANES BY APPLICATION, 2002-2015 ($ MILLIONS) ................................................ 79

FIGURE 4 VALUE OF THE U.S. MARKET FOR NOVEL MEMBRANE PRODUCTS, 2002�2015 ($ MILLIONS) .......................................................... 79

CHAPTER FIVE: APPLICATIONS FOR MEMBRANE TECHNOLOGY ............... 80 TABLE 23 VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES BY APPLICATION THROUGH 2015 ($ MILLIONS) ................. 80

FIGURE 5 VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES BY APPLICATION, 2002�2015 ($ MILLIONS) ........................... 81

TABLE 24 MEMBRANE APPLICATIONS AND ALTERNATIVE

Page 8: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com viii

SEPARATION PROCSSES THROUGH 2015 ($ MILLIONS) ........................ 81 TABLE 24 (CONTINUED) ..................................................................................... 82

POTABLE WATER PRODUCTION ................................................................. 82MUNICIPAL DRINKING WATER ....................................................... 82

RO................................................................................................. 83MF ................................................................................................ 83UF................................................................................................. 83NF................................................................................................. 84EDR .............................................................................................. 84

MANUFACTURERS .............................................................................. 84 TABLE 25 MAJOR MANUFACTURERS OF MMBRANES FOR DRINKING WATER TREATMENTS BY MEMBRANE TECHNOLOGY TYPE ............... 85 TABLE 26 MAJOR MANUFACTURERS AND MEMBRANE PRODUCTS FOR POTABLE WATER PRODUCTION ......................................................... 85 TABLE 26 (CONTINUED) ..................................................................................... 86

BOTTLED WATER TREATMENT ....................................................... 86TRENDS AND TECHNICAL DEVELOPMENTS ................................ 86

Recycling Residential RO Cartridges ......................................... 87Affordable Desalination Collaboration ....................................... 87Membrane Distillation ................................................................ 88

VALUE OF THE U.S. MARKET FOR MEMBRANES USED IN POTABLE WATER TREATMENT .................................................. 89

Reverse Osmosis .......................................................................... 90Nanofiltration .............................................................................. 91Microfiltration .............................................................................. 92Ultrafiltration .............................................................................. 92Pretreatment to RO Desalination ............................................... 93ED/EDR ........................................................................................ 94Emerging Contaminants ............................................................. 94Barriers to Membrane Technology ............................................. 95

TABLE 27 U.S. MARKET FOR MEMBRANE MODULES USED IN POTABLE WATER TREATMENT BY TYPE, 2010 ($ MILLIONS/%) .......... 95

FIGURE 6 U.S. MARKET FOR MEMBRANE MODULES USED IN POTABLE WATER TREATMENT BY TYPE, 2010 (%) ................................... 96WASTEWATER TREATMENT ........................................................................ 96

DOMESTIC, MUNICIPAL WASTEWATER ......................................... 96Membrane Bioreactors ................................................................ 97

Wastewater Reuse ............................................................ 98INDUSTRIAL WASTEWATER ............................................................. 99

TABLE 28 POTENTIAL WASTEWATER COMPONENTS BY INDUSTRY ..... 99 TALBE 28 (CONTINUED) .............................................................................. 100

Page 9: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com ix

Heavy Metals ............................................................................. 100Organic Compounds .................................................................. 100Oily Wastewaters....................................................................... 101

WATER AND RAW MATERIALS RECOVERY/RECYCLING .......... 102 TABLE 29 RECOVERY/RECYCLE OPPORTUNITIES IN INDUSTRIAL

PROCESSES .................................................................................................. 103 MANUFACTURERS ............................................................................ 103

TABLE 30 MANUFACTURERS AND MEMBRANE PRODUCTS FOR WASTEWATER TREATMENT ...................................................................... 104

TRENDS AND TECHNICAL DEVELOPMENTS .............................. 104Milestones in Wastewater Reuse .............................................. 105

VALUE OF THE MARKET FOR MEMBRANES USED IN WASTEWATER APPLICATIONS ................................................. 106

Municipal Wastewater Treatment ............................................ 106MBRs ............................................................................... 107EDCS ............................................................................... 108

Industrial Wastewater Treatment ............................................ 108Industrial Wastewater Treatment (Continued) ............ 109

TABLE 31 U.S. MARKET FOR MEMBRANE MODULES USED IN WASTEWATER TREATMENT: CONVENTIONAL CROSSFLOW METHODS VS. MBR, 2010 ($ MILLIONS) ................................................... 110

FIGURE 7 U.S. MARKET FOR MEMBRANE MODULES USED IN WASTEWATER TREATMENT: CONVENTIONAL CROSSFLOW METHODS VS. MBR, 2010 (%) ...................................................................... 111PROCESS WATER TREATMENT................................................................. 111

POWER PLANT PROCESS WATER .................................................. 111BOILER FEEDWATER ....................................................................... 112

Deoxygenation ........................................................................... 112Boiler Blowdown ........................................................................ 113

Reusing Boiler Blowdown ............................................... 113Cooling Tower Water ................................................................. 113Cooling Tower Blowdown .......................................................... 114

ULTRAPURE MICROELECTRONICS-GRADE WATER ................. 115COMPENDIAL WATER ...................................................................... 116OTHER PROCESS WATER ................................................................ 116

Chemicals Manufacture ............................................................ 116Oil and Gas Processing .............................................................. 116

MANUFACTURERS ............................................................................ 117TRENDS AND TECHNICAL DEVELOPMENTS .............................. 117

Produced Water Treatment ....................................................... 117EDI for Power Plant Water Treatment .................................... 118

Page 10: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com x

VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES USED IN PROCESS WATER TREATMENT ................................ 118

Power Plant and Industrial Boiler Feedwater Treatment ...... 119Semiconductor Water Treatment, Recycling ............................ 120

Semiconductor �(Continued) ......................................... 121 Compendial Water ..................................................................... 122

FOOD AND BEVERAGE ................................................................................ 123FOOD PROCESSING APPLICATIONS ............................................. 123

TABLE 32 MEMBRANE APPLICATIONS IN FOOD PROCESSING ............. 124 TABLE 32 (CONTINUED) ................................................................................... 125

BEVERAGE PROCESSING APPLICATIONS ................................... 125 TABLE 33 MEMBRANE APPLICATIONS IN BEVERAGE PROCESING ..... 125

MANUFACTURERS ............................................................................ 126 TABLE 34 MANUFACTURERS AND MEMBRANE PRODUCTS FOR FOOD AND BEVERAGE APPLICATIONS ........................................... 126

TRENDS AND TECHNICAL DEVELOPMENTS .............................. 127Micro-Engineered Silicon Membranes ...................................... 127Dairy Separations ...................................................................... 127Alcohol Adjustment of Wine by Perstraction ........................... 128pH Adjustment of Aqueous Foods Using Bipolar ED .............. 129Water Reuse ............................................................................... 130

VALUE OF THE MARKET FOR MEMBRANES USED IN FOOD AND BEVERAGE APPLICATIONS .................................. 131

Dairy Separations ...................................................................... 131Soy, Corn and Other Mill Product Applications ....................... 132Beverage Applications ............................................................... 133Wastewater Treatment and Recycling Applications ................ 134Sugar, Starch, and Sweetener Applications ............................. 135Competitive Technologies and Barriers to Membrane Use ..... 135

TABLE 35 U.S. MARKET FOR MEMBRANE MODULES USED IN FOOD AND BEVERAGE APPLICATIONS, BY INDUSTRY SECTOR, 2010 ($ MILLIONS/%) ............................................................................................. 136

FIGURE 8 U.S. MARKET FOR MEMBRANE MODULES USED IN FOOD AND BEVERAGE APPLICATIONS BY INDUSTRY SECTOR, 2008 (%) ............................................................................................................ 137PHARMACEUTICALS AND BIOTECHNOLOGY ....................................... 137

APPLICATIONS ................................................................................... 137Laboratory-Scale Applications .................................................. 138

TABLE 36 APPLICATIONS FOR MEMBRANES IN BIOTECHNOLOGY/ PHARMACEUTICALS .................................................................................... 138

Downstream Bioprocessing ....................................................... 139

Page 11: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xi

MANUFACTURERS ............................................................................ 139 TABLE 37 MANUFACTURERS AND MEMBRANE PRODUCTS FOR BIOPHARMACEUTICALS PRODUCTION ................................................. 140

TRENDS AND TECHNICAL DEVELOPMENTS .............................. 141Pore-filled Membranes .............................................................. 141Polymer Brush Membranes....................................................... 141Disposable Manufacturing ........................................................ 142

Disposable Manufacturing (Continued) ......................... 143Separating Proteins by Size, Net Charge ................................. 144

VALUE OF THE MARKET FOR MEMBRANES IN THE BIOTECH/ PHARMACEUTICAL INDUSTRY ............................. 144

The Biopharmaceuticals Market .............................................. 145Lab-Scale, Small-Production-Scale Separations ...................... 146Bioprocessing Products .............................................................. 146

Single-Use Products ........................................................ 147Virus Filters, Membrane Adsorbers ............................... 147

Water Treatment ....................................................................... 148Biogenerics ................................................................................. 148Competitive Technologies .......................................................... 149

OTHER INDUSTRIAL LIQUID SEPARATIONS ......................................... 149 TABLE 38 OTHER INDUSTRIAL APPLICATIONS FOR MEMBRANES ..... 149

APPLICATIONS ................................................................................... 150Chemicals, Petrochemicals Manufacture ................................. 150Semiconductor Chemicals Filtration ........................................ 150Electrocoat Paint ....................................................................... 150Automotive Paint Pretreatment ............................................... 151Metalworking ............................................................................. 151Removing Sulfur from Transportation Fuels ........................... 152Radioactive Waste Treatment ................................................... 152

MANUFACTURERS ............................................................................ 153 TABLE 39 MANUFACTURERS AND MEMBRANE PRODUCTS FOR OTHER LIQUID SEPARATIONS .................................................................. 153 TABLE 39 (CONTINUED) ................................................................................... 154

TRENDS AND TECHNICAL DEVELOPMENTS .............................. 154Solvent-Resistant Membranes .................................................. 154Cellulosic Biofuels Manufacture ............................................... 155Extracting Hydrogen from Any Renewable Organic ................ 156

VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS USED IN OTHER INDUSTRIAL LIQUID SEPARATIONS ............................................................................... 156

Semiconductor Manufacturing .................................................. 156

Page 12: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xii

Chemical Industry Applications ............................................... 157Biofuels Production ................................................................... 158Other Applications ..................................................................... 159

INDUSTRIAL GAS SEPARATION ................................................................ 160APPLICATIONS ................................................................................... 160

Nitrogen/Air Separation ............................................................ 160Aircraft Fuel Tank Inerting ........................................... 161

Oxygen/Air Separation .............................................................. 162Hydrogen Separations ............................................................... 163Natural Gas Purification ........................................................... 163

Natural Gas Dehydration ............................................... 164Nitrogen Removal ........................................................... 164

Vapor/Gas Separations .............................................................. 165Vapor/Vapor Separations .......................................................... 165Other .......................................................................................... 166

Air Drying ....................................................................... 166Ultrapure Hydrogen Production .................................... 166Membrane Reactor Processes ......................................... 167CO2 Capture .................................................................... 167

TABLE 40 MEMBRANES IN DEVELOPMENT FOR CO2 CAPTURE ............ 168 VALUE OF THE U.S. MARKET FOR MEMBRANES USED IN

INDUSTRIAL GAS SEPARATION ................................................ 169Nitrogen/Air Separation ............................................................ 169Hydrogen Separations ............................................................... 169Natural Gas Treatment ............................................................. 170Oxygen/Air Separation .............................................................. 171Separating Vapors from Permanent Gases .............................. 171Vapor/Vapor Separations .......................................................... 172Other Applications ..................................................................... 172

TABLE 41 VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS USED IN GAS SEPARATIONS BY APPLICATION, 2001-2015

($ MILLIONS) ................................................................................................. 173 FIGURE 9 PROJECTED VALUE OF THE U.S. MARKET FOR

MEMBRANE PRODUCTS USED IN GAS SEPARATIONS BY APPLICATION, 2002�2015 ($ MILLIONS) .................................................... 174

CHAPTER SIX: PATENT SURVEY ........................................................................ 175PATENTS BY APPLICATION ....................................................................... 175

TABLE 42 U.S. PATENTS BY APPLICATION, JANUARY 1, 2005 TO JUNE 29, 2010 (NUMBER) ............................................................................ 176

Page 13: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xiii

FIGURE 10 U.S. PATENTS BY APPLICATION, JANUARY 1, 2005 TO JUNE 29, 2010 (NUMBER) ............................................................................. 177PATENTS BY COMPANY .............................................................................. 177

PATENTS BY COMPANY (CONTINUED) ........................................ 178PATENTS BY COMPANY (CONTINUED) ........................................ 179

TABLE 43 U.S. PATENTS BY COMPANY, JANUARY 1, 2005 TO JUNE 29, 2010 (NUMBER) ............................................................................................. 180

TABLE 43 ( CONTINUED) .................................................................................. 181 FIGURE 11 U.S. PATENTS BY APPLICATION, JANUARY 1, 2005 TO

JUNE 29, 2010 (NUMBER) ............................................................................. 182

CHAPTER SEVEN: INDUSTRY STRUCTURE ..................................................... 183MERGERS AND ACQUISITIONS ................................................................. 183

TABLE 44 MERGERS AND ACQUISITIONS, 1994-2010 ............................... 184 TABLE 44 (CONTINUED) ................................................................................... 185

MARKET SHARE ........................................................................................... 185 TABLE 45 ESTIMATED U.S. MEMBRANE MARKET SHARE BY COMPANY, 2010 (%) ....................................................................................... 186

FIGURE 12 ESTIMATED U.S. MEMBRANE MARKET SHARE BY COMPANY, 2010 (%) ....................................................................................... 187COMPANY PROFILES .................................................................................. 187

3M PURIFICATION ............................................................................ 187ADVANTEC MFS ................................................................................. 188AIR LIQUIDE ....................................................................................... 188

Medal, LP ................................................................................... 189AIR PRODUCTS AND CHEMICALS, INC. ....................................... 189

Air Products Prism Membranes ................................................ 190AKER ASA ............................................................................................ 190

Aker Solutions (U.S.) ................................................................. 191ALFA LAVAL ....................................................................................... 191APPLIED MEMBRANES, INC. .......................................................... 192APPLIED MEMBRANE TECHNOLOGY ........................................... 192AQUAMARIJN MICROFILTRATION BV .......................................... 192AQUAPORIN A/S ................................................................................. 193ASAHI KASEI ...................................................................................... 194ASTOM CORP. ..................................................................................... 194ASTUTE NANOTECHNOLOGY ......................................................... 195ATECH INNOVATIONS GMBH ......................................................... 195BERGHOF FILTRATIONS UND ANLAGENTECHNIK GMBH ...... 196BWT GROUP ........................................................................................ 196CANTEL MEDICAL ............................................................................. 197

Page 14: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xiv

MarCor Purification .................................................................. 197CARBOZYME, INC. ............................................................................. 198CERAMEM ........................................................................................... 199COMPACT MEMBRANE SYSTEMS .................................................. 199COSKATA, INC. ................................................................................... 200DAICEN MEMBRANE SYSTEMS, LTD. ........................................... 201DONALDSON CO. ............................................................................... 202DOW CHEMICAL CO. ......................................................................... 202

Dow Liquid Separations ............................................................ 202ECO CERAMICS B.V. .......................................................................... 203ELTRON RESEARCH ......................................................................... 204EMEMBRANE...................................................................................... 205ENTEGRIS, INC. ................................................................................. 205FAIREY INDUSTRIAL CERAMICS, LTD. ........................................ 206FLUXXION BV ..................................................................................... 206FUMA-TECH ........................................................................................ 207GENERAL ELECTRIC ........................................................................ 207

GE Water Technologies ............................................................. 208GE Healthcare ........................................................................... 208

GEA WESTFALIA SEPARATOR, INC. .............................................. 209GENESIS FUELTECH, INC. .............................................................. 209GKN SINTER METALS FILTERS GMBH ......................................... 210W.R. GRACE & CO. ............................................................................. 210GRAVER TECHNOLGIES .................................................................. 211HONEYWELL INTERNATIONAL ..................................................... 211

UOP ............................................................................................ 211HY9 CORP. ........................................................................................... 212HYDROGENICS CORP. ...................................................................... 213HYFLUX, LTD. .................................................................................... 213IDATECH ............................................................................................. 214INGE AG ............................................................................................... 215

inge Americas, Inc. .................................................................... 215INNOVATIVE GAS SYSTEMS (IGS) ................................................. 216ITM POWER, PLC ............................................................................... 216ITN NANOVATION AG ....................................................................... 217ITT INDUSTRIES ................................................................................ 217JIANGSU JIUWU HI-TECH CO., LTD. ............................................. 218KATHYD TECHNOLOGY ................................................................... 218KOCH MEMBRANE SYSTEMS ......................................................... 219KOREA MEMBRANE SEPARATION ................................................ 219KUBOTA CORP. .................................................................................. 220

Page 15: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xv

MEDIA AND PROCESS TECHNOLOGY ........................................... 221MEISSNER FILTRATION PRODUCTS, INC. ................................... 221MEMBRANA-CHARLOTTE ................................................................ 222MEMBRANE PRODUCTS CORP. (MEMPRO) .................................. 222MEMPORE........................................................................................... 223MEMBRANE TECHNOLOGY & RESEARCH, INC. (MTR) ............. 223MEMBRANES INTERNATIONAL ..................................................... 224MILLENNIUMPORE, LTD. ................................................................ 225MILLIPORE CORP. ............................................................................. 226MITSUBISHI RAYON ENGINEERING CO., LTD. ........................... 226MMF MAXFLOW MEMBRAN FILTRATION GMBH ....................... 227MITSUI CHEMICALS ......................................................................... 227MTB TECHNOLOGIES ....................................................................... 228NAGAYANAGI CO., LTD. ................................................................... 228NAJADE SEPARATION B.V. .............................................................. 229NANOASIS ........................................................................................... 229NANOH2O, INC. .................................................................................. 230NATCO GROUP ................................................................................... 230NATRIX SEPARATIONS..................................................................... 231NEOMECS, INC. .................................................................................. 232NEW LOGIC INTERNATIONAL........................................................ 232NGK INSULATORS, LTD. .................................................................. 233NITTO DENKO CORP. ........................................................................ 233

Hydranautics ............................................................................. 234NORIT NV ............................................................................................ 235NOVASEP PROCESS .......................................................................... 235OASYS .................................................................................................. 236PALL CORP. ......................................................................................... 237PAN GEN GLOBAL ............................................................................. 237

Pan Gen Global (Continued) ..................................................... 238PARKER HANNIFIN CORP. .............................................................. 239PCA- POLYMERCHEMIE ALTMEIER GMBH UND PCCELL

GMBH .............................................................................................. 240PENTAIR, INC. .................................................................................... 240

Porous Media ............................................................................. 240PERMIONICS ...................................................................................... 241PERVATECH BV ................................................................................. 241PIONETICS CORP. .............................................................................. 242POLYAN GMBH .................................................................................. 242POLYMEM S.A. ................................................................................... 243PORIFERA INC. .................................................................................. 244

Page 16: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xvi

POROGEN CORP. ................................................................................ 244PORVAIR, PLC .................................................................................... 245

Porvair Filtration Group, Inc. ................................................... 245POWER+ENERGY, INC. ..................................................................... 246PRAXAIR, INC. .................................................................................... 247PRIME WATER INTERNATIONAL NV ............................................ 247REB RESEARCH AND CONSULTING .............................................. 248ROCHEM UF-SYSTEME .................................................................... 248

Sepro Separation Solutions ....................................................... 248SARTORIUS STEDIM BIOTECH ....................................................... 249SEPARATION DYNAMICS, INC. ....................................................... 250SIEMENS AG ....................................................................................... 250SIMPORE ............................................................................................. 251SINOMEM TECHNOLOGY, LTD./SUNTAR MEMBRANE

TECHNOLOGY ............................................................................... 252SNOWPURE, LLC ............................................................................... 253SPECIALTY SILICONE PRODUCTS, INC. ....................................... 253SPECTRUM LABORATORIES ........................................................... 254SPINTEK SYSTEMS ........................................................................... 255STARTECH ENVIRONMENTAL ....................................................... 255STONYBROOK PURIFICATION ....................................................... 256SUEZ ENVIRONNEMENT ................................................................. 256

Infilco Degrémont, Inc. .............................................................. 257SULZER CHEMTECH, LTD. .............................................................. 258SUMITOMO ELECTRIC INDUSTRIES ............................................. 258

Sumitomo Electric Fine Polymer, Inc. ...................................... 258SYNDER FILTRATION ....................................................................... 259SYNKERA TECHNOLOGIES, INC. ................................................... 260T3 SCIENTIFIC, LLC .......................................................................... 260TAMI INDUSTRIES ............................................................................ 261TIANJIN MOTIMO MEMBRANE TECHNOLOGY, LTD. ................ 262TOKUYAMA CORP. ............................................................................ 262

Tokuyama America, Inc. ........................................................... 263TORAY INDUSTRIES ......................................................................... 263TOYO ROSHI KAISHA ........................................................................ 264

Advantec MFS, Inc. ................................................................... 264TOYOBO CORP. ................................................................................... 265TRANS IONICS CORP. ....................................................................... 265TRISEP CORP. ..................................................................................... 266UBE INDUSTRIES .............................................................................. 267VAPERMA, INC. .................................................................................. 268

Page 17: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xvii

VINA FILTER CO., LTD. ..................................................................... 268W.L. GORE & ASSOCIATES............................................................... 269WOONGJIN CHEMICAL .................................................................... 269YUASA MEMBRANE SYSTEMS CO., LTD. ...................................... 270

Yuasa Membrane Systems Co., Ltd. (Continued) ................... 271

APPENDIX ................................................................................................................ 272TABLE 46 PATENT SURVEY, 2005 ............................................................ 272 TABLE 46 (CONTINUED) ............................................................................. 273 TABLE 46 (CONTINUED) ............................................................................. 274 TABLE 46 (CONTINUED) ............................................................................. 275 TABLE 46 (CONTINUED) ............................................................................. 276 TABLE 46 (CONTINUED) ............................................................................. 277 TABLE 46 (CONTINUED) ............................................................................. 278 TABLE 46 (CONTINUED) ............................................................................. 279 TABLE 46 (CONTINUED) ............................................................................. 280 TABLE 46 (CONTINUED) ............................................................................. 281 TABLE 46 (CONTINUED) ............................................................................. 282 TABLE 46 (CONTINUED) ............................................................................. 283 TABLE 46 (CONTINUED) ............................................................................. 284 TABLE 46 (CONTINUED) ............................................................................. 285 TABLE 46 (CONTINUED) ............................................................................. 286 TABLE 46 (CONTINUED) ............................................................................. 287 TABLE 46 (CONTINUED) ............................................................................. 288 TABLE 46 (CONTINUED) ............................................................................. 289 TABLE 46 (CONTINUED) ............................................................................. 290 TABLE 47 PATENT SURVEY, 2006 ............................................................ 290 TABLE 47 (CONTINUED) ............................................................................. 291 TABLE 47 (CONTINUED) ............................................................................. 291 TABLE 47 (CONTINUED) ............................................................................. 292 TABLE 47 (CONTINUED) ............................................................................. 293 TABLE 47 (CONTINUED) ............................................................................. 294 TABLE 47 (CONTINUED) ............................................................................. 295 TABLE 47 (CONTINUED) ............................................................................. 296 TABLE 47 (CONTINUED) ............................................................................. 297 TABLE 47 (CONTINUED) ............................................................................. 298 TABLE 47 (CONTINUED) ............................................................................. 299 TABLE 47 (CONTINUED) ............................................................................. 300 TABLE 47 (CONTINUED) ............................................................................. 301 TABLE 47 (CONTINUED) ............................................................................. 302 TABLE 47 (CONTINUED) ............................................................................. 303

Page 18: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xviii

TABLE 47 (CONTINUED) ............................................................................. 304 TABLE 47 (CONTINUED) ............................................................................. 305 TABLE 47 (CONTINUED) ............................................................................. 306 TABLE 47 (CONTINUED) ............................................................................. 307 TABLE 47 (CONTINUED) ............................................................................. 308 TABLE 47 (CONTINUED) ............................................................................. 309 TABLE 47 (CONTINUED) ............................................................................. 310 TABLE 48 PATENT SURVEY, 2007 ............................................................. 311 TABLE 48 (CONTINUED) ............................................................................. 312 TABLE 48 (CONTINUED) ............................................................................. 313 TABLE 48 (CONTINUED) ............................................................................. 314 TABLE 48 (CONTINUED) ............................................................................. 315 TABLE 48 (CONTINUED) ............................................................................. 316 TABLE 48 (CONTINUED) ............................................................................. 317 TABLE 48 (CONTINUED) ............................................................................. 318 TABLE 48 (CONTINUED) ............................................................................. 319 TABLE 48 (CONTINUED) ............................................................................. 320 TABLE 48 (CONTINUED) ............................................................................. 321 TABLE 48 (CONTINUED) ............................................................................. 322 TABLE 48 (CONTINUED) ............................................................................. 323 TABLE 48 (CONTINUED) ............................................................................. 324 TABLE 48 (CONTINUED) ............................................................................. 325 TABLE 48 (CONTINUED) ............................................................................. 326 TABLE 48 (CONTINUED) ............................................................................. 327 TABLE 48 (CONTINUED) ............................................................................. 328 TABLE 48 (CONTINUED) ............................................................................. 329 TABLE 49 PATENT SURVEY, 2008 ............................................................. 329 TABLE 49 (CONTINUED) ............................................................................. 330 TABLE 49 (CONTINUED) ............................................................................. 331 TABLE 49 (CONTINUED) ............................................................................. 332 TABLE 49 (CONTINUED) ............................................................................. 333 TABLE 49 (CONTINUED) ............................................................................. 334 TABLE 49 (CONTINUED) ............................................................................. 335 TABLE 49 (CONTINUED) ............................................................................. 336 TABLE 49 (CONTINUED) ............................................................................. 337 TABLE 49 (CONTINUED) ............................................................................. 338 TABLE 49 (CONTINUED) ............................................................................. 339 TABLE 49 (CONTINUED) ............................................................................. 340 TABLE 49 (CONTINUED) ............................................................................. 341 TABLE 49 (CONTINUED) ............................................................................. 342 TABLE 49 (CONTINUED) ............................................................................. 343

Page 19: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xix

TABLE 49 (CONTINUED) ............................................................................. 344 TABLE 49 (CONTINUED) ............................................................................. 345 TABLE 49 (CONTINUED) ............................................................................. 346 TABLE 49 (CONTINUED) ............................................................................. 347 TABLE 49 (CONTINUED) ............................................................................. 348 TABLE 49 (CONTINUED) ............................................................................. 349 TABLE 49 (CONTINUED) ............................................................................. 350 TABLE 49 (CONTINUED) ............................................................................. 351 TABLE 49 (CONTINUED) ............................................................................. 352 TABLE 50 PATENT SURVEY, 2009 ............................................................. 352 TABLE 50 (CONTINUED) ............................................................................. 353 TABLE 50 (CONTINUED) ............................................................................. 354 TABLE 50 (CONTINUED) ............................................................................. 355 TABLE 50 (CONTINUED) ............................................................................. 356 TABLE 50 (CONTINUED) ............................................................................. 357 TABLE 50 (CONTINUED) ............................................................................. 358 TABLE 50 (CONTINUED) ............................................................................. 359 TABLE 50 (CONTINUED) ............................................................................. 360 TABLE 50 (CONTINUED) ............................................................................. 361 TABLE 50 (CONTINUED) ............................................................................. 362 TABLE 50 (CONTINUED) ............................................................................. 363 TABLE 50 (CONTINUED) ............................................................................. 364 TABLE 50 (CONTINUED) ............................................................................. 365 TABLE 50 (CONTINUED) ............................................................................. 366 TABLE 50 (CONTINUED) ............................................................................. 367 TABLE 50 (CONTINUED) ............................................................................. 368 TABLE 50 (CONTINUED) ............................................................................. 369 TABLE 50 (CONTINUED) ............................................................................. 370 TABLE 50 (CONTINUED) ............................................................................. 371 TABLE 50 (CONTINUED) ............................................................................. 372 TABLE 50 (CONTINUED) ............................................................................. 373 TABLE 51 PATENT SURVEY 2010 .............................................................. 374 TABLE 51 (CONTINUED) ............................................................................. 375 TABLE 51 (CONTINUED) ............................................................................. 376 TABLE 51 (CONTINUED) ............................................................................. 377 TABLE 51 (CONTINUED) ............................................................................. 378 TABLE 51 (CONTINUED) ............................................................................. 379 TABLE 51 (CONTINUED) ............................................................................. 380 TABLE 51 (CONTINUED) ............................................................................. 381 TABLE 51 (CONTINUED) ............................................................................. 382 TABLE 51 (CONTINUED) ............................................................................. 383

Page 20: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

TABLE OF CONTENTS

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xx

TABLE 51 (CONTINUED) ............................................................................. 384 TABLE 51 (CONTINUED) ............................................................................. 385 TABLE 51 (CONTINUED) ............................................................................. 386 TABLE 51 (CONTINUED) ............................................................................. 387 TABLE 51 (CONTINUED) ............................................................................. 388

Page 21: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

LIST OF TABLES

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xxi

SUMMARY TABLE VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES USED IN GAS AND LIQUID SEPARATIONS, THROUGH 2015 ($ MILLIONS) ................................................................................................. 6

TABLE 1 A BRIEF HISTORY OF MEMBRANE DEVELOPMENT .......................... 8TABLE 2 APPLICATIONS FOR REVERSE OSMOSIS MEMBRANES ................. 20TABLE 3 MANUFACTURERS OF REVERSE OSMOSIS MEMBRANES ............. 20TABLE 4 APPLICATIONS FOR NANOFILTRATION MEMBRANES ................... 30TABLE 5 MANUFACTURERS OF NANOFILTRATION MEMBRANES ............... 31TABLE 6 APPLICATIONS FOR ULTRAFILTRATION MEMBRANES ................. 33TABLE 7 MANUFACTURERS OF ULTRAFILTRATION MEMBRANES ............. 34TABLE 8 APPLICATIONS FOR MICROFILTRATION MEMBRANES ................. 37TABLE 9 MANUFACTURERS OF MICROFILTRATION MEMBRANES ............. 37TABLE 10 APPLICATIONS FOR ION EXCHANGE MEMBRANES ..................... 43TABLE 11 MANUFACTURERS AND ION EXCHANGE MEMBRANE

PRODUCTS ............................................................................................................ 44TABLE 12 VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS

USED IN LIQUID SEPARATIONS BY TECHNOLOGY TYPE, THROUGH 2015 ($ MILLIONS) ................................................................................................ 55

TABLE 13 APPLICATIONS FOR GAS SEPARATION MEMBRANES .................. 57TABLE 14 MANUFACTURERS AND MEMBRANE PRODUCTS FOR GAS

SEPARATION ........................................................................................................ 58TABLE 15 VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS

USED IN GAS SEPARATIONS, THOUGH 2015 ($ MILLIONS) ........................ 65TABLE 16 APPLICATIONS FOR PERVAPORATION MEMBRANES .................. 66TABLE 17 MANUFACTURERS AND MEMBRANE PRODUCTS FOR

PERVAPORATION ................................................................................................ 67TABLE 18 PROJECTED VALUE OF THE U.S. MARKET FOR

PERVAPORATION MEMBRANES, THROUGH 2015 ($ MILLIONS) ............... 72TABLE 19 APPLICATIONS FOR MEMBRANE CONTACTORS ........................... 73TABLE 20 MEMBRANE CONTACTOR MANUFACTURERS AND

PRODUCTS ............................................................................................................ 74TABLE 21 APPLICATIONS FOR LIQUID MEMBRANES ..................................... 75TABLE 22 VALUE OF THE U.S. MARKET FOR NOVEL MEMBRANES

BY APPLICATION, 2002�2015 ($ MILLIONS) .................................................... 79TABLE 23 VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES

BY APPLICATION, THROUGH 2015 ($ MILLIONS) ......................................... 80TABLE 24 MEMBRANE APPLICATIONS AND ALTERNATIVE

SEPARATION PROCESSES ................................................................................. 81

Page 22: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

LIST OF TABLES

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xxii

TABLE 25 MAJOR MANUFACTURERS OF MEMBRANES FOR DRINKING WATER TREATMENT BY MEMBRANE TECHNOLOGY TYPE ....................................................................................................................... 85

TABLE 26 MAJOR MANUFACTURERS AND MEMBRANE PRODUCTS FOR POTABLE WATER PRODUCTION ............................................................. 85

TABLE 27 U.S. MARKET FOR MEMBRANE MODULES USED IN POTABLE WATER TREATMENT BY TYPE, 2010 ($ MILLIONS/%) ................ 95

TABLE 28 POTENTIAL WASTEWATER COMPONENTS BY INDUSTRY .......... 99TABLE 29 RECOVERY/RECYCLE OPPORTUNITIES IN INDUSTRIAL

PROCESSES......................................................................................................... 103TABLE 30 MANUFACTURERS AND MEMBRANE PRODUCTS FOR

WASTEWATER TREATMENT ........................................................................... 104TABLE 31 U.S. MARKET FOR MEMBRANE MODULES USED IN

WASTEWATER TREATMENT: CONVENTIONAL CROSSFLOW METHODS VS. MBR, 2010 ($ MILLIONS) ........................................................ 110

TABLE 32 MEMBRANE APPLICATIONS IN FOOD PROCESSING .................. 124TABLE 33 MEMBRANE APPLICATIONS IN BEVERAGE PROCESSING ........ 125TABLE 34 MANUFACTURERS AND MEMBRANE PRODUCTS FOR

FOOD AND BEVERAGE APPLICATIONS ........................................................ 126TABLE 35 U.S. MARKET FOR MEMBRANE MODULES USED IN FOOD

AND BEVERAGE APPLICATIONS, BY INDUSTRY SECTOR, 2010 ($ MILLIONS, %) ...................................................................................................... 136

TABLE 36 APPLICATIONS FOR MEMBRANES IN BIOTECHNOLOGY/PHARMACEUTICALS ...................................................... 138

TABLE 37 MANUFACTURERS AND MEMBRANE PRODUCTS FOR BIOPHARMACEUTICALS PRODUCTION ....................................................... 140

TABLE 38 OTHER INDUSTRIAL APPLICATIONS FOR MEMBRANES ........... 149TABLE 39 MANUFACTURERS AND MEMBRANE PRODUCTS FOR

OTHER LIQUID SEPARATIONS ....................................................................... 153TABLE 40 MEMBRANES IN DEVELOPMENT FOR CO2 CAPTURE ................. 168TABLE 41 VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS

USED IN GAS SEPARATIONS BY APPLICATION, 2001-2015 ($ MILLIONS) ........................................................................................................... 173

TABLE 42 U.S. PATENTS BY APPLICATION, JANUARY 1, 2005 TO JUNE 29, 2010 (NUMBER)............................................................................................. 176

TABLE 43 U.S. PATENTS BY COMPANY, JANUARY 1, 2005 TO JUNE 29, 2010 (NUMBER) .................................................................................................. 180

TABLE 44 MERGERS AND ACQUISITIONS, 1994�2010 .................................... 184TABLE 45 ESTIMATED U.S. MEMBRANE MARKET SHARE BY

COMPANY, 2010 (%) ........................................................................................... 186TABLE 46 PATENT SURVEY, 2005 ....................................................................... 272

Page 23: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

LIST OF TABLES

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xxiii

TABLE 46 (CONTINUED) ........................................................................................ 273TABLE 46 (CONTINUED) ........................................................................................ 274TABLE 46 (CONTINUED) ........................................................................................ 275TABLE 46 (CONTINUED) ........................................................................................ 276TABLE 46 (CONTINUED) ........................................................................................ 277TABLE 46 (CONTINUED) ........................................................................................ 278TABLE 46 (CONTINUED) ........................................................................................ 279TABLE 46 (CONTINUED) ........................................................................................ 280TABLE 46 (CONTINUED) ........................................................................................ 281TABLE 46 (CONTINUED) ........................................................................................ 282TABLE 46 (CONTINUED) ........................................................................................ 283TABLE 46 (CONTINUED) ........................................................................................ 284TABLE 46 (CONTINUED) ........................................................................................ 285TABLE 46 (CONTINUED) ........................................................................................ 286TABLE 46 (CONTINUED) ........................................................................................ 287TABLE 46 (CONTINUED) ........................................................................................ 288TABLE 46 (CONTINUED) ........................................................................................ 289TABLE 46 (CONTINUED) ........................................................................................ 290TABLE 47 PATENT SURVEY, 2006 ....................................................................... 290TABLE 47 (CONTINUED) ........................................................................................ 291TABLE 47 (CONTINUED) ........................................................................................ 292TABLE 47 (CONTINUED) ........................................................................................ 293TABLE 47 (CONTINUED) ........................................................................................ 294TABLE 47 (CONTINUED) ........................................................................................ 295TABLE 47 (CONTINUED) ........................................................................................ 296TABLE 47 (CONTINUED) ........................................................................................ 297TABLE 47 (CONTINUED) ........................................................................................ 298TABLE 47 (CONTINUED) ........................................................................................ 299TABLE 47 (CONTINUED) ........................................................................................ 300TABLE 47 (CONTINUED) ........................................................................................ 301TABLE 47 (CONTINUED) ........................................................................................ 302TABLE 47 (CONTINUED) ........................................................................................ 303TABLE 47 (CONTINUED) ........................................................................................ 304TABLE 47 (CONTINUED) ........................................................................................ 305TABLE 7 (CONTINUED) .......................................................................................... 306TABLE 47 (CONTINUED) ........................................................................................ 307TABLE 47 (CONTINUED) ........................................................................................ 308TABLE 47 (CONTINUED) ........................................................................................ 309TABLE 47 (CONTINUED) ........................................................................................ 310TABLE 48 PATENT SURVEY, 2007 ....................................................................... 311TABLE 48 (CONTINUED) ........................................................................................ 312

Page 24: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

LIST OF TABLES

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xxiv

TABLE 48 (CONTINUED) ........................................................................................ 313TABLE 48 (CONTINUED) ........................................................................................ 314TABLE 48 (CONTINUED) ........................................................................................ 315TABLE 48 (CONTINUED) ........................................................................................ 316TABLE 48 (CONTINUED) ........................................................................................ 317TABLE 48 (CONTINUED) ........................................................................................ 318TABLE 48 (CONTINUED) ........................................................................................ 319TABLE 48 (CONTINUED) ........................................................................................ 320TABLE 48 (CONTINUED) ........................................................................................ 321TABLE 48 (CONTINUED) ........................................................................................ 322TABLE 48 (CONTINUED) ........................................................................................ 323TABLE 48 (CONTINUED) ........................................................................................ 324TABLE 48 (CONTINUED) ........................................................................................ 325TABLE 48 (CONTINUED) ........................................................................................ 326TABLE 48 (CONTINUED) ........................................................................................ 327TABLE 48 (CONTINUED) ........................................................................................ 328TABLE 48 (CONTINUED) ........................................................................................ 329TABLE 49 PATENT SURVEY, 2008 ....................................................................... 329TABLE 49 (CONTINUED) ........................................................................................ 330TABLE 49 (CONTINUED) ........................................................................................ 331TABLE 49 (CONTINUED) ........................................................................................ 332TABLE 49 (CONTINUED) ........................................................................................ 333TABLE 49 (CONTINUED) ........................................................................................ 334TABLE 49 (CONTINUED) ........................................................................................ 335TABLE 49 (CONTINUED) ........................................................................................ 336TABLE 49 (CONTINUED) ........................................................................................ 337TABLE 49 (CONTINUED) ........................................................................................ 338TABLE 49 (CONTINUED) ........................................................................................ 339TABLE 49 (CONTINUED) ........................................................................................ 340TABLE 49 (CONTINUED) ........................................................................................ 341TABLE 49 (CONTINUED) ........................................................................................ 342TABLE 49 (CONTINUED) ........................................................................................ 343TABLE 49 (CONTINUED) ........................................................................................ 344TABLE 49 (CONTINUED) ........................................................................................ 345TABLE 49 (CONTINUED) ........................................................................................ 346TABLE 49 (CONTINUED) ........................................................................................ 347TABLE 49 (CONTINUED) ........................................................................................ 348TABLE 49 (CONTINUED) ........................................................................................ 349TABLE 49 (CONTINUED) ........................................................................................ 350TABLE 49 (CONTINUED) ........................................................................................ 351TABLE 49 (CONTINUED) ........................................................................................ 352

Page 25: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

LIST OF TABLES

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xxv

TABLE 50 PATENT SURVEY, 2009 ....................................................................... 352TABLE 50 (CONTINUED) ........................................................................................ 353TABLE 50 (CONTINUED) ........................................................................................ 354TABLE 50 (CONTINUED) ........................................................................................ 355TABLE 50 (CONTINUED) ........................................................................................ 356TABLE 50 (CONTINUED) ........................................................................................ 357TABLE 50 (CONTINUED) ........................................................................................ 358TABLE 50 (CONTINUED) ........................................................................................ 359TABLE 50 (CONTINUED) ........................................................................................ 360TABLE 50 (CONTINUED) ........................................................................................ 361TABLE 50 (CONTINUED) ........................................................................................ 362TABLE 50 (CONTINUED) ........................................................................................ 363TABLE 50 (CONTINUED) ........................................................................................ 364TABLE 50 (CONTINUED) ........................................................................................ 365TABLE 50 (CONTINUED) ........................................................................................ 366TABLE 50 (CONTINUED) ........................................................................................ 367TABLE 50 (CONTINUED) ........................................................................................ 368TABLE 50 (CONTINUED) ........................................................................................ 369TABLE 50 (CONTINUED) ........................................................................................ 370TABLE 50 (CONTINUED) ........................................................................................ 371TABLE 50 (CONTINUED) ........................................................................................ 372TABLE 50 (CONTINUED) ........................................................................................ 373TABLE 51 PATENT SURVEY 2010 ........................................................................ 374TABLE 51 (CONTINUED) ........................................................................................ 375TABLE 51 (CONTINUED) ........................................................................................ 376TABLE 51 (CONTINUED) ........................................................................................ 377TABLE 51 (CONTINUED) ........................................................................................ 378TABLE 51 (CONTINUED) ........................................................................................ 379TABLE 51 (CONTINUED) ........................................................................................ 380TABLE 51 (CONTINUED) ........................................................................................ 381TABLE 51 (CONTINUED) ........................................................................................ 382TABLE 51 (CONTINUED) ........................................................................................ 383TABLE 51 (CONTINUED) ........................................................................................ 384TABLE 51 (CONTINUED) ........................................................................................ 385TABLE 51 (CONTINUED) ........................................................................................ 386TABLE 51 (CONTINUED) ........................................................................................ 387TABLE 51 (CONTINUED) ........................................................................................ 388

Page 26: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

LIST OF FIGURES

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com xxvi

SUMMARY FIGURE PROJECTED VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES USED IN GAS AND LIQUID SEPARATIONS, 2002�2015 ($ MILLIONS) ........................................................................................ 6

FIGURE 1 PROJECTED U.S. MARKET FOR MEMBRANE PRODUCTS USED IN LIQUID SEPARATIONS BY TECHNOLOGY TYPE, 2002�2015 ($ MILLIONS) ......................................................................................................... 56

FIGURE 2 VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS USED IN GAS SEPARATIONS, 2002�2015 ($ MILLIONS) ................................ 65

FIGURE 3 PROJECTED VALUE OF THE U.S. MARKET FOR PERVAPORATION MEMBRANES, 2002-2015 ($ MILLIONS) ........................... 72

FIGURE 4 VALUE OF THE U.S. MARKET FOR NOVEL MEMBRANE PRODUCTS, 2002�2015 ($ MILLIONS) .............................................................. 79

FIGURE 5 VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES BY APPLICATION, 2002�2015 ($ MILLIONS) .................................................... 81

FIGURE 6 U.S. MARKET FOR MEMBRANE MODULES USED IN POTABLE WATER TREATMENT BY TYPE, 2010 (%) ....................................... 96

FIGURE 7 U.S. MARKET FOR MEMBRANE MODULES USED IN WASTEWATER TREATMENT: CONVENTIONAL CROSSFLOW METHODS VS. MBR, 2010 (%) ........................................................................... 111

FIGURE 8 U.S. MARKET FOR MEMBRANE MODULES USED IN FOOD AND BEVERAGE APPLICATIONS BY INDUSTRY SECTOR, 2008 (%) ........ 137

FIGURE 9 PROJECTED VALUE OF THE U.S. MARKET FOR MEMBRANE PRODUCTS USED IN GAS SEPARATIONS BY APPLICATION, 2002�2015 ($ MILLIONS) ........................................................ 174

FIGURE 10 U.S. PATENTS BY APPLICATION, JANUARY 1, 2005 TO JUNE 29, 2010 (NUMBER) ................................................................................. 177

FIGURE 11 U.S. PATENTS BY APPLICATION, JANUARY 1, 2005 TO JUNE 29, 2010 (NUMBER) ................................................................................. 182

FIGURE 12 ESTIMATED U.S. MEMBRANE MARKET SHARE BY COMPANY, 2010 (%) ........................................................................................... 187

Page 27: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 1

CHAPTER ONE:INTRODUCTION

STUDY GOAL AND OBJECTIVES

This BCC Research report provides an in-depth analysis of the market for membrane technology across a range of filtration types and applications. Covered technologies include reverse osmosis, nanofiltration, ultrafiltration, microfiltration, electrochemical processes, gas separation, pervaporation, and two novel processes. Applications for these filtration types include potable water, process water, and wastewater treatment; food and beverage processing; biopharmaceuticals production; other large-scale liquid separations; and industrial gas separation.

Technical and market drivers are considered in evaluating the current worth of the technologies covered, and in forecasting growth and trends over the next 5 years. The conclusions are illustrated with statistical information on markets, applications, industry structure, and dynamics, along with technological developments.

REASONS FOR DOING THE STUDY

This study is intended for individuals requiring an in-depth analysis of the membrane industry that traces significant developments and forecasts important trends, quantifies the various market sectors, and highlights companies active in those areas.

Because of the diverse and fragmented nature of the industry, it is difficult to find studies that gather such extensive data from far-reaching resources, and have this data presented in one comprehensive document. This report contains a unique collection of membrane-related information, analyses, forecasts, and conclusions that are very hard (or impossible) to find elsewhere.

INTENDED AUDIENCE

This comprehensive report aims to provide those interested in investment, acquisition, or expansion into the market for membrane technology with the specific, detailed information crucial to making educated decisions. Senior marketing personnel, venture capitalists, executive planners, research directors, government officials, and suppliers to the industry who want to discover and exploit current or projected market niches should find this report of value. Readers who

Page 28: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 2

wish to understand how regulations, market pressures, and technology interact in the arena also will find this study worthwhile.

SCOPE OF REPORT

This report is primarily a study of the U.S. market, but due to the international presence of many industry participants, global activities are included where appropriate. Values are given in U.S. dollars. Forecasts are in constant U.S. dollars and growth rates are compounded. Five-year projections are provided for market activity and value. Industry structure, technological trends, pricing considerations, R&D, government regulations, company profiles, and competitive technologies are included in the study. Only industrial scale membrane products will be evaluated. No consumer products (i.e., point of use water systems) are included in the analysis.

INFORMATION SOURCES

The information sources for this study include online research; SEC filings; annual reports; company brochures; patent literature; business, technical and industry journals; conference literature; and interviews with principals in the industry. Statistical and other data also were collected from the U.S. Department of Commerce, the American Membrane Technology Association, the International Desalination Association, the American Water Works Association, the Water Environment Research Federation, the WateReuse Foundation, the Water Resources Institute, the MBR-Network, and various academic institutions.

ANALYST CREDENTIALS

During the past 14 years, Susan Hanft has authored more than 30 market research reports for BCC Research in the fields of membrane technology, water, and wastewater treatment, and separations used in food and beverage manufacture, medicine, and biotechnology.

RELATED BCC PUBLICATIONS

MST028D The Global Market for Membrane Microfiltration MST044C Ultrafiltration Membranes: Technologies and the U.S. Market CHM044C Ozone Generation: Technologies, Markets and Players

Page 29: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 3

BCC ONLINE SERVICES

BCC offers an online information retrieval service. BCC�s home page, located at www.bccresearch.com, enables readers to:

Examine BCC�s complete catalog of market research reports and place direct orders Subscribe to any of BCC�s many industry newsletters Read announcements of recently published reports and newly launched newslettersRegister for BCC�s well-known conferences Request additional information on any BCC product Take advantage of special offers.

DISCLAIMER

The information developed in this report is intended to be as reliable as possible at the time of publication and of a professional nature. This information does not constitute managerial, legal, or accounting advice, nor should it serve as a corporate policy guide, laboratory manual, or an endorsement of any product, as much of the information is of a speculative nature. The author assumes no responsibility for any loss or damage that might result from reliance on the reported information or from its use.

Page 30: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 4

CHAPTER TWO:EXECUTIVE SUMMARY

EXECUTIVE SUMMARY

The combined U.S. market for membranes used in liquid and gas separating applications is estimated at approximately $1.7 billion in 2010, and is forecast to grow at a compound annual growth rate (CAGR) of 6.9% during the 5-year period from 2010 to 2015.

According to data from th .S. gross domestic product (GDP) rose modestly 06 (3.4%). In 2007, that figure fell to well below In 2008, the U.S. fell into a deep recession, w ough most of 2009. The economy returned to po ined on an upward trajectory (2% or better). In ons forecast growth rates from 2% to 4% for 2011 to 2015, the Congressional Budget Office %.

In the midst of the financial crises, capital expenditures on municipal infrastructure projects were cut back, while uncertainty and restraints on borrowing upset investment plans in the private sector. In 2010, the situation is beginning to improve, but has not yet been resolved, since the insolvency of Greece and the precarious finances of other countries still threaten the world economy. (During this period of global financial stress, however, the U.S. dollar is benefiting from its �safe-haven� status.) Assuming the most positive outcome, as infrastructure spending feeds through the system, utilities are expected to move forward with projects they were forced to delay in 2008 and 2009 because of the downturn.

With a more upbeat economic forecast and loosening of credit, industrial end users also will make capital investments. Longer term, strong growth is anticipated, as the need for environmental protection and for updated process equipment speed the pace of investment. Recent quarterly reports from membrane manufacturers support that notion; industrial sector sales are increasing, in many cases, by double digits. Various sectors within the market: potable water purification, municipal and industrial wastewater treatment, process water and other fluid treatment, and gas separations are increasing at greater or lesser rates depending on category.

Membranes are essential to a range of applications from potable water, process water, and wastewater treatment to power generation, pharmaceuticals production, food and beverage processing, and separations needed for manufacturing chemicals, electronics, fuels, and a range of other products. Primary drivers for membrane sales include consumer demand for higher quality products, increased regulatory

Page 31: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 5

pressures, deteriorating natural resources, and the need for environmental and economic sustainability. EXECUTIVE SUMMARY (CONTThe U.S consumes from 40% to , of all membrane modules produced worldwide. eparations: reverse osmosis (RO), nanofiltration crofiltration (MF), electrochemical processes such a other applications account for 89% of U.S. deman e gas separations, pervaporation, and some novel ning 11%, or $180 million. Membrane module sale ast to increase at a CAGR of 6.9%, while combin n gas separation, pervaporation, and novel proce a CAGR of 6.6% through the survey period.

By technology type, the market for RO has been experiencing one of the most rapid growth rates, which is primarily an expression of the booming market in desalination, but is also a reflection of increased application in process water treatment and an interest in reclaiming �used� water. NF membrane products are breaking out of their traditional role in water treatment to meet demanding refinery, chemical, and pharmaceutical separations involving solvents.

MF and UF are in demand for treating potable and process water, but the most rapid growth in this sector is in wastewater treatment with membrane bioreactors and the manufacture of biological drugs. The food and beverage industries also are longtime, steady purchasers of membranes in these pore sizes for their processes: concentration, clarification, and microbial stabilization.

Largely replaced by other membrane technologies for drinking water treatment, ion exchange membranes used in electrochemical processes are finding important niche markets in the food and fine chemicals industries, and the production of hydrogen by �water splitting.� Configured as membrane adsorbers, ion exchange membranes also have growing application for separations needed in biopharmaceutical production.

Several new membrane products for gas separation appear to be on the brink of commercialization. After years of lacking suitable materials for large and promising applications in several areas, inorganic and organic/inorganic hybrid membranes are poised to enter the market for such uses as hydrogen separation and natural gas purification. Pervaporation also appears to be on the verge of success for a number of lucrative uses in fuels manufacturing and refinery processes.

Page 32: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 6

SUMMARY TABLE

VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES USED IN GAS AND LIQUID SEPARATIONS, THROUGH 2015

($ MILLIONS)

Market 2002 2004 2006 2008 2010 2015 CAGR%

2010�2015Conventional liquid separations 1,158 1,369 1,605 1,393 1, Other separations* 155 177 200 233 Total 1,313 1,546 1,805 1,626 1, *Gas separation, pervaporation, and novel separations

Source: BCC Research

SUMMARY FIGURE

PROJECTED VALUE OF THE U.S. MARKET FOR MEMBRANE MODULES USED IN GAS AND LIQUID SEPARATIONS, 2002�2015

($ MILLIONS)

*Gas separation, pervaporation, and novel separations

Source: BCC Research

0

500

1,000

1,500

2,000

2,500

2002 2004 2006 2008 2010 2015

Conventional liquid separations Other separations*

Page 33: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 7

CHAPTER THREE:INDUSTRY OVERVIEW

HISTORY OF THE INDUSTRY

The study of membrane dynamics began in the 1700s. In trials recorded in 1748, French researcher Abbé Nollet describes his permeation experiments using �spirits of wine� and an animal bladder. Adolf Fick prepared and examined some of the earliest artificial semipermeable membranes, publishing his phenomenological laws of diffusion in 1855. In 1860, Thomas Graham�s studies of the diffusion rates of �colloids� (substances that would not readily diffuse through his parchment membranes) and �crystalloids� (substances that would) helped establish the field of colloid science. In 1907, Henry Bechold discovered a means to form nitrocellulose membranes with graded, reproducible pore sizes. F.G. Donnan examined the transport of charged species across semipermeable membranes at about the same time. The early membranes had no practical or commercial applications, but were used merely to advance scientific theory.

In the 1920s, Sartorius GmbH manufactured the first commercially available synthetic ultrafiltration membranes, which were sold to laboratories studying membrane transport. Between 192 Sartorius monopolized the synthetic membrane business. At the same oporous membranes were developed and used to test drinking water for contamination. By the end of World War II, the membranes found th mmercial application for the same purpose. German water supplies, r destroyed by bombing, were often contaminated with bacteria. At war� U.S. Army, assigned to evaluate and transfer critical German technolog the U.S., acquired the microporous membrane technology from Sartor pore Corp. was formed in 1954 to commercialize the membranes.

The theory that gases will selective e a membrane has been known since the 1800s, but the first practical ap as not implemented until World War II as part of the Manhattan Project gas diffusion plant was built at Oak Ridge, Tennessee, to separate sligh U235 from U238. Commercialization of the membranes began in the 19 n Monsanto introduced the Prism membrane for hydrogen separation. D oo, held early gas separation patents, though neither Monsanto nor DuPont are currently active in this area.

By the 1950s, membranes were still not in widespread usage. Compared with traditional separation techniques, they were unstable, unselective, slow, and expensive. The big breakthrough for membranes came in 1960. Sid Loeb and Srinivasa Sourirajan, working at UCLA, developed an innovative method for

Page 34: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 8

preparing high-flux reverse osmosis membranes. The anisotropic membranes consisted of an ultrathin selective surface layered on a thicker, stronger, and more permeable support. The Loeb-Sourirajan membranes had fluxes 10 times greater than other reverse osmosis membranes of the times. The one drawback was the low temperature (<0°C) needed to cast the membranes. In 1967, Serop Manjikian, also at UCLA, cast reproducible membranes at room temperature, opening the door to large-scale production.

The 1960s through the 1980s was a period of great innovation, growth, and change in the industry. Membrane preparation processes multiplied, resulting in high-flux, high-selectivity products. Membrane packaging changed, too. Larger membrane areas were made available in new configurations, such as spiral wound and hollow fiber modules.

By the 1990s, most polymers had been examined for membrane use, and a substantial body of knowledge on material types and classes had been built. Therefore, R&D focus began to shift toward new materials and surface modification. Materials research turned to ceramics, zeolites, and metal foils and films. Ceramic membranes became widely available commercially, and improved membranes led to new applications, such as the pervaporative separation of volatile organic compounds (VOCs) from water.

A brief history of membrane technology is presented in the following table.

TABLE 1

A BRIEF HISTORY OF MEMBRANE DEVELOPMENT

Date Development 1700s Scientists begin dy of membrane phenomena. 1748 Abbé Nollet dif ater from dilute to concentrated solution. 1850s Fick publishes diffusion. 1910s First nitrocellu mbrane. 1927 Membranes bec mmercially available from Sartorius Co. 1931 Reverse osmosi ted. 1940s Microfiltration to test for water contamination. 1942 Membrane-base iffusion plant is built at Oak Ridge, Tennessee, to separate U235

from U238.1946 First metal mem manufactured of stainless steel. 1950s W.L. Gore develo TFE (expanded PTFE) membranes, marketed as Gore-Tex. 1960 Loeb and Souri elop phase inversion, first anisotropic RO membranes. 1965 First commerci ant begins operating at Coalinga, California. 1969 First commercial UF system installed. 1970s Thin films are prepared by interfacial polymerization.

(continued)

Page 35: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 9

TABLE 1 (CONTINUED)

Date Development 1972 Pleated MF es introduced. 1973 First hollow membranes. 1980 First spiral w membranes. 1980 First hydrog tion membrane. 1982 GFT (now S mtech) installs first commercial pervaporation plant. 1980s Membrane r troduced. 1980s Moving mem veloped. 1987 First comme (electrodeionization) system sold. 1990s Ceramic me ecome commercially available. 1990s Wastewater /recycled back to aquifers using membrane technology. 1996 First comme aporation plant to remove VOCs from water developed. 2000 DuPont disc ollow fiber RO line (last U.S.-made hollow fiber RO membrane). 2003 First large-s seawater RO desalination plant opens at Tampa Bay, Florida. 2008 Affordable D n Collaboration meets major performance milestone for seawater

RO.

Source: BCC Research

MEMBRANE TECHNOLOGY

Membranes generally are thin sheets or surface films, natural or man-made, with apertures through which small molecules may pass while larger ones are retained. At its most basic, a membrane serves as a sieve, separating solids from liquids forced through it. Membranes fabricated from various materials (mainly synthetic polymers) can efficiently filter particles down to the size range of molecules or ions.

Separated chemicals are not destroyed, but are concentrated to facilitate reclamation. The membranes are called semipermeable because some substances will pass through, while others will not. Usually, small ions, water, solvents, gases, and other very small molecules can pass easily through a membrane, while other ions and macromolecules, like proteins and colloids, are retained.

MEMBRANE MATERIALS

The vast majority of commercially used membranes are based on organic polymers. Polymeric materials suitable for membranes include cellulosics, polyamides, acrylics, vinyls, polysulfones, polycarbonates, fluorocarbons, and polyolefins.

Page 36: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 10

Cellulosics

Cellulosics, including cellulose esters and cellulose nitrate, are the most widely used of all membrane materials. In 1907, Bechhold prepared the first membranes of graded pore size from collodion, also known as nitrocellulose. Inexpensive raw polymer and solvation chemicals, combined with a relatively simple manufacturing technique, results in low-cost membrane products with wide applicability. Naturally hydrophilic (water-loving) cellulosics are temperature stable, pH stable from 1 to 10, and have a high dirt capacity. Negatives include tendencies toward brittleness and flammability, incompatibility with concentrated acids and sodium hydroxide, and limited compatibility with such common solvents as acetone and cyclohexanone.

Polycarbonates

Polycarbonate, the base polymer for the track-etched membrane has a relative lack of pores per unit of surface, giving it poor holding capacity for particulates. The hydrophobic (water-resisting) membranes have limited chemical resistance and are especially sensitive to alkaline chemicals. However, the uniformity of pore size in the material makes the material ideal for identifying and quantifying suspended particulates in air and water.

Polysulfones

Naturally hydrophobic polysulfones are nontoxic, pH- and oxidation-resistant, and autoclavable, with a melting point between that of fluorinated polymers and nylon. To make the membranes spontaneously wet with aqueous solutions, wetting agents or hydrophilic grafts are necessary. Modifications are made with only slight additional charges. The membranes, compatible with caustics, acids, and chlorine, are often used to filter acids and organic solvents at elevated temperatures. A disadvantage is its poor hydrocarbon resistance. Polyethersulfone is a related sulfonic polymer with good thermal stability and comparable chemical resistance.

Fluorinated Polymers

Fluorine-containing membranes such as PTFE (polytetrafluoroethylene) and PVDF (polyvinylidene fluoride) are hydrophobic with broad chemical compatibility. PTFE is particularly useful in the electronics industry, where it is used to filter corrosive chemicals, etchants, photoresists, organic solvents, and gases. The material has high temperature stability, but is radiation susceptible, so ethylene oxide or heat is used for sterilization. PTFE usually requires a backing material for membrane formation.

Page 37: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 11

Naturally hydrophobic PVDF is chemically modified to achieve aqueous filtration. With a lower melting point than cellulosics or nylon, the material may not be steam sterilized or irradiated. PVDF membranes are also more costly to manufacture than cellulosics or nylon. On the plus side, they are nontoxic, flexible, low binding, and can be made with absolute pore sizes.

Polyamides

Developed for reverse osmosis, polyamide (nylo ranes came into popular usage in the 1980s. Nylon has high wet/dry good solvent resistance, dimensional stability, and resists temperatures °F. The material can be used over a pH range from 1 to 13 if exposure at t mes is kept to a minimum. The chemical composition of nylon makes it a goo ate for grafting onto other chemical species and the polymer is easily modifi

Nylon membranes are naturally hydrophilic, a pl n also be a minus. Nylon may take on large amounts of water; unsup ylon membranes have a tendency to swell. Also on the downside, m s nylon membranes are unstable in high concentrations of strong mine or bases, and oxidizing agents such as free chlorine.

Inorganics

Because of their high thermal and chemical stability, inorganic membranes composed of ceramic, glass, zirconia/carbon, metal, and composites may be more advantageous than polymer membranes for many applications. Inorganic membranes may be made of oxidic or nonoxidic materials. Commonly used oxides are titanium dioxide, aluminum oxide, zirconium oxide, and silicon dioxide. Nonoxidic membranes may be made of metals and compounds from the third to fifth main group of the periodic table (e.g., Si, N, B, C).

In contrast to polymer materials, inorganics offer the advantage of high throughput. Because they are thermally resistant and relatively inert, regeneration is possible. Inorganic membranes tolerate temperatures exceeding 300 C and pressures of more than 20 bar to 100 bar. They can be backwashed and withstand repeated steam sterilization. In addition, inorganic membranes are unaffected by microorganisms and can be dry stored. Narrow pore size distribution is often possible with inorganic membranes. Composites may have high flux and high selectivity.

Low operating costs and low space requirements are important advantages of inorganic membranes. However, inorganic membranes also have limitations. The expense of inorganic elements is the primary barrier to their more widespread use.

Page 38: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 12

Brittleness and delamination also are problems, so are pH stability, organic solubility, and sealing.

Ceramic

Conventional porous ceramic membrane ed of metallic oxides are used for high-temperature separations from 200 C. Oxides of aluminum, silicon, zirconium, and titanium are formed into disk, or monolithic configurations. The effective membrane layers are thin to 100 micron) and are supported by porous, thick, ceramic substrates. Th tructures of the membrane layers are formed by metal oxide networks, which molecules can selectively permeate to achieve high-temperatur tions. A trend in inorganic membranes, particularly ceramics, is ncreasingly finer pore size and greater uniformity of pore size distribu ramic membranes are primarily used for liquid streams, although al ed asymmetric porous ceramic membranes were originally developed for ration in uranium processing.

Metal

Although more expensive than their polymeric equivalents, metallic membranes are a good value for the money and prove more economical over time. Not subject to degradation, metal elements may be cleaned and reused repeatedly, and replaced on an annual rather than monthly basis. Because of their extreme porosity, they make good membrane supports and filters. Metal membranes and modules are mainly used for particle filtration and gas separation. Stainless steel is the dominant metallic material used for inorganic membranes. However, 50 years of metallic membrane research has produced other porous metallic media, including silver, palladium, and nickel.

Stainless Steel

In 1946, Pall introduced the first stainless-steel membranes. Stainless membranes exhibit superior dirt-holding capacity and a price tag far less than most other metal membrane materials, making them the runaway leader in metallic membrane sales. Formed of fine metal fibers or powders sintered onto a porous support, the membranes can be manufactured into a variety of configurations, including sheets, disks, sleeves, and welded or seamless tubes in submicron (0.2 micron) to 10-micron pore sizes.

Applications for stainless-steel membranes run the gamut from the food and beverage industry to pollution control and coal gasification operations. Sintered

Page 39: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 13

stainless-steel membranes have been used for years in applications ranging from steam to high-viscosity liquids. They can also be used for catalyst recovery and as substrates for certain ceramic membranes.

Palladium

Palladium is particularly well known for its hydr eability properties. However, the expense of manufacturing pure pallad anes is prohibitive. It is estimated that a 25-micron-thick palladium m would require about 250 g of palladium per m2 of membrane, a cost equiv 000. Researchers in the field of palladium membranes are concentrating apply thin films or foils of the costly metal on ceramic, polymer, or other orts.

Carbon

Carbon membranes have been commercially available since 1980. Carbon is a robust, electrically conductive membrane material that is immune to high temperatures, pH extremes, solvents, and radiation. Tubular carbon elements are used to recover high-value precipitates in pharmaceuticals processing, for drinking and industrial water treatment, and for pre- or post-treatment of other separation technologies, such as reverse osmosis, ion exchange, adsorption, or decantation. Carbon membranes are used for solvent recovery and for recycling degreasing baths. In the food industry, they provide the chemical inertness and temperature resistance required to ensure sanitary conditions.

Carbon Nanotubes

Carbon nanotubes, rolled cylinders with diameters from 0.8 nm to 300 nm, are new materials with roperties. Single-wall nanotubes consist of one layer of carbon atoms form a cylinder; multiwall nanotubes consist of several carbon layers rolled into er. Carbon nanotubes can be used to fabricate robust membranes with h ntrolled pores, good mechanical and temperature stability, and the ability and cleaning with ultrasonication or autoclaving. The nanotube membrane ffer high surface areas, as well as simple, cost-effective fabrication, attr at may allow them to compete with commercial ceramic- and polymer-based membranes. Gas separation is a promising end use.

Zeolite and Other Novel Inorganic Membranes

Much effort has been expended on developing zeolitic membranes with molecular sieve characteristics, including a pore diameter of molecular dimensions. The

Page 40: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 14

expense of incorporating zeolite crystals into a membrane without defects and of growing them in place on a porous substrate in an appropriate environment, and thin enough to increase their relatively low permeance, make them unlikely candidates for significant commercial activity without a major technological breakthrough. Other novel inorganic materials in development include molecular sieves, clays, clathrates, aluminophosphate films, silicas, and phosphazenes.

Mixed Matrix Materials

Mixed matrix membranes are made by incorp arbon molecular sieves into a polymeric matrix. In this type membrane, the transport properties of the porous particles a the permeation properties of the membrane material. Anothe rganic composite membrane consists of nonporous particles, s or carbon black, dispersed in a polymer matrix. Used as imp articles serve as spacers between the polymer chains and crea hat increase free volume in the membrane.

MODULES

For separating applications, membranes a ed as modules. Protected inside a module, delicate membran ring installation and maintenance without damage, and sca is easier with modules. Packaging membranes as module mum membrane area per unit module volume. The speci depends on the membrane geometry.

Flat-sheet membranes can be packaged a ements, pleated cartridges, or used as single sheets in plate a ubular or hollow fiber configurations are formed into bundles and �potted� at one or both ends. A pressure vessel is required for spiral wound modules and for tubular membranes pressurized externally.

CONFIGURATION

There are several membrane configurations available. The various designs and materials can be optimized for particular applications and operating environments.

Page 41: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 15

Plate and Frame

Plate-and-frame modules are an early form of membrane assembly that sandwiches a single membrane sheet in a filter press. Still used for some small-scale or specialized applications in membrane bioreactors, electrodialysis and pervaporation, the configuration has been largely displaced by other membrane designs.

Tubular Membranes

Tubular membranes consist of a membrane cast on the inside of a porous paper or fiberglass support tube, 0.5 to 1 inch in diameter. Typically, the 1-inch tube is used singly, and the 0.5-inch tubes are bundled into a larger tube. The tubular design provides superior performance at high concentrations of solids. In this configuration, plugging is minimized, and high product recovery is achievable. Though tubular membranes are expensive, they are useful in ultrafiltration applications that require high resistance to membrane fouling.

Spiral-wound Membranes

Spiral-wound membranes consist of consecutive layers of membrane and feed spacer wound around a perforated center permeate collection tube. Spiral membranes offer lower energy costs due to reduced pumping requirements and higher packing density. Spiral construction also allows the module to be operated at elevated pressure and temperature. Spiral-wound modules range from laboratory-scale membranes to 12-in. diameter industrial modules up to 5 ft. in length.

Hollow-fiber Membranes

Although the terms �capillary� and �hollow fiber� are used interchangeably, fiber modules are actually one of two types. The type depends on feed flow and fiber diameter.

Fine-fiber membranes are manufactured as tiny (less than 1 mm) tubes only slightly thicker than a human hair. Ten of thousands of fibers are contained within a hollow fiber element, a design noted for maximizing membrane surface area. The modules are used in crossflow applications where high permeate or recovery rates are required, but where membrane fouling is not a consideration. Though the membranes are impractical for wastewater treatment where clogging is an issue, they are ideal for high-pressure gas separation and RO polishing of drinking water and ultrapure water.

Page 42: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 16

Capillary membranes are also manufactured as small tubes, though they are larger than fine-fiber membranes. The average diameter of a capillary fiber is 1 mm to 2 mm; hundreds to thousands of fibers are assembled into housings to form membrane modules. Less prone to fouling, capillary membranes are used in crossflow methods for wastewater treatment, but are being displaced by spiral wound elements. The membranes are, however, finding a new niche in pervaporation proc

In both types of fi ents, the pressurized feed flow is on the inside of the fiber, and water p to the outside of the fibers, which are potted at one or both ends in a m housing. Though hollow fiber modules contain an enormous amount ane area, they are expensive to produce, costing twice as much (or more) al wound modules, and not all membrane materials can be formed into fibe

MOLECULAR WE TOFF

Molecular weight scribes the retention or rejection characteristics of a membrane. A me ith a molecular weight cutoff of 100,000 will reject at least 90% of the so romolecules that have a molecular weight of 100,000 or more. At one en retention spectrum, microfiltration membranes retain particles the size a. At the other end of the spectrum, reverse-osmosis membranes retain the size of salts. Nanofiltration falls between reverse osmosis and ultraf There is some overlap among the processes.

FLUX

Flux describes the rate of flow or permeation through a membrane�the quantity of feed that crosses a unit area of a given surface in a particular measure of time. Membrane thickness determines productivity. Thinner membranes offer higher fluxes. Some separation processes call for ultrathin membranes to minimize membrane area requirements and cost. Several distinct membrane structures with extremely thin separation layers have been developed.

The need for high flux in a commercial membrane system can be met by increasing the surface area. This in turn increases the size and cost of the system, but does not increase the value or total quantity of material being separated. However, at some point, the use of additional surface area makes the system uneconomical.

Page 43: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 17

FOULING

All membranes are subject to fouling, which occurs through pore blocking and plugging, and the formation of external cakes The effectiveness of a membrane filtration process is limited by fouling, which ecline in flux. There are two main types of fouling�surface fouling, in wh al physically deposits on the membrane and builds up, and adsorption, wh place when chemical species present in the feed attach chemically to the m material.

Fouling can be reversed by mechanica emical cleaning methods. Backflushing is a mechanical process in whic nd/or air is forced backward through the membrane, breaking up the surf layer and removing it from the system. Sometimes chemicals are int uring backflush to remove adsorption fouling. The chemical or chemic are chosen according to the membrane and type of fouling.

In the filtration of biological fluids, especia g is an important problem. Studies have shown that protein fouling rom deposition of protein aggregates as well as protein becoming chemically bonded to the deposit. Biocides and chemical cleaners are used to reduce biofouling in membrane systems used for these applications.

METHODS OF FILTRATION

There are two primary methods of performing membrane separations, direct-flow filtration and crossflow filtration.

DIRECT-FLOW FILTRATION

In direct-flow filtration, also known as dead-end or in-line filtration, fluids to be filtered are driven in a single pass straight through the membrane. All of the liquid that enters the membrane emerges as permeate. Flat sheet, capillary, and tubular membranes are commonly used in direct flow applications.

CROSSFLOW FILTRATION

In crossflow, or tangential flow filtration, the pressurized feed is pumped across a membrane parallel to its surface, and a portion of the feed permeates the membrane. The remainder of the feed sweeps parallel to the surface of the membrane, exiting the system without being filtered. The clarified stream (the permeate) passes through the membrane. The membrane rejects the unfiltered,

Page 44: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 18

concentrated stream (the retentate). Because the feed and concentrate flow parallel to the membrane instead of perpendicular to it, the process is called �crossflow filtration� or �tangential flow filtration.� Crossflow filtration processes include reverse osmosis, microfiltration, ultrafiltration, and nanofiltration. The major advantage to crossflow methods is the prevention of membrane fouling.

Crossflow Filtration (Continued)

Page 45: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 19

CHAPTER FOUR:MEMBRANE TECHNOLOGY TYPES

In this report, membranes are broken down into eight categories: RO, NF, UF, MF, ion exchange membranes for electrochemical separations, gas separation, pervaporation, and novel separations. Conventionally, membranes used to separate liquids, RO, NF, UF, and MF are classified by the size of separated substances.

REVERSE OSMOSIS

Originally developed for desali of seawater, RO is a crossflow-filtration process that separates ionic subs Pressure applied to a saline solution forces pure water to pass from the solu ough a membrane that is too dense for the passage of sodium and chloride Membranes exclude ionic contaminants and purified water is recovered.

Spiral wound membranes, gener de of polyamide or other thin-film composite materials, are the most popular uration for RO because their large surface area offers the most efficient sep However, hollow fiber RO membranes are still produced by Japanese manu Toyobo, and a few other manufacturers.

General specifications for RO pr are a flow rate of less than 5 gpm (gallons per minute) for home units to ab gpm, operating pressures of 30 psi (pounds per square inch) to 25 psi for fres rackish water applications, 600 psi to 1,000 psi for seawater desalination, an mbrane material consisting of polyamide or other thin- film composites. Pre ent is crucial to the proper functioning of a RO system and for the longevity membranes. With proper pre-treatment and equipment, RO efficiencies of up to 75% can be achieved.

APPLICATIONS

Drinking water production through the desalination of brackish water or seawater is the largest use of RO membranes in the U.S. Industrial processes are a close second. Applications for RO are listed in the following table.

Page 46: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 20

TABLE 2

APPLICATIONS FOR REVERSE OSMOSIS MEMBRANES

Drinking water production from brackish water, seawater Ultrapure process water production for the power-generation and semiconductor industries Pharmaceutical (USP) water manufacture: WFI (water for injection) Bottled water manufacture Portable drinking water treatment for deployed troops Landfill leachate treatment

Source: BCC Research

MANUFACTURERS

Only a handful of manufacturers worldwide make RO membranes. This group includes Dow Chemical (U.S.), GE Water (U.S.), Koch (U.S.), TriSep (U.S.), Nitto Denko/Hydranautics (Japan/U.S.), Toray (Japan), Toyobo (Japan), and Woonjin, formerly Woongjin (Korea). These companies produce elements for drinking water and industrial water use. Pall�s Rochem unit manufactures a stacked RO module for environmental applications. Newer market players Eltron Water, Stonybrook, and NanoH2O are commercializing novel RO products intended to lower costs and/or improve flux of the RO process.

TABLE 3

MANUFACTURERS OF REVERSE OSMOSIS MEMBRANES

Dow Chemical Hydranautics/Nitto Denko Toray GEKoch Membrane Systems Toyobo TriSep Woongjin (formerly Saehan) PallEltron Water Stonybrook Purification (in development) Nano H2O (in development)

Source: BCC Research

Page 47: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 21

TRENDS AND TECHNICAL DEVELOPMENTS

The current generation of RO/NF polyamide thin-film composite membranes is based on material patented by FilmTec in 1970. The composites are highly susceptible to biofouling and can be degraded by common disinfectants. Because the economics of RO desalination are determined largely by membrane permeability and fouling rates, a new generation of high-performance materials is needed.

Organic/Inorganic Nanocomposites

One strategy for improving membrane performance and cutting desalination costs is incorporating functional materials, typically nanoparticles into a polymer matrix. Research underway at Australia�s Commonweal and Industrial Research Organization (CSIRO), and California-b O are just two examples of this approach.

As part of its Advanced Membrane Technologies fo tment Research Cluster, CSIRO has ongoing projects designed to dev brane materials, including materials for RO that cut energy consumpt he project titled �Multifunctional RO Membranes� is aimed at next-generation membranes by incorporating new functional materia r membranes to improve salt rejection, flux, and anti-fouling propert tional materials will be based on zeolites, a class of crystalline oxide ed as molecular sieves for their ability to distinguish molecules ba nd shape. This research is led by Monash University.

NanoH2O is commercializing a new class of hydroph g nanocomposite RO membranes for seawater desalination and water sed on thin-film nanocomposite (TFN) membranes developed at the California, Los Angeles. The membranes are fabricated using a for synthesizing super-hydrophilic nanoparticles and incorporating th mide thin films on polysulfone UF supports. Unlike other membrane surface modification methods, it is believed this approach can be incorporated into existing commercial membrane manufacturing processes. In addition, nanoparticle properties can be selected or modified, potentially imparting a wide array of desirable membrane surface properties such as chemical reactivity, antimicrobial activity, and vibratory motion. Experiments with TFN membranes demonstrate they can produce as good or better product water quality using less energy than current RO modules through increased permeability.

Page 48: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 22

Carbon Nanotube Membranes

Carbon nanotube membranes might also find practical use in energy-efficient desalination processes, where it is estimated they could reduce energy costs by up to 75% compared with conventional RO membranes. Research in this field is taking place at several sites. One example of recent work was performed at Lawrence Livermore National Laboratory (LLNL).

In 2006, researc wrence Livermore National Laboratory and the University of Ca keley demonstrated the previously forecast fast transport of wate bon nanotube membranes was 100 to 10,000 times faster than what dels predicted. The nanotubes, special molecules made of carbon at que arrangement, are hollow and more than 50,000 times thinner tha air. Billions of these tubes act as the pores in the membrane. The s nsides of the nanotubes allow liquids to rapidly flow through, while the es can block larger molecules.

The LLNL membr ated from a vertically aligned array of double-walled carbon nanotubes talytic chemical vapor deposition on a silicon chip. The researchers m brane by filling the gaps between aligned nanotubes with a matrix of e, followed by ion milling to remove excess matrix material, and rea ing to open up the nanotubes� ends. The resulting pores are so small water molecules can fit across their diameter. Pore density is about 2 cm2.

In a follow-up s searchers sought to determine whether nanotube membranes with 1 would reject the ions that make up common salts. In fact, their experi d that with a pore diameter of 1.6 nm, salts are rejected due to the charge at the ends of the carbon nanotubes. Therefore, while carbon nanotube membranes can achieve similar rejection as conventional membranes with similarly sized pores, they will provide considerably higher permeability, which makes them potentially much more efficient than the current generation of membranes. The research team expects to be able to build better membranes when they can independently change pore diameter, charge, and the material that fills gaps between the carbon nanotubes.

Jason Holt, lead author on the Science cover story on the CNT membranes has since founded NanOasis to develop them for water treatment applications. A second startup firm, Porifera, has been established to commercialize LLNL�s membranes for liquid and gas treatment applications.

Page 49: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 23

Boron Nitride Nanotube Membranes

A research team at the Australian National University has designed a membrane constructed from an array of nano-sized tubes embedded in a silicon nitride membrane, which, using the same operating pressure as current desalination methods enables 100% salt rejection for concentrations twice that of seawater with water flowing four times faster. Investigation of water transport through nanotubes in the past has primarily focused on carbon nanotubes; the Australian team hopes to improve upon prior results with CNT membranes using nanotubes fabricated from boron and nitrogen atoms.

The scientists have found that nanotube with a 0.345 nm radius conducts water molecules at up to 10.7 water molecules per nanosecond (ns) while rejecti t ions. This conduction rate is comparable to a biological aqu annel, which conducts three water molecules per ns. An initially ide nanotube was found to fill with water after only 17 picosecond ( second); average channel openness was estimated to be approxim A similar radius carbon nanotube exhibits an openness of only 0.0

Once filled, pressure was applied to the system to determine water conduction. Water was found to move through the nanotube in single-file in a concerted motion with molecules bumping each other along. Salt ions continue to be rejected at ionic concentrations as high as twice that of seawater (1 M), and under the presence of a high pressure (up to 600 MPa, which is much greater than the standard operating pressure of desalination membranes�5.5 MPa). One limitation to the design is the embedding material. Silicon nitride represents a suitable material for water purification in terms of its negligible molecular permeability, but since is a ceramic material, it is prone to cracking.

Aquaporins

A handful of research groups are hoping to exploit nature�s water channels for use in biosynthetic membranes for desalination. Living organisms adjust the water content in their cells by regulating water flow through the cell membrane; water is �turned on and off� by membrane proteins called aquaporins that function as water channels. Thousands of aquaporins are present in every cell membrane. Each possesses a conduit so tiny that only one water molecule at a time can pass through. However, water transport is quite rapid since several billion molecules can be transported in a single second.

Denmark-based AQUAporin AS is just one of the groups looking into aquaporin-embedded membranes. The firm believes the product will be the ultimate

Page 50: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

MST041E Membrane Technology for Liquid and Gas Separations

Copyright © BCC Research, Wellesley, MA USA, Web: www.bccresearch.com/ 24

membrane for water treatment, reducing energy costs dramatically. In addition, the aquaporin-studded membrane will be the first 100% water selective membrane. To fabricate the membranes, the aquaporins are produced recombinantly, by inserting the aquaporin gene into a host organism, such as a bacterium, which then will produce the aquaporin molecule.

Researchers at the Nanotechnology Center of Australia�s CSIRO also envision an ultrathin polymer membrane studded with billions of aquaporins for seawater applications. The CSIRO research group estimates that each square meter of the biosynthetic membrane could transform 69,000 gallons of seawater per day into fresh water�orders of magnitude more than any current desalination technique.

In the U.S., researchers at the University of Illinois have developed a class of biomimetic membranes that incorporate the functional water channel protein Aquaporin Z into a novel A-B-A triblock copolymer. Currently in the form of hollow spherical vesicles, the highly permeable and selective membranes show significantly higher water transport than existing RO membranes. To make the protein-polymer membranes, the researchers begin with a polymer that self-assembles into spherical vesicles. While the polymer is assembling, the scientists add Aquaporin Z, a protein found in Escherichia coli bacteria. The protein makes a hole in the membrane that only water can pass through, so it is both fast and selective.

By varying the amount of Aquaporin Z, the research team can vary the membrane�s permeability, which could be useful for applying the membranes to drug delivery. With their high permeability and high selectivity, the membranes also are ideal for desalination. When tested, the productivity of the Aquaporin Z-incorporated polymer membranes was more than 10 times greater than other salt-rejecting polymer membranes. The experimental membranes currently exist only as small vesicles, so the team�s next step is to convert the vesicles into larger, more practical membranes. The researchers currently are optimizing the membranes for maximum permeability.

Oxidant-resistant Membranes

Now in final development stages, Eltron Water�s DuraFlux RO and NF membranes are based on a new class of polymers with 10 to 20 times more resistance to oxidizing agents such as chlorine, stability to continuous contact with transition metals, good mechanical durability, and increased water production (up to 50% more than comparable membranes) at low pressures. Eltron�s new materials are based on a polymer design strategy in which the polymers� supporting structure is partially decoupled from the pore structure to enable chemical flexibility. Because pore structure currently is coupled with the polymer backbone structure, significant

Page 51: Susan Hanft Project Analyst - cngspw.com...MARKET RESEARCH REPORT MEMBRANE TECHNOLOGY FOR LIQUID AND GAS SEPARATIONS MST041E Susan Hanft Project Analyst BCC Research 35 Walnut Street

Fulltext of this report , contact with: QQ 147800822

or Email to : [email protected]

QQ:147800822

Email:[email protected]报告全文、价格请联系