towards an independent version of tarski s system of …

138
Towards an independent version of Tarski’s system of geometry Pierre Boutry University of Strasbourg - ICube - CNRS Logic Colloquium 2019 Prague, August 15, 2019

Upload: others

Post on 23-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Towards an independent version of Tarski’ssystem of geometry

Pierre Boutry

University of Strasbourg - ICube - CNRS

Logic Colloquium 2019Prague, August 15, 2019

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Introduction

Euclid’s Elements

led to what it likely the first independenceproof.

Hilbert’s Grundlagen der Geometrie

contains a chapterdedicated to independence properties.

Tarski’s System of Geometry

and the problem of itsindependence was carefully studied by Gupta.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Introduction

Euclid’s Elements

led to what it likely the first independenceproof.

Hilbert’s Grundlagen der Geometrie

contains a chapterdedicated to independence properties.

Tarski’s System of Geometry

and the problem of itsindependence was carefully studied by Gupta.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Introduction

Euclid’s Elements led to what it likely the first independenceproof.

Hilbert’s Grundlagen der Geometrie

contains a chapterdedicated to independence properties.

Tarski’s System of Geometry

and the problem of itsindependence was carefully studied by Gupta.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Introduction

Euclid’s Elements led to what it likely the first independenceproof.

Hilbert’s Grundlagen der Geometrie

contains a chapterdedicated to independence properties.

Tarski’s System of Geometry

and the problem of itsindependence was carefully studied by Gupta.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Introduction

Euclid’s Elements led to what it likely the first independenceproof.

Hilbert’s Grundlagen der Geometrie contains a chapterdedicated to independence properties.

Tarski’s System of Geometry

and the problem of itsindependence was carefully studied by Gupta.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Introduction

Euclid’s Elements led to what it likely the first independenceproof.

Hilbert’s Grundlagen der Geometrie contains a chapterdedicated to independence properties.

Tarski’s System of Geometry

and the problem of itsindependence was carefully studied by Gupta.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Introduction

Euclid’s Elements led to what it likely the first independenceproof.

Hilbert’s Grundlagen der Geometrie contains a chapterdedicated to independence properties.

Tarski’s System of Geometry and the problem of itsindependence was carefully studied by Gupta.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Outline

1 Introduction

2 Tarski’s System of Geometry

3 Gupta’s and Szczerba’s contributions

4 An independent version of Tarski’s system of geometry?

5 Conclusion

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Outline

1 Introduction

2 Tarski’s System of Geometry

3 Gupta’s and Szczerba’s contributions

4 An independent version of Tarski’s system of geometry?

5 Conclusion

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Tarski’s system of geometry

A single primitive type: point.

Two primitive predicates:

1 congruence AB ≡ CD;2 betweenness A B C .

11 axioms.

A parameter controls the dimension.

Good meta-theoritical properties.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Tarski’s system of geometry

A single primitive type: point.

Two primitive predicates:

1 congruence AB ≡ CD;2 betweenness A B C .

11 axioms.

A parameter controls the dimension.

Good meta-theoritical properties.

Alfred Tarski

(1901 - 1983)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Tarski’s system of geometry

A single primitive type: point.

Two primitive predicates:

1 congruence AB ≡ CD;2 betweenness A B C .

11 axioms.

A parameter controls the dimension.

Good meta-theoritical properties.

Alfred Tarski

(1901 - 1983)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Tarski’s system of geometry

A single primitive type: point.

Two primitive predicates:

1 congruence AB ≡ CD;

2 betweenness A B C .

11 axioms.

A parameter controls the dimension.

Good meta-theoritical properties.

Alfred Tarski

(1901 - 1983)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Tarski’s system of geometry

A single primitive type: point.

Two primitive predicates:

1 congruence AB ≡ CD;2 betweenness A B C .

11 axioms.

A parameter controls the dimension.

Good meta-theoritical properties.

Alfred Tarski

(1901 - 1983)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Tarski’s system of geometry

A single primitive type: point.

Two primitive predicates:

1 congruence AB ≡ CD;2 betweenness A B C .

11 axioms.

A parameter controls the dimension.

Good meta-theoritical properties.

Alfred Tarski

(1901 - 1983)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Tarski’s system of geometry

A single primitive type: point.

Two primitive predicates:

1 congruence AB ≡ CD;2 betweenness A B C .

11 axioms.

A parameter controls the dimension.

Good meta-theoritical properties.

Alfred Tarski

(1901 - 1983)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Tarski’s system of geometry

A single primitive type: point.

Two primitive predicates:

1 congruence AB ≡ CD;2 betweenness A B C .

11 axioms.

A parameter controls the dimension.

Good meta-theoritical properties.

Alfred Tarski

(1901 - 1983)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Axiom (Pseudo-reflexivity for congruence)

AB ≡ BA

Axiom (Identity for congruence)

AB ≡ CC ⇒ A = B

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Axiom (Pseudo-reflexivity for congruence)

AB ≡ BA

Axiom (Identity for congruence)

AB ≡ CC ⇒ A = B

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Axiom (Pseudo-reflexivity for congruence)

AB ≡ BA

Axiom (Identity for congruence)

AB ≡ CC ⇒ A = B

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axioms about congruence

Axiom (Pseudo-transitivity for congruence)

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Axiom (Pseudo-reflexivity for congruence)

AB ≡ BA

Axiom (Identity for congruence)

AB ≡ CC ⇒ A = B

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axiom about betweenness

Axiom (Identity for betweenness)

A B A⇒ A = B

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axiom about betweenness

Axiom (Identity for betweenness)

A B A⇒ A = B

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Five-Segment Axiom

Axiom (Five-Segment)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Five-Segment Axiom

Axiom (Five-Segment)

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

B C

D

B′ C ′

D′

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Five-Segment Axiom

Axiom (Five-Segment)

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

A B C

D

A′ B′ C ′

D′

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axiom of Segment Construction

Axiom (Segment Construction)

∃E ,A B E ∧ BE ≡ CD

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axiom of Segment Construction

Axiom (Segment Construction)

∃E ,A B E ∧ BE ≡ CD

A

C

B

D

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Axiom of Segment Construction

Axiom (Segment Construction)

∃E ,A B E ∧ BE ≡ CD

A

C

B

D

E

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Pasch’s axiom

Axiom (Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Pasch’s axiom

Axiom (Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

C

B

P

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Pasch’s axiom

Axiom (Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

C

B

P

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Pasch’s axiom

Axiom (Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

C

B

P

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Pasch’s axiom

Axiom (Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

C

B

A

P

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Pasch’s axiom

Axiom (Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

C

B

A

P Q

X

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

2-Dimensional Axiom

Axiom (Lower 2-Dimensional)

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Axiom (Upper 2-Dimensional)

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

B

A

C

Q

P

C ′

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

2-Dimensional Axiom

Axiom (Lower 2-Dimensional)

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Axiom (Upper 2-Dimensional)

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

B

A

C

Q

P

C ′

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

2-Dimensional Axiom

Axiom (Lower 2-Dimensional)

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Axiom (Upper 2-Dimensional)

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

B

A

C

Q

P

C ′

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Euclid’s axiom

Axiom (Euclid)

A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Euclid’s axiom

Axiom (Euclid)

A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

A

C

B

D

T

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Euclid’s axiom

Axiom (Euclid)

A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

A

C

B

D

T

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Euclid’s axiom

Axiom (Euclid)

A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

A

C

B

D

T

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Euclid’s axiom

Axiom (Euclid)

A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

A

C

B

D

TYX

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

The axioms

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y )

Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

The axioms

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y )

Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

The axioms

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y )

Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Overview of the formalization

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

Overview of the formalization

geocoq.github.io/GeoCoq/

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

An example of proof by computation

Our example is the nine-point circletheorem which states that the followingnine points are concyclic:

The midpoints of each side of thetriangle;The feet of each altitude;The midpoints of the line-segmentsfrom each vertex of the triangle to theorthocenter.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

An example of proof by computation

Our example is the nine-point circletheorem which states that the followingnine points are concyclic:

The midpoints of each side of thetriangle;The feet of each altitude;The midpoints of the line-segmentsfrom each vertex of the triangle to theorthocenter.

A

B

C

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

An example of proof by computation

Our example is the nine-point circletheorem which states that the followingnine points are concyclic:

The midpoints of each side of thetriangle;

The feet of each altitude;The midpoints of the line-segmentsfrom each vertex of the triangle to theorthocenter.

A

B

C

B1

A1

C1

O

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

An example of proof by computation

Our example is the nine-point circletheorem which states that the followingnine points are concyclic:

The midpoints of each side of thetriangle;The feet of each altitude;

The midpoints of the line-segmentsfrom each vertex of the triangle to theorthocenter.

A

B

C

B1

A1

C1

H

C2

A2

B2

O

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

An example of proof by computation

Our example is the nine-point circletheorem which states that the followingnine points are concyclic:

The midpoints of each side of thetriangle;The feet of each altitude;The midpoints of the line-segmentsfrom each vertex of the triangle to theorthocenter.

A

B

C

B1

A1

C1

H

C2

A2

B2

A3

B3

C3

O

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

A model of the theory

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)2+(yA−yB)2 = (xC−xD)2+(yC−yD)2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A).

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

A model of the theory

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)2+(yA−yB)2 = (xC−xD)2+(yC−yD)2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A).

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

A model of the theory

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)2+(yA−yB)2 = (xC−xD)2+(yC−yD)2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A).

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

The axiomsA model of the theory

A model of the theory

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)2+(yA−yB)2 = (xC−xD)2+(yC−yD)2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A).

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Outline

1 Introduction

2 Tarski’s System of Geometry

3 Gupta’s and Szczerba’s contributions

4 An independent version of Tarski’s system of geometry?

5 Conclusion

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s axiom system

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s axiom system

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivity for betweenness AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒

A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y )∃B, (∀XY ,

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s axiom system

Transitivity for betweenness A B D ∧ B C D ⇒ A B C

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivity for betweenness AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒

A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y )∃B, (∀XY ,

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s axiom system

Transitivity for betweenness A B D ∧ B C D ⇒ A B C

Transitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivity for betweenness AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒

A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y )∃B, (∀XY ,

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s axiom system

Transitivity for betweenness A B D ∧ B C D ⇒ A B C

Transitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivity for betweenness AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒

A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y )∃B, (∀XY ,

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s axiom system

Transitivity for betweenness A B D ∧ B C D ⇒ A B C

Transitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivity for betweenness AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒

A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒∃B, (∀XY , X B Y ∨ X = B ∨ B = Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s axiom system

Transitivity for betweenness A B D ∧ B C D ⇒ A B C

Transitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X P

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivity for betweenness AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒

A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒∃B, (∀XY , X B Y ∨ X = B ∨ B = Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Pasch’s axioms

Axiom (Inner Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Axiom (Outer Pasch)

A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X P

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Pasch’s axioms

Axiom (Inner Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Axiom (Outer Pasch)

A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X P

C

B

A

P Q

X

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Pasch’s axioms

Axiom (Inner Pasch)

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Axiom (Outer Pasch)

A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X P

C

B

A

P Q

X

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s independence model for Pasch

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)2+(yA−yB)2 = (xC−xD)2+(yC−yD)2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A) at theexception of the cases when A = B and both A and C belongto the x-axis.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s independence model for Pasch

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)2+(yA−yB)2 = (xC−xD)2+(yC−yD)2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A) at theexception of the cases when A = B and both A and C belongto the x-axis.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s independence model for Pasch

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)2+(yA−yB)2 = (xC−xD)2+(yC−yD)2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A) at theexception of the cases when A = B and both A and C belongto the x-axis.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Gupta’s independence model for Pasch

Points: F2 where F is a real closed field.

AB ≡ CD := (xA−xB)2+(yA−yB)2 = (xC−xD)2+(yC−yD)2.

A B C := ∃k, 0 ≤ k ≤ 1 ∧ B − A = k(C − A) at theexception of the cases when A = B and both A and C belongto the x-axis.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Szczerba’s axiom system

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Szczerba’s axiom system

Identity for betweenness

Transitivity for congruence

Reflexivity for congruence

Identity for congruence

Segment Construction

Pasch A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X P

Five-SegmentTransitivity for betweenness

Lower 2-Dimensional

Upper 2-DimensionalTransitivity for betweenness

Euclid ¬(A B C ∨ B C A ∨ C A B)⇒∃CC ,ACC ≡ BCC ∧ ACC ≡ CCC

Continuity

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Szczerba’s axiom system

Identity for betweenness

Transitivity for congruence

Reflexivity for congruence

Identity for congruence

Segment Construction

Pasch A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X P

Five-SegmentTransitivity for betweenness

Lower 2-Dimensional

Upper 2-DimensionalTransitivity for betweenness

Euclid ¬(A B C ∨ B C A ∨ C A B)⇒∃CC ,ACC ≡ BCC ∧ ACC ≡ CCC

Continuity

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Triangle circumscription principle

Axiom (Triangle circumscription principle)

¬(A B C ∨ B C A ∨ C A B)⇒∃CC ,ACC ≡ BCC ∧ ACC ≡ CCC

CC

A B

C

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Triangle circumscription principle

Axiom (Triangle circumscription principle)

¬(A B C ∨ B C A ∨ C A B)⇒∃CC ,ACC ≡ BCC ∧ ACC ≡ CCC

CC

A B

C

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Gupta’s contributionSzczerba’s contribution

Triangle circumscription principle

Axiom (Triangle circumscription principle)

¬(A B C ∨ B C A ∨ C A B)⇒∃CC ,ACC ≡ BCC ∧ ACC ≡ CCC

CC

A B

C

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Outline

1 Introduction

2 Tarski’s System of Geometry

3 Gupta’s and Szczerba’s contributions

4 An independent version of Tarski’s system of geometry?

5 Conclusion

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Euclid’s axiom

Axiom (Euclid)

A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Euclid’s axiom

Axiom (Euclid)

A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

A

C

B

D

TYX

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

B

C

A

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

B

C

A

P

Q

X

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

C

A

E

B

D

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

T

D

A

B C

X Y

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

T

D

A

B C

X Y

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

T

D

A

B C

X Y

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

T

D

A

B C

X Y

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

T

D

A

B C

X Y

A B A⇒ A = B I

AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF I

AB ≡ BA I

AB ≡ CC ⇒ A = BI

∃E ,A B E ∧ BE ≡ CDI

A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X AI

AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧IAD ≡ A′D ′ ∧ BD ≡ B ′D ′∧A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BI

AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒IA B C ∨ B C A ∨ C A B

A D T ∧ B D C ∧ A 6= D ⇒I∃XY ,A B X ∧ A C Y ∧ X T Y

∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Syntactic proof

Identity for betweenness A B A⇒ A = B

Transitivity for congruence AB ≡ CD ∧ AB ≡ EF ⇒ CD ≡ EF

Reflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = B

Segment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ⇒ ∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B ′ ∧ BC ≡ B ′C ′∧Transitivite de la congruence AD ≡ A′D ′ ∧ BD ≡ B ′D ′∧

A B C ∧ A′ B ′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D ′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A B

Upper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ A X Y ))⇒∃B, (∀XY ,X ∈ Ξ ∧ Y ∈ Υ⇒ X B Y )

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Parallel postulates are not equivalent

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Parallel postulates are not equivalent

Bachmann’sLotschnit-

taxiom

Trianglepostulate

Playfair’spostulate

Archimedes’axiom

Aristotle’saxiom

Greenberg’saxiom

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Parallel postulates are not equivalent

Bachmann’sLotschnit-

taxiom

Trianglepostulate

Playfair’spostulate

Archimedes’axiom

Aristotle’saxiom

Greenberg’saxiom

A1

A2

B1

B2

C1

C2

P

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Parallel postulates are not equivalent

Bachmann’sLotschnit-

taxiom

Trianglepostulate

Playfair’spostulate

Tarski’sparallel

postulate

Archimedes’axiom

Aristotle’saxiom

Greenberg’saxiom

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Parallel postulates are not equivalent

Bachmann’sLotschnit-

taxiom

Trianglepostulate

Playfair’spostulate

Tarski’sparallel

postulate

Archimedes’axiom

Aristotle’saxiom

Greenberg’saxiom

A

D CB

TX Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Parallel postulates are not equivalent

Bachmann’sLotschnit-

taxiom

Trianglepostulate

Playfair’spostulate

Tarski’sparallel

postulate

Archimedes’axiom

Aristotle’saxiom

Greenberg’saxiom

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Parallel postulates are not equivalent

Bachmann’sLotschnit-

taxiom

Trianglepostulate

Playfair’spostulate

Tarski’sparallel

postulate

Archimedes’axiom

Aristotle’saxiom

Greenberg’saxiom

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Parallel postulates are not equivalent

Bachmann’sLotschnit-

taxiom

Trianglepostulate

Playfair’spostulate

Tarski’sparallel

postulate

Archimedes’axiom

Aristotle’saxiom

Greenberg’saxiom

Decidability ofintersection

of lines

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

How to classify the postulates?

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

How to classify the postulates?

10.11.

12.

7.

8. 6.

5.

2.

9.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

How to classify the postulates?

18.15.

1.

17.

20. 19.

16.

14.

13.10.

11.

12.

7.

8. 6.

5.

2.

9.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

How to classify the postulates?

18.15.

1.

17.

20. 19.

16.

14.

13.28.

30.

29.

26.

25.

24. 23.

22.

3.

21.

27.10.

11.

12.

7.

8. 6.

5.

2.

9.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

How to classify the postulates?

18.15.

1.

17.

20. 19.

16.

14.

13.28.

30.

29.

26.

25.

24. 23.

22.

3.

21.

27.10.

11.

12.

7.

8. 6.

5.

2.

9.31.

33.

32. 4.

34.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

How to classify the postulates?

Pursuing the project faithfully will require that we takethe extreme measure of shutting out the entreaties ofour intuitions and imaginations - a forced separationof mental powers that will quite understandably beconfusing and difficult to maintain [...].

(Richard J. Trudeau)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axioms

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsTransitivity for betweennessTransitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X PB 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )

Point equality decidability X = Y ∨ X 6= YPierre Boutry

Towards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B ATransitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X PB 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )

Point equality decidability X = Y ∨ X 6= YPierre Boutry

Towards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B A

Transitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A X Q ∧ C Q B ⇒ ∃P,A P C ∧ B X PB 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )

Point equality decidability X = Y ∨ X 6= YPierre Boutry

Towards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B A

Transitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ∧ A 6= P ∧ P 6= C∧B 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

Euclid A D T ∧ B D C ∧ A 6= D ⇒∃XY ,A B X ∧ A C Y ∧ X T Y

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )

Point equality decidability X = Y ∨ X 6= YPierre Boutry

Towards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B A

Transitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ∧ A 6= P ∧ P 6= C∧B 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

Proclus

Continuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )

Point equality decidability X = Y ∨ X 6= YPierre Boutry

Towards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

A few definitions

Collinearity

A B C ∨ B C A ∨ C A B

Coplanarity

∃X , (Col AB X ∧ Col C D X ) ∨ (Col AC X ∧ Col B D X ) ∨(Col AD X ∧ Col B C X )

Strict parallelism

A 6= B ∧ C 6= D ∧ Cp AB C D ∧ ¬∃X ,Col AB X ∧ Col C D X

Parallelism

AB ‖s CD ∨ (A 6= B ∧ C 6= D ∧ Col AC D ∧ Col B C D)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

A few definitions

Collinearity

A B C ∨ B C A ∨ C A B

Coplanarity

∃X , (Col AB X ∧ Col C D X ) ∨ (Col AC X ∧ Col B D X ) ∨(Col AD X ∧ Col B C X )

Strict parallelism

A 6= B ∧ C 6= D ∧ Cp AB C D ∧ ¬∃X ,Col AB X ∧ Col C D X

Parallelism

AB ‖s CD ∨ (A 6= B ∧ C 6= D ∧ Col AC D ∧ Col B C D)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

A few definitions

Collinearity

A B C ∨ B C A ∨ C A B

Coplanarity

∃X , (Col AB X ∧ Col C D X ) ∨ (Col AC X ∧ Col B D X ) ∨(Col AD X ∧ Col B C X )

Strict parallelism

A 6= B ∧ C 6= D ∧ Cp AB C D ∧ ¬∃X ,Col AB X ∧ Col C D X

Parallelism

AB ‖s CD ∨ (A 6= B ∧ C 6= D ∧ Col AC D ∧ Col B C D)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

A few definitions

Collinearity

A B C ∨ B C A ∨ C A B

Coplanarity

∃X , (Col AB X ∧ Col C D X ) ∨ (Col AC X ∧ Col B D X ) ∨(Col AD X ∧ Col B C X )

Strict parallelism

A 6= B ∧ C 6= D ∧ Cp AB C D ∧ ¬∃X ,Col AB X ∧ Col C D X

Parallelism

AB ‖s CD ∨ (A 6= B ∧ C 6= D ∧ Col AC D ∧ Col B C D)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

A few definitions

Collinearity

A B C ∨ B C A ∨ C A B

Coplanarity

∃X , (Col AB X ∧ Col C D X ) ∨ (Col AC X ∧ Col B D X ) ∨(Col AD X ∧ Col B C X )

Strict parallelism

A 6= B ∧ C 6= D ∧ Cp AB C D ∧ ¬∃X ,Col AB X ∧ Col C D X

Parallelism

AB ‖s CD ∨ (A 6= B ∧ C 6= D ∧ Col AC D ∧ Col B C D)

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Proclus’ axiom

Axiom (Proclus’ axiom)

AB ‖ CD ∧ Col AB P ∧ ¬Col AB Q ⇒∃Y ,Col C D Y ∧ Col P Q Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

Proclus’ axiom

Axiom (Proclus’ axiom)

AB ‖ CD ∧ Col AB P ∧ ¬Col AB Q ⇒∃Y ,Col C D Y ∧ Col P Q Y

A

B

C

D

Q

Y

P

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axioms

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B A

Transitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ∧ A 6= P ∧ P 6= C∧B 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

ProclusContinuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒

∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B A

Transitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ∧ A 6= P ∧ P 6= C∧B 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

ProclusContinuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒

∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B ATransitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ∧ A 6= P ∧ P 6= C∧B 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

ProclusContinuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒

∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B A

Transitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CD

Reflexivity for congruence AB ≡ BAIdentity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ∧ A 6= P ∧ P 6= C∧B 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

ProclusContinuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒

∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B A

Transitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ∧ A 6= P ∧ P 6= C∧B 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

ProclusContinuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒

∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Parallel postulates are not equivalentHow to classify the postulates?The axioms

The axiomsSymmetry for betweenness A B C ⇒ C B A

Transitivity for betweenness A B D ∧ B C D ⇒ A B CTransitivity for congruence AB ≡ EF ∧ CD ≡ EF ⇒ AB ≡ CDReflexivity for congruence AB ≡ BA

Identity for congruence AB ≡ CC ⇒ A = BSegment Construction ∃E ,A B E ∧ BE ≡ CD

Pasch A P C ∧ B Q C ∧ A 6= P ∧ P 6= C∧B 6= Q ∧ Q 6= C ∧ ¬(A B C ∨ B C A ∨ C A B)⇒∃X ,P X B ∧ Q X A

Five-Segment AB ≡ A′B′ ∧ BC ≡ B′C ′∧Transitivity for betweenness AD ≡ A′D′ ∧ BD ≡ B′D′∧

A B C ∧ A′ B′ C ′ ∧ A 6= B ⇒ CD ≡ C ′D′

Lower 2-Dimensional ∃ABC ,¬A B C ∧ ¬B C A ∧ ¬C A BUpper 2-Dimensional AP ≡ AQ ∧ BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q∧

Transitivity for betweenness A 6= B ∧ B 6= C ∧ A 6= C ⇒A B C ∨ B C A ∨ C A B

ProclusContinuity ∀ΞΥ, (∃A, (∀XY ,ΞX ∧ΥY ⇒ A X Y ))⇒

∃B, (∀XY ,ΞX ∧ΥY ⇒ X B Y ∨ X = B ∨ B = Y )Point equality decidability X = Y ∨ X 6= Y

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Results

An independent version of Tarski’s system of geometry.

We had to correct one of Gupta’s models.

Inner Pasch holds in the models that were given for outerPasch.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Results

An independent version of Tarski’s system of geometry.

We had to correct one of Gupta’s models.

Inner Pasch holds in the models that were given for outerPasch.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Results

An independent version of Tarski’s system of geometry.

We had to correct one of Gupta’s models.

Inner Pasch holds in the models that were given for outerPasch.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Results

An independent version of Tarski’s system of geometry.

We had to correct one of Gupta’s models.

Inner Pasch holds in the models that were given for outerPasch.

Pierre BoutryTowards an independent version of Tarski’s system of geometry

IntroductionTarski’s System of Geometry

Gupta’s and Szczerba’s contributionsAn independent version of Tarski’s system of geometry?

Conclusion

Thank you!

Pierre BoutryTowards an independent version of Tarski’s system of geometry