the physics of the spp(g)allation (target)

47
i r f u i r f u The physics of the y a l c a s y a l c a s The physics of the spallation (target) y a l c a s y a l c a s Stefano PANEBIANCO CEA Saclay Irfu/Service de Physique Nucléaire International Training Course (ITC-8) 3-6 February 2009 Politecnico di Torino Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009 1

Upload: others

Post on 02-Aug-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The physics of the spp(g)allation (target)

i r f ui r f u The physics of theyalcas yalcas

The physics of the spallation (target)yalcas yalcas p ( g )

Stefano PANEBIANCOCEA Saclayy

Irfu/Service de Physique Nucléaire

International Training Course (ITC-8)g ( )3-6 February 2009

Politecnico di Torino

Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009 1

Page 2: The physics of the spp(g)allation (target)

Introduction: content and general ideas

T l t h i d li ti

i r f ui r f u

• Two lectures, one on physics and one on applications :– General description of spallation process

• Models

yalcas yalcas

• Comparison with experimental data– Application to spallation targets

• Few chosen examplesyalcas yalcas • Few chosen examples

• Global bias from my past and current work– Models (INCL)– Targets (MEGAPIE)

• I will never use the word « subcritical » since I only concentrate on the target (the surrounding core does not exist… for me!!!)

• Acknowledgements: Alain Boudard (CEA), Sylvie Leray (CEA), Luca Zanini (PSI)

2Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 3: The physics of the spp(g)allation (target)

Introduction: spallation physics

• General characteristics and observables

i r f ui r f u

• General characteristics and observables

• Strategy:

yalcas yalcas

– observables for the range 20 MeV-200MeV– models beyond 200 MeV

yalcas yalcas• Modelling of the spallation physics

– Two or three steps– Low energy models

• Experimental information:Experimental information:– Large list of observables– Comparison with model predictions

• What we have and what we still need…

3Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 4: The physics of the spp(g)allation (target)

Spallation: definition and history

• Spallation definition (G T Seaborg PhD thesis 1937)

i r f ui r f u

• Spallation definition (G.T. Seaborg, PhD thesis, 1937)– Process between a light particle (p,n) with an energy of at least 100

MeV with an “heavy” nucleus leading to emission of light particlesand leaving an heavy residue

yalcas yalcas

and leaving an heavy residue– NOT a reaction!!! But an ensemble of nuclear reactions

• Huge variety of final statesyalcas yalcas

• History: – observation of particle cascades in cosmic rays interactions

G. Rossi, ZP82 (1933) 151– first accelerators: many nucleons emitted by the target nucleus

C i h PR72 (1947) 739Cunningham, PR72 (1947) 739– two step mechanism

Serber, PR72 (1947) 1114

4Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 5: The physics of the spp(g)allation (target)

Spallation: observables

• Observables needed for the design of a target:

i r f ui r f u

• Observables needed for the design of a target:

– Neutron production

yalcas yalcas

• Number power of the system / needed accelerator intensity• Energy and spatial distribution target• High energy neutrons shieldingyalcas yalcas • High energy neutrons shielding

– Charged particle production• Gas production (H2, He) embrittlement• Energy distributions Energy deposition, dpa

– Residual nuclei production• Element distribution corrosion, change in metallurgical

propertiesproperties• Isotope distribution activity (short lived isotopes),

radiotoxicity (long lived isotopes), decay heatR il i d i t t d iti

5Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

• Recoil energies dpa in structures, energy deposition

Page 6: The physics of the spp(g)allation (target)

Spallation: applications in different fields

• Astrophysics

i r f ui r f u

• Astrophysics – Secondary reactions of cosmic rays in interstellar medium

• explanation of abundance of isotopes

yalcas yalcas

• decide among models for galactic nucleosynthesis• origin of cosmic rays

– Composition of meteoritesyalcas yalcas – Composition of meteorites

6Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 7: The physics of the spp(g)allation (target)

Spallation: applications in different fields

• Space instruments

i r f ui r f u

• Space instruments – Cosmic ray bombardment of the spacecraft and instruments

• Radiation damage on electronics

yalcas yalcas

• Radioprotection of space crew• Noise due to secondary gammas, neutrons and spallation

residuesyalcas yalcas residues– Ex.: spectrometer of the INTEGRAL mission devoted to

high resolution γ-ray astronomy

7Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 8: The physics of the spp(g)allation (target)

Spallation: applications in different fields

• Rare isotope production and RIB

i r f ui r f u

• Rare isotope production and RIB– Direct methods

• p (1 GeV) + A low energy RIB

yalcas yalcas

• fragmentation of GeV/A heavy ions high energy RIB– Converter methods: use of produced neutrons to

i d fi i l RIByalcas yalcas • induce fission low energy RIB• produce tritium and radioisotopes for medicine

8Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 9: The physics of the spp(g)allation (target)

Spallation: applications in different fields

• Spallation neutron sources

i r f ui r f u

• Spallation neutron sources – Moderation of spallation neutrons

in (heavy) water

yalcas yalcas

– Reflectors to direct escaping neutrons into beam tubes

• pulsed sources: well-definedyalcas yalcas pulsed sources: well defined time structure, high peak flux

TOF experimentsti hi h• continuous sources: high

neutron flux in a large volume irradiation experiments,

imaging

9Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 10: The physics of the spp(g)allation (target)

Neutron sources in the world

i r f ui r f u

yalcas yalcas yalcas yalcas

10Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 11: The physics of the spp(g)allation (target)

The spallation process as a cartoon….

i r f ui r f u

yalcas yalcas yalcas yalcas

Interaction p-Nucleus

High energy particleemissionp n pions

Recoil of excited nucleus

p, n, pions, (d, t, 3He, 4He)

Eventually fission,particle evaporation(n, p, d, t, 3He, 4He)

Radioactive decays

In thick target:again spallations(at lower energy but fromp, n, pions) (n, p, d, t, 3He, 4He)p, n, pions)

External emission after diff sion absorption

11Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

diffusion-absorption(transport)

Page 12: The physics of the spp(g)allation (target)

Letourneau et al NIM B170 (2000) 299

Spallation neutron production

i r f ui r f u

Letourneau et al., NIM B170 (2000) 299

• In heavy metal target (Pb, W, Ta) around 20 neutrons per incident proton and GeV

yalcas yalcas

incident proton and GeV

• Maximal efficiency around 1G V BUTyalcas yalcas 1GeV BUT…– Very dependent on

geometry and optimizationoptimization…

12Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 13: The physics of the spp(g)allation (target)

p-Pb 1 GeV, INCL4-ABLAv3p

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

2006/08/30 18.41

Multiplicite

Co

mp

tag

e

neutrons (Cascade)

neutrons (Evapo)

10-2

10-1

1

10

10 2

10 3

1 10 102

103

Energie (MeV)

dσ/

dE

(m

b/M

eV)

neutrons (Cascade)

neutrons (Evapo)

Spallation characteristics: neutron spectrum

i r f ui r f u

p-Pb 1 GeV, INCL4-ABLAv3p

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

2006/08/30 18.41

Multiplicite

Co

mp

tag

e

neutrons (Cascade)

neutrons (Evapo)

10-2

10-1

1

10

10 2

10 3

1 10 102

103

Energie (MeV)

dσ/

dE

(m

b/M

eV)

neutrons (Cascade)

neutrons (Evapo)

Neutrons come from:– Cascade

yalcas yalcas

p-Pb 1 GeV, INCL4-ABLAv3p

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

2006/08/30 18.41

Multiplicite

Co

mp

tag

e

neutrons (Cascade)

neutrons (Evapo)

10-2

10-1

1

10

10 2

10 3

1 10 102

103

Energie (MeV)

dσ/

dE

(m

b/M

eV)

neutrons (Cascade)

neutrons (Evapo)

• High energy• Low multiplicity

– Evaporationyalcas yalcas

p-Pb 1 GeV, INCL4-ABLAv3p

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

2006/08/30 18.41

Multiplicite

Co

mp

tag

e

neutrons (Cascade)

neutrons (Evapo)

10-2

10-1

1

10

10 2

10 3

1 10 102

103

Energie (MeV)

dσ/

dE

(m

b/M

eV)

neutrons (Cascade)

neutrons (Evapo)

– Evaporation• En < 20 MeV

– High cross section

p-Pb 1 GeV, INCL4-ABLAv3p

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

2006/08/30 18.41

Multiplicite

Co

mp

tag

e

neutrons (Cascade)

neutrons (Evapo)

10-2

10-1

1

10

10 2

10 3

1 10 102

103

Energie (MeV)

dσ/

dE

(m

b/M

eV)

neutrons (Cascade)

neutrons (Evapo)

• High multiplicity

p-Pb 1 GeV, INCL4-ABLAv3p

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

2006/08/30 18.41

Multiplicite

Co

mp

tag

e

neutrons (Cascade)

neutrons (Evapo)

10-2

10-1

1

10

10 2

10 3

1 10 102

103

Energie (MeV)

dσ/

dE

(m

b/M

eV)

neutrons (Cascade)

neutrons (Evapo)

p-Pb 1 GeV, INCL4-ABLAv3p

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

2006/08/30 18.41

Multiplicite

Co

mp

tag

e

neutrons (Cascade)

neutrons (Evapo)

10-2

10-1

1

10

10 2

10 3

1 10 102

103

Energie (MeV)

dσ/

dE

(m

b/M

eV)

neutrons (Cascade)

neutrons (Evapo)

13Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

p-Pb 1 GeV, INCL4-ABLAv3p

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30

2006/08/30 18.41

Multiplicite

Co

mp

tag

e

neutrons (Cascade)

neutrons (Evapo)

10-2

10-1

1

10

10 2

10 3

1 10 102

103

Energie (MeV)

dσ/

dE

(m

b/M

eV)

neutrons (Cascade)

neutrons (Evapo)

Page 14: The physics of the spp(g)allation (target)

p-Pb 1 GeV, INCL4-ABLAv3p

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

2006/08/28 14.50

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Cascade)

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

10 4

10 5

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Evaporation)

Spallation characteristics: n angular distrib.

i r f ui r f u p-Pb 1 GeV, INCL4-ABLAv3p

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

2006/08/28 14.50

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Cascade)

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

10 4

10 5

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Evaporation)

Neutrons from:– Cascade

yalcas yalcas

p-Pb 1 GeV, INCL4-ABLAv3p

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

2006/08/28 14.50

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Cascade)

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

10 4

10 5

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Evaporation)

• Forward emission– Evaporation

• Isotropic emissionyalcas yalcas

p-Pb 1 GeV, INCL4-ABLAv3p

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

2006/08/28 14.50

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Cascade)

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

10 4

10 5

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Evaporation)

• Isotropic emission

p-Pb 1 GeV, INCL4-ABLAv3p

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

2006/08/28 14.50

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Cascade)

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

10 4

10 5

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Evaporation)

p-Pb 1 GeV, INCL4-ABLAv3p

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

2006/08/28 14.50

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Cascade)

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

10 4

10 5

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Evaporation)

p-Pb 1 GeV, INCL4-ABLAv3p

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

2006/08/28 14.50

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Cascade)

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

10 4

10 5

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Evaporation)

14Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

p-Pb 1 GeV, INCL4-ABLAv3p

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

2006/08/28 14.50

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Cascade)

0

200

400

600

800

1000

1200

1400

1600

1800

-250 0 250 500 750 1000 1250 1500 17501

10

10 2

10 3

10 4

10 5

P longitudinal (MeV/c)

P t

ran

sver

se (

MeV

/c)

neutrons (Evaporation)

Page 15: The physics of the spp(g)allation (target)

p-Pb 1 GeV, INCL4-ABLAv3p

10-2

10-1

1

10

10 2

10 3

1 10 102

103

2006/08/28 14.48

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

10-2

10-1

1

10

10 2

10 3

0 200 400 600 800 1000 1200

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

Spallation characteristics: particle spectra

• Neutrons

i r f ui r f u

p-Pb 1 GeV, INCL4-ABLAv3p

10-2

10-1

1

10

10 2

10 3

1 10 102

103

2006/08/28 14.48

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

10-2

10-1

1

10

10 2

10 3

0 200 400 600 800 1000 1200

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

• Neutrons – Predominant at low energy (not

sensitive to the Coulomb barrier)• Protons

yalcas yalcas

p-Pb 1 GeV, INCL4-ABLAv3p

10-2

10-1

1

10

10 2

10 3

1 10 102

103

2006/08/28 14.48

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

10-2

10-1

1

10

10 2

10 3

0 200 400 600 800 1000 1200

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

– Predominant at high energy• Light charged particles (LCP)

– Important between 10 and 100 yalcas yalcas

p-Pb 1 GeV, INCL4-ABLAv3p

10-2

10-1

1

10

10 2

10 3

1 10 102

103

2006/08/28 14.48

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

10-2

10-1

1

10

10 2

10 3

0 200 400 600 800 1000 1200

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

MeV• Pions

– Non negligible between 100 MeV and 1 GeV

p-Pb 1 GeV, INCL4-ABLAv3p

10-2

10-1

1

10

10 2

10 3

1 10 102

103

2006/08/28 14.48

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

10-2

10-1

1

10

10 2

10 3

0 200 400 600 800 1000 1200

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

and 1 GeV• Cascade particles have lower multiplicity

BUT they mainly carry the beam energy

Type Mean energy Fraction in

p-Pb 1 GeV, INCL4-ABLAv3p

10-2

10-1

1

10

10 2

10 3

1 10 102

103

2006/08/28 14.48

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

10-2

10-1

1

10

10 2

10 3

0 200 400 600 800 1000 1200

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

Type Mean energy (MeV)

Fraction in cascade

n 355 85 %

p 364 98 %

π 58 100%

p-Pb 1 GeV, INCL4-ABLAv3p

10-2

10-1

1

10

10 2

10 3

1 10 102

103

2006/08/28 14.48

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

10-2

10-1

1

10

10 2

10 3

0 200 400 600 800 1000 1200

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

π 58 100%

lcp 69 80%

Remnant (E*)

137

15Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

p-Pb 1 GeV, INCL4-ABLAv3p

10-2

10-1

1

10

10 2

10 3

1 10 102

103

2006/08/28 14.48

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

10-2

10-1

1

10

10 2

10 3

0 200 400 600 800 1000 1200

Energie (MeV)

dσ/

dE

(m

b/M

eV)

Neutrons

Protons

Pions

d,t,3He,4He (GEM)

Page 16: The physics of the spp(g)allation (target)

Spallation characteristics: residues production

i r f ui r f u • Hundreds of different residues are produced by

E i (hi h

yalcas yalcas

– Evaporation (high mass, near the target mass)

– Fission (lighter mass)yalcas yalcas

16Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 17: The physics of the spp(g)allation (target)

Modeling of spallation reactions

i r f ui r f uEnergy (beam… p)

5-10 MeV 150-200 MeV 5-10 GeV

yalcas yalcas

Elastic and inelastic scattering

Opening of (n,xn),

Nucleon internalstructure….(partons)Sequence of independent N-N

Pions, mesons

yalcas yalcas p g ( , ),LCP production (d, t, He…)

q pcollisions (λb = h/p) < (Λ=1/ρ.σNN)

Importance of nuclear structure(discrete/continuum, resonances, deformations)

Statistical approach

(discrete/continuum, resonances, deformations)

Optical model, DWBA, coupled channels

Pre-equilibrium modelsPre equilibrium models(config. particle-hole, excitons)

Intra-nuclear cascade + de-excitation(Coherent diffusion: Glauber-KMT)

Limits are not well defined: a lot of overlapping

17Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

(Coherent diffusion: Glauber-KMT)

Page 18: The physics of the spp(g)allation (target)

Ep < 200 MeV code type: TALYSEp < 200 MeV code type: TALYS (A Koning JP Delaroche et al )

Modeling of spallation reactions

i r f ui r f u

Ep < 200 MeV, code type: TALYS Ep < 200 MeV, code type: TALYS (A. Koning, JP Delaroche et al.)

yalcas yalcas yalcas yalcas

Lots of input, parameter fitting, phenomenological approach• Very good on elastic scattering, (also (n,xn) ou (n,xp), Koning, Duijvestijn)• More difficult on compound production (LCP)

18Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

GNASH: older code but same type (P. Young et al. Los Alamos)

Page 19: The physics of the spp(g)allation (target)

Modeling of spallation reactions

• Two step mechanism:

i r f ui r f u

Two step mechanism:– Intra-Nuclear Cascade

• Sequence of independent N-N

lli i

yalcas yalcas

collisions• Λb= hc/p << λ=1/ρσNN

(mean free path)• Fast process (≈30 fm/c)yalcas yalcas Fast process ( 30 fm/c)

– De-excitation• Competition between

evaporation and fission• Statistical models• Slow process (hundreds

of fm/c)

• Three step mechanism– INC

Pre equilibrium– Pre-equilibrium– Evaporation/fission

19Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 20: The physics of the spp(g)allation (target)

Modeling of pre-equilibrium

i r f ui r f uExciton = 1 particle - hole« never come back »: towards more complexity

J. Griffin,Phys. Rev. Lett. 17 (1966) 478(C. Kalbach, Phys. Rev. C33 (1986) 818)

Ingredients:

yalcas yalcas

Ingredients:• Transition between configurations• Level density (statistical description,

Gilbert-Cameron)yalcas yalcas• Emission probability (Weisskopf-Ewing)

– Direct emission (1 param.)– Compound emission (2 param.)Parameters are fitted on data(Kalbach systematic)

• Twofold differentiation: proton-neutron (shell and pairing effect taken into account)

(b d it fi ti )

• There are a lot of extensions• This part is “naturally” taken into account

in INC-EVAP models (but not energy levels)

20Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

(bound exciton configurations)levels)

Page 21: The physics of the spp(g)allation (target)

Modeling of intra-nuclear cascade (INC)

i r f ui r f u P (1 GeV)

N NN Transmission

Reflection

Ingredients:• Realistic nuclear density (r,p space)• Realistic NN interaction

yalcas yalcas

b N

N

Δ π

RefractionRealistic NN interaction

– σNN(E), dσ/dΩ(θ)– Elastic– Pion productionyalcas yalcas

N N

Potential

Pion production• Pauli blocking• Particles are “followed” in space (and

time)

Incoming p• N participants-spectators

(participant beam + N interacting)• Endpoint criteria (time or energy)

E

• The model leads to the production of particles and a residual nucleus (A’, Z’, E*, J, Precoil EFermi

(37 MeV)h

h

h

, , recoil

21Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

- 45 MeV

Page 22: The physics of the spp(g)allation (target)

(from J Cugnon)

Modeling of intra-nuclear cascade (INC)

i r f ui r f u

(from J. Cugnon)

yalcas yalcas yalcas yalcas

(in FLUKA-GEANT)(in LAHET-MCNPX)BERTINI: H.W. Bertini et al. Phys. Rev 131 (1963) 1801

ISABEL: Y. Yariv et Z. Fraenkel Phys. Rev. C 24 (1981) 488

INCL4: J. Cugnon et al. Nucl. Phys. A620 (1997) 475; A. Boudard et al. Phys. Rev. C66 (2002) 44615

PEANUT: A. Fasso, A. Ferrari et al Monte-Carlo Conf 2000 edited by A. Kling et al (Springer-Verlag, Berlin)

BRIC (H D arte CEA DIF) deri ed from INCL mo ement eq ations + refraction cross section in NN medi m

CEM2k (S. Maschnik et al. Los Alamos) : in LAHET, important pre-equilibrium + cascade

22Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

BRIC (H. Duarte CEA DIF) : derived from INCL, movement equations + refraction cross section in NN medium

Page 23: The physics of the spp(g)allation (target)

E i d l bi b h!

Modeling of de-excitation: evaporation

i r f ui r f u

Excited nucleus… a bit,... but not too much!

> Nucleon emission threshold(high energy level density)

Statistical treatment: emission independent from energy levels (only level density is important)

yalcas yalcas

< E* ~ 3 MeV/u Explosion (multi-fragmentation) of the nucleusSequential emission is no longer valid!!!!

yalcas yalcas

From QCD T-inversion invariance:(detailed balance principle)

ρAPAa = ρ(A-a)P(A-a)a A a A-a a≡

ρ: level densityρ: level densityPAa: probability for A to emit aP(A-a)a: probability for A-a to absorb a

Pa(ε) = ρf(Ef*)/ρi(Ei*) (2s+1) (4πp2/h3) σc(ε)

1) Evaporation probability of particle a, energy ε, momentum p and spin s (Weisskopf-Ewing) :

2) Hauser-Feshbach put explicitly the angular momentum l (of a) and some transmission coefficients Tl(ε) calculated from the optical model

Ingredients: sc(e) (capture cross section) and ρ(A,E) (level density)

23Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

g c( ) ( p ) ρ( , ) ( y)

Page 24: The physics of the spp(g)allation (target)

Modeling of de-excitation: evaporation

i r f ui r f uLevel density:

yalcas yalcas4/5*4/1

2*

)(12),(

*

EaeAE

aEπρ = From static treatment of Fermi gas

T is the temperatureyalcas yalcasE* = a T2

T is the temperature, E* is the excitation energy

a: Level density parameter…. A very long history… and literature!!!

a = f(A,E*) It should « partially » take into account nuclear effects(pairing, shells, magic numbers) and E* evolution The limit for high E* is: a ~ A/8 ÷ A/13The limit for high E is: a A/8 A/13

The most common parametrization is GCCI (Gilbert-Cameron-Cook-Ignatyuk)

Inverse cross sections:

Geometrical model, fit on data or explicit calculation

24Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Main difficulty: Fusion-Absorption for an excited nucleus!

Page 25: The physics of the spp(g)allation (target)

Modeling of de-excitation: fission

i r f ui r f uAtchison (RAL code, default in LAHET/MCNPX ~1980)

Z > 70 : competition limited to n evaporation (Weisskopf with simplified a)

(ORNL only for Z>90)

yalcas yalcas Mainly based on empirical data on actinides fission at low energy (thermal)

Z2/A < 35 : symmetric fission (fission fragments mass distribution)

Z2/A > 35 : symmetric + asymmetric fission

yalcas yalcas Mainly based on empirical data on actinides fission at low energy (thermal)

K.H. Schmidt (J. Benlliure, B. Jurado @ GSI, ABLA code): time evolution of fission channel width

1 B h Wh l T t (T ) d l l d it ( ) t)()(2

1fsadsad

c

BWf BET

E−=Γ ρ

πρBohr-Wheeler: Temperature (Tsad) and level density (ρsad) at the saddle point calculated right above the fission barrier (Bf)

Kramer- Grangé: Dissipative process giving a reductionBWK Kramer Grangé: Dissipative process giving a reductionparameter K(β), where β is the viscosity, derived from Fokker-Planck equations

BWf

Kf K Γ=Γ )(β

B. Jurado et al. (Phys. lett. B 533 (2003) 186): dynamicalcompetition between fission and evaporation given by a transition function: tc~ 1.7 10-21 s

)()( tfK BWf

Kf Γ=Γ β

f(t)

25Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

tc t

Page 26: The physics of the spp(g)allation (target)

L l d i b h fi i b i ( i i l h)

Modeling of de-excitation: fission fragments

i r f ui r f u

Level density above the fission barrier (statistical approach)

Barrier defined by 3 terms giving 3 FF structures: 1. Symmetric (liquid drop model)2. Asymmetric N=82 (empirical)

( )

yalcas yalcas

3. Asymmetric N=90 (empirical)

yalcas yalcas

ABLA: the most detailed model for fission at spallation energies

26Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

ABLA: the most detailed model for fission at spallation energiesParameters based on experimental data Still difficulties on Ta-W

Page 27: The physics of the spp(g)allation (target)

Modeling of de-excitation: extreme cases

• Light nuclei (A < 15-20 E* ≈ 50 MeV/u):

i r f ui r f u

Light nuclei (A < 15 20, E ≈ 50 MeV/u):– Small level density– E* ≈ binding energy– Breaking in ONE STEP: Fermi breakup

yalcas yalcas∫⎞⎛

−nVolc 1

Breaking in ONE STEP: Fermi breakup– All possible configurations are weighed by the phase space

• The nucleus A is decomposed on n components, Ai, with weight Wyalcas yalcas

∑∫

=

−−∑⎟⎠⎞

⎜⎝⎛=

n

i

iiin

AA

tSEppdh

VolAA

cW

1

*3

1

)()(!!...

δδ rr

• High excitation energy (E* > 3 MeV/u):– Breaking in ONE step : Multifragmentation– Violent expansion up to a freeze-out volume (density ~ 1/3-1/6 ρ0 )

3

23

11

)2(!!... h

TmVolgeAA

cW ii

nTE

n

i π∏−

=

– Weighting of possible configurations (high temperature: Boltzmann low)

• Evaporation like a very asymmetric fission:– Transition state model– Alternative to classical evaporation, extended to light ion emission

27Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

– Capture cross section is replaced by a barrier

Page 28: The physics of the spp(g)allation (target)

Modeling of de-excitation: the codes

D

i r f ui r f u

• Dresner:– It is the oldest– Too high Coulomb barriers

E aporation à la Weisskopf ( p to 4He) + Fission à la Atchison

yalcas yalcas

– Evaporation à la Weisskopf (up to 4He) + Fission à la Atchison• GEM

– Revised (and modernized) version of Dresner-AtchisonEvaporation à la Weisskopf (up to A=24)yalcas yalcas – Evaporation à la Weisskopf (up to A=24)

– Revised masses, pairing, fission param., capture X sect., Coulomb barriers• ABLA

Evaporation à la Weisskopf (only for p n 4He!!!!!!!)– Evaporation à la Weisskopf (only for p, n, 4He!!!!!!!)– Fission VERY complex and detailed– Very active community on development (extended evapor., multifragm.,

dynamic fission)• GEMINI

– Evaporation à la Hausser-Feshbach (for Z < 2,4)– Transition state model (for Z > 2,4)

• SMM– Evaporation à la Weisskopf (up to A<18)– Multifragmentation

28Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 29: The physics of the spp(g)allation (target)

Comparison between models and data

i r f ui r f u

• Large amount of high quality data has been collected• Neutron and LPC production• Isotopic residue distributions

yalcas yalcas

p• Excitation functions

yalcas yalcas• Improvements on nuclear models

• INCL4/ABLA tested against all the available data with the same set of parameters• Important improvements also in CEM and FLUKA• Implementation of INCL4/ABLA and CEM into MCNPXp• Implementation of INCL4/ABLA in GEANT4

29Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 30: The physics of the spp(g)allation (target)

Neutron production

S Leray et al Phys Rev C 65 (2002) 044621

i r f ui r f u

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

1 10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV/s

r)

Fe(p,xn)X 1200 MeV0 °

10 ° (×10-1)

25 ° (×10-2)

40 ° (×10-3)

55 ° (×10-4)

85 ° (×10-5)

100 ° (×10-6)

115 ° (×10-7)

130 ° (×10-8)

145 ° (×10-9)

160 ° (×10-10)

DataBPQ-DresINCL4-ABLA

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

10 3

10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV s

r)

Pb (p,xn) X 1200 MeV0°

10°(×10-1)

25°(×10-2)

40°(×10-3)

55°(×10-4)

85°(×10-5)

100°(×10-6)

115°(×10-7)

130°(×10-8)

145°(×10-9)

160°(×10-10)

DataBPQ-DresINCL4-ABLA

S.Leray et al., Phys. Rev. C 65 (2002) 044621

yalcas yalcas

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

1 10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV/s

r)

Fe(p,xn)X 1200 MeV0 °

10 ° (×10-1)

25 ° (×10-2)

40 ° (×10-3)

55 ° (×10-4)

85 ° (×10-5)

100 ° (×10-6)

115 ° (×10-7)

130 ° (×10-8)

145 ° (×10-9)

160 ° (×10-10)

DataBPQ-DresINCL4-ABLA

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

10 3

10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV s

r)

Pb (p,xn) X 1200 MeV0°

10°(×10-1)

25°(×10-2)

40°(×10-3)

55°(×10-4)

85°(×10-5)

100°(×10-6)

115°(×10-7)

130°(×10-8)

145°(×10-9)

160°(×10-10)

DataBPQ-DresINCL4-ABLA

yalcas yalcas

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

1 10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV/s

r)

Fe(p,xn)X 1200 MeV0 °

10 ° (×10-1)

25 ° (×10-2)

40 ° (×10-3)

55 ° (×10-4)

85 ° (×10-5)

100 ° (×10-6)

115 ° (×10-7)

130 ° (×10-8)

145 ° (×10-9)

160 ° (×10-10)

DataBPQ-DresINCL4-ABLA

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

10 3

10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV s

r)

Pb (p,xn) X 1200 MeV0°

10°(×10-1)

25°(×10-2)

40°(×10-3)

55°(×10-4)

85°(×10-5)

100°(×10-6)

115°(×10-7)

130°(×10-8)

145°(×10-9)

160°(×10-10)

DataBPQ-DresINCL4-ABLA

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

1 10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV/s

r)

Fe(p,xn)X 1200 MeV0 °

10 ° (×10-1)

25 ° (×10-2)

40 ° (×10-3)

55 ° (×10-4)

85 ° (×10-5)

100 ° (×10-6)

115 ° (×10-7)

130 ° (×10-8)

145 ° (×10-9)

160 ° (×10-10)

DataBPQ-DresINCL4-ABLA

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

10 3

10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV s

r)

Pb (p,xn) X 1200 MeV0°

10°(×10-1)

25°(×10-2)

40°(×10-3)

55°(×10-4)

85°(×10-5)

100°(×10-6)

115°(×10-7)

130°(×10-8)

145°(×10-9)

160°(×10-10)

DataBPQ-DresINCL4-ABLA

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

1 10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV/s

r)

Fe(p,xn)X 1200 MeV0 °

10 ° (×10-1)

25 ° (×10-2)

40 ° (×10-3)

55 ° (×10-4)

85 ° (×10-5)

100 ° (×10-6)

115 ° (×10-7)

130 ° (×10-8)

145 ° (×10-9)

160 ° (×10-10)

DataBPQ-DresINCL4-ABLA

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

10 3

10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV s

r)

Pb (p,xn) X 1200 MeV0°

10°(×10-1)

25°(×10-2)

40°(×10-3)

55°(×10-4)

85°(×10-5)

100°(×10-6)

115°(×10-7)

130°(×10-8)

145°(×10-9)

160°(×10-10)

DataBPQ-DresINCL4-ABLA

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

1 10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV/s

r)

Fe(p,xn)X 1200 MeV0 °

10 ° (×10-1)

25 ° (×10-2)

40 ° (×10-3)

55 ° (×10-4)

85 ° (×10-5)

100 ° (×10-6)

115 ° (×10-7)

130 ° (×10-8)

145 ° (×10-9)

160 ° (×10-10)

DataBPQ-DresINCL4-ABLA

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

10 2

10 3

10 102

103

Energy (MeV)

d2 σ/dΩ

dE (

mba

rn/M

eV s

r)

Pb (p,xn) X 1200 MeV0°

10°(×10-1)

25°(×10-2)

40°(×10-3)

55°(×10-4)

85°(×10-5)

100°(×10-6)

115°(×10-7)

130°(×10-8)

145°(×10-9)

160°(×10-10)

DataBPQ-DresINCL4-ABLA

30Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Neutron production can be predicted with a 10-20% precision by most of the models

Page 31: The physics of the spp(g)allation (target)

Neutron productionT. Aoust et al., ND2004, Santa Fe

i r f ui r f u

yalcas yalcas yalcas yalcas

Differential spectra from a thick Pb target(SATURNE data)

Energy and angular distribution are well reproduced

31Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Energy and angular distribution are well reproduced

Page 32: The physics of the spp(g)allation (target)

Proton and pion production

i r f ui r f uThe image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

D. Cochran et al, Phys. Rev. D6 (1972) 3085R. Chrien et al, Phys. Rev. C21 (1980) 1014 J. McGill et al Phys. Rev. C29 (1984) 204

yalcas yalcas yalcas yalcas

Protons π+

Quasi-elastic peak well reproduced but need to add of a pion potential

32Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 33: The physics of the spp(g)allation (target)

A. Letourneau et al, Nucl. Phys. A712 (2002) 133 J. Franz et al, Nucl. Phys. A472 (1987) 733, Nucl. Phys. A510 (1990) 774

LCP production

i r f ui r f u30°

yalcas yalcas

75°

yalcas yalcas105°

150°

33Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

n (542 MeV)

Page 34: The physics of the spp(g)allation (target)

A comment on LCP production

i r f ui r f u• In the cascade:

yalcas yalcas

• Extension out of standard description (N-N interactions)• In INCL4: hypothesis of cluster formation at the surface given by

Distance parameter (from R0): r = 1 75 fmyalcas yalcas • Distance parameter (from R0): r = 1.75 fm• Phase space parameter ΔrΔp < 387 fm*MeV/c

• In the evaporation:• Can be treated on the same formalism as nucleons (state density• Can be treated on the same formalism as nucleons (state density, inverse cross section)

34Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 35: The physics of the spp(g)allation (target)

Residues production

N d t bt i d ith ki ti th d l d t id bl

i r f ui r f u

• New data obtained with reverse kinematics methods led to a considerable progress in reaction modeling

• Models:– Heavy evaporation residues: generally good very close to the target nucleus

yalcas yalcas

Heavy evaporation residues: generally good very close to the target nucleus– Fission fragments: quite good, enough for activity calculations– Light evaporation residues: most models generally bad– Intermediate mass fragments: all models are wrong by orders of magnitudeyalcas yalcas g g y g

FRS experiments at GSIFRS experiments at GSI(coll. GSI, Santiago Univ., CEA/DSM, IN2P3)

35Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 36: The physics of the spp(g)allation (target)

Data from Michel et al.Data from Enqvist et al. 1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

Residues production: heavy systems

i r f ui r f u

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

yalcas yalcas

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

yalcas yalcas

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

• INCL4/ABLA agrees much better with GSI data than Bertini/Dresner for

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

fission fragments, very heavy residues and isotopic distribution shape

• Both fail for light evaporation residues

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

Both fail for light evaporation residues and intermediate mass fragments

36Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

Page 37: The physics of the spp(g)allation (target)

Residues production: heavy systems

i r f ui r f uPb (1 GeV/A) + p Au (800 MeV/A) + p Pb (500 MeV/A) + p

yalcas yalcas yalcas yalcas

The only evaporation is not enough to explain the distributions at high excitation energy

37Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

distributions at high excitation energy

Page 38: The physics of the spp(g)allation (target)

Residues production: light systems

i r f ui r f u

10-5

10-4

10-3

10-2

10-1

1

10

10 2

0 10 20 30 40 50 60

Fe + p

1.5 GeV/A

1.0 GeV/A(*10-1)

0.75 GeV/A(*10-2)

0.5 GeV/A(*10-3)

0.3 GeV/A(*10-4)

σ (m

b)

A

INCL4-GEMINI

INCL4-GEM

NOTE: same beam energy, therefore higher excitation energy (per nucleon) on a lighter nucleus (nucleus diameter/volume)

P Napolitani et al, C70 (2004) 054607

yalcas yalcas

10-5

10-4

10-3

10-2

10-1

1

10

10 2

0 10 20 30 40 50 60

Fe + p

1.5 GeV/A

1.0 GeV/A(*10-1)

0.75 GeV/A(*10-2)

0.5 GeV/A(*10-3)

0.3 GeV/A(*10-4)

σ (m

b)

A

INCL4-GEMINI

INCL4-GEM(per nucleon) on a lighter nucleus (nucleus diameter/volume)

yalcas yalcas

10-5

10-4

10-3

10-2

10-1

1

10

10 2

0 10 20 30 40 50 60

Fe + p

1.5 GeV/A

1.0 GeV/A(*10-1)

0.75 GeV/A(*10-2)

0.5 GeV/A(*10-3)

0.3 GeV/A(*10-4)

σ (m

b)

A

INCL4-GEMINI

INCL4-GEM

1000MeV Fe+p, INCL42 + SMM (multi-frag. contrib.)

10-1

1

10

10 2

0 10 20 30 40 50 60

56Fe + p (1 GeV/A)INCL4-SMMOnly multifrag. in SMM

σ (m

b)

A10

-5

10-4

10-3

10-2

10-1

1

10

10 2

0 10 20 30 40 50 60

Fe + p

1.5 GeV/A

1.0 GeV/A(*10-1)

0.75 GeV/A(*10-2)

0.5 GeV/A(*10-3)

0.3 GeV/A(*10-4)

σ (m

b)

A

INCL4-GEMINI

INCL4-GEM

1000MeV Fe+p, INCL42 + SMM (multi-frag. contrib.)

10-1

1

10

10 2

0 10 20 30 40 50 60

56Fe + p (1 GeV/A)INCL4-SMMOnly multifrag. in SMM

σ (m

b)

A10

-5

10-4

10-3

10-2

10-1

1

10

10 2

0 10 20 30 40 50 60

Fe + p

1.5 GeV/A

1.0 GeV/A(*10-1)

0.75 GeV/A(*10-2)

0.5 GeV/A(*10-3)

0.3 GeV/A(*10-4)

σ (m

b)

A

INCL4-GEMINI

INCL4-GEM

1000MeV Fe+p, INCL42 + SMM (multi-frag. contrib.)

10-1

1

10

10 2

0 10 20 30 40 50 60

56Fe + p (1 GeV/A)INCL4-SMMOnly multifrag. in SMM

σ (m

b)

A10

-5

10-4

10-3

10-2

10-1

1

10

10 2

0 10 20 30 40 50 60

Fe + p

1.5 GeV/A

1.0 GeV/A(*10-1)

0.75 GeV/A(*10-2)

0.5 GeV/A(*10-3)

0.3 GeV/A(*10-4)

σ (m

b)

A

INCL4-GEMINI

INCL4-GEM

1000MeV Fe+p, INCL42 + SMM (multi-frag. contrib.)

10-1

1

10

10 2

0 10 20 30 40 50 60

56Fe + p (1 GeV/A)INCL4-SMMOnly multifrag. in SMM

σ (m

b)

A

Transition state model or multifragmentation ?

38Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Transition state model(Gemini)

…or multifragmentation ?(SMM)

Page 39: The physics of the spp(g)allation (target)

ALADINLCP R id

Study of the mechanism: coincidence technique

i r f ui r f u LH2START

ToFMUSIC 4

ROLUNeutrons

LCP, Residues

yalcas yalcas

Anti−Halo

LAND

Stelzer

yalcas yalcasSPALADIN (GSI)

(mb

210

Contributions to the cross sections

1 IMFFe+p at 1 GeV/nucleon

E. Legentil (PhD thesis): Spaladin experiment (GSI)

σ

10

1 IMF

Z=2, 1 IMF

1

Z=2, 1 IMF 2 IMF≥Z=2,

2 IMF only

Z5 10 15 20 25

Z5 10 15 20 25

-110

2 IMF only

3 IMF only≥

39Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Z5 10 15 20 25

Z5 10 15 20 25

Page 40: The physics of the spp(g)allation (target)

GEMINI SMMBlack: data

Study of the mechanism: models/data

i r f ui r f u (m

b)

σ10

210

(m

b)

σ10

210

GEMINI

1 IMF

(m

b)

σ

10

210

(m

b)

σ

10

210

SMM Histos: model

yalcas yalcas 1

10

1

10Z=2, 1 IMF

2 IMF≥Z=2,

2 IMF only1

10

1

10

yalcas yalcas

Z5 10 15 20 25

-110

Z5 10 15 20 25

-110

2 IMF only

3 IMF only≥

Z5 10 15 20 25

-110

Z5 10 15 20 25

-110

Best agreement: Gemini

(m

b)

σ

210

(m

b)

σ

210

ABLA

(m

b)

σ

210

(m

b)

σ

210

GEM Hausser-Feshbach Z<5,Transition State Model above.

1

10

1

10

1

10

1

10

Z5 10 15 20 25

-110

1

Z5 10 15 20 25

-110

1

Z5 10 15 20 25

-110

1

Z5 10 15 20 25

-110

1

40Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Z5 10 15 20 25

Z5 10 15 20 25

Z5 10 15 20 25

Z5 10 15 20 25

Page 41: The physics of the spp(g)allation (target)

Validity at lower energy

i r f ui r f u

yalcas yalcas yalcas yalcas

Solid: INCL4+ABLADashed: TALYS

Reaction σ is correct:Absolute normalization LCP production

as ed SDotted: FLUKA

Absolute normalization in the calculation

LCP production(but to p detriment)

INCL at low energy under developmentG f

41Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Good hope of model continuity...

Page 42: The physics of the spp(g)allation (target)

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

Pay attention to Bertini-Dresner-Atchison!

i r f ui r f u

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

yalcas yalcas

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

• Default option in LAHET• Calculation is fast

Mais: p+Pb @ 1 GeV/nucleonyalcas yalcas

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

• Global order of magnitude is correct(i.e. on neutron production)

BUT

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

BUT

• E* too much high• Fission/evaporation badly balanced

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

p y• Isotopic yields doubtful

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

42Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

1GeV p+Pb2003/05/28 15.26

10-1

1

10

10 2

25 50 75 100 125 150 175 200A

Cro

ss S

ecti

on

(m

b)

10-2

1

10 2

160 190 220160 190 220160 190 220160 190 220

10-2

1

10 2

150 200150 200150 200150 200

10-3

10-1

10

80 110 14080 110 14080 110 14080 110 140

10-3

10-1

10

60 90 12060 90 12060 90 12060 90 120

Page 43: The physics of the spp(g)allation (target)

Gas production in Fe

i r f ui r f u4He Tritium

yalcas yalcas

He

yalcas yalcas

• INCL4.4-ABLA07 now produces tritium

• Situation improved compared to models presently in MCNPX

43Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 44: The physics of the spp(g)allation (target)

Gas production in Pb

i r f ui r f u4He Tritium

yalcas yalcas

He

yalcas yalcas

• INCL4.4-ABLA07 now produces tritium

• Situation improved compared to models presently in MCNPX

44Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 45: The physics of the spp(g)allation (target)

Xe production on thick targetp (1.4 GeV) on Pb-Bi

i r f ui r f u

p ( )

yalcas yalcas Influence from the:d ( d ti l l)yalcas yalcas cascade (production level)

evaporation (isotopic yield) Zanini et al. (ISOLDE)

p (1.4 GeV) on U

45Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

Page 46: The physics of the spp(g)allation (target)

Pb (1 GeV/A) + p (GSI)

Velocity and recoil energy

i r f ui r f u10

5

106

107

p (1 GeV, 1 mA) + PbBiR = 10 cm, L= 100 cm

206Bi (6.2 d)

205Bi (15.3 d)

195Au (186 d)

207Bi (31.6 y)

194 194

Pb (1 GeV/A) + p (GSI)

yalcas yalcas 101

102

103

104

10

Act

ivity

[Ci]

Bi (31.6 y)194

Au (38 h) + 194

Hg (520 y)202

Tl (12.2 d) + 202

Pb (53000 y)Total spallation reactions

yalcas yalcas

1min 1h 1day 1mth 1y 10y 102y 10

3y 10

4y 10

5y

Time10

−2

10−1

100

10A

Time

1.2

1.3

1.4

p (1 GeV, 1 mA) + PbBiR = 10 cm, L = 100 cm, LAHET3

INCL4−ABLA / Bertini−Dresner

0.7

0.8

0.9

1.0

1.1

1.2

Ratio

1min 1h 1day 1mth 1y 10y 102y 10

3y 10

4y 10

5y

Cooling time

0.7

GSI: Measurement of recoil velocity distributionsAnd mean energyINCL4+ABLA seems correct

Activity calculations:Multiple contributions (mostly heavy nuclei)

46Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009

INCL4 ABLA seems correctDPA calculations are meaningful INCL4-ABLA and Bertini-Dresner equivalent

Page 47: The physics of the spp(g)allation (target)

Conclusions

i r f ui r f u• Large set of available high-energy data allowing the testing of nuclear

models• INC models

yalcas yalcas

The widely used Bertini model ruled out (lead to too high excitation energies)Isabel and INCL models seem to agree quite well with the datayalcas yalcas Isabel and INCL models seem to agree quite well with the dataEncouraging behaviour of the INCL4 version

• De-excitation modelsDresner Atchison unable to reproduce isotopic distributionsDresner-Atchison unable to reproduce isotopic distributions, fission, LCP emissionGSI model better for residues but deficiencies for LCP emission

P ti• PerspectivesImprovements still needed to have a model reproducing all the bulk of dataCoincidence experiments will allow a deeper insight into the reactions mechanisms

47Stefano PANEBIANCO – CEA Saclay, Irfu/Service de Physique Nucléaire International Training Course (ITC-8) – Politecnico di Torino – 3-6/02/02009