topic: enantioselective aldol reactions 1 ......effective only for chelating aldehydes. the second...

18
Update to 2011 Bode Research Group http://www.bode.ethz.ch/ 1 This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. TOPIC: ENANTIOSELECTIVE ALDOL REACTIONS 1 INTRODUCTION Formation of a new C-C bond with the possibility of forming two new stereocenters 4 diastereomers. First described in 1848 by Kane and in 1872 Charles-Adolphe Wurtz would go on to describe such products as maintaining the properties of alcohol and aldehyde. 1.1 Types of Enolates Aldols 1.2 Acid and Base Catalysis 1.3 Stereocontrol Elements - Relative configuration: Configuration of the product is determined by enolate configuration. High diastereoselectivity has been achieved through ordered 6-membered transition states. - Absolute configuration – is controlled by chirality within molecule from: (a) Removable chiral auxiliaries (b) Chiral enolates (c) Chiral catalysts (chiral ligand + metal) (d) Chiral amine catalysis R 1 O Me O R 2 + R 1 O OH R 2 Methyl Ketone Aldol R 1 O O R 2 + R 1 O OH R 2 Ethyl Ketone Aldol Me Me R 1 O O Me O R 2 + R 1 O O OH R 2 Acetate Aldol Propionate Aldol H H R 1 O OH R 2 Me syn anti R 1 O O O R 2 + R 1 O O OH R 2 Me Me H R 1 O O OH R 2 Me syn anti + + H O R CH 3 H + O R CH 3 H -H + OH R CH 2 O R CH 3 H O R H CH 3 R OH O R CH 3 R OH -H + Acid Catalyzed Aldol O R CH 3 -H + OH R CH 2 O R CH 3 O R CH 3 R O O R CH 3 R OH Base Catalyzed Aldol O H R 1 OM R 3 R 2 O R 3 R 1 OH R 2 or O R 3 R 1 OH R 2 Syn Anti R 2 OMetal R 3 H O O M H R 3 R 2 H R 1 R 1 OM R 3 O R 2 R 1 CHO R 1 CHO O O M H R 3 R 2 R 1 H R 1 OM R 3 O R 2 Favored (E) H OMetal R 3 R 2 O O M R 2 R 3 H H R 1 R 1 OM R 3 O R 2 R 1 CHO R 1 CHO O O M R 2 R 3 H R 1 H R 1 OM R 3 O R 2 Favored (Z) Anti Syn O H R 1 OM R 3 O R 3 R 1 OH or O R 3 R 1 OH

Upload: others

Post on 05-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    1

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    TOPIC: ENANTIOSELECTIVE ALDOL REACTIONS

    1 INTRODUCTION Formation of a new C-C bond with the possibility of forming two new stereocentersà 4 diastereomers. First described in 1848 by Kane and in 1872 Charles-Adolphe Wurtz would go on to describe such products as maintaining the properties of alcohol and aldehyde.

    1.1 Types of Enolates Aldols

    1.2 Acid and Base Catalysis

    1.3 Stereocontrol Elements - Relative configuration: Configuration of the product is determined by enolate configuration. High diastereoselectivity has been achieved through ordered 6-membered transition states.

    - Absolute configuration – is controlled by chirality within molecule from: (a) Removable chiral auxiliaries (b) Chiral enolates (c) Chiral catalysts (chiral ligand + metal) (d) Chiral amine catalysis

    R1

    O

    Me

    O

    R2+

    R1

    O OH

    R2

    Methyl Ketone Aldol

    R1

    O O

    R2+

    R1

    O OH

    R2

    Ethyl Ketone Aldol

    Me Me

    R1O

    O

    Me

    O

    R2+

    R1O

    O OH

    R2

    Acetate Aldol

    Propionate Aldol

    H

    H R1

    O OH

    R2Me

    syn anti

    R1O

    O O

    R2+

    R1O

    O OH

    R2Me Me

    H R1O

    O OH

    R2Me

    syn anti

    ++

    H

    O

    R CH3

    H+ O

    R CH3

    H-H+ OH

    R CH2

    O

    R CH3

    HO

    R

    H

    CH3ROH

    O

    R

    CH3ROH

    -H+

    Acid Catalyzed Aldol

    O

    R CH3-H+ OH

    R CH2

    O

    R CH3O

    R

    CH3RO

    O

    R

    CH3ROH

    Base Catalyzed Aldol

    O

    HR1

    OM

    R3R2

    O

    R3R1

    OH

    R2

    orO

    R3R1

    OH

    R2

    Syn Anti

    R2

    OMetal

    R3H

    O OMH

    R3R2H

    R1 R1

    OM

    R3

    O

    R2

    R1CHO

    R1CHOO OMH

    R3R2R1

    H R1

    OM

    R3

    O

    R2

    Favored

    (E)

    H

    OMetal

    R3R2

    O OMR2

    R3HH

    R1 R1

    OM

    R3

    O

    R2

    R1CHO

    R1CHOO OMR2

    R3HR1

    H R1

    OM

    R3

    O

    R2

    Favored

    (Z)

    Anti Syn

    O

    HR1

    OM

    R3

    O

    R3R1

    OHor

    O

    R3R1

    OH

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    2

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    2 CHIRAL AUXILIARIES 2.1 Diastereoselective Control Syn Evans’ Oxazolidinones: Highly selective towards Z enolates. High diastereoselectivity to yield a single Syn product. Sterics often dominate the most preferred transition state.

    Evans, JACS 1981, 103, 2127

    Effective only for chelating aldehydes. The second equivalent of titanium is necessary for the diastereoselective control. Chelation overrides steric control, but less as chelating group is further away from carbonyl.

    Ghosh, TL ,1997, 38, 7171

    2.2 Diastereoselective Control Anti Anti diastereoselectivity is achieved for the aryl sulfonamide indanyls when using one equivalent of titatanium.

    Ghosh, TL ,1997, 38, 7171

    Evans found that the generation of magnesium enolates with the oxazolidinone auxiliaries would give anti adducts. A closed TS that does not follow the Zimmerman Traxler model is thought to be prevalent. TMSCl does not catalyze the reaction but quenches the aldol adduct.

    Evans, JACS , 2002, 124, 394

    O N

    O O

    Me

    MeMe

    O N

    O O

    Me

    MeMe

    OH

    RO

    BOH

    RMe

    BuBu

    N

    O

    OMe

    Me

    n-Bu2BOTf, i-Pr2NEt O N

    O OBBu2

    MeMe

    Me RCHO

    >98:2 drR=alkyl, phenyl

    Oxazoldinones

    75-95% yield

    LiOOH

    O

    Me

    OH

    RHO

    Me(OMe)NHMe3Al

    O

    Me

    OH

    RNMe

    MeO

    O

    O

    R

    NHSp-Tol

    OO TiCl4 (2 equiv),

    i-Pr2NEt

    O

    OTiCl3

    R

    NHSp-Tol

    OO

    OCl3Ti O

    ROTiCl2N

    S OO

    Me

    OBn

    BnO(CH2)nCHO

    O

    O

    R

    NHSp-Tol

    OO

    OHOBn

    94:6-99-1 drR=alkyl, phenyl

    1-3

    Aryl Sulfonamide Indanyls

    Proposed TS

    51-84% yield

    O

    O

    R

    NHSp-Tol

    OO TiCl4 (1 equiv),

    i-Pr2NEt

    O

    OTiCl3

    R

    NHSp-Tol

    OO

    OCl3Ti O

    ROTiCl2N

    S O

    O

    Me

    R1

    O

    O

    R

    NHSp-Tol

    OO

    OHOBn

    99:1 drR=alkyl, phenyll

    1-3

    83-92% yieldi-BuCHO

    Proposed TS

    NO

    O

    Bn

    O

    Me+ RCHO

    MgCl2 (10 mol%)Et3N, TMSCl,

    ETOAc71-92%

    NO

    O

    Bn

    O

    Me

    OH

    R

    7:1-32:1 drR=alkyl, aryl

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    3

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    2.3 Asymmetric Propionate Aldols Syn With the use of 2 equivalents of titanium, a non-Evans is achieved. The second equivalent of titanium is thought to abstract a chloride that allows chelation to the thiazolidinethione.

    Crimmins JACS, 1997, 119, 7883

    2.4 Asymmetric Propionate Aldols Anti Norephedrines as auxiliaries- E-enolates are selectively formed and yield the anti products via six-membered TS.

    Abiko JOC, 2002, 67, 5250

    A chelating substituent on the enolate provides a different mechanistic pathway for the thiazolidinethiones. Z enolate is formed but the anti product is obtained with the use of two equivalents of titanium.

    Crimmins OL, 2003, 5, 591

    2.5 Asymmetric Acetate Aldols Asymmetric control with acetates is more challenging than with propionates. Increased bulk of thiazolidinethione auxiliary allows for moderate to high diastereoselectivity. This is not possible with Evans’ oxazoldinone auxiliaries.

    Phillips OL, 2002, 4, 2253

    O N

    S O

    MeBn

    O N

    S O

    MeBn

    OH

    RTiCl4 (2 equiv) i-Pr2NEt

    RCHO

    >97:3 drR=alkyl, phenyl

    70-91% yield

    TiCl4 (1 equiv) Sparteine O N

    S O

    MeBn

    OH

    R

    OTiO

    H

    RMe

    N

    O

    >94:6 drR=alkyl, phenyl

    75-95% yield

    ClCl

    Cl

    NN

    H

    H

    S Bn

    Ti O

    RCHO

    N

    O

    S Bn

    R Me

    H

    non- Evan's Syn

    Evan's Syn= Sparteine

    ClCl

    O

    ON SO2MesBn

    MePh

    Me

    1. c-Hex2BOTf (2 equiv), Et3N, -78 oC

    2. RCHO

    O

    ON SO2MesBn

    MePh

    Me

    OH

    R

    >90% yield>95:5 dr

    R=alkyl, alkenyl, phenyl

    H

    R

    ONO

    STi

    OO

    HTi

    Bn

    O N

    S O

    Bn

    1. TiCl4 (1 equiv) Sparteine

    O N

    S O

    OBn

    OH

    R

    87:13 drR=alkyl

    61-84%yield

    2. RCHO

    O N

    S O

    Me O N

    S O OH

    R

    1. TiCl4 (1 equiv) (-)-sparteine, NMP(1 equiv)CH2Cl2, 0o C

    >85:5 drR=alkyl, alkenyl, phenyl

    77-90% yield

    Ti ON

    O

    S

    R Me

    H

    ClCl

    MeMe

    PhPh 2. RCHO

    Me

    Me

    Ph Ph

    MeMe

    PhPh

    Cl

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    4

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    3 CHIRAL BORON ENOLATES Enol Boronates Zàsyn aldol and Eà anti aldol. With the use of chiral alkyl boronates, moderate enantioselectivity can be afforded.

    Paterson Tetrahedron, 1990, 46, 4663

    4 MUKAIYAMA ALDOL REACTION 4.1 Background and Mechanism The crossed aldol reaction between a silyl enolate and a carbonyl compound in the presence of Lewis acid is referred to as a Mukaiyama aldol reaction.

    Mukaiyama Chem. Lett. 1973, 1011

    Mechanism: - Diastereoselection. - Stereochemical outcome is explained by open-transition model, based on steric- and dipolar effects.

    O

    RMe

    OMe

    O

    Me

    RCHO

    Me

    Me

    O BO

    Me

    H

    Me

    R

    O BO

    H

    Me

    Ipc

    Ipc

    Ipc

    Ipc

    BCl = (+)-Ipc2BClO

    Me Me

    O

    MeBOTf= (+)-Ipc2BOTf

    OH

    R

    OH

    RMe

    Ipc2BClEt3N

    CH2Cl2

    Ipc2BOTfIPr2NEtCH2Cl2

    Me

    75-99%

    >95:5 d.r.79-91% ee

    R=Alkyl, alkenyl, phenylYields much lower for

    isopropyl aldehyde

    80:20E:Z

    selectivityThus not effective for stereocontrol

    Me

    80:20 d. r

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    5

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    Mahrwald Chem. Rev. 1999, 99, 1095-1120

    4.2 Challenges to Metal Catalytic Enantioselective Mukaiyama Aldol Addition - Background silyl-catalyzed achiral aldol addition

    Carreira Tetrahedron Letters 1994, 35, 4323-4326

    Bosnich JACS 1995, 117, 4570-4581

    - Anti vs Syn (in aldol reaction with substituted silyl enolates)

    4.3 Historic enantioselective Mukaiyama aldol addition The first enantioselective catalytic Mukaiyama aldol addition

    Mukaiyama, Kobayashi Chem. Lett. 1990, 129, 1455

    Synthetic route to monosaccharides from achiral compounds

    Kobayashi Synlett 1993, 911

    Guidelines for designing more recent catalysts: (1) Ligands with electron donors. (2) Stabilizing aromatic stacking interactions. (3) Reaction conditions minimize the silyl-catalyzed achiral aldol addition.

    With an aldehyde capable of chelating to a Lewis acid, there is a reversal of the normal high anti-selectivity - syn-selectivity- was observed.

    H

    OR2 H

    TMSO R3

    LAOBn

    H

    OH R2

    R3 OTMS

    LAOBn

    syn (favored) anti

    Chiral Metal-Catalyzed

    R

    O

    H

    M*XnR

    O

    H

    M*XnOSiR3

    OEt R!!

    OM*Xn

    OEt

    OSiR3

    MXn R!!

    OSiR3

    OEt

    O

    R3SiX

    R

    O

    OEt

    OR3Si

    Achiral Silicon-Catalyzed

    R

    O

    H

    R3SiX

    R

    O

    H

    SiR3 OSiR3

    OEt R

    OR3Si

    OEt

    OSiR3

    X X

    Rac

    R3SiX

    Rac

    R!!

    O

    OEt

    OMXn-1

    R

    O

    H EtS

    OTMS

    Me

    Sn(OTf)2 + NMe

    10-20 mol%

    C2H5CN, -78 oCEtS

    O

    RMe

    OH

    R

    PhTol

    CrotylOctylc-Hex

    Yield

    7775768071

    syn : anti

    93 : 789 : 1196 : 4

    100 : 0100 : 0

    ee

    909193

    >98>98

    HN

    N NMe OSnO

    R

    HOTfTf

    H3CCHO

    OSiMe3

    OPh

    BnO

    Sn(OTf)2 +

    NMe

    10-20 mol%

    HN

    SnO, AcCN -78 oCH3C

    O

    OPh

    OH

    OBn

    ligand

    ligand =

    cat. OsO4.NMO

    acetone-H2O / 0oC

    OH

    OBnOO

    H3CHO

    dr = 97:3 92 %ee

    4

    5 1. DIBALH, DCM, -78 oC2. Pd-C/H2, MeOH

    O

    OHOH

    OH

    CH3 OH

    L-fucose

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    6

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    4.4 Silyl ketene acetals, thioester-derived silyl ketene acetals as nucleophiles 4.4.1 Syn - Chiral (acyloxy)borane (CAB) complexes of tartrate-derived ligands by Yamamoto

    Yamamoto Synlett 1991, 439

    α,β-Unsaturated aldehydes reveal excellent diastereo- and enantioselective due to the π interaction. Reaction with aliphatic aldehyde resulted in slight reduction of optical and chemical yields. 4.4.2 Anti - Chiral BINOL and Zr(IV) complexes by Kobayashi

    Kobayashi JACS 2000, 122, 5403 Kobayashi JACS 2002, 124, 3292

    Synthesis of Khafrefungin

    Kobayashi JOC 2001, 66, 5580

    R1

    OR2

    OSiMe3+ R

    O

    H R

    OH

    R1

    COOR2

    OPri

    OPri

    O

    OO B

    O

    CO2H O

    H20 mol%

    H

    O

    RH R1

    Me3SiO OR2

    B*Ln

    H

    O

    RR1 H

    Me3SiO OR2

    B*Ln

    <

    anti syn

    OB

    OO

    OHO2C

    O

    O

    H

    i-PrO

    i-PrO

    yield (%)

    835797

    d.r

    79:2165:3596:4

    % ee

    928897

    R1

    Me

    R2

    Ph

    R

    Phn-propyl

    n-pent-1-enyl

    Ph H

    O

    OPh

    OTMS Ph OPh

    OOH

    Me

    O

    I

    O

    I

    ZrOt-Bu

    Ot-Bu

    10 mol%

    n-PrOH, H2O

    dr = 95:5 99 %eeMe

    OPh

    OTMS

    Me

    dr = 93:7 98 %ee

    R1

    O

    HR2

    R3 OTMS

    LA

    R1

    O

    HTMSO R3

    LAR2

    < R1 R3

    OOH

    R2 Syn-adduct

    R1

    O

    HR2

    R3 OTMS

    LA

    R1

    O

    HTMSO R3

    LAR2

    < R1 R3

    OOH

    R2 Anti-adduct

    The asymmetric environment around zirconium center iscrowded with the bulky iodine on BINOL -> interaction between alkyl group of aldehyde and LA becomes more severe.

    H

    O+

    MeOPh

    OTMS

    OPh

    OOH

    Me

    O

    I

    O

    I

    ZrOt-Bu

    Ot-Bu

    10 mol%

    n-PrOH, H2OMe

    IMe

    I

    dr = 80:20 99 %ee

    H3C(H2C)9 OOH

    O

    OH

    OH

    O

    MeMe

    O

    MeMeMe

    OH

    Me

    OH

    Khafrefungin

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    7

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    4.4.3 Acetate Mukaiyama aldol addition Like chiral auxiliaries, metal catalysts have also had difficulties in obtaining high enantioselectivity in acetate aldol additions (acetate derived nucleophiles). - Chiral oxazaborolidine complex generated from Cα-alkylated α-amino acids by Masamune

    Masamune JACS 1991, 113, 9365

    - BINOL and Ti(IV) complexes by Keck and Mikami

    BINOL/TiClx(OTf)y catalyzes acetate aldol addition with excellent yields and enantioselectivity. Broad scope of aldehydes including simple aldehydes and functionalized aldehydes such as trifluoroacetadehyde, chloroacetaldehyde, benzyloxyacetaldehyde, ethyl glycolate…

    Mikami JACS 1993, 115, 7039, JACS 1994, 116, 4077 & Synlett 1995, 1057

    - Complex of Ti(IV), tridentate Schiff base and di tert-butylsalicylic acid by Carreira

    Carreira JACS 1994, 116, 8837

    Carreira, Kvaerno Classics in stereoselective synthesis p.133-134

    Me

    iPr

    NHSO2Ar

    CO2H

    BH3•THF

    Me

    iPr OB

    NTs

    O

    HMe H

    O

    Me

    iPr OB

    NTs

    O

    H

    OTMS

    St-Bu

    Me

    MeOTMS

    OPh

    Me St-Bu

    OOH

    Me OPh

    OOH

    Me Me

    92 %ee

    >98 %ee!, !'-disubstituted glycine

    20 mol%

    BnOH

    O

    St-Bu

    OTMS+

    St-BuBnO

    OTMSO

    96 %ee

    > 98%ee

    (R)-BINOL/TiCl2(Oi-Pr)25-20 mol%

    (S)-BINOL/Ti(Oi-Pr)420 mol%

    F3C H

    O

    St-Bu

    OTMS+

    ClH

    O

    St-Bu

    OTMS+

    (S)-BINOL/TiCl2(Oi-Pr)25 mol%

    (R)-BINOL/TiCl2(Oi-Pr)25-20 mol%

    F3C St-Bu

    OTMSO

    St-BuCl

    OTMSO

    96% ee

    91 %ee

    Ph H

    O

    OMe

    OTMS+ Ph

    OH

    OMe

    O

    OTi

    NO

    t-Bu

    t-Bu

    OO

    O

    2 mol%

    then TBAF98 %ee

    The carboxylate in the catalyst structure traps the electrophilic silyl group after the addition of the enoxy silane to aldehyde,thus precluding any silyl-catalyzed background reactions.The silyl carboxylate is then activated towards intramolecular silyl transfer.

    t-Bu

    Br

    OMe

    O

    R

    OTi O

    OOSiR3

    Si-trap

    OMe

    O

    R

    OSiR3

    Ti OO

    O

    Si-shuttleL3 L3

    OMe

    O

    R

    OSiR3 TiL3O

    O

    O

    +

    A

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    8

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    Synthesis of Phorboxazole A

    Smith JACS 2001, 123, 10942

    - Complex of chiral Bis(oxazolidine) (BOX) or bis(oxazoline) (PYBOX) and metals by Evans

    Evans JACS 2000, 122, 10033

    Evans ACIE 1997, 36, 2744 2.4.4 Ketones as electrophiles - Evans developed a family of chiral bis(oxazolidine) (BOX) and bis(oxazoline) (PYBOX) complexing with different metals as catalysts for enantioselective Mukaiyama aldol addition. Diverse stereo outcomes can be obtained based on the metal and ligand used in the complex. Bidentate chelation leads to the formation of a square pyramidal complex and the re aldehyde enantioface is shielded -> High level of diastereoselectivity and enantioselectivity. The requirement of chelation limits the scope of electrophiles ( α-alkoxyacetaldehydes, pyruvates, glycolates, α-diketones, 5-formyloxazoles). Broad range of nucleophiles: thioester-derived ketene acetals, ketene acetals, ketone-derived enolates. Chiral Bis(oxazolidine) (BOX) or bis(oxazoline) (PYBOX) and Cu(II) complexes

    Evans JACS 1997, 119, 7893

    ON

    O

    H

    OPMB

    OBn

    OTMS

    A (2 mol%)O

    N

    OPMB

    OBn

    OOTMS

    99 %eeO

    N

    Me

    O

    Me

    H

    N

    O

    O

    OH

    H

    15

    15

    O H

    O

    O HOHO

    OMe

    HMe

    BrMeO

    HO

    Phorboxazole A

    ON

    O

    H St-Bu

    OTMS 10 mol% ON

    St-Bu

    OOH

    94 %ee O

    N

    Me

    O

    Me

    H

    N

    O

    O

    OH

    H

    15

    15

    O H

    O

    O HOHO

    OMe

    HMe

    BrMeO

    HO

    Phorboxazole BPh

    +

    NSn

    N

    O OMe Me

    Ph PhTfO OTf

    Ph

    St-Bu

    OTMS

    H

    OOBn +

    NO

    N N

    O

    Cu

    Ph Ph

    2+

    2 SbF6

    0.5 mol%

    t-BuS

    OOBn

    OHO

    O

    AcO

    Me OH

    Me

    OAcMe

    O

    O

    OMeO

    HO

    O

    MeOH

    HOHO

    HO

    Me

    OHHO

    O

    O

    Spongistatin 299 %ee

    MeOMe

    O

    O MeSt-Bu

    OTMS

    +

    NCu

    N

    O OMe Me

    t-Bu t-Bu

    2+

    2OTf-

    10 mol% MeOSt-Bu

    O

    O

    OHMe

    Me

    d.r = 94:6 96 %ee

    N NO O

    MeMe

    CuO OMe OMe

    t-Bu

    H

    H

    t-Bu

    Nu (si face)

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    9

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    Chiral Bis(oxazolidine) (BOX) or bis(oxazoline) (PYBOX) and tin(II)

    Evans JACS 1997, 119, 10859

    Chiral Bis(oxazolidine) (BOX) or bis(oxazoline) (PYBOX) and scandium(III)

    Evans OL 2002, 4. 3379

    - Complex of Cu(I)fluoride and chiral Taniaphos ligand by Shibasaki Examples of effective catalyzed enantioselective aldol addition involving simple ketone acceptors are scarce due to the attenuated reactivity of ketones and reversibity of their aldol addition. Stereocontrol is also challenging.

    Shibasaki JACS 2006, 128, 7164

    4.5 Enol ethers as nucleophiles 4.5.1 Syn - Chiral (acyloxy)borane (CAB) complex of tartrate-derived ligands by Yamamoto.

    Yamamoto JACS 1991, 113, 1041

    Synthesis of cheimonophyllal

    Tadano JOC 2002, 67, 6690

    O

    MeOO

    MeMe

    St-Bu

    OTMS

    NO

    N N

    O

    SnTfO OTf

    Ph Ph10 mol% MeO

    St-Bu

    O

    Me

    MeHO

    O

    dr = 99:1 99 %ee yield = 94 %

    O

    MeOO

    MeMe

    St-Bu

    OTMS

    NO

    N N

    O

    ScTfO OTf

    Ph Ph10 mol% MeO

    St-Bu

    O

    Me

    OHMe

    Odr = 92:8 93 %ee

    +

    Me

    O

    OMe

    OTMS

    Me+

    HO Me

    OMe

    O

    Me

    CuF(PPh3)3•2EtOH (2.5 mol%)ligand 4 mol%

    FePCy2

    Cy2P

    Bu2N

    liganddr = 86:14 94 %ee

    OPri

    OPri

    O

    OO B

    O

    CO2H O

    H20 mol%Ph H

    O

    MeEt

    OTMS

    Et

    OTMSMe

    Ph Et

    OH

    Me

    O

    dr = 94:6 96 %ee

    dr = 93:7 94 %ee

    Hi-Pr

    O

    Me

    OTMS

    OPri

    OPri

    O

    OO B

    O

    CO2H O

    H20 mol%

    then BzCl

    O

    Me

    OBz

    i-Pr

    OMe

    HOOH

    H

    H CHOO

    i-Pr

    (+)-Cheimonophyllaldr = 10:1 99 %ee

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    10

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    - BINOL and Ti(IV) complexes by Keck and Mikami

    Mikami JACS 1993, 115, 7039

    Broad scope of enolates (esters, thio-esters, ketone-derived enolates) 4.5.2 Anti Enantioselective aldol addition of enolates to aldehyde catalyzed by BINAP/Silver(I) complex by Yamamoto

    Yamamoto JOC 2003, 68, 5593

    4.5.3 Acetate Mukaiyama aldol aditions - Another class of amino acid derived N-sulfonamide oxazaborolidines by Corey. Effective catalyst with a variety of aldehydes. The existence of hydrogen bonding between the catalyst and aldehyde contributes much to the significant facial differentiation.

    Corey Tetrahedron Letters 1992, 33, 6907

    OSiMe3Me

    H CO2Me

    O

    OO

    TiCl

    Cl

    5 mol%

    CH2Cl2, 0 oC

    Me

    OSiMe3Me

    Me

    MeO

    CO2MeMe

    OH58 %

    54%

    d.r 98:2 99 %ee

    d.r 98:2 99 %ee

    OHOH

    (R)-BINOL

    OSi(OMe)3

    +Ph H

    O (R)-BINAP, AgOTf, KF, 18-crown-6O

    Ph

    OH

    PAr2PAr2

    (R)-BINAPt-BuO

    OSi(OMe)3Me + Ph H

    O (R)-BINAP, AgOTf, KF, 18-crown-6t-BuO Ph

    O

    Me

    OH

    AgOO

    H

    R3

    H

    R1Si(OMe)3F

    PP*

    R2 AgOO

    H

    R3

    R1

    HSi(OMe)3F

    PP*

    R2

    anti synE Z

    Ph H

    O

    n-Bu

    OTMS NH

    N BO

    Ts n-Bu

    O

    20 mol %Ph n-Bu

    OOH

    90 %ee yield = 100%

    HN

    NB

    O SO

    O

    O MeOHR

    hydrogen bonding

    facial blocking

    +

    H

    Ph H

    O OTMS

    + OMe

    NH

    N BO

    Ts n-Bu

    20 mol %Ph

    OOH

    H

    OMeTFA O

    OPh

    H

    100 % yield 82 %ee

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    11

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    4.6 Dienolates as nucleophiles Addition reactions of dienolates and aldehydes lead to four-carbon subunits in one step, which facilitates the synthesis of polyketides. - Complex of Ti(IV), tridentate Schiff base and di tert-butylsalicylic acid as catalyst

    Carreira JACS 1995, 117, 12360

    Synthesis of Macrolactin A Carreira ACIE 1998, 37, 1261 - Bisphosphine Cu(I) complex

    Carreira JACS 1998, 120, 837 Carreira ACIE 1998, 37, 3124

    Synthesis of Leucascandrolide Carreira JOC 2003, 68, 9274

    Evans JACS 2008, 130, 16295

    OTi

    NO

    t-Bu

    t-Bu

    OO

    O

    2 mol%

    t-Bu

    Br

    A

    Ph H

    OO O

    +OTMS

    MeMe

    then TFAO

    O O

    MeMe

    OH

    Ph 99 %ee

    Bu3Sn H

    OO O

    +OTMS

    MeMeent-A

    A

    O O

    O

    MeMe

    Bu3Sn

    OTMS

    92 %ee

    O O

    O

    MeMe

    Bu3Sn

    OTMS

    92 %ee

    OH

    Me

    OO

    HO

    HO

    77

    3

    3

    15

    15

    11

    11

    Macrolactin A

    Me H

    O O O

    OTMS

    MeMe

    +O O

    O

    MeMe

    Me

    OHO O

    Me

    OMe

    O

    O

    NOHN

    OMeO

    Me

    Me

    O

    O

    Leucascandrolide A

    (R)-Tol-BINAPCu(OTf)2

    then TFA91 %ee

    O

    OTMS

    Me H

    OOEt

    O

    +

    NSn

    N

    Et EtO O

    TfO OTf

    DCM, -78 oC

    10 mol% O

    OEt

    O

    O

    Me

    OHdr >50:1 95 %ee 94%yield

    (+) azaspiracid-1

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    12

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    5 LEWIS BASES ON TRICHLOROSILYL ENOLS A metalloenolate is activated by a chiral lewis base. This activated complex is much more reactive than the free enolate species. Association and activation of the aldehyde allows for a closed transition state. Enolate geometry is transferred directly to the diastereoselectivity of the products.

    . 5.1 Achiral Methyl Ketone derived Trichlorosilyl Enols

    Denmark JACS, 2000, 122, 8837

    5.2 Achiral Ethyl Ketone trichlorosilyl enols

    Denmark JOC, 2003, 68, 5045

    5.3 Chiral Methyl Ketone derived trichlorosilyl enols Double diastereoselection with the use of chiral catalyst and chiral enolate. Matched case here involves the use of the (R,R) phosphoramide catalyst, whereas the (S,S) gives very low syn selectivity. TBS protection of alcohol is necessary to prevent chelation and lower diastereoselection.

    Denmark, JACS, 2000, 122, 8837

    **

    O**

    OXnM Lewis BasePromoter O MXn

    O MXnLB

    O

    RO MXn

    LB

    **

    O MXnLB

    **O

    R

    O

    R

    R

    More reactivethan freeenolate

    Closed6-membered

    TS

    Rapid Turnover

    HH

    OSiCl3

    Me

    O

    Ph+

    NP

    NMe

    Me

    O

    N

    10 mol %

    CH2Cl2then

    sat. NaHCO3Me

    O OH

    Ph92% yield84% ee

    H

    OSiCl3

    Me

    O

    Ph+

    NP

    NMe

    Me

    Me

    Me

    O

    N

    10 mol %

    CH2Cl2 O OH

    Ph

    77% yield11.5:1 syn/anti94% ee for syn

    Me Me MeH

    OSiCl3 O

    Ph+

    NP

    NMe

    Me

    Me

    Me

    O

    N

    5 mol %

    CH2Cl2, -78 oC O OH

    Ph85% yield

    73:1 syn/antiOTBSOTBS

    Me MeH

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    13

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    5.4 Ethyl Ketone trichlorosilyl enols Diastereoselectivity for these mostly dependent dependent on enolate configuration. The (R,R) and (S,S) phosphoramide catalysts give similar diastereoselectivities.

    Denmark OL, 2001, 3, 2202

    6 DIRECT CATALYTIC ENANTIOSELECTIVE ALDOLS These involve the in situ generation of enolates (donor) in the presence of an aldehyde (acceptor), circumventing the use of preformed enolates and decreasing waste. Often substoichiometric catalysts amounts of catalyst can be used.

    6.1 Ito’s Au(I) catalyst First example of a direct asymmetric catalysis by Ito and coworkers. Gold(I) catalyzed the reaction between α-cyanoacetate and an aldehyde to yield trans oxazolines. These lead trans products and do not have great scope beyond the use of α-cyanoacetate.

    Ito JACS, 1986, 108, 6405

    6.2 Lanthanum and Barium Binols as Bifunctional Catalysts (Donor and Acceptor Activation) These catalysts serve as both lewis (lanthanum or barium) acid and bronsted base catalysts (lithium binaphthoxides or binols). Proceed with exogenous base.

    6.2.1 Shibasaki’s first catalysts were barium and Lanthanum based and could provide moderate to high ee for methyl ketones. Reaction times were long and large excess of ketone was necessary -

    OTBS

    HOOSiCl3

    Me O

    H Ph

    NP

    NMe

    Me

    Me

    Me

    O

    N

    CH2Cl2, -78 oC MeO

    PhOTBS Me

    OHRelative

    Internal

    87% yieldRelative d.r. 16:1 syn/antiInternal d.r. >50:1 syn/anti

    +

    O

    MeO CN+

    O

    R O N

    PhO

    OMe

    PAu

    PFe

    PhPh

    PhPh

    LL

    MeMeN N O

    CH2Cl286-97% yield

    R=alkyl, alkenyl, aryltrans:cis= 54:46-93:7

    81-94% ee

    H

    O**

    OR1

    R2

    ALO

    OMH

    O

    HOR1

    R2

    OMH

    OLA

    R2O

    R2O

    OMH

    OLA

    R1

    HOOM

    H

    OLA

    R2

    **

    O

    OH

    R1

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    14

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    Shibasaki TL, 1998, 39, 5561 and Shibasaki ACIE, 2003, 36, 1871

    6.2.2 Lanthanum provides moderate anti and syn selectivity complimentary to enamine catalysis (favors anti adducts)

    Shibasaki JACS, 2001, 123, 2466

    6.3 Dinuclear Zinc Prophenols as Bifunctional 6.3.1 Direct aldols with acetone(enantioselectivity lower for alpha unbranched aldehydes)

    Trost OL, 2001, 3, 2497

    6.3.2 Chelation of alpha hydroxyl ketone increases reactivity of donor and allows close to equimolar equivalents with respect to aldehyde(highly syn selective).

    Trost JACS, 2001, 123, 3367

    6.3.3 Mild conditions allow for use of ynones as substrates for aldol, used in the total synthesis of dephosphofostriecin.

    Trost, JACS, 2004, 126, 2660

    O

    Ph Me

    O

    R+

    OO Ba

    OO

    X

    X

    DME, -20oC

    X=Binol-Me

    =(R)BaB-M

    5 mol%

    O

    Ph

    OH

    RR=alkyl, phenyl

    50-70% ee

    77-99%

    O

    Ph Me

    O

    R+

    O

    Ph

    OH

    RR=alkyl, phenyl

    52-91% ee

    43-90%3-12 days

    OO Ln OO

    O OLi

    LiLi = (R)LLB

    20 mol%

    HH

    O

    Ph

    O

    R+

    O

    Ph

    OH

    R

    R=alkyl, phenyl2:1-5:1 anti:syn90-95% ee anti

    78-92%OH Me

    10 mol% (R)LLB9% KHMDS

    20 mol% H2O-50oC

    2 equiv

    H

    MeMe

    ON NZnZn

    OO PhPhPh

    PhEt

    O

    Me Me

    O

    R+

    O

    Ph

    OH

    RR=alkyl, phenyl

    78-94% ee59-89%

    48 h10-15equiv

    4 A MS, THF 5 oCH

    MeMe

    ON NZnZn

    OO PhPh

    PhPh

    Et

    O

    Me

    O

    R+

    O

    Ph

    OH

    R

    R=alkyl, phenyl4:1-100:0 syn:anti

    86-98% ee

    65-97%48 h1.5 equiv

    4 A MS, THF, -55--35oCOH

    MeMe

    ON NZnZn

    OO PhPh

    PhPh

    O O

    Ar HR

    O

    OHH

    MeMe

    ON NZnZn

    OO PhPhPh

    PhEt

    O

    Me

    O+

    O OH

    99% ee58-67%4-17 hSlight excess

    4 A MS, THFTBS

    MeOEtEtO

    3 mol%

    TBS OEtMe

    EtO OO

    OH

    Me OH

    OH OH

    dephosphofostriecin

    H

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    15

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    7 CHIRAL AMINE CATALYSIS In Nature:

    Trost Chem. Soc. Rev. 2010, 39, 1600

    Early 1970s, Hajos-Parrish-Eder-Sauer-Wiechert reaction

    Eder ACIE 1971, 83, 496 & Hajos JOC 1974, 39, 1615

    Pioneering findings by List, Barbas III: Proline-catalyzed enantioselective intermolecular aldol addition

    Barbas III JACS 2000, 122, 2395

    Mechanism of Proline-catalyzed aldol addition Different proposed mechanisms and models for transition state

    PO OH

    OOO O

    PO OH

    NOO O

    Lys229

    Ser271

    PO OH

    HNOO O

    Lys229

    Ser271

    PO

    O

    OO

    OHO

    H

    Lys107

    PO

    NOO O

    Lys229

    Ser271 H

    Lys107

    OP

    OR

    OH

    OH

    OH

    O

    O O

    R = OPO32-

    type I aldolase

    OOH

    OH

    OH

    PO

    O

    O

    H3C

    O O

    O

    Me NHCO2H

    3 mol%

    DMF, 20hO

    OMe

    OH

    H3C

    OMe

    O NH

    CO2H3 mol%

    DMF, 72h

    Me

    OH

    O

    O

    93 %ee 74 %eeHajos-Parish Ender-Sauer-Wiechert

    H3C CH3

    O

    H R

    O NHCO2H

    30 mol%

    DMSO H3C R

    O OH+

    % yield

    6268945497

    %ee

    6076697796

    R

    phenylp-nitrophenylo-chlorophenyl

    naphthylisopropyl

    H3C

    O O

    O

    Me

    O

    OMe

    OHn n

    -H2O

    O

    OMe

    n

    H3C CH3

    O

    H R

    O

    H3C R

    O OH+

    (S)-Proline

    (S)-Proline

    O

    R1

    O

    R3 (S)-ProlineHO R3O

    R1

    R2 R2

    -O2C

    O

    O

    Me

    ON H

    OO

    H H

    Hajos Model

    Me O

    N OHN

    CO2-H

    Agami model(two-proline mech.)

    MeO

    OO H

    NO

    OH

    H

    Swaminathan Model

    (crystal surface)O

    ON

    O

    OH

    Me

    Houk Model

    intramolecular

    CH3HR

    ON

    O

    OH

    intermolecular

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    16

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    Hajos JOC 1974, 39, 1615

    Agami JACS 1986, 108, 2353 Swaminathan Tetrahedron Asymmetry 1999, 10, 1631

    Houk JACS 2003, 125, 2475 List Acc. Chem. Res. 2004, 37, 548

    Seebach&Eschenmoser Helv. Chim. Acta 2007, 90, 425

    Discussion on mechanism: Houk ACIE 2004, 43, 5766 List PNAS 2004, 101, 5839 Blackmond Bioorg. Med. Chem. Lett. 2009, 19, 3934 Trost Chem. Soc. Rev. 2010, 39, 1600

    Limitations of Proline-catalyzed aldol addition - Relatively large amount of proline (20-30mol%) - Large amount of ketones - Low enantioselectivity with aromatic aldehydes

    7.1 Progress 7.1.1 Aldehyde electrophiles

    NH

    CO2H

    N CO2H

    CH3

    CH3HR

    ON

    O

    OH

    R

    N CO2HOH

    H3C CH3

    O

    H2O

    R H

    O

    H2O

    R CH3

    OH O

    NH

    CO2H

    N CO2-

    CH3H3C

    N CO2-

    H3C CH3

    O

    H2OH2O

    CH3

    O

    N O

    H3C CH3

    H O

    N CO2H

    CH3

    N OCH3

    H O

    Electrophile

    EE

    Electrophile

    Mechanism proposed by List et al. Mechanism proposed by Seebach et al

    H3C CH3

    O

    H

    O

    CH3

    CH3

    20 mol%

    (L)-Proline10-20 mol%

    H3C

    O OH

    CH3

    CH3

    34 %yield 73 %ee

    1. TBSCl, imidazole

    2. KHMDS

    Cl NTfTf

    OTf OTBS

    CH3

    CH3

    OTBS

    CH3

    CH3

    SnBu3Pd(PPh3)4

    TBAF, THFOH

    CH3

    CH3(S)-Ipsenol

    +

    List OL 2001, 3, 573

    H3C CH3

    O

    H

    O+

    R

    NH

    NH

    O

    OH

    PhPh

    20 mol%

    R CH3

    OH O

    R

    4-NO2Ph4-BrPh4-MePh2-ClPh

    naphthyl

    % yield

    6677488393

    %ee

    9390848584

    Wu JACS 2003, 125, 5262

    H3COH

    O

    + H R

    O (L)-Proline20 mol%

    H3C R

    O

    OH

    OH

    anti

    R

    c-hexylisopropylphenyl

    naphthyl

    % yield

    60628362

    dr

    >20:1>20:1

    1:13:1

    %ee

    >99>998079

    NO H

    O OHR

    HHO H N

    O HO O

    HHO H

    HR

    anti syn(favored)

    Barbas III JACS 2001, 123, 5260

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    17

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    Cross-aldol of aldehydes

    MacMillan ACIE 2008, 47, 3568

    Cross-trimerizations

    Cordova ACIE 2005, 44, 1343 & MacMillan Science 2004, 1752

    7.1.2 Activated Ketone electrophiles

    Zhao Tetrahedron Letters 2006, 47, 3383 & Jorgensen Chem. Comm. 2002, 620 8 Other Classes of Aldols 8.1 Reformatsky Reaction

    Reformatsky Berichte der Deutschen Chemischen Gesellschaft, 1887, 20, 1210

    H

    O

    OTIPS

    NH

    CO2H

    H

    O

    OTIPSOTIPS

    OH

    DMF, 40h, 5 oC

    O

    TIPSOCH3

    O

    HO

    H3C

    OMe

    Cl3C NH

    H

    O

    CH3

    + H

    O

    CH3

    NH

    CO2H

    H

    O

    MeMe

    OH1.10 mol%

    DMF, 40h, 5 oCOPMB OPMB

    dr 12:1 48 %yeildFelkin:anti Felkin >19:199 %ee

    O

    OTBSCh3

    OMeHHO

    H3C CO2MeB

    CB

    O

    O

    H3C Cl

    MeO

    H3C

    H3C

    H OH

    O O

    OHH3C OH

    CH3

    MeO

    O

    B

    C

    callipeltoside C

    H

    O

    R1

    + H

    O

    R2

    NH

    CO2H

    10 mol%H R2

    O

    R1

    OH NHCO2H

    10 mol%

    H

    O

    CH3

    O OHR2

    MeOH

    R1

    R2

    Etc-hexylBnOMe

    % yield

    294139

    % ee

    99>99>99

    R1

    MeMe

    BnO

    Two-step polyketide synthesis

    Sugar synthesis

    H

    O

    OBn

    NH

    CO2H

    10 mol%H

    OBnO

    OBn

    OH

    +

    O OH

    OBnOH

    BnO

    BnO

    51 % dr 4:1 98 %ee

    41 % 98 %ee

    EtO2C

    O

    H3C CH3

    O

    NO2

    +NH

    CO2HCH3

    OEtO2C OH

    O2N

    79 % yield 75 %ee

    EtO2C CO2Et

    O

    + H

    O

    CH3aldehyde donor

    NH

    CO2H

    EtO2C H

    O

    CH3

    OHEtO2C90 % yield90 %ee

    ketone donor

    O

    R1 R2

    OX R3

    MSolvent

    +R2

    O

    R3

    R1HO

    X= Cl, Br, IM= Zn, In, SmII, TiIII, Fe, Co, Sn...

    Classical Reformatsky

  • Update to 2011 Bode Research Group http://www.bode.ethz.ch/

    18

    This

    wor

    k is

    lice

    nsed

    und

    er a

    Cre

    ativ

    e C

    omm

    ons

    Attr

    ibut

    ion-

    Non

    Com

    mer

    cial

    -Sha

    reA

    like

    4.0

    Inte

    rnat

    iona

    l Lic

    ense

    .

    8.1.1 Enolates with a CF3 α to an ester or amide are often unstable, but they work well in Reformatsky reactions.

    Ishihara TL, 2006, 8, 1129

    8.1.2 The Indium tends to yield E enolates and can provide high diastereoselectivity in the formation of β-lactones.

    Baba OL, 2006, 8, 3029

    8.2 Ketene Aldehyde Cycloadditions Acyl halides can be transformed to the corresponding ketenes in the presence of base. With a chiral lewis base and a lewis acid, asymmetric aldols can be mediated to give β-lactones.

    Nelson JACS, 2004, 126, 5352

    NO

    O O

    Br

    CF3

    Bn

    +Ph

    O ZnAlEt3 NO

    O O

    Bn

    OH

    CF3CF387.5%

    yield

    96% d.r.

    H

    O

    Br

    +Ph

    OIn

    TolueneO

    O

    67%yield

    99% d.r.

    EtO Ph

    OH PhHOPh

    O

    EtOOH

    PhOHPh

    O

    Cl Me+

    O

    Ph

    10 mol%TMSq

    30 mol%LiClO4Et3N

    N

    OMe

    N

    OTMS

    TMSQ

    N

    OMe

    N

    OTMS

    TMSq

    OO

    PhMe

    OO

    PhMe80%yield

    96% d.r.99% ee

    78%yield

    96% d.r.99%ee

    10 mol%TMSQ

    30 mol%LiClO4Et3N

    H

    O

    Cl Me

    O

    Me

    Et3N NR3 **O

    R3H2N

    O

    R3H2N

    M

    Me

    O

    Ph

    O OM

    M

    Me

    HPh

    NR3**

    O OMMe

    HPh

    NR3**

    OO

    PhMe

    Me

    H

    H