technical model us1000 digital indicating controller

65
1 Model US1000 Digital Indicating Controller Application Notes (Electrical file only) TI 5D1A02-01E 2000.01 First eddition Technical Information Master Signal Air Flow M Master Controller Fuel Flow Boiler Steam Pressure Flow Cross Limit control Air flow Controller Fuel flow Controller

Upload: others

Post on 24-May-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Technical Model US1000 Digital Indicating Controller

1

Model US1000 Digital Indicating ControllerApplication Notes (Electrical file only)

TI 5D1A02-01E2000.01 First eddition

TechnicalInformation

Master Signal

Air Flow

M

Master Controller

Fuel Flow

Boiler Steam

PressureFlow

Cross Limit control Air flowController

Fuel flowController

Page 2: Technical Model US1000 Digital Indicating Controller

2

IntroductionThis Technical Information (abbreviate as TI) explains the configuration of the controlfunction and the programming of custom computation for typical and various applications.This TI is provided in FDC or other electrical media. Please print out this if necessary.

Intended ReadersThis TI is written for instrumentation engineers or personnel in charge of programming orconfiguration of US1000. Readers should understand the control and computation function ofUS1000 and can use a Windows 95/98 computer.For understanding the description in this TI, the following Instruction Manuals will be helpful.

US1000 Digital Indicating Controller IM 5D1A01-01EUS1000 Digital Indicating Controller Functions IM 5D1A01-02E

For understanding the Custom Computation, the following Instruction Manuals will behelpful.

LL1200 PC-Based Custom Computation Building Tool User’s ReferenceIM 5G1A11-02E

If you wan t to download the parameter files and custom computation files which are attachedto this TI, please prepare some software packages and its IMs and Windows 95 PC.

LL1100 PC-Based parameter Setting Tool IM number is 5G1A01-01ELL1200 PC-Based Custom Computation Building Tool IM number is 5G1A11-01E

Exclusions1. Yokogawa M&C Corporation (hereafter simply referred to as Yokogawa M&C) does

not make any warranties regarding the application note, parameter file and customcomputation file included in this Technical Information (abbreviate as TI).

2. Yokogawa M&C assumes no liability to any party for any loss or damage, direct orindirect, caused by the use or any unpredictable defect of the product.

3. Yokogawa M&C may subject to change the contents of this TI and discontinueproviding any services without prior notice. In that case, Yokogawa M&C assumes noliability to any party for any loss or damage, direct or indirect, caused by the use orany unpredictable defect of the product.

4. Yokogawa M&C assume no liability to the correction for any oversight of this TI.

Copyright1. All rights reserved.2. The usage of this TI is free of charge. Non-profit copying and distributing of this TI to any

third party who are using or considering using US1000, or for using this TI in the internalproduct training in your company are permitted in principle. The conditions in forcemajeure above met to the transferee in that case.

3. No portion of this TI may be reproduced for the purposes of publication, quotation to thearticles and attachment for the products without the prior permission Yokogawa M&C'.

4. Do not modify this TI.

Page 3: Technical Model US1000 Digital Indicating Controller

3

Index (Click title to application)Basic Applications

AP1001 Temperature control by heat ExchangerAP1002 Flow rate control with throttle mechanismAP1003 Flow rate cont rol with motor operated valveAP1004 Pump output pressure controlAP1005 Tank level control by Proportional controlAP1006 Average Temperature Control in heat treatment FurnaceAP1007 Flow Control with Remote SetpointAP1008 Flow Ratio ControlAP1009 Volume Control for Spherical TankAP1010 Neutralization Control for Acid WastewaterAP1011 Neutralization Control for Wastewater.AP1012 Temperature Control with Feed Forward Input.AP1013 Cascade Control using Two ControllersAP1014 Single Station Cascade Control

Applications with Custom ComputationAP2001 Addition of Two Flow SignalsAP2002 Data Overflow of ComputationsAP2003 Switching the Operation ModeAP2004 Flow TotaliozerAP2005 Totalization Using an External CounterAP2006 Temperature & Pressure Compensation for Gas FlowAP2007 Sampling & Hold PI controlAP2008 Switch the Operating Mode by an AlarmAP2009 Flow Control Using Two Control ValvesAP2010 Override Control (Flow control with tank level override)AP2011 Additive Injection Using a Plunger PumpAP2012 Cascade Primary ControlAP2013 Boiler Combustion ControlAP2014 Boiler Master Pressure ControlAP2015 Cross Limited Fuel ControlAP2016 Cross Limited Air Flow Control

Appendix 1 Tables for Setup parameters and operation parametersAppendix 2 List of Custom Computation modules

Page 4: Technical Model US1000 Digital Indicating Controller

4

Temperature control for heat ExchangerAP1001 Rev00

Purpose:Make hot water by using steam.

Applicable Process:Widely used in food processing, sterilization-process and utilities.

Controller:Model US1000-00Control Loop Drawing:

Wiring:

3

PVinput

16

18

Control output4 to 20mA

US1000

2

1 6

8

RUN/STOPStatus input

a

b

b +

-RTD

Data Files: USAP100100.1sp (This file is stored in DATA folder)

Explanation:The US1000 starts temperature control when RUN/STOP status input becomes OFF. TheUS1000 stops PID control and set MV to pre-set MV value when RUN/STOP status inputbecomes ON. The SUPER function can decrease the overshoot value and stabilize the hotwater temperature.

P

US1000-00

SteamHotwater

ConditionTemperature range: 0.0 to 100.0 deg.C

Close the control valve when the pump is stopped.

HeatExchanger

TICPID

Water

Temperature

Page 5: Technical Model US1000 Digital Indicating Controller

5

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 200 (Default)USMD—IN TYP1 AIN1 Type 36 (Pt100–200 to 500 deg. C) (note)

↓ UNI1 AIN1 Unit deg.C↓ RH1 AIN1 Range High 100.0(deg.C)(note)

↓ RL1 AIN1 Range Low 0.0(C)↓ 1.P Proportional band 30% (note1)

↓ 1.I Integral time 20sec.(note1)↓ 1.D Derivative time 3sec.(note1)O.LP1--1.PID SC SUPER function selection ON

↓ P.DP1 PV1 Decimal point position 1↓ P.RH1 Max value of PV1 range 100.0(deg.C)O.LP1--PAR P.RL1 Min. value of PV1 range 0.0(deg.C)

0.LP1--1.PID 1.PM Preset MV 20% (note1)

note1: Tuning required for each process control application.note2: The measurement range of TYP1 should be wider than the PV range which is definedby RH and RL.

Page 6: Technical Model US1000 Digital Indicating Controller

6

Flow rate control with throttle mechanismAP1002 Rev00

PurposeFlow rate control with orifice, flow nozzle and venture-tube.

Applicable ProcessWidely used in various flow rate control processes.

Controller: US1000-00Control Loop Drawing:

F

ControlPID

Square rootextraction

Differencialpressure

transmitter

Orifice Control valve

US1000

4 to 20mA

High alarm Low alarm

Condition :Flow range : 0 to 700.0m3/hHigh alarm setting : 600.0m3/hLow alarm setting :100.0m3/hHysteresis : 100.0m3/h

Filter

Alarm

Wiring:

High alarm Tips for wiring:Need external 250 ohm resisitancefor 2 wire transmitter.Minus side of Relay contact outputsare common.

Transmitterpowersupply

Externalresistance

Differencialpressure

transmitter

19

20

2

3

250ohm PV

External 250ohm resistanceAccuracy: + - 0.1%

16

18

9

10

12

Low alarm

Common

MV output 4to 20mA

US1000

+-

Data Files: USAP100200.1spExplanation:

Generally, the response time of flow rate control is short. Therefore, the control period shouldbe 100ms. The square-root computation, input filter and Hi/Low input alarm are builded in asstandard function. Customer can use these functions by parameter setting

Page 7: Technical Model US1000 Digital Indicating Controller

7

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 100 (100ms)USMD--IN SDP1 AI1 Decimal point position 1 (Default)

↓ SH1 Max value of AI1 scale 700.0(m3/h)↓ SL1 Min. value of AI1 scale 0.0(m3/h)CMPL--AIN A.SR1 Square root computation ON

↓ A.LC1 Low cut point of A.SR1 1.0 (Default)USMD--OUT MVS1 MV Selection 2 : Current output(Default)O.LP1--PAR FL PV Filter 5 sec. :(note1)O.LP1--1.PID 1.A1 Alarm 1 setpoint 600.0 (m3/h)↓ 1.A2 Alarm 2 setpoint 100.0 (m3/h)S.LP1--ALM HY1 Alarm 1 hysterisis 100 (m3/h)

↓ HY2 Alarm 2 hysterisis 100 (m3/h)

O.LP1--1.PID 1.P Proportional band 200% (note1)↓ 1.I Integral time 10sec. (note1)

note1: Tuning required for each process control application.

Page 8: Technical Model US1000 Digital Indicating Controller

8

Flow rate control with motor operated valveAP1003 Rev: 00

PurposeExplain the function setting and wiring for motor valve control. Input computation is as sameas AP1002.

Applicable ProcessThis application can be use for motor operated valves and dumpers.

Controller: Model US1000-21The position proportional PID control function is used for motor valve control.

Control Loop Drawing:

F

TICPID

Electro-magnetic flowmeter Control valve

US1000

Position feedback signalfrom Motor operatedvalve

Condition :Flow range : 0 to 40.00m3/Min

Filter

M

MVDirect/ Reverse

Signal

1 to 5Vdc

Pump

Wiring

2

3

PV55

56

57

US1000

Direct action

MLoad

Load60

58

59 Reverse action

AC

Valve position

Open Position

Close PositionController and motor valveshould be connected whensetting the point of fully-opened / fully closed point

Data Files: USAP100300.1spExplanation

Use buffer relays between controller outputs and motor valve to protect the status outputcontacts for US1000.

Page 9: Technical Model US1000 Digital Indicating Controller

9

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)USMD--IN SDP1 AI1 Decimal point position 2↓ SH1 Max value of AI1 scale 40.00(m3/h)

↓ SL1 Min. value of AI1 scale 0.00(m3/h)USMD--VALV V.RS Reset valve position 1 (Reset)↓ V.AT Automatic calibration for valve positioning ON (Refer to IM)

O.LP1--PAR FL PV Filter 5(sec) :(note1)

O.LP1--1.PID 1.P Proportional band 200% (note1)

↓ 1.I Integral time 20sec. (note1)

note1: Tuning required for each process control application.

Page 10: Technical Model US1000 Digital Indicating Controller

10

Pump output pressure controlAP1004 Rev: 00

Purpose:Control the pump motor speed by using an inverter for keeping the pump output pressure.There is little energy loss because of no control valve.

Applicable Process:Widely used for flow pressure control and flow rate control.

Controller: Model US1000-00Control Loop Drawing:

TIC

PID

Pressuretransmitter

US1000

Condition :Pressure range : 0.00 to 1.00MPa

4 to 20mAOperation

output

Pump

Inverter

4 to 20mA

PumpInterlock signal

Wiring:

Transmitterpowersupply

Externalresistance

Pressuretransmitter

19

20

2

3

250W PV

16

18

6

8

MV4 to 20mA

US1000 controller

+- to Inverter

Pump InterlockON : STOPOFF : RUNRUN/STOP

Input terminal

Data Files: USAP100400.1spExplanation:

When the pump inter-lock input turns on, US1000 will stop the PID control and output thepre-set value as MV. In this condition, the pump motor will be kept in low speed. When thepump inter-lock input turns off, US1000 will start the PID control to control the pump outputpressure.RUN/STOP status input (Di1) ON: STOP Stop PID control, output pre-set MV OFF: RUN Start PID control in AUTO mode

Page 11: Technical Model US1000 Digital Indicating Controller

11

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 200 (Default)USMD--IN TYP1 AI1 type for AIN1 terminal 41 (Default)

↓ SDP1 AIN1 Decimal point position 2↓ SH1 Max value of AI1 scale 1.00 (MPa)

↓ SL1 Min. value of AI1 scale 0.00 (MPa)↓ P.DP1 PV Decimal point position 2

↓ P.RH1 Max value of PV1 range 1.00 (MPa)↓ P.RL1 Min. value of PV1 range 0.00 (MPa)

O.LP1--1.PID 1.P Proportional band 150% (note1)

↓ 1.I Integral time 20sec. (note1)

↓ 1.D Derivative time OFF (note1)

↓ 1.PM Preset MV 15% (note1)

note1: Tuning required for each process control application.

Page 12: Technical Model US1000 Digital Indicating Controller

12

Tank level control by Proportional controlAP1005 Rev: 00

PurposeProportional(P) control is very useful for eliminating the PV overshoot. On the other hand,little deviation will remain between SV and PV.

Applicable ProcessP control does not cause the process overshoot. Therefore, P control can be used for tank levelcontrol and chemical reacting control which allow no overshoot.

Controller: Model US1000-00Control Loop Drawing:

Condition :PV range : 0.0 to 100.0cm

US1000For example:When SV=50cm and PB=10%,MV is 100% until level becomes40cm.MV will move 100% to 0% while tanklevel is 40cm to 50cm in inverseproportion.When tank level comes to nearly50cm, MV becomes to almost 0%.Finally, MV becomes 0% when tanklevel is 50cm.

SP

Liquid level

Output 100%0%

LICPID

Tank level transmitter

Propotionalband 10%50cm

40cm

Tank

Wiring:

Transmitterpower supply

Externalresistance

Liquid leveltransmitter

19

20

2

3

250W PV

16

18MV 4 to 20mA

US1000 Controller

+

-

Data Files: USAP100500.1spExplanation:

Set Integral time and Derivative time to OFF position, US1000 becomes P control mode.P control computation is as follows:MV=(SV-PV)*100/PB+MR Where, PB; Proportional Band MR; manual Reset (0 to 100%)In this example, MV becomes 0% when PV is same value as SV, because MR is 0%. MV is100% when PV is under 40cm because PB is 10%. The MV will move 100% to 0% in inverseproportion to tank level between 40cm to 50cm.

Page 13: Technical Model US1000 Digital Indicating Controller

13

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 200 (Default)USMD--IN TYP1 AI1 type for AIN1 terminal 41(1 to 5Vdc,Default)

↓ SDP1 AIN1Decimal point position 1↓ SH1 Max value of AIN1 scale 100.0(cm)

↓ SL1 Min. value of AIN1 scale 0.0(cm)↓ P.DP1 PV1Decimal point position 1

↓ P.RH1 Max value of PV1 range 100.0(cm)↓ P.RL1 Min. value of PV1 range 0.0(cm)USMD--OUT MVS1 MV1 selection 2:Current output(Default)O.LP1--1.PID 1.P Proportional band 10%(note1)

↓ 1.I Integral time OFF↓ MR Manual reset 0%

note1: Tuning required for each process control application.

Page 14: Technical Model US1000 Digital Indicating Controller

14

Average Temperature Control in heating FurnaceAP1006 Rev: 00

Purpose:US1000 controls the average furnace temperature for high quality heat treatment. The averagetemperature is calculated from two points of furnace by US1000.

Applicable Process:Widely used for heat treatment furnaces, ovens and reactors in which temperature is notuniform. US1000 can select the high temperature or low temperature as Process Variable.

Controller: Model US1000-00Control Loop Drawing:

Condition:Temperature input :Thermocouple K0 to 1200deg.C

TICPID

SCRWork

AverageOperation

Furnace

Thermocouple

US1000

(*1)

(*1) Average Operation can beswitched to HI selector or LOWselector.

Wiring:

23 PV1

16

18

4748 MV 4 to 20mA

US1000 ControllerTC input A (AIN1)Thermocouple : K

PV2TC input B (AIN2)Thermocouple : K

Data Files: USAP100600.1spExplanation:

Two universal inputs are available in the US1000-11.Different types of thermocouples or RTDs can be used. The measurement ranges for bothinputs do not have to be the same.The two temperature inputs can be displayed as user-display functions.

Page 15: Technical Model US1000 Digital Indicating Controller

15

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 15 (PV auto-selector and 2univ. inputs)↓ SMP Control Period 200 (Default)USMD--IN TYP1 AIN1 type for AIN1 1 (Type K --270.0 to 1370.0deg.C)

↓ UNI1 Analog input 1 unit deg.C↓ RH1 Max value of AIN1 range 1200.0(deg.C)

↓ RL1 Min. value of AIN1 range 0.0(deg.C)↓ TYP2 AIN2 type for AIN2 1 (Type K –270.0 to 1370.0deg.C)

↓ UNI2 Analog input 2 unit deg.C↓ RH2 Max value of AI2 range 1200.0(deg.C)

↓ RL2 Min. value of AI2 range 0.0(deg.C)↓ P.DP1 PV1 Decimal point position 1

↓ P.RH1 Max value of PV1 range 1200.0(deg.C)↓ RL1 Min. value of PV1 range 0.0(deg.C)CONF--U.OPE U.AI1 USER display of AIN1 MV ON

↓ U.AI2 USER display of AIN1 MV ONUSR U1 User parameter 1 2 (Default)↓ U2 User parameter 2 0 (Default)O.LP1--PAR SC SUPER function selection ONO.LP1--1.PID 1P Proportional band 5% (note1)

↓ 1.I Integral time 240sec. (note1)↓ 1.D Derivative time 60sec. (note1)

note1: Tuning required for each process control application.

Page 16: Technical Model US1000 Digital Indicating Controller

16

Flow Control with Remote SetpointAP1007 Rev:00

Purpose:Sometimes, the measurement range of PV and CSV (remote setpoint) are not the same. Thisexample explains how to set the parameters for different measurement ranges.

Applicable Process:Widely used for flow, temperature and pressure control with remote setpoint.

Controller: Model US1000-00Control Loop Drawing:

F

TIC

PID

Differencialpressure

transmitter

Orifice Control valve

US1000

4 to 20mA

Condition:SV input range: 0 to 180.0m3/hPV input range: 0 to 200.0m3/hFilter

SV input range0 to 180.0m3/h

PV input range0 to 200.0m3/h Square

rootextraction

Wiring:

Transmitterpowersupply

Externalresistance

Differencialpressure

transmitter

19

20

2

3

250ohm PV

16

18

4

5Cascade SV(AIN3 1 to 5Vdc)

MV 4 to 20mA

US1000

+-

Data Files: USAP100700.1spExplanation:

In this example, three scaling parameters are set as shown below. US1000 executes rangescaling automatically. Input 1 range (AIN1); SH1=200.0, SL1=0.0 Input 3 range (AIN3); SH3=180.0, SL3=0.0 PV range; P.RH1=200.0, P.RL1=0.0“C mode key” on the front panel is locked in the Default condition. Deactivate the key-lockbefore operation. This is performed in the KLCK sub-menu.CSV can be display in user-display function during the operation.

Page 17: Technical Model US1000 Digital Indicating Controller

17

Parameters Important Parameters OnlyMenu Parameter Explanation Setting DataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 100 (Default =200ms)USMD--IN TYPE1 Analog input Type 1 41(1 to 5Vdc,Default)

↓ SDP1 AIN1 Decimal point position 1↓ SH1 Max value of AIN1 scale 200.0(m3/h)

↓ SH2 Min. value of AIN1 scale 0.0(m3/h)↓ TYPE3 Analog input 3 Type 41(1 to 5Vdc, Default)

↓ SDP3 AIN3 Decimal point position 1↓ SH3 Max value of AIN3 scale 180.0(m3/h)

↓ SL3 Min. value of AIN3 scale 0.0(m3/h)↓ P.DP1 PV1Decimal point position 1

↓ P.RH1 Max value of PV1 range 200..0(m3/h)↓ P.RL1 Min. value of PV1 range 0.0(m3/h)CMPL--KLCK C C mode key lock OFF(enable operation)CONF--U.OPE U.AI3 USER display of AIN1 MV ONO.LP1--PAR FL PV filter 5 (sec.) (note1)O.LP1--1.PID 1.P Proportional band 200%(note1)

↓ 1.I Integral time 10sec.(note1)

note1: Tuning required for each process control application.

Page 18: Technical Model US1000 Digital Indicating Controller

18

Flow Ratio ControlAP1008 Rev: 00

Purpose:US1000 controls injection flow rate as a specific ratio to the master flow rate.

Applicable Process:Widely used for flow rate and chemical injection control.

Controller: Model US1000-00Control Loop Drawing:

Magnetic Flow Meter

Injector

Condition:Product Flow 0 to 800.0L/minInjector Flow 0 to 20.0L/minFlow Ratio 0.025

Product F

US1000 RatioBias

F CPID

F

Wiring:

2

3PV

16

18

4

5

Product flow rate (AIN3)1 to 5Vdc

MV 4 to 20mA

US1000 Controller

Chemical flow rate (AIN1) 1 to 5Vdc

Data Files: USAP100800.1spExplanation:

Cascade Ratio computation function is a standard function for US mode 1(basic single loopcontrol mode). Cascade Ratio set point (CRT) can be set as operation parameter. The SV baron the front panel shows flow rate set point of the injection flow, which is calculated frommaster flow rate and cascade ratio.Cascade Ratio is set in engineering units. For example, when master flow rate is 500.0L/min.and cascade ratio is 0.025, the injection flow rate set point is 12.5L/min.Remote SV input can be display in SELECT display function by pressing [SET/ENT] keyduring the operation.

Page 19: Technical Model US1000 Digital Indicating Controller

19

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 100 (Default=200ms)USMD--IN SH1 Max value of AIN1 scale 20.0(L/H)

↓ SL1 Min. value of AIN1 scale 0.0(L/H)↓ TYPE3 Analog input 3 Type 41(1 to 5Vdc,Default)

↓ SDP3 AIN 3 Decimal point position 1↓ SH3 Max value of AIN3 range 800.0(L/H)

↓ SL3 Min. value of AIN3 range 0.0(L/H)↓ P.DP1 PV1Decimal point position 1

↓ P.RH1 Max value of PV1 range 20.0(L/H)↓ P.RL1 Min. value of PV1 range 0.0(L/H)CMLP--KLCK C C mode key lock OFF(Enable operation)CONF--C.SEL C.S1 Registration for the SELECT display 1247* (set from the front panel)

CRT.1 (set from LL1100)*247 is D register No. of Ratio

O.LP1--PAR FL PV Filter 5(sec.) (note1)

↓ CRT Cascade ratio 0.025 (note1)O.LP1--1.PID 1.P Proportional band 200% (note1)↓ 1.I Integral time 10sec. (note1)

↓ 1.D Derivative time OFF (note1)note1: tuning required for each process control application.

Page 20: Technical Model US1000 Digital Indicating Controller

20

Volume Control for Spherical TankAP1009 Rev: 00

Purpose:Compute the tank volume from tank level, and control the volume of liquid in spherical tank.

Applicable Process:Widely used for general spherical tank volume control.

Controller: Model US1000-00Control Loop Drawing:

US10004 to 20mA Condition:Liquid level range 0 to 4.00mVolume range 0 to 33.0m3

Volume

Linealizor

Liquid leveltransmitter

Liquid level0 100%

TICPID

Sphericaltank

100%

Wiring:

Transmitterpowersupply

Externalresistence

Differencialpressure

transmitter

19

20

2

3250ohm PV input

16

18MV 4 to 20mA

US1000

Data Files: USAP100900.1spExplanation:

Use ten-segment linearizer for computation the tank volume from a level measurement. Therelationship between the tank level and volume in this example is as follows: Tank level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Tank volume 0% 3% 10% 22% 35% 50% 65% 78% 90% 97% 100%Measure the differential pressure between top and bottom of the tank for calculating theclosed tank level.The zone PID control function can be used for spherical tank level control. The PID gain incenter of tank should be high. The PID gain in the top and bottom zones of tank should below. Process gain is low in the center zone and high at the top and bottom of a spherical tank.

Page 21: Technical Model US1000 Digital Indicating Controller

21

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 100 (Default=200ms)USMD-IN TYPE1 Analog input 1 Typ 41(1 to 5Vdc,Default)

↓ SDP1 AIN1 Decimal point position 1↓ SH1 Max value of AIN1 scale 33.0

↓ SL1 Min. value of AIN1 scale 0.0CONF-C.PYS PY1X Ten-segment linearizer-1 input unit 0 (%)↓ PY1Y Ten-segment linearizer-1 output unit 0 (%)PYS 1.X1 Ten-segment linearizer-1 input 10.0

↓ 1.Y1 Ten-segment linearizer-1 output 10.0↓ 1.X2 Ten-segment linearizer-1 input 210.0

↓ 1.Y2 Ten-segment linearizer-1 output 23.0↓ 1.X3 Ten-segment linearizer-1 input 320.0

↓ 1.Y3 Ten-segment linearizer-1 output 310.0(Segment 4 to 8 are omitted.)↓ 1.X9 Ten-segment linearizer-1 input 980.0

↓ 1.Y9 Ten-segment linearizer-1 output 990.0↓ 1.X10 Ten-segment linearizer-1 input 1090.0

↓ 1.Y10 Ten-segment linearizer-1 output 1097.0↓ 1.X11 Ten-segment linearizer-1 input 11100.0↓ 1.Y11 Ten-segment linearizer-1 o utput 11100.0

↓ 1.PMD Ten-segment linearizer mode 1 (Approximation)

Page 22: Technical Model US1000 Digital Indicating Controller

22

Neutralization Control for Acidic WastewaterAP1010 Rev: 00

Purpose:Neutralize the acidic wastewater by using zone PID control function.

Applicable Process:Widely used for acidic wastewater treatment process.

Controller: Model US1000-00Control Loop Drawing:

US1000

4 to 20mA

zone PID control:Acid zone (zone 1) PID gain largeNeutralization zone (zone 2) PID gain small

pH

Neutralization control range1.0

14.0

TICPID

neutralizingpool

Acid wastewater

alkalineneutralizer

zone PIDcontrol

zone 1

zone 2

zone 3

pH sensor

9.0

5.0

Wiring:

Transmitterpower supply

Externalresistence

Two-wire pHsensor

19

20

2

3

250Ω PV

16

18

MV4 to 20mA

US1000

Data Files: USAP101001.1spExplanation:

Use two-zone PID to compensate for the non-linear characteristics of pH control.In strong acid zone, the zone PID gain should be high because of low process gain. On thealkaline side, zone PID gain should be low because of high process gain.If the wastewater pH becomes high due to over injection of the alkaline neutralizer, there is noway to compensate for this condition. Another application note explains use of the US1000for both acid and alkaline addition.

Page 23: Technical Model US1000 Digital Indicating Controller

23

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 100 (Default=200ms)USMD--IN TYPE1 Analog input 1 Type 41(1 to 5Vdc,Default)

↓ SDP1 AIN1Decimal point position 1↓ SH1 Max. value for AIN1 scale 14.0

↓ SL1 Min. value for AIN1 scale 1.0CMLP--C.CTL PPID Preset PID function selection 2 (Zone PID)O.LP1--1.PID 1.SV Target setpoint 1 7.0↓ 1.P Proportional band 1 10.0(%)

↓ 1.I Integral time 1 1000(sec.)(Note1)

↓ 1.RP Zone PID reference point 1 5.0O.LP1--2.PID 2.SV Target setpoint 2 7.0

↓ 2.P Proportional band 2 999.9(%)↓ 2.I Integral time 2 1000(sec.)(Note1)

↓ 2.RP Zone PID reference point 2 9.0O.LP1--3.PID 3.SV Target setpoint 3 7.0↓ 3.P Proportional band 3 10.0(%)

↓ 3.I Integral time 3 1000(sec.)(Note1)

note1: Tuning required for each process control application.

Page 24: Technical Model US1000 Digital Indicating Controller

24

Neutralization Control of WastewaterAP1011 Rev:00

Purpose:Neutralize industrial wastewater that can be either acidic or alkaline by using heat and coolcontrol functions.

Applicable Process:Used for effluent wastewater neutralization in the process control industries.

Controller: Model US1000-11Control Loop Drawing:

Wiring:

Data Files:USAP101101.1spExplanation:

The heat output (heat MV) is used for injection of the acid neutralizer. The cool output (coolMV) is used for injecting the alkaline neutralizer.Zone PID control can be used with heat and cool control functions to compensate for the non-linear characteristics of pH control.

US1000

4 to 20mA

pH control by heat and cool control:around the neutral point...PID gain should be highothers ...PID gain should be low

neutralisingpool

undilutedsolution

Alkalineneutralizer

Heat andcool control amount of

neutralizer

pH sensor

Acidneutralizer

TICPID

pH1.0 14.07.0

Move up the 0% line for the convenience.

4 to 20mA4 to 20mA

Alkalineneutralizer

Acidneutralizer

TransmitterPower

ExternalResister

2W pH transmitter

19

20

2

3250ohm PV input

16MV1 for Acid neutralizer

4 to 20mA

US1000

18

49MV2 for Alkaline neutralizer

4 to 20mA50

Page 25: Technical Model US1000 Digital Indicating Controller

25

Parameters Important parameters onlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 100 (Default = 200ms)USMD--IN TYP1 Analog input 1 Type 41 (1 to 5VDC, Default)

↓ SDP1 AIN11Decimal point position 1↓ SH1 Max. value for AIN1 scale 14.0

↓ SL1 Min. value for AIN1 scale 0.0USMD--OUT MVS1 MV1 selection1 12 (Heat & Cool current output)CMLP--C.CTL PPID Preset PID function selection 2 (Zone PID)O.LP1--1.PID 1.SV Target setpoint 7.0↓ 1.P Proportional band 10.0(%)

↓ 1.I Integral time 1000(sec) (Note1)↓ 1.Pc Cooling: Proportional band 10.0(%)

↓ 1.Ic Cooling: Integral time 1000(sec) (Note1)↓ 1.DB Deadband1 for Zone PID 3.0% (Default)↓ 1.RP Zone PID reference point 1 5.0O.LP1--2.PID 2.SV Target setpoint 7.0

↓ 2.P Proportional band 999.9(%) (Default)↓ 2.I Integral time 1000(sec) (Note1)

↓ 2.Pc Cooling Proportional band 999.9(%) (Default)↓ 2.Ic Cooling Integral time 1000(sec) (Note1)

↓ 2.DB Deadband 2 for Zone PID 3.0%(Default)↓ 2.RP Zone PID reference point 2 9.0O.LP1--3.PID 3.SV Target setpoint 7.0

↓ 3.P Proportional band 10.0(%)↓ 3.I Integral time 1000(sec) (Note1)

↓ 3.Pc Cooling-side Proportional band 10.0(%)↓ 3.Ic Cooling-side Integral time 1000(sec) (Note1)

↓ 3.DB Zone PID reference point 3 3.0%(Default)

Note1: Tuning required for each process control application.

Page 26: Technical Model US1000 Digital Indicating Controller

26

Temperature Control with Feed Forward InputAP1012 Rev: 00

Purpose:Minimizing process disturbances using only closed loop PID control can be very difficult.Adding a feed forward signal to the PID controller is a good solution to decrease thesedisturbances.

Applicable Process: Widely used for heat exchanger processes.

Controller: Model US1000-00Control Loop Drawing:

Wiring:

Data Files: USAP101200.1spExplanation:

The feed forward calculation is as follows: FF=FGN(Fin+FBI)+FBO FF: Feed forward signal that is applied to the control output FGN, FBI, FBO: Feed forward gain, input bias and output bias respectively.

If FBI is set to –50% of feed forward input (Fin) and FBO is set to 0%, FF signalbecomes 0% when Fin is 50%.

If the flow rate of the raw material increases, FF signal increases in proportion to the flow rate.The US1000 can increase the MV to anticipate this additional heat demand. FGN should betuned during start-up. An input filter can be used for a noisy feed forward flow input.

US1000 Add the Product flow to control theMV for fast control action, beforeProduct temperature change.Temp. input Tin : 0 to 200 deg CFlow input Fin : 0 to 100L/min.

Feed Forward Calculation FF =FGN * (Fin + FBI) + FBO FF:Signal which is added to MV FGN : Gain FBI : Input bias FBO : Output bias

Product Flow(Feed Forward input signal)

T CPID

F

+

Pt100

Steam

HeatExchanger SQRTBias &

Gain

Flow meter

ExternalResistance

19

20

4

5

Feedforwardinput 16

18MV 4 to 20mA

US1000

21

PV input3

Pt100

250ohm

Page 27: Technical Model US1000 Digital Indicating Controller

27

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD--MD USM US Mode 1 (Default)↓ SMP Control Period 100 (Default = 200ms)USMD-IN TYP1 AIN1 Type 36 (Pt100: -200 to 500 Deg. C)

↓ RH1 MAX VALUE OF AIN1 200.0↓ RL1 MIN. VALUE OF AIN1 0.0

↓ TYP3 AIN3 Type 41(1-5VDC, Default)↓ SDP3 Decimal point position 1↓ SH3 MAX VALUE OF AIN3 1000

↓ SL3 MIN. VALUE OF AIN3 0S.LP1-CTL FFS Feed forward input selection AIN (Analog Input )CMLP-AIN A.BO1 AIN1 Burn out UPS (Upscale burn out)↓ A.SR3 AIN3 Square root extraction ON

↓ A.LC3 AIN3 SQRT low signal cut off 1.0% (Default)0.LP1-PAR FGN FF Gain 0.1 (Nominal)↓ FBI FF input bias -50.0%

↓ FBO FF output bias 0.0% (Default)↓ FFL FF input filter 5sec (Nominal)

Note1: Tuning required for each process control application.

Page 28: Technical Model US1000 Digital Indicating Controller

28

Cascade Control using Two ControllersAP1013 Rev: 00

Purpose:Discuss the application of “Cascade Primary control” and “Cascade Secondary control” modes.Explanation of the configuration for the cascade control action using two controllers.

Applicable Process: Widely used for cascade control applications. The primary and secondary process variables(PV) can be shown simultaneously using two controllers.

Controller: Model US1000-00Control Loop Drawing:

Wiring:

7

8

4

5

16

MV 4 to 20mA

2PV input

3

19

20

4

5

Secondary loop

16 MV 4 to 20mA3

250ohm2

PV inputType T

18Cas SV250ohm

12

11

8

7Erroroutput CAS to Auto switching

11

12

Tracking ON/OFFinput

Trackinginput

AUTOstatus

output

SV retransmission

TransmitterPrimary loop

18

17

Data Files:Primary loop: USAP1013P00.1sp,Secondary loop: USAP1013S00.1sp

Explanation:Primary control mode of the US1000 has an “Error status output” which is used for switchingthe operation mode from CAS to AUTO in the secondary controller.Secondary control mode of US1000 has a “SV retransmission output” which is used as atracking input in the primary controller while the secondary controller is in AUTO mode.

FCPID

SQRTDiferential pressuretransmitter

US1000

4 to 20mA

Conditions:Primary loop PV range 0 to 400 deg CSecondary loop PV range 0 to 60m3/min

OrificeF

TCPID

Type T

Errorsignal

C/A statusSV for tracking

Page 29: Technical Model US1000 Digital Indicating Controller

29

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataPrimary LoopUSMD-MD USM US Mode 2 (Cascade primary loop)

↓ SMP Control Period 200ms (Default)USMD-IN TYP1 Analog input 1 type 6 (Type T: 0 to 40 Deg. C)↓ TYP3 Analog input 3 type 41(1 to 5VDC,Default)

↓ SDP3 AIN3decimal point position 1 (Default)↓ SH3 MAX VALUE OF AIN3 100.0 (Default)

↓ SL3 MIN. VALUE OF AIN3 0.0 (Default)CMLP-AIN A.BO1 AIN1 burnout action UPS (Default)CMLP-KLCK C C mode key lock ON (Default)

Secondary LoopUSMD-MD USM US Mode 3 (Cascade secondary loop)↓ SMP Control Period 200ms (Default)USMD-IN TYP1 Analog input 1 Type 41 (1 to 5VDC, Default)

↓ RH1 MAX VALUE OF AIN1 5.000↓ RL1 MIN. VALUE OF AIN1 1.000

↓ SDP1 AIN1decimal point position 1 (default)↓ SH1 MAX VALUE OF AIN1 60.0

↓ SL1 MIN. VALUE OF AIN1 0.00 (default)↓ TYP3 Analog input 3 type 41(1 to 5VDC, Default)↓ SDP3 AIN3 decimal point position 1 (default)

↓ SH3 MAX VALUE OF AIN3 60.0↓ SL3 MIN. VALUE OF AIN3 0.0S.LP1-SV CMS Cascade input selection AIN (Default) Note1S.LP1-CTL MOD PID control mode 0 (Batch control mode)CMLP-AIN A.SR1 AIN1 Square root extraction ON

↓ A.LC1 AIN1 SQRT low signal cut off 1.0%(default)CMLP-KLCK C C mode key lock OFF (C key is available) Note1

Note 1: These functions are automatically set by the US mode selection.

Page 30: Technical Model US1000 Digital Indicating Controller

30

Single Station Cascade ControlAP1014 Rev: 00

Purpose: One US1000 can perform cascade control.

Applicable Process:Widely used for temperature to temperature cascade control and temperature to flow cascadecontrol.

Controller:Model US1000-00 is applicable to temperature to flow cascade control.Model US1000-11 is useful for temperature to temperature cascade control since it has twouniversal inputs.

Control Loop Drawing:

Wiring:Data Files: USAP101400.1spExplanation:

Both the LOOP 1 and LOOP 2 PV & SV values can be shown the on the front display.1) The PV and SV of each loop can be selected by pressing the [DISP] key.2) The LOOP 1 PV & SV are displayed on left red bar and LOOP 2 PV & SV are displayedon right green bar.MV bar graph indicator always shows LOOP 2 control output (MV2). OPEN/ CLOSE

switching of cascade control is done by “O/C” parameter in operation parameter group. Thestatus input 2 can be switched the OPEN/CLOSE status of cascade control.

F CPID

SQRT

Differential pressuretransmitter

US1000

4 to 20mA

Conditions :Primary Loop PV range 0 to 150deg CSecondary Loop PV range 0 to 20m3/min

OrificeF

T CPID

Pt100

Transmitter19

20

4

5

Secondaryloop PV 16

18MV 4 to 20mA

US1000

2

250ohm

1 Primaryloop PV

3

Pt100

Page 31: Technical Model US1000 Digital Indicating Controller

31

Parameters Important parameters onlyMenu Parameter Explanation Setting dataUSMD-MD USM US Mode 4 (Cascade Control)↓ SMP Control Period 200ms (Default)USMD-IN TYPE1 Analog input type 36 (Pt100: –200 to 500 Deg.C)

↓ RH1 MAX VALUE OF AIN1 150.0↓ RL1 MIN. VALUE OF AIN1 0.0

↓ TYPE3 Analog input 3 type 41 (1 to 5VDC, Default)↓ SDP3 AIN3 decimal point position 2 (2 places to the left)↓ SH3 MAX VALUE OF AIN3 20.00

↓ SL3 MIN. VALUE OF AIN3 0.00CMLP-AIN A.BO1 AIN1Burnout UPS (Upscale burn out)↓ A.SR3 AIN3 Square root extraction ON

↓ A.LC3 AIN3 SQRT low signal cut off 1.0% (Default)CMLP-KLCK C C key mode lock ON (Default)MODE O/C Internal cascade Open/Close Close = Cascade control

Open = Secondary loop control

Page 32: Technical Model US1000 Digital Indicating Controller

32

Addition of Two Flow SignalsAP2001 Rev: 00

Purpose:Explain the scaling for addition or subtraction of two input signals using the customcomputation functions.

Applicable Process:Widely used for addition or subtraction of two flow rates to acquire the process variable (PV)used for control.

Controller: Model US1000-11Control Loop Drawing:

Wiring: Omitted

Explanation:Custom computation module EUCONV (Engineering Unit conversion) is used forcomputation of analog inputs that have different ranges.EUCONV module must be performed before any other input computations.For example, if the range of analog input 1(AIN1) is 0 to 300 L/min. and the range of PV is 0to 800 L/min., Set P1 and P2 (output parameters of EUCONV) as follows. EUCONV moduleautomatically adjusts the scale of AIN1 and PV.P1=0 Input signal of EUCONV is AIN1P2=0 Output signal of EUCONV is PV

EUCONV module is also available for temperature range scaling.The example to the upper-right shows MIN/MAX/AVE temperature selection of two inputs.

Note: PV range must be wider than any input ranges. If PV range is smaller than the inputranges, a data overflow condition will exist. The following parameter settings explain how toprevent this.

MagneticFlowmeter

Flow A0 to 300.0L/min

US1000 EUCONV

FFlow B

0 to 500.0L/min

AIN1

AIN3 OUT

IN1

CONV P2P1

Setting for EUCONV :In case of AIN1, P1=0 and P2=0In case of AIN3, P1=2 and P2=0

F CPID

PV1range0 to 800.0L/min

EUCONV

EUCONV

EUCONVSet input number to P1, set controlloop number to P2. EUCONVautomatically calculates ranges.P1=0 (AIN1) =1 (AIN2) =2 (AIN3)

P2=0 (PV1) =1 (PV2)

+

F

EUCONV

TICPID

AIN1

AIN2

PV1Range 0-600 deg C

MINMAXAVERange 0-250 deg C

Range 0-600 deg C

EUCONV

Page 33: Technical Model US1000 Digital Indicating Controller

33

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-MD SMP Control Period 200 (Default )USMD-IN SH1 MAX VALUE OF AIN1 300.0

↓ SL1 MIN. VALUE OF AIN1 0.0↓ SH3 MAX VALUE OF AIN3 500.0

↓ SL3 MIN. VALUE OF AIN3 0.0↓ P.RH1 Max value o f PV1 range 800.0 (SH1 + SH3)↓ P.RL1 Min. value of PV1 range 0.0KLCK C C mode key lock OFF (C key is not locked)O.LP1-PAR FL PV filter time constant 5.0 sec. (Default = 0.0 sec)

Page 34: Technical Model US1000 Digital Indicating Controller

34

Data Overflow of ComputationsAP2002 Rev:00

Purpose:Understand the 2 byte and 4 byte computations to prevent data overflow.

Applicable Process:This technique is widely used in custom computation for complex control strategies.

Controller: Model US1000-11, -21Control Loop Drawing:Same as AP2001 except for PV range.

Flow A0 to 300L/min

US1000

Flow B0 to 600L/min

AIN1

AIN3+ F C

PID

PV1 range0 to 600L/min

LIMITEUCONV

EUCONV

LIMITP1= 31500(= 105.0%)P2= -1500(= -5.0%)Limitter is used for PV1.

Data Files:Parameter file USAP200200.1spCustom Computation file USAP200200.1sc

Explanation:1) Internal data conversionAnalog input signals are converted to 0 to 30,000 counts (2 byte data). 0% of the input is 0and 100% of the input is 30,000. Maximum input is +109.2% (32,767).Multiplication of integer data in the US1000 is as follows; Correct calculation 100% * 100% = 30,000 * 30,000 = 900,000,000

Bad calculation 100% * 100% = 1.00 * 1.00 = 1.00 = 100% = 30,000

2) Data connection between a 4 byte computation module and a 2 byte computation moduleThere are two types of computation modules in custom computation. Addition, subtraction,multiplication and division modules use 4 byte data strings. Maximum value for thesemodules is -2,147,483,647 to +2,147,483,647. All 2 byte computation modules such asFILTER, RATIO, SQR, MINMAXAVE, etc. have data limiter at the input of module.Therefore, 4 byte data is automatically limited to 2 byte data. LIMIT module is not neededbetween these computation modules.

ADD

(Data in this figure is integer data.)

FILTER MUL RATIOPID

Control

4 byte Module2 byte Module

25,000

15,000 40,000 32,767

5,000 163,835,000 32,767

4 byte Module 2 byte Module 2 byte Module

3) Data connection to PID computation block and Analog outputs.PID computation and all analog inputs and outputs such as AIN1, PV1, MV1 & OUT1A use 2byte data strings. Maximum value for these modules is –32,767 to +32,767. If the outputfrom 4 byte computation module is connected to the PID computation block, the PID

Page 35: Technical Model US1000 Digital Indicating Controller

35

computation block can read only the lower 2 byte data from the 4 byte data string. The upper2 byte data of the 4 byte data string is not read.

001001114 byte data

2 byte data

Read lower 2 byte data

Upper 2 byte data isabadoned.

10110101 00111001 10101111

00111001 10101111

4) Protection against data overflow.EUCONV and LIMIT modules have to be used when 4 byte data is connected to PIDcomputation block and Analog outputs.

3.1) EUCONVPlease refer AP2001 to use EUCONV module. In this case, PV range should be wider than anyanalog input range.3.2) LIMIT ModuleIn this example, maximum output value of ADD module should be 900 L/min. 900 L/min is50% over the PV range. The borderline for data overflow of PV is +109.2% (32,767).Therefore, we have to insert a LIMIT module. The LIMIT module can limit the data from –5%to +105%.The LIMIT module performs 4 byte computation. If the high limit set point is under +109.2%(32,767), the LIMIT module can check the upper 2 byte data string for right overflowprocessing.

00100111

Lower 2 byte

10110101 00111001 10101111

01111111 11111111

LIMIT

0000000000000000

First one bit is used for +/- sign0 is plus, 1 is minus.

Parameters are omitted.

Page 36: Technical Model US1000 Digital Indicating Controller

36

Switching the Operation ModeAP2003 Rev: 00

Purpose: Study how to switch the operation mode such as CAS/AUTO/MAN and RUN/STOPusing custom computation.

Applicable Process: Widely used in many applications.

Controller: Model US1000-111. CAS/AUTO/MAN switching using custom computation

The operation mode (CAS/AUTO/MAN) can be switched by a status input signal connectedto functional terminals of the PID control module. Each operation mode can be changed bycustom computation.If the status input signals connected to CAS.1, AUT.1, MAN.1 functional terminals turn ONsimultaneously, the order of priority is MAN, AUTO and CAS. The C/A/M keys on the frontpanel are available only if status signals are OFF.

PID

CAS.1

MV.1

PVIN.1 CSVIN.1

AUT.1

MAN.1

DI1.st DI2.st DI3.st

CA

MStatus inputs have priorityover front keys.

Status input

ONOFF

ONOFF Non-lock type switch is convenient for switching

the operation status. ECHGDET module is oftenused with lock type switch for detecting the edge.

CAS1.st

AUT1.st

MAN1.st

DO4 DO5 DO6

Status outputs

Front keys

ECHGDETON

OFF

2. Inhibit the front C/A/M keys

The C/A/M keys on the front panel may be inhibited from operation. For example, at a batchcontrol end, the operation mode can be switched to MAN and an operation mode changecannot be made from the front panel. The C/A/M keys can be locked when at least one statusinput is switched is ON. The operation mode can be switched by changing the other statusinputs from OFF to ON.

PID

CAS.1

MV.1

PVIN.1 CSVIN.1

AUT.1

MAN.1

DI1.st DI2.st DI3.stStatus inputs ON

OFF

ONOFF

C,A,M keys on the frontpanel are available,because all status inputsare OFF.

CAS1.st

AUT1.st

MAN1.st

operationstatus

outputs

CAS.1

AUT.1

MAN.1

C A M CC C AOperationmode

CAS.1 turnes OFF however,controller keeps CAS mode.Because, no status inputturnes to ON.

A

Page 37: Technical Model US1000 Digital Indicating Controller

37

3. RUN/STOP mode switching from custom computation1. RUN/STOP mode can be switched by a status input (for example DI1) or by custom

computation. The RUN/STOP mode can not be switched by front key operation.RUN mode means normal control operation and STOP mode is sometimes called the“Preset output” mode. The output is forced to a pre-set “known” value. Default is 0.0%.

2. If DI1 turns on during CAS or AUTO control mode, the US1000 is forced to the STOPmode. The PID control computation is stopped and pre-set value is used as MV. Duringthe STOP mode, PV and “STOP” message are displayed on digital PV indicatoralternately. Custom computation, alarm functions and display functions are in normaloperation.

3. MAN control mode has priority over STOP mode, therefore when STOP mode is turnedON during MAN control mode, nothing will happen. The MV will be operated by usingthe << >> keys on the front panel. The order of priority is MAN > STOP > (AUTO/CAS).

ControlFunction

MV.1

PVIN.1 CSVIN.1

R/S

DI1.stStatus Input

ONOFF

R/S.st

RUN /STOPstatusoutput

AUTO(CAS)MAN

AUTO(CAS)

RUNSTOP

RUN

MV

Pre set MV

AUTO

STOP

MAN AUTO

STOP

MV operationby <<>>keys.

Data Files:Custom Computation file USAP200300.1scParameter file USAP200300.1sp

Explanation: See above.

Parameters: Omitted.

Page 38: Technical Model US1000 Digital Indicating Controller

38

Flow TotalizerAP2004 Rev: 00

Purpose:Totalize flow within the US10000 controller and close DO4 as the total exceeds a pre-setvalue.

Applicable Process: General processes for fluid and gas delivery control.

Controller: Model US1000-11Control Loop Drawing:

F

FLWSUM

AIN1OUT

Tolatizer P2P1

Flow 0 to 40.00L/min

F CPID

Data display

DO4

Flow totalizer Compare

P3

IN2 IN3

Flow rate signalStatus input for initialize

Flow rate spanAlways 0Time unit

P3=0 hourP3=1 minuiteP3=2 day

totalized value

Status input for initialize DI4

IN1(enable)=1(enable)P2(Addition&Subtruction) = set 0(Addition)

DISP1

GTSet value U1

Data Files:Custom Computation file USAP200400.1scParameter file USAP200400.1sp

Explanation:Functionality of FLWSUM (Flow sum) module :1. Instantaneous flow (IN3 of FLWSUM) is counted every unit of time (If XX /min, every

minute), and set output = IN3*P1 (span of Instantaneous) to OUT terminal.2. For example: If P1=10000, and P3=1(min), the output from OUT terminal will be 10000

(integer). FLWSUM is saturated at 31,500 (integer).Setting of Flow sum module (FLWSUM):1. Flow rate counter: Output of FLWSUM = 10L/count.2. Set P1: If INPUT 3 senses 40L/min for 1 min., the output of FLWSUM will be 4 counts.

The setting of P3 = 1 (min) and P1 = 40L/10L = 4. The FLWSUM will be saturated in31,500/4 = 7,875min = 131.25H = 5.5days.

3. Setting of the totalizer display in the DISP1 module: The output from FLWSUM is10L/count. The units of DISP1 = 10L. Set P1 of DISP1 to 3 (ABS=2) to change the unitsto KL. When the output of FLWSUM = 12500 count ( 125,000L ), the DISP1 shows125.00 KL

4. Setting example of pre-set value and contact output: Use GT module (Greater-than-logic)to compare the FLWSUM output with pre-set value (Example: User parameter U1) andclose a contact output (DO4) when the counter reaches a pre-set value. If U1=100.00,then pre-set value is 100.00KL.

In attached sample file, the FLWSUM module will be reset by the P-ON flag after power on.

Page 39: Technical Model US1000 Digital Indicating Controller

39

Parameters Important Parameters OnlyMenu Parameter Explanation Setting data↓ SMP Control Period 500ms (Default = 200)USMD-IN SH1 Max value of AIN1 range 40.00

↓ SL1 Min. value of AIN1 range 0.0CMPL-AIN A.SR1 Square root extraction ON↓ A.LC1 SQRT low signal cut off 1.0% (Default)O.LP1-PAR FL PV filter time constant 5.0 sec (Default = 0.0)

Page 40: Technical Model US1000 Digital Indicating Controller

40

Totalization Using an External CounterAP2005 Rev: 00

Purpose:Use the same FLWSUM setting as the previous example, output from FLWSUM = 10L/count.

Applicable Process:General processes for fluid and gas delivery control.

Controller: Model US1000-11Control Loop Drawing:

F

FLWSUM

AIN1Flow rate 0 to 40.00L/min

F CPID

Analog to Pulseconversion part

DO5Flow Totalizer

DI4(Initialized input)10L/pulse CounterSUB

DELAY

Pulse Output(1 control period)

Output of DELAY

Output ofFLWSUM

Wiring is omitted.Data Files:

Custom Computation file USAP200500.1scParameter file USAP200500.1sp

Explanation:1. Use the same FLWSUM setting as the previous example, FLWSUM = 10L/count.2. Since the output from FLWSUM is 10L/count, the pulse conversion is one pulse out every

FLWSUM count.3. By using a DELAY module to keep the FLWSUM output for one control period, the pulse

conversion can sent to a pulse output by subtract the FLWSUM output of latest controlperiod. If FLWSUM output increase, set the contact output to ON. The pulse width is 1control period.

4. Contact output: Since the contact output will be ON/OFF every time the FLWSUMincreases, use DO4 to DO7 for this application. These DOs are transistor contacts.

5. Resetting of FLWSUM: This example uses DI4 as a reset trigger for the FLWSUMmodule since it will overflow after 5.5 days of counts.

6. The FLWSUM module will be reset by P-ON flag during power on.

Page 41: Technical Model US1000 Digital Indicating Controller

41

Auto-reset logicThis diagram shows how to reset the FLWSUM by using a GT (“greater than” module) tocompare with a pre-set value (Any constant less than 31,500, for example: 25,000). Onecontrol period after the comparison is true FLWSUM will be reset. The delay is required forallowing the contact output to be closed for one scan. An additional LIMIT module (Lowlimiter) is used to prevent a minus output from SUB module caused by FLWSUM reset.

FLWSUM

F CPID

DO5Flow totalizer

Initializing flug

SUB

DELAY

Elase this pulse by LIMIT module

LIMIT

Low limit P2=0(High limit P1=1)

GT DELAY25000IN2

IN3

Set point of GT

Output of GTPrevious output of GT

Output of SUB

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD MD US Mode 21 (Custom Computation)USMD-IN SH1 Max value of AIN1 scale 40.00↓ SL1 Min. value of AIN1 scale 0.0O.LP1-PAR FL PV filter time constant 5.0 sec. (Default = 0.0)

Page 42: Technical Model US1000 Digital Indicating Controller

42

Temperature & Pressure Compensation for Gas FlowAP2006 Rev.00

Purpose:Compute the ideal gas flow rate with temperature and pressure compensation.

Applicable Process:This application can be used for mass flow compensation. This application can be applied forboiler steam and natural gas compensation. Modification of custom computation is requiredfor steam and natural gas flow compensation.

Controller: Model US1000-11Control Loop Drawing:

F CPID

Pressuretransmitter

Flow Nozzle

US1000

4 to 20mA

Conditions:Flow range 0 to 1200.0m3/hReference Pressure 600kPaReference Temperature 300deg CPressure range 0 to 1000kPaTemperature range 0 to 500deg C

F

PressureCompe.

Temp.Compe. SQRT

Pt100

Differentialtransmitter

AIN2

AIN3

AIN1

Flow rate signal retransmission

Wiring: Omitted.Data Files:

Custom Computation file USAP200600.1scParameter file USAP200600.1sp

Explanation:1. Three computation modules (Pressure Compensation PCOMP, Temperature

Compensation TCOMP, Square Root Extraction 2 SQR2) are used for this application.2. PCOMP uses the fluid pressure and reference pressure to compensate the flow rate from

the differential pressure transmitter.3. TCOMP uses the fluid temperature and reference temperature to compensate the flow rate

from PCOMP.4. Measuring range for this example is 0 - 1200.0m3/h, the range of differential pressure

(flow) transmitter.For detailed parameter explanation, please refer to IM 5G1A11-02, LL1200 CustomComputation tool reference.

Page 43: Technical Model US1000 Digital Indicating Controller

43

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-MD USM US Mode 21 (Custom Computation mode)↓ SMP Control Period 500ms (Default = 200)USMD-IN SDP1 Decimal point position 1 (default)

↓ SH1 Max value of AIN1 range 1200.0↓ SL1 Min. value of AIN1 range 0.0CMPL-AIN A.SR1 Square root extraction OFF

SQRT is done in Custom ComputationCMPL-RET RET3 Type of Retransmission 1=PV1 (Default)

Custom Computation:Refer to the sample custom computation file “USM01.1sc” which resides in the LL1200software package to develop this application.

AIN1

PID contorl

PVIN.1 CSVIN.1

TCOMP

SQR

RET3MV.1

PCOMP

AIN3 AIN2Differential Pressure Pressure Temp.

Pressurecompensation

Temperaturecompensation

Sqare-rootextraction

Flow ratere-transmission

OUT3A OUT1A

Input computationblock

Parameter settings for this example is as follows:1. PCOMPIN1= Flow input (AIN1) IN2= pressure input (AIN3)P1= reference pressure (600KPa) P2= absolute pressure (101.3KPa)P3= pressure input source (AIN3, P3= 2)2. TCOMPIN1= Flow input (PCOMP output ) IN2= temperature input (AIN2)P1= reference temperature (300.0 Deg. C) P2= absolute temperature (273 Deg. C)P3= temperature input source (AIN2, P3=1)SQR2: There are 2 types of square root computation modules. The only difference is the lowcut off treatment.IN1= input signal (TCOMP output)P1= Low cut point: Since 0-100% input will be converted to 0-30000 counts for internalcomputation, the low cut point is an integer. For example, input 2% cut off is P1= 600.

Page 44: Technical Model US1000 Digital Indicating Controller

44

Sample & Hold PI controlAP2007 Rev:00

Purpose:Develop a sample & hold PI control function using custom computation.

Applicable Process:The sample & hold PI control is used for temperature and pH controls that have long lag anddead times.

Controller: Model US1000-11Control Loop Drawing:

TimerProcess with long dead

time

Steam

US1000

4 to 20mA

T CPIDPt100

PreviousValue

MV trackingPI control Hold MV

t

MV0 to 150deg C

Wiring is omitted.Data Files:

Custom Computation file USAP200700.1scParameter file USAP200700.1sp

Explanation:Sample and hold PI control uses the PI computation for a pre-determined time period(SAMPLE) and maintains the output throughout a specified time interval (HOLD) to wait forthe process variable to response to the output change. It prevents overshoot caused by thelong dead time. Compared to a Smith dead time predictor, tuning of Sample and Hold PIcontrol is easy.

A sample and hold control action can be developed as followings:1) Use the TIMER modules to generate sampling time and interval time.2) When the sampling timer starts, the US1000 is in the PI control mode. When the sampling

timer times out, the controller will stop controlling, the output is held, and the intervaltimer begins. This interval mode will last until the interval timer times out.

Page 45: Technical Model US1000 Digital Indicating Controller

45

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-IN TYP1 Pt100 37↓ RH1 Max value of AIN1 range 150.0 (Default)

↓ RL1 Min. value of AIN1 range 0.0CMPL-AIN A.SR1 Square root extraction ON↓ A.LC1 SQRT low signal cut off 1.0 (Default)O.LP1-PAR FL PV filter time constant 5.0 sec. (Default = 0.0)

The control scheme and parameter examples are as follows:

ControlUSM=1

MV.1

PVIN.1 CSVIN.1

MAN1.st

AIN.1

SUBIN4

TIMER TIMERIN2

U1 1

U2

1 2

ECHGDET

IN2

TRK.1

TRF.1

DELAY

AND

NOTDI7.st

U2Control time

U1Sampling Period

LATCH

TIMER1 is displayed in the U1 parameter (sampling time). TIMER1 will start automaticallywhen controller is switched to AUTO or CAS.P1 = 1, IN1= 1.IN2= detects controller's status change from MAN to AUTO. (P1 of ECHGDET =1, forfalling edge detection). This IN2 does not check the status directly in order to prevent thetimer from being reset by an AUTO-CAS status change.IN3= set to 1 second timer (TIM.1S)IN4= Using SUB module to subtract 1 from sampling time U1 to compensate 1 second delayby the LATCH module.

TIMER2 is displayed in the U2 parameter (controlling time).P1 = 1, IN1= 1, IN3 = TIM.1S, IN4= U2.DELAY module is for keeping the output value constant during the control interval.Timer will not stop even if the controller is changed to MAN mode, but will not continue anycontrol action.Sample and hold control functions only when DI7 is ON.

Page 46: Technical Model US1000 Digital Indicating Controller

46

Switch the Operating Mode by an AlarmAP2008 Rev: 00

Purpose: This is an example of simple logic contact input computation.

Applicable Process: General process.

Controller: Model US1000-11Control Loop Drawing:

Dev.Alarm

Steam

US1000

T CPID

Pt1000 to 300deg C

Hi Alarm

AND

Pre.MV

DI7

STOP

ECHGDET

LATCH

Wiring is omitted.Data Files:

Custom Computation file USAP200800.1scParameter file USAP200800.1sp

Explanation:1) If a high and deviation alarm occurs at the same time, the controller is switched to the

STOP mode. Though the alarm recovers, it is not switched back to RUN modeautomatically. The STOP mode will remain until the DI7 status is switched ON.

2) The high and deviation alarms are sent to an AND module and the output of AND moduleis connected to LATCH module, as the figure shows above. The output of LATCH moduleis used to switch the RUN/STOP mode.

3) When the input of LATCH changed to ON, the output of LATCH becomes ON. Theoutput will keep ON until the initialization flag P1is set to ON to initialize the moduleand set the output to OFF. This example uses DI7 connected to P1.

Page 47: Technical Model US1000 Digital Indicating Controller

47

Custom Computation:

Control

USM=1ALO13

MV.1

PVIN.1 CSVIN.1 HI Alarm output

R/S

ALO11

LATCH

AND

DI7.st

Dev. Alarm outputAND1 output

DI7 status

LATCH outputSTOPRUN RUN

AND

NOT

1

ECHGDET

Key points of custom computation:1) AL011 is assigned to high alarm. The default setting of AL013 is a high alarm. It must be

changed to a deviation alarm from set-up parameter AL3 (Menu S.LP1 – Sub-MenuALM) by setting AL3 to 7.

2) A NOT module and AND module are linked between the DI7 and the P1 input of theLATCH module. It is used to prevent operation and resetting of the STOP mode during analarm occurrence.

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-IN TYP1 Pt100 36

↓ RH1 Max value of AIN1 range 300.0↓ RL1 Min value of AIN1 range 0.0O.LP1-PAR FL PV filter time constant 5.0 sec. (Default = 0.0)

Page 48: Technical Model US1000 Digital Indicating Controller

48

Flow Control Using Two Control ValvesAP2009 Rev: 00

Purpose:Develop a wider control range by using two control valves. Use the output customcomputation modules.

Applicable Process:General process control for flow rate measurement and control

Controller: Model US1000-11Control Loop drawing:

Mag.Flowmeter

Small flowline

US1000

50.0

Flow rate

4 to 20mA

F

Linearizer3

Linearizer4

Large flowline

MV

Small flow line

MV

Large flow line

50.0

150.0

0.0

F CPID

In this example, Flow rate isproportion to MV.

0.0 25.0 100.0

4 to 20mA

Wiring:

Flow rate input2

3

PV input 16

18

MV1(OUT1A) for small valve4 to 20mA

US1000

49

50

MV2(OUT2A) for large valve4 to 20mA

Data Files:Custom Computation file USAP200100.1scParameter file USAP200100.1sp

Explanation:1) Partition the MV to two individual outputs and convert these outputs into different

characteristic s.2) The output bar graph on the front panel shows the MV before characterization. MV can be

controlled by the output keys directly during MAN operation.3) Individual current output values can be assigned to the custom displays. They can be easily

confirmed on the front panel display.

Page 49: Technical Model US1000 Digital Indicating Controller

49

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-IN SH1 Max value of AIN1 range 200.0↓ SL1 Min value of AIN1 range 0.0

Custom Computation:

Control

AIN1

PVIN.1 CSVIN.1

MV.1

OUT1A OUT2A

Tips for Custom computation:Use OUTSEL module to make two MVs. Don'tomit OUTSEL modules.

PLINE3,4:PLINEs has 10 segment line segment functionhowever, 2 segments are enough for thisapplication. this charactaristics can not bechanged during operation.

Smallflow line

Large flowlinePLINE3 PLINE4

OUTSEL1 OUTSEL2

Page 50: Technical Model US1000 Digital Indicating Controller

50

Override Control (Flow control with tank level override)AP2010 Rev: 00

Purpose: Control flow rate while maintaining tank level.

Applicable Process: For general flow/level control

Controller: Model US1000-11Control Loop Drawing:

F CPID

Condition:No1 loop PV range 0 to 6.0m3/hNo2 loop PV range 0 to 4.0m

L CPID

F

SQRT

Low Alarm

MV switch

Flow control

Level control

Tracking & switching signal

MV tracking signal

Tank

Wiring:

Leveltransmitter

PV for No2loop 16

18MV 4 to 20mA

US1000

250ohm

PV for No1loop

Flowmeter19

2

3

20

47

48

51

52

49

50Second MV(Short)

250ohm

Data Files:Custom Computation file USAP201000.1scParameter file USAP201000.1sp

Explanation:1) The No.1 loop is used for flow rate control and No.2 loop is for level control. When the

tank level is higher than a specific level (low alarm setting), No.1 loop is in control andkeeps a stable flow rate. No.2 loop is in a stand by mode and the output 2 (MV2) istracking output 1 (MV1). If the level drops and a low alarm occurs, No.2 loop willoverride the flow control. No.1 loop will be switched to a stand by mode and the output ofNo.1 loop (MV1) will be linked to MV2 for bump-less transfer.

2) Control output switching function and output tracking is developed using customcomputation modules. Both loops have a MAN mode and No.1 loop (flow controller) hasthe higher priority.

Page 51: Technical Model US1000 Digital Indicating Controller

51

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-MD USM US Mode 21 (Custom Computation)USMD-IN SDP1 AIN1 decimal point position 3↓ SH1 Max value of AIN1 range 6.000

↓ SL1 Min value of AIN1 range 0.000↓ SDP3 AIN3 decimal point position 3

↓ SH3 MAX VALUE OF AIN3 range 4.000↓ SL3 MIN. VALUE OF AIN3 range 0.000

Custom Computation:Modify the sample custom computation file “USM11.1sc” which resides in LL1200configuration software to develop this application.

FlowControl

AIN1

SQR

OUT1A

PVIN.1

MV.1

CSVIN.1

MV

OR LevelControl

AIN2

OUT2A

PVIN.2

MV.2

CSVIN.2

TRK.2

ORMAN1.stTRF.1

TRK.1

MAN2.st

ALM22.st NOT

TRF.2

Not for use

1. The switch over between level control output (MV2) and flow rate control output (MV1)is initiated by the output tracking function. During normal operation, No.1 loop flow ratecontrol is in a feed back control mode and controls the process.

2. If the tank level drops below a certain level (low alarm) or the level controller is changedto MAN mode, level controller will take over control by linking MV2 to the OUT1Aterminal. The MV2 is send to OUT1A via the tracking terminal (TRK.1).

3. If both loops are in MAN mode, the MV1 (flow rate) will be used for control.The relationship between control output and Loops status are shown below:

Flow rate controlOutput from US1000AUTO MAN

AUTO Flow control - AUTO Flow control - MANAUTO /w Low Alarm Level control - AUTO Flow control - MANMAN Level control - MAN Flow control - MAN

LevelControl

MAN /w Low Alarm Level control - MAN Flow control - MAN

Output terminal of No.2 Loop (OUT2A) is not used.

Page 52: Technical Model US1000 Digital Indicating Controller

52

Additive Injection Using a Plunger PumpAP2011 Rev: 00

Purpose: Use custom computation to control pump speed and stroke position of plunger pump.

Applicable Process: For general liquid additive injection processes.

Controller: Model US1000-11Control Loop Drawing:

Plunger type pump

Speed control

FM

Inverter

F CPID

StrokeSwitchover

Water Flow rate

AdditiveTank

Additive flowMag. Flowmeter

Flow rate setpoint

Strokeposition

4 to 20mA

US1000

Velocity Limitter

1 to 5 VStroke

Actuator

Injection Ratio

(before velocity limitter)

Wiring: Wiring diagram is omitted.Data Files:

Custom Computation file USAP201100.1scParameter file USAP201100.1sp

Explanation:Points of this application are:1) Additive injection volume computation for CAS control. Injection volume = ( Injection ratio * Water flow rate) / specific gravity of additive Injection volume: 0 - 150L/h Injection ratio : 0 - 80g/m3 parameter Water flow rate: 0 - 1500m3/h Specific gravity of additive: 800 – 1200g/L Injection volume can be set from front panel key during AUT mode.2) Plunger pump control.

Plunger pump is widely used in water treatment plan for injection volume control. Theinjection volume is controlled by adjusting both the pump speed and the stroke of plungerpump. In order to avoid interference, the pump speed and plunger stroke cannot be adjustedat the same time.Stroke control is set to 3 steps, depending on the flow setting. The step setting hashysteresis to avoid chattering and a CHGLMT (Rate of Change limiter) is used to smooththe transition from one step to the next. Pump motor speed is controlled by the PI controllerto maintain the flow rate.

Page 53: Technical Model US1000 Digital Indicating Controller

53

Parameters: Parameters are omitted.Custom Computation:

Modify the sample custom computation file “USM11.1sc” which is resides in the LL1200configuration software to develop this application. Refer Custom Computation USAP2011for Additive Injection Computation.

FlowControl

AIN1

OUT1A

PVIN.1

MV.1

CSVIN.1

Output Computation

OUT3A

GT

CSV.1

GT

ADD

MSELECT

CHGLMT

Speed Control MV for Stroke position control

1 2

U3U4

OUTSEL1

OUTSEL11

SV output

U5

U6 U7

U8

LIMIT

DIV

MUL

AIN3

U2

U1Water flow 0 to 500m3/h

Injection ratio 0 to 80g/m3

Additives density 800 to 1200g/L

Additive flow0 to 150L/h

Note: In actual custom computationfile, there are MUL and DIVmodules for scaling.

Two GT modules are used to decide the stroke setting. Output of GT module will become 1 ifinput 1 is greater than input 2. The hysteresis setting should be large enough to avoidinteraction. An ADD module is used to sum the output of two GT modules. The ADDmodule output will be 0 (If both GT outputs = OFF), 1 (If only one GT module output = ON),2 (If both GT output = ON). This output is sent to MSELECT (multiple select) module forinput data (U3,U4,U5) selection.CHGLMT module is used to smooth any sharp change of stroke position setting.[OUTSEL2] and [OUTSEL21] are computation modules used as a pair for sending the outputsignal to OUT3A.Since all parameters used for the application would be changed during operation, the strokesetting, stroke changing point (GT module setting value), etc. are stored in user parametersU3 to U8 and are assigned to custom displays.

Page 54: Technical Model US1000 Digital Indicating Controller

54

Cascade Primary ControlAP2012 Rev: 00

Purpose:The primary controller of a cascade control in this application example supports an outputtracking function in the MAN mode. This function is developed using custom computation.

Applicable Process: For boiler control or combustion control.

Controller: Model US1000-11Control Loop Drawing: Same as AP1013.

FCPID

SQRTDiferential pressuretransmitter

US1000

4 to 20mA

Conditions:Primary loop PV range 0 to 400 deg CSecondary loop PV range 0 to 60m3/min

OrificeF

TCPID

Type T

Errorsignal

C/A statusSV for tracking

Wiring: Same as AP1013.

4

5

16

MV 4 to 20mA

2PV input

3

19

20

4

5

Secondary loop

16 MV 4 to 20mA3

250ohm2

PV inputType T

18Cas SV250ohm

12

11

8

7Erroroutput CAS to Auto switching

11

12

Tracking ON/OFFinput

Trackinginput

AUTOstatus

output

SV retransmission

TransmitterPrimary loop

18

17

8

7

Data Files:Custom Computation file USAP201200.1scParameter file USAP201200.1sp

Explanation:In boiler combustion control, if the primary controller is in the MAN mode and loop status isin the Cascade OPEN mode, the primary controller output needs to track the set point ofsecondary fuel flow controller. The application example above shows this configuration.

Page 55: Technical Model US1000 Digital Indicating Controller

55

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataPrimary loopUSMD-MD USM US Mode 21 (Custom Computation)

↓ SMP Control Period 200ms (Default)USMD-IN TYPE1 Analog input 1 type 6 (Type T: 0 to 400 Deg. C)↓ TYPE3 Analog input 3 Type 41 (1 to 5VDC, Default)

↓ SDP3 AIN3 decimal point position 1 (Default)↓ SH3 MAX VALUE OF AIN3 range 100.0 (Default)

↓ SL3 MIN. VALUE OF AIN3 range 0.00 (Default)CMLP-AIN A.BO1 AIN1 Burn out UPS ( Burn up, Default)CMLP-KLCK C C mode key lock ON (Default)

Secondary loop: Same as AP1013

Custom Computation:Modify the example custom computation file “USM11.1sc” which resides to LL1200configuration software to develop this application.

Primarycontrol

AIN1

OUT1A

PVIN.1

MV.1

CSVIN.1

210 (MMV.1)TRF.1

TRK.1

AIN3DI2

AND

PARASET

Output of NOT module

1 control period

Tracking input(SV signal from seconrary controller)

MAN1.st

DISPCHNG

NOT

Tracking status input

The Parameter setting module “PARASET” is a key point for this application. This modulecan write the data to any parameter that does not have a functional data terminal. The outputsignal in MAN mode is stored in MMV.1which has no functional data terminal. ThePARASET module writes the input data to MMV.1 when the status input from the ANDmodule changes from OFF to ON. The register number for MMV.1 is 210.The NOT module generates an ON/OFF signal every control period. The AND moduleconnects the output of the NOT module to the PARASET module when the tracking input flag(DI2) is ON during MAN mode. The US1000 can execute the MV tracking every two controlperiods during MAN mode. The MV tracking in AUTO mode is a standard control function.The DISPCHNG module coverts input analog data (0 - 100.0%) to integer data (0 - 1000)which can be read by the PARASET module.

Page 56: Technical Model US1000 Digital Indicating Controller

56

Boiler Combustion ControlAP2013 Rev: 00

Purpose:Examine boiler “cross limited” air/fuel ratio combustion control using custom computation.

Applicable Process:Widely used for boiler, furnace and other combustion control applications.

Controller: Model US1000-11Control Loop Drawing:

Boiler Master Signal

Air Flow

AirFlow

Controller

FuelFlow

Controller

M

Boiler Master ControllerBoiler output Pressure control

Fuel Flow

Boiler outputPressure

Pressure

Flow

Cross LimitControl

Control ConditionSteam Pressure 50 to 150 kg/cm2Steam Flow 0 to 100 t/hFuel Flow 0 to 8.0 kl/hAir Flow 0 to 100.0 %

Air to Fuel ratio should bedecided from optimumcombustion dondition in eachboiler master zone.

Wiring: Omitted the wiring diagram.Explanation:

There are two important points in cross limited combustion control:1. The cross limited computation develops a ratio of the theoretical air flow rate to the fuel

flow. If the master signal from boiler master controller suddenly increases, the crosslimited computation limits the increase of fuel flow rate until air flow rate increasessufficiently. Conversely, if the master signal suddenly decreases, the cross limitedcomputation limits any decrease in air flow until fuel flow decreases. The cross limitedcomputation always controls the theoretical air flow rate greater than the fuel flow rate.

2. Balanceless and bumpless transfer is executed in all three controllers. In an emergencycondition, the fuel flow controller is forced to MAN mode. The set point (SV) of the fuelflow controller tracks the PV in MAN mode. The switching from MAN to AUTO isbumpless. The MV of boiler master controller tracks the SV of fuel flow controller if theboiler master controller is in MAN mode. Therefore, the control mode change fromAUTO to CAS in fuel flow controller is balanceless and bump-ess.US1000 performs these computations by using custom computation modules.

Page 57: Technical Model US1000 Digital Indicating Controller

57

Parameters: Omitted the Parameters.Custom Computation block diagram:

Boiler master signal

Low selector

X

+ K1 - K2

M

FX +

Hi selectorAir to Fuel

ratio

Boiler Pressure control(Boiler Master control)

linearizer

Air flow ratecontrol

Fuel flowrate control

Fuel Flow Air Flow

PressureFlow

FxLinearizer

Some status signals and plant trip signal are omitted in this figure. Please refer followingexamples for details.

Page 58: Technical Model US1000 Digital Indicating Controller

58

Boiler Master Pressure ControlAP1014 Rev: 00

Purpose: Control the boiler output steam pressure.

Applicable Process: The master controller can be applied to boiler/furnace combustion control.

Controller: Model US1000-11Control Loop Drawing:

MV

PC001

FX +

Output tracking signal

Linearizer

Boiler Steam Flow

Pressure

Flow

Fuel Flow setpoint

Fuel control statusAUTO mode

FX Linearizor

Boiler Steam

Fuel FlowRate

This charactaristic of lineariszershould be tuned from actualSteam to fuel flow data.

Wiring:

MV for Fuel flow rate control

Steam Pressure input

18

12

11 Error status outputTracking ON/OFF input

MV tracking input(Fuel SV signal)

47

48Steam Flow rate input

87

4

5

2

3250ohm

20

19 51

52

250ohm

16

MV for Air flow rate control50

49

Two MVs aresame value

Data Files:Custom Computation file USAP201400.1scParameter file USAP201400.1sp

Explanation:The boiler master controller has a steam flow rate feed forward signal to compensate forsteam flow fluctuations. The conversion from steam flow to fuel flow rate should be setduring startup. If the fuel flow rate controller mode is changed AUTO or MAN operationmode, the MV of master controller tracks the set point (SV) of fuel flow rate controller even ifthe master controller is in the MAN mode.

Page 59: Technical Model US1000 Digital Indicating Controller

59

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-MD USM US Mode 21 (Custom Computation)USMD-IN TYPE1 Analog input 1 Type 41 (1 to 5VDC, Default)↓ SH1 MAX VALUE OF AIN1 150.0

↓ SL1 MIN. VALUE OF AIN1 50.0↓ TYPE2 Analog input 2 Type 41(1 to 5VDC, Default)

↓ SH2 MAX VALUE OF AIN2 100.0↓ SL2 MIN. VALUE OF AIN2 0.0↓ TYPE3 Analog input 3 Type 41(1 to 5VDC, Default)

↓ SH3 MAX VALUE OF AIN3 100.0 (Default)↓ SL3 MIN. VALUE OF AIN3 0.0 (Default)S.LP1-CTL FFS Feed forward input selection AIN Analog inputCMLP-RET RET2 Retransmission output 2 3 (MV1)

↓ RTH2 Max value of RET2 range 100.0↓ RTL2 Min value of RET2 range 0.0PYS1 1.X1 Ten-seg. Linearizer1 input 1

↓ 1.PMD Ten-seg. Linearizer1 mode 1 (Approximation)

Custom Computation:This custom computation is made by modifying the sample file “USM02.1sc” that resides inthe LL1200 software package.

ControlFunction

AIN1

OUT1A

PVIN.1

MV.1

CSVIN.1

210(MMV.1)

TRF.1

TRK.1

AIN3DI2

AND

PARASET

MAN1.st

DISPCHNG

NOT

FF

AIN2

PLINE1

Steam PressureSteam Flow Rate Fuel flow rate SV

RET2

OUT2A (OUT1A and OUT3A is same value)

The NOT, AND, DISPCHNG, PARASET modules are used for MV Tracking function duringMAN operation mode. Please refer AP2012 for details.

Page 60: Technical Model US1000 Digital Indicating Controller

60

Cross Limited Fuel ControlAP1015 Rev: 00

Purpose:Understand the Cross Limited method for combustion control.

Applicable Process:Widely applied for combustion control for boilers, furnaces and ovens.

Controller: Model US1000-11Control Loop Drawing:

LOW selector + K1

Fuel Flow RateControl

Fuel Flow

Air FlowRate

Boiler Master Signal

Wiring:

MV Manipulated Output

Air Flow rate Input

12

11 CAS mode status output

Emergency STOP input

Cascade input(Boiler Maser signal)

47

48

8

45

2

3

76

Primary ciontroller Error input

Fuel flow rate input

17

16

18

SV Retransmission output

Data Files:Custom Computation file USAP201500.1scParameter file USAP201500.1sp

Explanation:1. Fuel flow rate controller selects the lower value of the boiler master signal (MV from

boiler pressure controller) or the air flow rate signal as the set-point (SV). The air flow isalways greater than the fuel flow to prevent a rich air/fuel mixture.

2. An emergency trip status input is connected to the RUN/STOP contact input terminal.When the US1000 is in the STOP condition, the PID control function is stopped and thepre-set (1.PM) value is the output (MV). The pre-set value is 0% in this example.

3. A CAS status input signal comes from the Error status output of boiler master controller.CAS status input switches US1000 from CAS to AUTO operation mode when input is ON.

4. In MAN operation mode, the SV of this controller tracks PV for bumpless MAN toAUTO transfer.

Page 61: Technical Model US1000 Digital Indicating Controller

61

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-MD USM US Mode 21 (Custom Computation)USMD-IN TYPE1 Analog input 1 type 41 (1 to 5VDC, Default)↓ SDP1 AIN1decimal point position 3

↓ SH1 MAX VALUE OF AIN1 8.000↓ SL1 MIN. VALUE OF AIN1 0.000

↓ TYPE2 Analog input 2 Type 41 (1 to 5VDC, Default)↓ SH2 MAX VALUE OF AIN2 100.0↓ SL2 MIN. VALUE OF AIN2 0.0

↓ TYPE3 Analog input 3 Type 41 (1 to 5VDC, Default)↓ SH3 MAX VALUE OF AIN3 100.0 (Default)

↓ SL3 MIN. VALUE OF AIN3 0.0 (Default)CMPL-KLCK C C MODE KEY LOCK OFF (No key lock protection)0.LP1-PAR FL PV filter 10 sec. (Default = 0.0)0.LP1-1.PID 1.PM Pre-set MV 0.0 (%)

Custom Computation:

Flowcontrol

AIN1

OUT1A

PVIN.1

MV.1

CSVIN.1

208(C.CSV.1)

AUT.1

R/S

AIN3 DI1

AND

PARASET

MAN1.st

DISPCHNG

NOT

AIN2RUN/STOPFuel flow

U1ADD

MINMAXAVE

BoilerMaster Air flow

LOW selector

DI2

Mastercontroller error

NOT

AND

CAS1.st

The NOT, AND, DISPCHNG, PARASET modules are used for PV Tracking function duringMAN operation mode. The data number of C.CSV.1 is 208. Please refer AP2012 for details.

Page 62: Technical Model US1000 Digital Indicating Controller

62

Cross Limited Air Flow ControlAP1016 Rev: 00

Purpose: Understand the Cross Limited method for combustion control.

Applicable Process: Widely applied for combustion control of boilers, furnaces and ovens.

Controller: Model US1000-11Control Loop Drawing:

--

M

HI selectorAir to Fuel

Ratio

Air Flow RateControl

Air Flow

- K2

Boiler Master SignalFuel Flow Rate

signal

Fx

Air Flow rate

Fuel FlowRate

Fx

Wiring:

MV Manipulated Output

Fuel Flow rate Input

12

11CAS mode status output

Emergency STOP input

Cascade input(Boiler Maser signal)

47

48

8

45

2

3250ohm

20

19

76

Primary ciontroller Error input

Air flow rate input

17

16

18SV Retransmission output

Data Files:Custom Computation file USAP201600.1scParameter file USAP201600.1sp

Explanation:1. Air flow rate controller selects the higher value of boiler master signal (MV from boiler

pressure controller) or Fuel flow rate signal as the setpoint (SV). By this computation, theair flow is always greater than fuel flow to prevent a rich air/fuel mixture.

2. An emergency trip status input is connected to RUN/STOP input terminal used to stop thecontrol function of US1000. When US1000 is in the STOP condition, PID control isstopped and pre-set value (1.PM) is the output (MV). The pre-set value is 100% in thisexample. The CAS status input comes from Error status output of boiler master controller.Air flow rate controller can be in the CAS operation mode while the fuel flow controller is in the MAN operation mode. The MV of the boiler master controller always tracks the setpoint (SV) of the fuel flow controller and this MV becomes the cascade set point (CSV) ofthe air flow controller. In MAN operation mode, the SV of this controller tracks PV forbumpless MAN to AUTO transfer.

Page 63: Technical Model US1000 Digital Indicating Controller

63

Parameters Important Parameters OnlyMenu Parameter Explanation Setting dataUSMD-MD USM US Mode 21 (Custom Computation)USMD-IN TYPE1 Analog input 1 type 41 (1 to 5VDC, Default)↓ SH1 MAX VALUE OF AIN1 100.0

↓ SL1 MIN. VALUE OF AIN1 0.0↓ TYPE2 Analog input 2 type 41 (1 to 5VDC, Default)

↓ SH2 MAX VALUE OF AIN2 100.0↓ SL2 MIN. VALUE OF AIN2 0.0

↓ TYPE3 Analog input 3 type 41 (1 to 5VDC, Default)↓ SH3 MAX VALUE OF AIN3 100.0 (default)

↓ SL3 MIN. VALUE OF AIN3 0.00 (default)CMPL-AIN A.SR1 AIN1 Square root extraction ON↓ A.LC1 SQRT low signal cut off 1.0%CMPL-KLCK C C Mode Key Lock OFF (No key lock protection)S.LP1-CTL MOD PID computation 0 (Batch PID computation)0.LP1-PAR FL PV filter 10.0 sec ((Default = 0.0)0.LP1-1.PID 1.PM Pre-set MV 100.0(%)PYS1 1.X1 Ten-seg. Linearizer1 input 1

↓ 1.PMD Ten-seg.linearizer1 mode 1 (Approximation)

Air FlowControl

AIN1

OUT1A

PVIN.1

MV.1

CSVIN.1

208(C.CSV.1)

AUT.1

R/S

AIN3 DI1

AND

PARASET

MAN1.st

DISPCHNG

NOT

AIN2

EmergencyStop signalAir Flow

U1SUB

MINMAXAVE

BoilerMaster Fuel Flow

HI selector

DI2

PrimaryController Error

MUL U3Air to Fuel ratio

PLINE

NOT

AND

CAS1.st

The NOT, AND, DISPCHNG, PARASET modules are used for PV Tracking function duringMAN operation mode. The data number of C.CSV.1 is 208. Please refer AP2012 for details.The Square root extraction is a built-in standard function.

Page 64: Technical Model US1000 Digital Indicating Controller

64

Revision Record

Title: Model US1000 Digital Indicating Controller Application NotesManual No.: TI 5D1A02-01E

Eddition Date Revised Item

1st ’Jan 2000 Newly published

Written by US1000 Application Notes CommitteeYokogawa M&C Corporation

Published by Yokogawa M&C Corporation 1-19-18 Nakacho, Musashino-shi, Tokyo 180-0006

http://www.yokogawa.co.jp/MCC/

Page 65: Technical Model US1000 Digital Indicating Controller

YOKOGAWA ELECTRIC CORPORATIONHeadquarters2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN

Branch Sales OfficesNagoya, Osaka, Hiroshima, Fukuoka, Sendai, Ichihara, Toyota, Kanazawa, and Kitakyusyu.

YOKOGAWA CORPORATION OF AMERICA2 Dart Road, Newnan, Georgia 30265-1094, U.S.A.Phone : 1-800-888-6400Fax : 1-770-254-0928

YOKOGAWA EUROPE B. V.Euroweg 2, 3825 HD Amersfoort, THE NETHERLANDSPhone : 31-88-464-1000 Fax : 31-88-464-1111

Branch Sales Offices / Wien (Austria), Zaventem (Belgium), Ratingen (Germany), Madrid (Spain), Runcorn (United Kingdom), Milano (Italy), Cinisello Balsamo (Italy), Velizy-Villacoublay (France), Budapest (Hungary), Stockholm (Sweden), Sola (Norway), Warszawa (Poland), Vila Nova de Gaia (Portugal), Bucharest (Romania), Dublin (Ireland)

YOKOGAWA AMERICA DO SUL LTDA.Praca Acapulco, 31 - Santo Amaro. Sao Paulo/SP - BRAZILPhone : 55-11-5681-2400 Fax : 55-11-5681-4434

YOKOGAWA ENGINEERING ASIA PTE. LTD.5 Bedok South Road, 469270 SINGAPOREPhone : 65-6241-9933 Fax : 65-6241-2606

YOKOGAWA ELECTRIC KOREA CO., LTD.14-1, Yangpyongdong-4Ga, Youngdeungpo-Gu, Seoul, 150-866 KOREAPhone : 82-2-2628-6000 Fax : 82-2-2628-6400

YOKOGAWA AUSTRALIA PTY. LTD.Tower A, 112-118 Talavera Road, Macquarie Park,N.S.W.2113, AUSTRALIAPhone : 61-2-8870-1100 Fax : 61-2-8870-1111

YOKOGAWA INDIA LTD.Plot No.96 Electronic City Complex, Hosur Road, Bangalore 560100, INDIAPhone : 91-80-4158-6000 Fax : 91-80-2852-0625

YOKOGAWA CHINA CO., LTD.3F TowerD Cartelo Crocodile BuildingNo.568 West Tianshan Road, Shanghai 200335, CHINAPhone : 86-21-62396262 Fax : 86-21-62387866

Sep. '09

Printed in Korea