the use of airborne laser scanner data (lidar) for forest measurement applications hans-erik...

32
The use of airborne laser scanner The use of airborne laser scanner data (LIDAR) for forest measurement data (LIDAR) for forest measurement applications applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington College of Forest Resources

Upload: oswald-hamilton

Post on 16-Dec-2015

223 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

The use of airborne laser scanner data (LIDAR) The use of airborne laser scanner data (LIDAR) for forest measurement applicationsfor forest measurement applications

Hans-Erik Andersen

Precision Forestry Cooperative

University of Washington

College of Forest Resources

Page 2: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Forest structure analysis using remotely sensed data Forest structure analysis using remotely sensed data

Three-dimensional forest structure information is required to support a variety of resource management activities

- Timber inventory and management

- Habitat monitoring

- Watershed management

- Fire behavior modeling

- Forest operations

Page 3: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Limitations of two-dimensional image data for forest Limitations of two-dimensional image data for forest structure analysis structure analysis

• Traditionally, acquired through manual or semi-automated interpretation of aerial photographs or digital imagery

• Vertical (3-D) forest structure information acquired directly from field measurements or indirectly inferred from 2-D image information

• New generation of active remote sensing technologies (LIDAR, IFSAR) provide direct, 3-D measurement of vegetation and terrain surface

Page 4: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Why now? Why now?

Convergence of two enabling technologies for acquisition of precise position and orientation of active airborne sensor

1) Airborne global positioning systems (GPS)

- Differentially corrected

- Positional accuracy: 5-10 cm

2) Inertial navigation systems (INS)

- Utilize gyroscopes and accelerometers

- Orientation (pitch/roll) accuracy : ~ 0.005°

• Revolutionizing airborne remote sensing

Page 5: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

LIDAR LIDAR ((LiLight ght DDetection etection AAnd nd RRanging)anging)

• Active airborne sensor emits several thousand infrared laser pulses per second

• Operates on principle that if location and orientation of laser scanner is known, we can calculate a range measurement for each recorded echo from a laser pulse

• Components of system include INS (inertial navigation system), airborne differential GPS, and laser scanner

• Range measurements are post-processed and delivered as XYZ coordinates

Courtesy: Spencer Gross

Page 6: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Capitol Forest LIDAR projectCapitol Forest LIDAR project

• LIDAR data acquired in the spring of 1999 covering 5.2 km2 within Capitol State Forest, near Olympia, WA

• Variety of silvicultural treatments have been applied in this area

Area covered by LIDAR flightWashington State

Seattle

Olympia

Page 7: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Flight parameters and system settings for Flight parameters and system settings for Capitol Forest LIDAR projectCapitol Forest LIDAR project

• Laser scanning system: SAAB TopEye

• Platform: Helicopter• Flying height: 650 ft• Flying speed: 25 m/sec• Scanning swath width: 70 m• Laser pulse density: 3.5

pulses/m2

• Laser pulse rate: 7000 pulses/second

• Maximum echoes per pulse: 4

Page 8: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

LIDAR for topographic mappingLIDAR for topographic mapping

• Laser pulses can penetrate forest canopy through gaps• Some laser pulses reach forest floor, other returns reflect from

canopy and sub-canopy vegetation

• Allows for detailed modeling of terrain surface

USGS DTM LIDAR DTM

Page 9: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

LIDAR for forest structure analysisLIDAR for forest structure analysis LIDAR data represent direct measurements of three-dimensional forest structure

- “Small-footprint” vs. “large-footprint” systems- “Continuous waveform” vs. “discrete return” systems- Many small footprint, discrete return LIDAR systems can acquire multiple measurements from a single laser pulse

Courtesy: Spencer Gross

Page 10: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

LIDAR for forest structure analysis LIDAR for forest structure analysis

High-density LIDAR data within Capitol Forest study area

Same area in 1 ft orthophoto

Page 11: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

LIDAR for forest structure analysis LIDAR for forest structure analysis

• “Forest structure is above ground organization of plant materials” – (Spurr and Barnes, 1980)

• Forest structural patterns are three-dimensional- Growth at scale of individual tree crowns- Competition for limited resources (light, water, nutrients)

Page 12: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

LIDAR for forest measurement LIDAR for forest measurement applications applications

How do we parameterize this three-dimensional spatial distribution of above ground biomass components?

• Regular grid/lattice - Distribution of foliage generalized within grid cell area (i.e. 30 x 30 m

cells) - Provides extensive data relating to forest structure across landscape

• Object/individual tree level- Distribution of foliage associated with individual tree crowns - Provides intensive, detailed spatially explicit forest measurement data

Page 13: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Stochastic modeling and LIDAR forest sensingStochastic modeling and LIDAR forest sensing

• The distribution of LIDAR measurements throughout the canopy contains information relating to forest structure in both vertical and horizontal dimensions

• Large-footprint, continuous waveform LIDAR has been used successfully to characterize forest structure patterns (Lefsky et al, 2002).

• Small-footprint, discrete return LIDAR measurements can be modeled as observations from a stochastic process

• Stochastic model represents physical LIDAR sensing process

Page 14: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Bayesian LIDAR scan analysis for characterization Bayesian LIDAR scan analysis for characterization of forest structureof forest structure

• Inferences can be carried out in probabilistic terms, allowing for more complex, realistic modeling of forest spatial processes

• Sensing geometry is explicitly modeled (i.e. effects of scan angle, etc.)

• A Bayesian statistical framework allows for sources of uncertainty and prior knowledge to be quantified and incorporated into model

• Due to the complexity of the probability models, inferences are typically based upon Monte Carlo simulation

Page 15: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

yt

Bayesian LIDAR scan analysis for interpretation of Bayesian LIDAR scan analysis for interpretation of forest scenes: Model formulationforest scenes: Model formulation

• A single LIDAR measurement yt is a distinct point along a 3-D vector t

• t T, where T represents the scan space - the set of all 3-D vectors associated with the potential paths of all emitted laser pulses from the sensor to the ground surface

• Observed data: yt represent LIDAR measurements acquired over a forest

t

* ***

***

T

• LIDAR scan space (3-D vectors) analogous to image space (2-D pixels)

Page 16: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Modeling Laser-Canopy InteractionModeling Laser-Canopy Interaction

• Variability in spatial distribution of plant materials (leaves, branches, stems, etc.) gives rise to gap probability function (Kuusk, 1991)

• The observed LIDAR measurements, y, will be related to the distribution of foliage, x, through a probability distribution

• This distribution, p(yt | x), is termed the sampling distribution

Page 17: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Modeling Laser-Canopy InteractionModeling Laser-Canopy Interaction

• The sampling distribution p(yt | x) describes the probability that a given laser pulse, traveling along a 3-D vector t, at an angle θ, will reflect from a particular

location yt given a certain vertical distribution of canopy foliage, x

• The parameters of the vertical distribution of foliage density, x, determine of global spatial organization of canopy materials – represented as a mixture model

yt *

x

• Parameters of this mixture model provide a detailed, quantitative description of forest structure (Landsberg, 1986)

t T

Page 18: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Modeling laser transmission within the forest canopyModeling laser transmission within the forest canopy

• Laser energy is backscattered as it passes through a vegetation canopy

• Probability of a beam of light passing through a canopy (i.e. not reflected) is given by gap probability function, based upon Beer’s law (Sun and Ranson, 2000):

p = e-(kS)/cosθ

where p is the probability that the beam is not reflected,k is a measure of foliage area projected onto a plane normal to the light beam, is the foliage area density, andS is the distance that the beam travels through the canopyθ is the off-nadir angle of the beam

• Models of this type can be used to determine the form of the sampling distribution for LIDAR measurements p(yt | x)

Page 19: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

• In a Bayesian context, the posterior distribution of foliage distribution parameters represents the probability of a particular foliage density distribution, with parameter vector x, given the observed LIDAR data, y:

p (y | x) t T p(yt | x) p(x)

• The mode of the posterior distribution will therefore represent the most probable foliage distribution, given the LIDAR:

Posterior mode = argmax[p (y | x)]

• Finding the posterior mode is essentially a combinatorial optimization problem

Bayesian LIDAR scan analysis: Inferential approachBayesian LIDAR scan analysis: Inferential approach

Page 20: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

• The target distribution can arise as the equilibrium distribution of a special type of Markov chain – Green (1995)

• Moves within Markov chain consist of: • addition of a model component • deletion of an component • change of object parameters• splitting of a component• merging of two components

• After a large number of steps, the subsequent samples can be considered to be draws from the target (posterior) distribution

• Global optimization techniques used to determine the posterior mode

Posterior inference via Markov Chain simulationPosterior inference via Markov Chain simulation

Page 21: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Bayesian LIDAR scan analysis for characterizing forest Bayesian LIDAR scan analysis for characterizing forest structure: Inferential approachstructure: Inferential approach

Scan space T

Parameter configuration

corresponding to posterior mode

Most probable foliage distribution, given LIDAR data

**

*

*

*

*

*

***

*

*

*

Page 22: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Bayesian LIDAR scan analysis for characterizing vertical forest Bayesian LIDAR scan analysis for characterizing vertical forest structure: Example from Capitol Forest, WAstructure: Example from Capitol Forest, WA

Stand structure projected from 1/5 acre field plot data

Estimate of vertical foliage profile from LIDAR scan analysis

Page 23: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Spatially explicit forest measurement through Spatially explicit forest measurement through Bayesian LIDAR scan analysisBayesian LIDAR scan analysis

• This modeling framework can also be used to infer individual tree locations and dimensions

• Based upon theory developed in pattern recognition and computer vision (Bayesian object recognition)

• Allows spatial interaction processes to be incorporated into model

• Output represents a spatially explicit representation of forest canopy components

Page 24: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

x

Spatially explicit forest measurement through Bayesian LIDAR Spatially explicit forest measurement through Bayesian LIDAR scan analysis: Model formulationscan analysis: Model formulation

• The sampling distribution p(yt | x) describes the probability that a given laser pulse, traveling along a specified 3-D vector

t, will reflect from a particular location yt given a certain configuration of tree objects x.

• The object configuration x will determine the global spatial organization of canopy materials -- modeled as a spatial point process

t T

yt *

• Each object (tree) xi is an element of object space U, and can be identified by location, size, crown form, and foliage density

(size, form, density)

(x, y)

xi U

Page 25: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

• Inferences based upon the posterior probability density of object configurations, conditional on the observed LIDAR data

• Prior distribution p(x) is a probability density over possible object configurations

- Prior will penalize unrealistic forest patterns

- For example, large trees rarely grow close to one another

- We typically have some prior knowledge regarding the distribution of tree dimensions in a given forest

Spatially explicit forest measurement through Spatially explicit forest measurement through Bayesian LIDAR scan analysisBayesian LIDAR scan analysis

Page 26: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

• Spatial point processes are a flexible class of models for characterizing spatial patterns in the forest – Ripley (1981), Penttinen et al. (1992)

• Marked point processes allow attributes to be attached to a point

- For example, xn may denote the (x,y) location of a tree, while the

mark, mn, may represent the crown diameter of this tree

• Markov point processes for modeling patterns with local interactions

- Realistic assumption in forest dynamics

Modeling the Spatial Distribution of Trees: The Prior DistributionModeling the Spatial Distribution of Trees: The Prior Distribution

Page 27: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

• The Strauss process is a Markov point process used to model pairwise interaction:

p(x) = n(x) s(x)

where

- n(x) = the number of points in the configuration x

- s(x) = the number of points within a specified distance from each other

- 0< < 1

- When < 1, there is inhibition between points

• Markov marked point process: interaction depends upon the marks - Allows different interactions between trees of various sizes or species types

Modeling the Spatial Distribution of Trees: The Prior DistributionModeling the Spatial Distribution of Trees: The Prior Distribution

Page 28: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

• In object recognition, global maximum of the posterior distribution often of primary interest

• Maximum a posteriori (MAP) estimate of x

= argmax[p(x | y)]

= argmax[f (y | x) p(x)]

• MAP estimate represents the most probable global configuration of tree objects, given the observed LIDAR data

Posterior inference for spatially explicit Bayesian Posterior inference for spatially explicit Bayesian LIDAR scan analysis LIDAR scan analysis

Page 29: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

• Global optimization techniques (simulated annealing) can be used to find the MAP estimate

• In theory, samples obtained, via Markov chain simulation, from the tempered distribution

[p(x | y)]1/ T will converge to the MAP estimate as T → 0

• Posterior distribution is a Markov object process

• Inferences can be based on samples drawn from the posterior density:

p(x | y) f (y | x) p(x)

Posterior inference for spatially explicit Bayesian Posterior inference for spatially explicit Bayesian LIDAR scan analysis (cont.) LIDAR scan analysis (cont.)

Page 30: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

MAP Estimate of object configuration

*

*

**

*

*

***

*

***

* * * **

*

**

* *

*

**

**

*

**

*

***

*

*

**

LIDAR data: y

(x, y)

(size, form, density)

Spatially explicit forest measurement through Bayesian LIDAR Spatially explicit forest measurement through Bayesian LIDAR scan analysis: Inferential approachscan analysis: Inferential approach

Page 31: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

Bayesian LIDAR scan analysis for spatially explicit forest measurement : Bayesian LIDAR scan analysis for spatially explicit forest measurement : Example from Capitol State Forest, WAExample from Capitol State Forest, WA

MAP estimate of crown dimensions within 0.5 acre area of two-age stand

Page 32: The use of airborne laser scanner data (LIDAR) for forest measurement applications Hans-Erik Andersen Precision Forestry Cooperative University of Washington

• Active LIDAR sensing technology provides means of quantitatively characterizing three-dimensional forest structure • Use of advanced computer vision and Bayesian inferential techniques allows for automated extraction of detailed forest information

• Methodology can be extended to incorporate other sources of data (multispectral digital imagery, radar, etc.)

• Currently comparing to field-based and photogrammetric forest measurements

ConclusionsConclusions