task 6.1: atomistic simulation of graphene transistors

1
www.c2s2.org 1 2 3 MSD Annual Review May 1-2, 2012 Task 6.1: Atomistic Simulation of Graphene Transistors 1 S. Kim, 2 M. Luisier, 3 T. B. Boykin, 1 J. Geng, 1 J. Fonseca, 1 G. Klimeck 1 Purdue University, 2 ETH Zürich, 3 University of Alabama in Huntsville NEMO5- https://engineering.purdue.e du/gekcogrp/software- projects/nemo5/ S D G G S D Bulk Graphene Efield Excellent high field transport/mobility Problem: No bandgap http://en.wikipedia.org/wiki/Graphene Akturk, JAP2008 Shishir, JPCM2009 Wang, PRL2008 Experimental realization Confinement Betti, ITED2011 Simulation (pz-TB) Experimental realization of GNRFETs Edge roughness is very important at small width (w<2.5 nm) Why Graphene? Graphene Nanoribbon Graphene Nanoribbon Transistors p z vs p/d Tight-binding Model Bandgap I d -V gs C haracteristics p/d better match with DFT p z -wrong bandgap p z -wrong off- current OMEN: Boykin, et al., JAP2011 Edge Roughness and Hydrogen Passivation Roughness Atomistic study of edge roughness and hydrogen passivation roughness Reproducing experimentally possible situation inv 1 eff 1 qN dL dR densit electron : lengt scattering : inv eff N L d d I V R Edge roughness Hydrogen passivation roughness S D V d I d S D V d I d C H Mobility vs Experiment Edge roughness limited mobility much smaller than hydrogen passivation limited mobllity Experiment: Wang, PRL2008 Hydro. Pass. Edge roughness n~ 0.95x10 13 /cm 2 2 Bandstructure Effects Hydrogen Passivation Roughness Edge Roughness Second subband First subband Ef Ef AGNR-13 AGNR-12 P=50 % C H C H DIBL suppressed Graphene Nanomesh Experiment: Liang et al., NanoLett 2010 NEMO5 Simulation Structure 33 nm 138x138 uc 33 nm Bandgap vs. Neckwidth Graphene Bandgap Bandgap Zero bandgap w = 26 nm w = 19 nm w = 11 nm Bandgap Flat bands are ignored in bandgap calculation (crieterion: dE/dk<0.53 eV ) w Bandgap Comparison with Experiment Trend of experimental data captured Overestimation of bangap at a small neck width < 10 nm Effects of Edge States Bandgap uncertainty due to edge roughness Electron Localization Eg Edge states D=24 nm w=9.7 nm Γ Γ Edge states criterion: dE/dk<0.53 eV o Conclusion Importance of p/d model in graphene modeling Significant effects of edge roughness on electron mobility via bandstructure modification in GNRs Relatively less effective hydrogen passivation effects in GNRs GNM bandgap prediction through NEMO5 simulation o Future Work GNR width dependent mobility and ON/OFF- current GNM effects of edge roughness, different shape of holes GNM transmission/mobility calculation GNR, GNM self-consistent transport simulation A A Conclusion / Future Work p z vs p/d Tight-binding Model p/d model necessary to reproduce the asymmetry at Dirac point Graphene Bandstructure OMEN- https://engineering.purdue.e du/gekcogrp/software- projects/omen/ OMEN: Boykin, et al., JAP2011

Upload: stash

Post on 02-Feb-2016

60 views

Category:

Documents


8 download

DESCRIPTION

Task 6.1: Atomistic Simulation of Graphene Transistors. G. Bulk. S. D. 1 S. Kim, 2 M. Luisier, 3 T. B. Boykin, 1 J. Geng, 1 J. Fonseca, 1 G. Klimeck 1 Purdue University, 2 ETH Zürich, 3 University of Alabama in Huntsville. Efield. G. Graphene. S. D. AGNR 13. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Task 6.1: Atomistic Simulation of Graphene Transistors

www.c2s2.org

1 2 3

MSD Annual Review May 1-2, 2012

Task 6.1: Atomistic Simulation of Graphene Transistors

1S. Kim, 2M. Luisier, 3T. B. Boykin, 1J. Geng, 1J. Fonseca, 1G. Klimeck1Purdue University, 2ETH Zürich, 3University of Alabama in

Huntsville

NEMO5- https://engineering.purdue.edu/gek

cogrp/software-projects/nemo5/

S D

G

GS D

Bulk

Graphene

Efield

Excellent high field transport/mobility

Problem: No bandgap

http://en.wikipedia.org/wiki/Graphene

Akturk, JAP2008Shishir, JPCM2009

Wang, PRL2008

Experimental realization

Confinement

Betti, ITED2011

Simulation (pz-TB)

• Experimental realization of GNRFETs• Edge roughness is very important at small width (w<2.5 nm)

Why Graphene?

Graphene Nanoribbon

Graphene Nanoribbon Transistors

pz vs p/d Tight-binding Model

Bandgap Id-Vgs Characteristics

p/d better match with DFTpz-wrong bandgap

pz-wrong off-current

OMEN: Boykin, et al., JAP2011

Edge Roughness and Hydrogen Passivation Roughness

• Atomistic study of edge roughness and hydrogen passivation roughness

• Reproducing experimentally possible situation

inv

1

eff

1

qNdL

dR

densityelectron :

length scattering:

inv

eff

N

L

d

d

I

VR

Edge roughness

Hydrogen passivation roughness

S D

Vd

Id

S D

Vd

Id

CH

Mobility vs Experiment

• Edge roughness limited mobility much smaller than hydrogen passivation limited mobllity

Experiment: Wang, PRL2008

Hydro. Pass.

Edge roughness

n~ 0.95x1013/cm2

2

Bandstructure Effects

Hydrogen Passivation Roughness Edge Roughness

Second subband

First subband

Ef Ef

AGNR-13 AGNR-12

P=50 %

CH

CH

DIBL suppressed

Graphene Nanomesh

Experiment: Liang et al., NanoLett 2010

NEMO5 Simulation Structure

33 nm

138x138 uc33 nm

Bandgap vs. Neckwidth

Graphene

Bandgap BandgapZero bandgap

w = 26 nm w = 19 nm w = 11 nm

Bandgap

Flat bands are ignored in bandgap calculation

(crieterion: dE/dk<0.53 eV )

w

Bandgap Comparison with Experiment

• Trend of experimental data captured

• Overestimation of bangap at a small neck width < 10 nm

Effects of Edge States

• Bandgap uncertainty due to edge roughness

• Electron Localization

Eg

Edge states

D=24 nm

w=9.7 nm

Γ Γ

Edge states criterion: dE/dk<0.53 eV

o Conclusion

• Importance of p/d model in graphene modeling

• Significant effects of edge roughness on electron mobility via bandstructure modification in GNRs

• Relatively less effective hydrogen passivation effects in GNRs

• GNM bandgap prediction through NEMO5 simulation

o Future Work

• GNR width dependent mobility and ON/OFF-current

• GNM effects of edge roughness, different shape of holes

• GNM transmission/mobility calculation

• GNR, GNM self-consistent transport simulation

A

A

Conclusion / Future Work

pz vs p/d Tight-binding Model

• p/d model necessary to reproduce the asymmetry at Dirac point

Graphene Bandstructure

OMEN- https://engineering.purdue.edu/gek

cogrp/software-projects/omen/

OMEN: Boykin, et al., JAP2011