the plasma proteome: enabling a revolution in diagnostics feb 2004 web.pdf · ppi ©plasma proteome...

47
PPI © Plasma Proteome Institute The Plasma Proteome: Enabling a Revolution in Diagnostics Leigh Anderson Ph.D. Founder & CEO, Plasma Proteome Institute

Upload: others

Post on 25-Jan-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

  • PPI© Plasma Proteome Institute

    The Plasma Proteome:Enabling a Revolution in Diagnostics

    Leigh Anderson Ph.D.Founder & CEO, Plasma Proteome Institute

  • PPI© Plasma Proteome Institute

    Introduction to the PlasmaProteome

    • Why the plasma proteome representssuch an enduring technical challenge

    • What it takes to develop a comprehensivelist of candidate markers in plasma

    • The next step: what we need to carry outsystematic validation of markers tosupport a revolution in diagnostics

  • PPI© Plasma Proteome Institute

    Plasma is the largestand deepest version of the

    human proteome

    • Largest = Most proteins

    • Deepest = Widest dynamic range

  • PPI© Plasma Proteome Institute

    Major Components of thePlasma Proteome

    Immunoglobulins

    Cellular Proteins(Leakage)

    “Plasma

    Proteins”

    • ~40,000 forms of proteinssecreted to function inplasma, most glycoproteins– Assume 500 gene products x 2

    splice variants x 20 glycoforms x2 clip forms

    • ~500,000 forms of tissueproteins– Essentially all tissue proteins x

    splice and PTM variants

    • ~10,000,000 clonal forms ofimmunoglobulin

    Total: the largest version ofthe human proteome

  • PPI© Plasma Proteome Institute

    Major Plasma Proteins99% of plasma protein mass

    Albumin

    IgG Total

    Transferrin

    Fibrinogen

    IgA Total

    Alpha-2-MacroglobulinIgM Total

    Alpha-1-Antitrypsin

    C3 Complement

    Haptoglobin

    Apolipoprotein A-1

    Apolipoprotein B

    Alpha-1-acid Glycoprotein

    Lipoprotein(a)

    Factor H

    Ceruloplasmin

    C4 Complement Complement Factor B

    Prealbumin

    C9 Complement

    C1q Complement

    C8 Complement

    1%10%

    0 - 90% 90 - 99%

  • PPI© Plasma Proteome Institute

    Fac

    tor

    H

    *He

    mo

    glo

    bin

    *A

    lbum

    inIg

    G T

    otal

    Tra

    nsfe

    rrin

    Fib

    rino

    gen

    IgA

    Tot

    alA

    lpha

    -2-M

    acro

    glob

    ulin

    IgM

    Tot

    alA

    lpha

    -1-A

    ntitr

    ypsi

    nC

    3 C

    ompl

    emen

    tH

    apto

    glob

    inA

    polip

    opro

    tein

    A-1

    Apo

    lipop

    rote

    in B

    Alp

    ha-1

    -aci

    d G

    lyco

    pro

    tLi

    popr

    otei

    n(a)

    Cer

    ulop

    lasm

    inC

    4 C

    ompl

    emen

    tC

    ompl

    emen

    t F

    acto

    r B

    Pre

    albu

    min

    C9

    Com

    plem

    ent

    C1q

    Com

    plem

    ent

    C8

    Com

    plem

    ent

    C5

    Com

    plem

    ent

    Pla

    smin

    og

    en

    IgD

    C1

    Inhi

    bito

    rC

    6 C

    ompl

    emen

    tC

    7 C

    ompl

    emen

    tC

    ompl

    emen

    t F

    acto

    r I

    Ret

    inol

    Bin

    ding

    Pro

    tein

    iC3b

    Thy

    roxi

    n B

    indi

    ng G

    lobu

    linC

    2 C

    ompl

    emen

    t P

    rote

    inT

    hrom

    bus

    Pre

    curs

    or P

    rote

    inC

    -rea

    ctiv

    e P

    rote

    inB

    b F

    ragm

    ent

    C3a

    Com

    plem

    ent

    Pro

    tein

    Fer

    ritin

    Ran

    tes

    SC

    5b-9

    Com

    plex

    Myo

    glob

    inT

    hyro

    glob

    ulin

    TP

    AC

    5a C

    ompl

    emen

    tN

    euro

    n-S

    peci

    fic E

    no

    lase

    C-P

    eptid

    eA

    lph

    a-f

    eto

    pro

    tein

    TN

    F-B

    indi

    ng P

    rote

    ins

    Pro

    stat

    e-S

    peci

    fic A

    ntig

    enP

    rost

    atic

    Aci

    d P

    ho

    sph

    ata

    seC

    EA

    Mye

    lin B

    asic

    Pro

    tein

    Tro

    poni

    n I

    Inte

    rleu

    kin-

    1ra

    MIP

    -1 b

    eta

    Tro

    poni

    n T

    Inte

    rleu

    kin-

    8M

    IP-1

    alp

    haT

    issu

    e F

    acto

    rG

    CS

    FIn

    terf

    eron

    Alp

    haIn

    terl

    euki

    n-2

    Inte

    rleu

    kin-

    4T

    NF

    -Alp

    haIn

    terf

    eron

    Gam

    ma

    Inte

    rleu

    kin-

    1 B

    eta

    Inte

    rleu

    kin-

    12In

    terl

    euki

    n-10

    Inte

    rleu

    kin-

    5In

    terl

    euki

    n-6

    Proteins Measured Clinically in Plasma Span> 10 Orders of Magnitude in Abundance

    (Human male 50yr - from Specialty Laboratories Books)

    Nor

    mal

    Ran

    ge A

    bund

    ance

    sLo

    g10

    Con

    cent

    ratio

    n in

    pg/

    mL

    0

    2

    4

    6

    8

    10

    12

    1

    3

    5

    7

    9

    11

    Interleukins & Cytokines

    Classical Plasma ProteinsTissue Leakage

    Other

    Dynamic range of2-D gels or LC/MS

    Total Cost: $10,695per sample (clinical

    assays)

    From:The human plasma proteome: history, character,and diagnostic prospects. Anderson, N. L.Anderson, N. G., Mol Cell Proteomics (2002) 1:845-67.

  • PPI© Plasma Proteome Institute

    Nucleic Acids Exist Free in Plasma• Genomic DNA is present in plasma (~1ug/ml)

    – Released by apoptosis & necrosis, e.g., by tumorcells

    – Mutations (e.g., in P53) can be detected

    • mRNA can be detected in plasma– Fetal mRNA can be found free in maternal circulation

    • Current and likely future utility confined toqualitative tests (genotyping)– mRNA concentrations are very poor indicators of the

    amount of protein products

    • Proteins remain the focus of the search fordisease and response markers

  • PPI© Plasma Proteome Institute

    Genetic Component of Variation inAbundance of 15 Proteins in Plasma

    0%

    20%

    40%

    60%

    80%

    100%

    C-pe

    ptide

    Facto

    r XIIa

    * Ins

    ulin-

    like

    grow

    th fa

    ctor I

    Lept

    in

    Pros

    tate

    -spe

    cific

    antig

    en

    IGFB

    P-3

    von

    Wille

    bran

    d fa

    ctor

    Insu

    lin-lik

    e gr

    owth

    facto

    r II

    Histi

    dine-

    rich

    glyco

    prot

    ein

    Gc (g

    roup

    -spe

    cific

    com

    pone

    nt)

    IgE

    Facto

    r XIII

    acti

    vity

    * Ins

    ulin-

    like

    grow

    th fa

    ctor-I

    PAI-1

    ant

    igen

    Lipop

    rote

    in(a)P

    rop

    ort

    ion

    of

    Var

    iati

    on

    Att

    rib

    ute

    d t

    o G

    enet

    ics

    (Published values from many sources*= two discordant studies)

    Genotype

    Phenotype

  • PPI© Plasma Proteome Institute

    Plasma Proteomics Began in SwedenSvedberg, Tiselius, Laurell, et al

    Year

    1

    10

    100

    1000

    10000

    1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

    Lo

    g10

    Nu

    mb

    er o

    f R

    eso

    lved

    S

    pec

    ies Number of Zones/Spots

    Sequence Identified Unique Proteins

    “1-D”

    From:The human plasma proteome: history, character,and diagnostic prospects. Anderson, N. L.Anderson, N. G., Mol Cell Proteomics (2002) 1:845-67.

  • PPI© Plasma Proteome Institute

    The Second Phase of Plasma ExplorationBegan with 2-D Gels (c. 1976)

    2-D Electrophoresis

    300+ resolved spots

    40 identified proteins

    Anderson,L., Anderson,N. G. High resolution two-dimensionalelectrophoresis of human plasma proteins. (1977) PNAS 74, 5421-5

  • PPI© Plasma Proteome Institute

    2-D Electrophoresis Continued the Growth inNumber of “Spots” but Not Many New Proteins

    Year

    1

    10

    100

    1000

    10000

    1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

    Lo

    g10

    Nu

    mb

    er o

    f R

    eso

    lved

    S

    pec

    ies Number of Zones/Spots

    Sequence Identified Unique Proteins

    “1-D”

    “2-D”

    40*49+ 60†

    From:The human plasma proteome: history, character,and diagnostic prospects. Anderson, N. L.Anderson, N. G., Mol Cell Proteomics (2002) 1:845-67.

    * L. Anderson and N. G. Anderson. (1977) PNAS 74,5421-5.+ G. J. Hughes, et al (1992) Electrophoresis 13, 707-14.† Swiss 2DPage website

  • PPI© Plasma Proteome Institute

    >2 Dimensions of Separation RadicallyIncreases the Number of Detected Proteins

    Year

    1

    10

    100

    1000

    10000

    1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

    Lo

    g10

    Nu

    mb

    er o

    f R

    eso

    lved

    S

    pec

    ies Number of Zones/Spots

    Sequence Identified Unique Proteins

    “1-D”

    “3+-D”

    “2-D”

    4049 60

    341b607a

    From:The human plasma proteome: history, character,and diagnostic prospects. Anderson, N. L.Anderson, N. G., Mol Cell Proteomics (2002) 1:845-67.

    a. J. N. Adkins, et al, Mol Cell Proteomics 1, 947-55.b. R. S. Tirumalai, et al, Mol Cell Proteomics 2, 1096-103.c. R. Pieper, et al, Proteomics 3, 422-32.d. H_Plasma_NR-v2

    319c

    1175d

  • PPI© Plasma Proteome Institute

    Serum

    High Abundance Proteins in Plasma or SerumLimit Detection of Minor Components

    A: Albumin

    B: Transferrin

    C: Apo A-I lipoprotein

    D: Haptoglobin β-chain

    E: α1-Antitrypsin

    AE

    D

    C

    B

  • PPI© Plasma Proteome Institute

    Fibrinogen-β

    Fibrinogen-α

    Fibrinogen-γ

    pH 7.5

    Mr 200 kD

    10 kD

    pH 4

    Polyclonal Antibodies Specifically and RepeatablyRemove Target Proteins from Serum/Plasma

    Proteins Bound from Plasma by Affinity-Purified anti-Fibrinogen Ab

  • PPI© Plasma Proteome Institute

    A: anti-albumin, anti-transferrin,anti-haptoglobin, anti-α-1-antitrypsin, anti-α-1-acidglycoprotein, anti-α-2-HSglycoprotein, anti-hemopexin,anti-transthyretin, anti-antithrombin-III.

    B: 50% anti-IgA and 50% anti-IgMC: anti-α-2-macroglobulin

    D: anti-apolipoprotein A1

    Scout: switching valve 1

    Scout: switching valve 2

    A B C D

    Multicolumn Implementation ofPlasma Immunosubtraction

  • PPI© Plasma Proteome Institute

    Serum Bound Unbound

    Multi-Component Immunoaffinity Subtraction Chromatography, AnInnovative Step Towards A Comprehensive Survey Of The Human PlasmaProteome, Rembert Pieper, et al, Proteomics, (2003) Proteomics 3, 422-32.

    Antibody Affinity Subtraction of10 High Abundance Proteins from Serum

    SubtractedSubtractedAlbuminAlbuminIgGIgGIgA IgA αα11 antitrypsin antitrypsinαα11 acid glycoprotein acid glycoproteinαα22 HS glycoprotein HS glycoproteinHemopexinHemopexinAntithrombin Antithrombin IIIIIITransferrinTransferrinHaptoglobinHaptoglobinTransthyretinTransthyretinIgMIgMαα22 macroglobulin macroglobulin

  • PPI© Plasma Proteome InstituteThe Human Serum Proteome: Display Of Approximately 3,500 Chromatographically

    Separated Distinct Protein Spots On 2-DE Gels And Identification Of 307 UniquelyAnnotated Proteins, Rembert Pieper, et al, Proteomics 3(7): 1345-64. (2003)

    The Current Phase of Plasma ProteomicsEmploys Multi-Dimensional (>2D) Approaches

    (e.g., 3-D Chromatography + 2-DE + LC/MS)

    66 2-D gels

    wholeserum

    2 4,5

    IASC-serum

    6X 11 SEC-serumfractions each

    6 AEC-serumfractions

    1 3D:

    >300 distinct proteingene products

  • PPI© Plasma Proteome Institute

    F4F3

    F2 F1

    100

    100100

    50

    100

    5050

    25

    50

    25

    25

    25

    6.5

    6.5

    6.5

    6.5

    5

    5

    5

    5

  • PPI© Plasma Proteome Institute

    So How Many Proteins Are Therein Plasma?

    • Different methods yield different sets of proteins– Reasons include physicochemical biases of techniques, and

    statistics of peptide choice in MS/MS

    • The most comprehensive approach is therefore tocombine data from different approaches– We used four input datasets:

    • Base list of ~450 proteins reported in “non-proteomics” literatureas measured/detected in plasma or serum

    • Three sets of 300-600 proteins each from proteomics surveys (2-Dgels + MS/MS; LC/LC-MS/MS)

    • Combined data can be made non-redundant usingmethods of genomics– Redundancy definition: >95% homology over >=15 amino acid

    subsequence• Results from: The Human Plasma Proteome: A Non-Redundant List

    Developed by Combination of Four Separate Sources, Anderson etal, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    HAPTOGLOBIN

    Achieving Non-Redundancy: MS Identifications ofHaptoglobin in Plasma Proteome Datasets

    LCMS1

    Fragment

    Splice Variant

    SwissProtAccessionNumberP00737

    P00738

    Related Protein P00739

    NCBI GI Accession

    NumberGI123507GI123510

    GI4826762

    RefSeqNP_005134

    LCMS1LIT

    LIT

    LIT

    2DEMS

    2DEMS

    2DEMS

    LCMS2

    LCMS1

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    Sources of H_Plasma_NR_v2Lit LCMS1 LCMS2 2DEMS Total

    Beginning Accessions 468 607 341 319 1735Minus non-human 458 580 330 312 1680Minus intra-source

    redundancy and nonhuman accessions

    433 475 318 283 1509

    Unique to source in NR 284 334 221 141 980Total combined NR list - - - - 1175

    • Lit: N.L. Anderson and M. Polanski, result of literature search for proteins detected in plasma or serum.

    • LCMS1: J. N. Adkins, S. M. Varnum, K. J. Auberry, R. J. Moore, N. H. Angell, R. D. Smith, D. L.Springer and J. G. Pounds. (2002) Toward a human blood serum proteome: Analysis bymultidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 1, 947-55.

    • LCMS2: R. S. Tirumalai, K. C. Chan, D. A. Prieto, H. J. Issaq, T. P. Conrads and T. D. Veenstra. (2003)Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2, 1096-103.

    • 2DEMS: R. Pieper, Q. Su, C. L. Gatlin, S. T. Huang, N. L. Anderson and S. Steiner. (2003) Multi-component immunoaffinity subtraction chromatography: An innovative step towards a comprehensivesurvey of the human plasma proteome. Proteomics 3, 422-32.

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    Overlap of Four Plasma Proteome Datasets(Number of NR proteins)

    284

    141

    221

    46

    5

    17

    17

    7

    32

    21

    32

    3

    5

    334

    10

    LCMS2

    LCMS1Lit

    2DEMS• 46 proteins in

    all four lists

    • 195 proteins in2 or more lists

    • 1175 NRproteins total

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    Some Proteins of H_Plasma_195• adiponectin (involved in the control of fat metabolism and insulin

    sensitivity),

    • atrial natriuretic factor (a potent vasoactive substance synthesized inmammalian atria and thought to play a key role in cardiovascularhomeostasis),

    • various cathepsins (D, L, S),

    • centromere protein F (involved in chromosome segregation duringmitosis),

    • creatine kinase M chain (an abundant muscle enzyme),

    • glial fibrilary acid protein (GFAP: distinguishes astrocytes from otherglial cells),

    • psoriasin (S-100 family, highly up-regulated in psoriatic epidermis),

    • interferon-induced viral-resistance protein MxA (confers resistance toinfluenza virus and vesicular stomatitis virus),

    • melanoma-associated antigen p97 (a proposed cancer marker alsoexpressed in multiple normal tissues),

    • mismatch repair protein MSH2 (involved in post-replication mismatchrepair, and whose defective forms are the cause of hereditary non-polyposis colorectal cancer type 1),

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    Some Proteins of H_Plasma_195

    • oxygen regulated protein (which plays a pivotal role in cytoprotectivecellular mechanisms triggered by oxygen deprivation),

    • peroxisome proliferator-activated receptor (PPAR) binding protein(which plays a role in transcriptional coactivation),

    • prostate-specific antigen (a protease involved in the liquefaction of theseminal coagulum, and one of the few successful cancer diagnostics),

    • selenoprotein P (contains selenocyteines encoded by the opal codon,UGA),

    • signal recognition particle receptor alpha subunit (an integralmembrane protein ensuring, in conjunction with srp, the correcttargeting of the nascent secretory proteins to the endoplasmic reticulummembrane system),

    • squamous cell carcinoma antigen 1 (which may act as a proteaseinhibitor to modulate the host immune response against tumor cells),

    • V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (thereceptor for stem cell factor).

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    Signal Sequences in the Plasma Proteome

    2DEMS

    LCMS2

    LCMS1

    Lit

    no possiblesignal

    signal signalconfident

    Num

    ber o

    f Occ

    urre

    nces

    0

    200

    400

    0

    400

    no possiblesignal

    signal signalconfident

    Signal Prediction

    H_Plasma_195

    H_Plasma_NR

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    Predicted TransmembraneSegments

    0 4 8 12 16 200

    50100150200250300350400

    0

    10

    20

    30

    40

    B

    Occ

    urre

    nces

    (num

    ber,

    0-1

    Segm

    ents

    )

    Occ

    urre

    nces

    (num

    ber,

    2-21

    Seg

    men

    ts)

    A

    0

    20

    40

    60

    80

    100

    120

    140

    0

    5

    10

    15

    Transmembrane Segments (number)

    H_Plasma_195

    H_Plasma_NR 2DEMSLCMS2

    LCMS1

    Lit

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    GO Component Annotations forSubsets of the Human Proteome

    Extracellular7%

    Membrane39%

    Cytoskeletal3%

    Golgi2%

    Mitochondrial4%

    Nuclear30%

    Kinesin complex0%

    Intracellular8%

    Endoplasmic Reticulum

    3%

    Lysosomal1%

    Cytoplasmic3%

    Extracellular27%

    Membrane27%Intracellular

    2%

    Cytoplasmic13%

    Cytoskeletal4%

    Endoplasmic Reticulum

    3%

    Golgi2%

    Lysosomal2%

    Mitochondrial3%

    Kinesin complex6%

    Nuclear11%

    Extracellular

    Membrane

    Intracellular

    Cytoplasmic

    Cytoskeletal

    Endoplasmic Reticulum

    Golgi

    Lysosomal

    Mitochondrial

    Kinesin complex

    Nuclear

    Extracellular

    Membrane

    Intracellular

    Cytoplasmic

    Cytoskeletal

    Endoplasmic Reticulum

    GolgiLysosomal

    Mitochondrial

    Kinesin complex

    Nuclear

    Plasma4 of 4 (46)

    Plasma2 of 4 (195)

    Plasma 1 of 4 (1,175)

    Human Proteome (10,911)

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    GO Component Annotations forFour Data Sources

    Extracellular

    Membrane

    Kinesin complex

    Intracellular

    Endoplasmic Reticulum

    Lysosomal

    Cytoplasmic

    Nuclear

    Mitochondrial

    Golgi

    CytoskeletalExtracellular

    Membrane

    Intracellular

    Cytoplasmic

    Cytoskeletal

    Endoplasmic Reticulum

    Golgi

    Lysosomal

    Mitochondrial

    Kinesin complex

    Nuclear

    Extracellular

    MembraneIntracellular

    Cytoplasmic

    Cytoskeletal

    Endoplasmic Reticulum

    Golgi

    Lysosomal

    Mitochondrial

    Kinesin complex

    NuclearExtracellular

    Membrane

    IntracellularCytoplasmic

    Cytoskeletal

    Endoplasmic Reticulum

    Golgi

    Lysosomal

    Mitochondrial

    Kinesin complex

    Nuclear

    LCMS2

    Lit 2DEMS

    LCMS1

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    GO Functional Categories of Proteins inH_Plasma_NR

    0

    50

    100

    150

    200

    250

    Calc

    ium

    bin

    ding

    Cyto

    kine

    DN

    A bi

    ndin

    g

    Hor

    mon

    e

    Inhi

    bito

    r

    Prot

    ease

    Rec

    epto

    r

    Tran

    spor

    t

    Num

    ber o

    f Occ

    urre

    nces

    Go:Function Assignments

    2DEMS

    LCMS2

    LCMS1

    Lit

    From: The Human Plasma Proteome: A Non-Redundant List Developed by Combinationof Four Separate Sources, N. L. Anderson et al, Molec. Cell Proteomics, in press

  • PPI© Plasma Proteome Institute

    Reasons for Optimism re Discoveryof Protein Disease Markers

    • Discovery-type proteomics can now detect 500-1,000distinct proteins in serum– Steady improvements in LC-LC/MS-MS

    • Many of these proteins fall in classes likely to beinformative re tissue status– Secreted proteins, extracellular domains of plasma

    membrane proteins, leaked intracellular proteins

    • An open-source database of proteins of proteinsobserved in plasma is emerging

    • Single protein markers are not required– Disease associated panels exist where no accurate single-

    protein disease marker is available

    • A series of measurements over time detects changemore accurately than comparison with simplereference interval

  • PPI© Plasma Proteome Institute

    0

    1

    2

    3

    4

    1992 1994 1996 1998 2000 2002 2004

    Year

    Nu

    mb

    er o

    f N

    ew P

    rote

    ins

    in P

    lasm

    a/Y

    r Year

    1

    10

    100

    1000

    10000

    1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

    Lo

    g10

    Nu

    mb

    er o

    f R

    eso

    lved

    Sp

    ecie

    s

    Number of Zones/SpotsSequence Identified Unique Proteins

    “1-D”

    “3+-D”

    “2-D”

    4049 60

    305*490+

    More New Proteins =Fewer New Diagnostics?

    • The gap between what canbe measured on a lab scaleand what can be usedeffectively in clinicaldiagnostics is widening

    • The number of tests for newproteins in plasma approvedby US FDA over the lastdecade has declined, andnow approaches zero

    • Problems include– Technology mismatch– Regulatory costs– Demonstration of medical

    value– Medical economics

  • PPI© Plasma Proteome Institute

    Challenges Facing Marker/DiagnosticProteomics: Translation into

    Diagnostic Tests

    • Lack of protein measurement platforms gearedto validation (high-throughput, low-cost)

    • Access to large, well-organized sample sets forvalidation

    • Falling rate of new protein tests over last decade

    • Low expectation of diagnostic profitability impairscommercial investment

    • Potential IP traffic jam

  • PPI© Plasma Proteome Institute

    A Major Technology Gap Exists BetweenDiscovery and Routine Diagnostic Proteomics

    Routine IVDDiscovery

    100-10,000# samples2-50~15 mintime required4-52 wks

    3-5%CV25-50%$2-100$ per analysis$1,000-$10M1-20# proteins50-700

    ?

  • PPI© Plasma Proteome Institute

    “The appealing notion that research advancestravel from bench to bedside is laudable, butconceptually flawed. Even though the U.S.

    Congress fully anticipates that funding to theNational Institutes of Health (NIH) will result in

    advances in clinical medicine and that otherforces, presumably non-governmental, willtranslate the latest in exciting science intohealth technologies, under the system of

    healthcare we have today, this advancement isnot likely to happen.”

    Floyd BloomPresident, AAAS

    Science 300:1680-1685 (2003)

  • PPI© Plasma Proteome Institute

    Towards a Flexible, High-ThroughputQuantitative MS Platform

    • Goals– Assay pre-selected proteins, i.e., identified

    candidate disease markers for validationstudies

    – Combine specific enrichment with MSquantitation

    – Increase speed and throughput bydecreasing reliance on gradient LC

    – Avoid method bias towards a class ofproteins

  • PPI© Plasma Proteome Institute

    SISCAPA*: A New Method Combining The Specificity ofMS Detection with Sensitivity of Antibody Capture

    (SISCAPA = Stable Isotope Standards with Capture by Anti-Peptide Antibody)

    * patent pending

  • PPI© Plasma Proteome Institute

    Selection of Peptides and Anti-Peptide Antibodies

    Identification code

    Protein Peptide Immunogen RabbitAntibody

    Interleukin-6 (IL-6) EALAENNLNLPKGSGC IMM2 Ab 2

    Hemopexin (Hx) NFPSPVDAAFRGSGC IMM3 Ab 3

    α1-Antichymotrypsin (AAC) EIGELYLPKGSGC IMM4 Ab 4

    Tumor necrosis factor alpha(TNFα)

    DLSLISPLAQAVRGSGC IMM5 Ab 5

    Tumor necrosis factor alpha(TNFα)

    CGSGDLSLISPLAQAVR IMM6 Ab 6

    • 10,203 peptides generated in silico from 237 known plasmasequences

    • Monitor peptides selected based on physical/antigenicityparameters. >80% of proteins had 1 or more “good” peptides.

    • Selected peptides synthesized, coupled to albumin carrier, usedin 38-day rabbit immunization protocol. Ab’s affinity purified onsame peptide immobilized on agarose.

  • PPI© Plasma Proteome Institute

    Flow cytometric detection of rabbit anti-peptideantibodies coupled to POROS® –Protein G beads

    • A: Black profile; POROS® protein Gbeads incubated with biotinylatedprotein L and fluorescein-labeledstreptavidin (negative control).Green profile; POROS® Streptavidinbeads incubated with biotinylatedProtein L and detected withfluorescein-conjugated streptavidin(positive control).

    • B: Detection of covalently coupledrabbit anti-peptide antibodies onPOROS® Protein G beads. Beadscovalently coupled with 5 rabbitaffinity-purified Abs incubated firstwith biotinylated Protein L, followedby detection with fluorescein-conjugated streptavidin.

  • PPI© Plasma Proteome Institute

    Relative binding of Alexa Fluor®488-labeled peptides tofive affinity purified anti-peptide antibodies

    • The binding of fourpeptides, ALX 2-6, byPOROS® affinity matricescontaining either theirhomologous (specific) orheterologous (non-specific)antibodies was analysed.The values for eachantibody are normalized tothe maximum fluorescenceintensity for that antibody.Each value is the medianfluorescence intensity for1200 flow cytometerevents. Ab’s 5 and 6 areagainst opposite ends ofthe same peptide.

  • PPI© Plasma Proteome Institute

    SISCAPA: Initial LC-MS Experiments

    • 100nl Ab-POROS columns(100u ID x 1cm)

    • Acid-eluted peptide (fromAb column) captured onC18 and eluted into MSby gradient LC

    • N. L. Anderson et al,Mass SpectrometricQuantitation of Peptidesand Proteins Using StableIsotope Standards andCapture by Anti-PeptideAntibodies (SISCAPA), J.Proteome Research, inpress

  • PPI© Plasma Proteome Institute

    Time, min

    31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

    SIS2666.34

    SIS3615.79 SIS5

    694.90

    554.78

    SIS4534.33

    0.0

    5000.0

    1.0e4

    0.0

    5000.0

    1.0e4

    A

    B

    C

    Intensity, cps

    3.5e4

    4.0e4

    4.5e4

    5.0e4

    5.5e4

    6.0e4

    6.5e4

    7.0e4

    Ab Capture from SIS Peptide Mixturewith Selected Ion Monitoring

  • PPI© Plasma Proteome Institute

    )

    40 41 42 43 44 45 46 47 48 49 50 51 52

    Time, min

    950.46

    610.83767.92 472.23

    507.28871.97

    516.28.

    767.9

    610.8

    615.8

    A

    B

    C D

    959.5233

    1220.66091107.6035

    862.4561775.4235

    959.5220

    775.4199862.4642

    969.5465

    785.4437

    872.4988

    750 850 950 1050 1150 1250m/z, amu

    819.4783

    932.5742

    A

    B

    C

    D

    SIS3: NFPSPVDAAFR

    Nat3: NFPSPVDAAFR

    Nat3+: WKNFPSPVDAAFR

    Apo A-I: QGLLPVLESFK

    Enrichment and Quantitation of a HemopexinMonitor Peptide by SISCAPA

  • PPI© Plasma Proteome Institute

    Ab2Ab3

    Ab4Ab5

    SIS2

    SIS3

    SIS4

    SIS5

    0

    0.2

    0.4

    0.6

    0.8

    1

    Relative Quantities of Four SIS Peptides Bound by Four Anti-Peptide Antibodies, Using Two-stage MS Selection (SRM)

    Average Peptide Enrichment by Ab > 100-fold

    The signals (vertical axis) for each antibody are normalized to the largest signal for that antibody

  • PPI© Plasma Proteome Institute

    Cycle 1Cycle 2

    Cycle 3Cycle 4

    Cycle 5

    SIS2

    SIS3

    SIS4

    SIS5

    0.0

    2,000.0

    4,000.0

    6,000.0

    8,000.0

    10,000.0

    12,000.0

    SRM integrated ion current measurements of four SIS peptides eluted on five successive cycles from Ab 3.

    Rabbit Polyclonal Anti-Peptide Ab’sCan Be Recycled After Acid Elution

  • PPI© Plasma Proteome Institute

    Targeted Proteomics (e.g., SISCAPA)Enables Marker Validation

    • Focus onmeasurement ofidentified proteins

    • Accepts input fromboth proteomicsand genomics

    • Bridges gapbetween discoveryand routinediagnostic use

    • Hybrid methods,e.g., SISCAPA

  • PPI© Plasma Proteome Institute

    PPI’s Plasma Marker Validation Project

    • Identify marker protein candidates from anysource (literature, proteomics, genomics)

    • Develop high-throughput MS-based validationassays

    • Assay candidates in large well-characterizedplasma/serum sample sets (disease vs controland population studies)

    • Place validation data in public domain• Advance protein measurement technology for

    plasma

  • PPI© Plasma Proteome Institute

    Acknowledgements

    • SISCAPA Experiments– Bob Olafson, Derryl Hardy, UVIC-Genome B.C.

    Proteomics Centre– Terry Pearson, Lee Haines, Department of

    Biochemistry and Microbiology, University of Victoria,B.C, Canada

    – John Rush, Cell Signaling

    • Plasma Proteome Database– Malu Polanski (PPI)– Richard Fagan, Anna Lobley, Inpharmatica Ltd.,

    London– Rembert Pieper, Tina Gatlin, present address: The

    Institute for Genomic Research – Radhakrishna S. Tirumalai, Timothy D. Veenstra, Mass

    Spectrometry Center, U. S. National Cancer Institute– Joshua N. Adkins, Joel G. Pounds, Biological Sciences

    Department, Pacific Northwest National Laboratory

    • Graphics– Arkitek Studios, Seattle

    Ahmed, NAnderson, N GAponte, AAponte, JBraatz, JBrooke, EDas, TDavis, TEidbo, EEsquer, RField, EGatlin, CGoodman, JHardin, RHofmann, J-PHuang, S-TJett, G

    Kho, KKiersarsky, KLennon, JLove, CMakusky, JMatthews, JMcGrath, AMcCrea, CMichael, SMiller, SMondal, MMontgomery, RMyers, TNorouzi, TParmar, PPiasecki, M

    Russo, PSchatz, CSeonarain, MSims, CSteiner, SStewart, DSu, QSun, QTaylor, ATaylor, JTran, MVizzi, BWallgren, LWang, FWannberg, SZhou, J

    • LSBC Proteomics Alumni