turbine comparison

40
STATIC TORQUE ANALYSIS OF VARIOUS TWO-BLADED SAVONIUS WIND TURBINE MODELS Brandon Byrnes [email protected]

Upload: brandon-byrnes

Post on 07-Apr-2017

161 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TURBINE COMPARISON

STATIC TORQUE ANALYSIS OF VARIOUS TWO-BLADED SAVONIUS WIND TURBINE

MODELS

Brandon [email protected]

Page 2: TURBINE COMPARISON

Purpose of Research• Determine the most efficient wind turbine design when

considering a specific type with only one variable• Designs chosen were two-blade vertical axis wind turbines

with the same diameter• Variable tested was diameter of the curved blades

Page 3: TURBINE COMPARISON

Wind Turbines• Used to convert naturally occurring wind into electric power• Blades mounted around a central axis capture the wind• Captured wind causes the turbines to rotate• Two types of wind turbines: horizontal axis wind turbines and

vertical axis wind turbines

Page 4: TURBINE COMPARISON

Turbine Designs Studied• Vertical axis wind turbine• Savonius, two-bladed design• Blades of different radii

– 4” diameter– 5” diameter– 6” diameter

Page 5: TURBINE COMPARISON

List of Symbols•Symbol Explanation•A Rotor Area•D Overall Rotor Diameter•d Blade Diameter•H Rotor Height•V Wind Velocity (m/s)•N Revolutions Per Minute•ν Kinematic Viscosity (m2/s)•ρ Air Density (kg/m3)

•ω Angular Velocity (rad/sec)•Re Reynolds Number•λ Tip Speed Ratio•T Torque•P Power•Cq Torque Coefficient• Cp Power Coefficient

Page 6: TURBINE COMPARISON

Mathematical Expressions• Rotor Area: • Angular Velocity: • Reynolds Number:• Tip Speed Ratio: • Torque Coefficient: • Power Coefficient:

Page 7: TURBINE COMPARISON

Procedure•Two-part study

– ANSYS Fluent to simulate designs– Wind tunnel to measure torque

Page 8: TURBINE COMPARISON

Static Simulation• Conduct in a 2D format• Designs created in Geometry function as cross-section• Sketches imported into Mesh function• Mesh imported into Fluent function• Simulation executed in vertical and horizontal airflow

Page 9: TURBINE COMPARISON

Mesh Created

4”ϴ blade design 5”ϴ blade design 6”ϴ blade design

Page 10: TURBINE COMPARISON

5 m/s Vertical Airflow Pressure

4”ϴ blade design 5”ϴ blade design 6”ϴ blade design

Page 11: TURBINE COMPARISON

5 m/s Horizontal Airflow Pressure

4”ϴ blade design 5”ϴ blade design 6”ϴ blade design

Page 12: TURBINE COMPARISON

5 m/s Vertical Airflow Velocity

4”ϴ blade design 5”ϴ blade design 6”ϴ blade design

Page 13: TURBINE COMPARISON

5 m/s Horizontal Airflow Velocity

4”ϴ blade design 5”ϴ blade design 6”ϴ blade design

Page 14: TURBINE COMPARISON

Simulation Results

HorizontalAirflow

VerticalAirflow

MAX MIN4"ϴ DESIGN 18.6 -49.35"ϴ DESIGN 13.3 -25.76"ϴ DESIGN 11.8 -18.6

5 M/S LEFT-RIGHT VELOCITYPRESSURE (pascal)

MAX MIN4"ϴ DESIGN 9.71 0.02145"ϴ DESIGN 7.77 0.02126"ϴ DESIGN 7.04 0.0253

5 M/S LEFT-RIGHT VELOCITYVELOCITY (m/s)

MAX MIN4"ϴ DESIGN 68.5 -47.35"ϴ DESIGN 79.6 -1.496"ϴ DESIGN 81.9 -2.15

5 M/S UPWARDS VELOCITYPRESSURE (pascal)

MAX MIN4"ϴ DESIGN 13.5 0.0004655"ϴ DESIGN 11.5 0.001756"ϴ DESIGN 11.6 0.0026

5 M/S UPWARDS VELOCITYVELOCITY (m/s)

Page 15: TURBINE COMPARISON

Experimental Setup• Wind Turbine in Georgia Southern Wind Research Laboratory

used to conduct experiments• Static torque measurement fixture utilized to collect data

Page 16: TURBINE COMPARISON

Models Tested• Models of 4”, 5”, and 6” diameter blades created• Common 8 ½” overall diameter and 12” blade height• Clear acrylic material construction

4”ϴ blade design 5”ϴ blade design 6”ϴ blade design

Page 17: TURBINE COMPARISON

Data Acquisition• Airflow rates of 6, 9, and 11.6 meters per second

– Calculated using anemometer• Reynolds numbers calculated; indicate turbulent flow• Rotational positions at 30º increments tested• Torque measurement gathered at all wind speeds

Page 18: TURBINE COMPARISON

Torque vs Blade Angle• 6 m/s

0 30 60 90 120 150

-0.1-0.08-0.06-0.04-0.02

00.020.040.060.08

0.1

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle, (degree)

Torq

ue, T

(N-m

)

Page 19: TURBINE COMPARISON

Torque vs Blade Angle• 9 m/s

0 30 60 90 120 150

-0.05

0

0.05

0.1

0.15

0.2

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle, (degree)

Torq

ue, T

(N-m

)

Page 20: TURBINE COMPARISON

Torque vs Blade Angle• 11.6 m/s

0 30 60 90 120 150

-0.1-0.05

00.05

0.10.15

0.20.25

0.30.35

0.4

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle, (degree)

Torq

ue, T

( N

-m)

Page 21: TURBINE COMPARISON

Torque Coefficient Calculations

• From measured torque values, equation:used to calculate torque coefficient• T = Torque• ρ = Air Density (kg/m3)• A = Rotor Area• D = Overall Rotor Diameter• V = Wind Velocity (m/s)

Page 22: TURBINE COMPARISON

Torque Coefficient vs Blade Angle• 6 m/s

0 30 60 90 120 150

-0.0800

-0.0600

-0.0400

-0.0200

0.0000

0.0200

0.0400

0.0600

0.0800

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle

Torq

ue C

oeffi

cient

Page 23: TURBINE COMPARISON

Torque Coefficient vs Blade Angle• 9 m/s

0 30 60 90 120 150

-0.0400-0.02000.00000.02000.04000.06000.08000.10000.12000.14000.1600

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle, (degree)

Torq

ue C

oeffi

cien

t, Cq

Page 24: TURBINE COMPARISON

Torque Coefficient vs Blade Angle• 11.6 m/s

0 30 60 90 120 150-0.0500

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle, (degree)

Torq

ue C

oeffi

cien

t, Cq

Page 25: TURBINE COMPARISON

Angular Velocity Calculations

• Revolutions per minute values of 60, 80, 100, 120, and 140 implemented to calculate power coefficient

• Equation: used to calculate angular velocity• N = revolutions per minute

Page 26: TURBINE COMPARISON

Tip Speed Ratio Calculations

• From calculated angular velocity values, equation: used to calculate tip speed ratio

• = Angular Velocity (rad/sec)• = Overall Rotor Diameter• = Wind Speed Velocity (m/s)

Page 27: TURBINE COMPARISON

Power Coefficient Calculations

• From calculated torque coefficient values, equation: used to calculate power coefficient

• = Tip Speed Ratio• = Torque Coefficient

Page 28: TURBINE COMPARISON

Power Coefficient vs Blade Angle

• 60 RPM considered– Similar power coefficients– Variable wind speed

Page 29: TURBINE COMPARISON

Power Coefficient vs Blade Angle• 60 RPM considered• 6 m/s

0 30 60 90 120 150

-0.0100-0.0080-0.0060-0.0040-0.00200.00000.00200.00400.00600.00800.0100

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle, (degree)

Pow

er C

oeffi

cient

, Cp

Page 30: TURBINE COMPARISON

Power Coefficient vs Blade Angle• 60 RPM considered• 9 m/s

0 30 60 90 120 150

-0.0050

0.0000

0.0050

0.0100

0.0150

0.0200

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle, (degree)

Pow

er C

oeffi

cient

, Cp

Page 31: TURBINE COMPARISON

Power Coefficient vs Blade Angle• 60 RPM considered• 11.6 m/s

0 30 60 90 120 150

-0.0100-0.00500.00000.00500.01000.01500.02000.02500.03000.0350

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Blade Angle, (degree)

Pow

er C

oeffi

cient

, Cp

Page 32: TURBINE COMPARISON

Power Coefficient vs Tip Speed• 6 m/s• 60, 80, 100, 120, and 140 RPM considered• Various tip speeds calculated• Parallel (0º) position

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.280

0.00050.001

0.00150.002

0.00250.003

0.00350.004

0.0045

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Tip Speed Ratio, λ

Pow

er C

oeffi

cient

, Cp

Page 33: TURBINE COMPARISON

Power Coefficient vs Tip Speed• 6 m/s• 60, 80, 100, 120, and 140 RPM considered• Various tip speeds calculated• Perpendicular (90º) position

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

-0.0025

-0.002

-0.0015

-0.001

-0.0005

0

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Tip Speed Ratio, λ

Pow

er C

oeffi

cient

, C

p

Page 34: TURBINE COMPARISON

Power Coefficient vs Tip Speed• 9 m/s• 60, 80, 100, 120, and 140 RPM considered• Various tip speeds calculated• Parallel (0º) position

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.280

0.00050.001

0.00150.002

0.00250.003

0.00350.004

0.00450.005

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Tip Speed Ratio, λ

Pow

er C

oeffi

cient

, Cp

Page 35: TURBINE COMPARISON

Power Coefficient vs Tip Speed• 9 m/s• 60, 80, 100, 120, and 140 RPM considered• Various tip speeds calculated• Perpendicular (90º) position

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Tip Speed Ratio, λ

Pow

er C

oeffi

cient

, Cp

Page 36: TURBINE COMPARISON

Power Coefficient vs Tip Speed• 11.6 m/s• 60, 80, 100, 120, and 140 RPM considered• Various tip speeds calculated• Parallel (0º) position

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.280

0.002

0.004

0.006

0.008

0.01

0.012

0.014

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Tip Speed Ratio, λ

Pow

er C

oeffi

cient

, Cp

Page 37: TURBINE COMPARISON

Power Coefficient vs Tip Speed• 11.6 m/s• 60, 80, 100, 120, and 140 RPM considered• Various tip speeds calculated• Perpendicular (90º) position

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

-0.01-0.008-0.006-0.004-0.002

00.0020.0040.0060.008

0.01

4"ϴ Blade Design5"ϴ Blade Design6"ϴ Blade Design

Tip Speed Ratio, λ

Pow

er C

oeffi

cient

, Cp

Page 38: TURBINE COMPARISON

Experiment Results

Blade Angle

4"ϴ Torque N-

m

5"ϴ Torque N-

m

6"ϴ Torque N-

m0 0.0068 0.0147 0.009030 0.0181 0.0490 0.056560 0.0486 0.0804 0.078090 -0.0045 -0.0049 -0.0102

120 -0.0904 0.0412 0.0000150 0.0226 0.0245 -0.0136

AVERAGE 0.0002 0.0342 0.0200

6 M/S Torque

Blade Angle

4"ϴ Torque N-

m

5"ϴ Torque N-

m

6"ϴ Torque N-

m0 0.0147 0.0206 0.013630 0.0926 0.1216 0.120960 0.1006 0.1746 0.165090 -0.0090 -0.0245 -0.0215

120 -0.0181 0.0510 0.0113150 0.0362 0.0196 -0.0147

AVERAGE 0.0362 0.0605 0.0458

9 M/S Torque

Blade Angle

4"ϴ Torque N-

m

5"ϴ Torque N-

m

6"ϴ Torque N-

m0 0.0621 0.0510 0.024930 0.1672 0.1961 0.201160 0.2757 0.3324 0.277990 0.0350 -0.0382 0.0000

120 -0.0203 0.0510 0.0271150 0.0610 -0.0039 -0.0147

AVERAGE 0.0968 0.0981 0.0861

11.6 M/S Torque

Page 39: TURBINE COMPARISON

Discussion• Considering pressure, 4” diameter blade design most efficient

– Pressure localized to cup of blade• Considering velocity, 6” diameter blade design most efficient

– High velocity at blade tip, low profile• Considering torque, 5” diameter blade design most efficient

– Highest average torque• Considering power coefficient vs tip speed ratio, 4” diameter

blade design most efficient

Page 40: TURBINE COMPARISON

Conclusion• 5” diameter design overall most efficient design

– Highest average torque– Although 4” diameter blade design more efficient considering pressure

and power coefficient vs tip speed, orientations calculated at 0° and 90° showed smallest torque

– Although 6” diameter blade design more efficient considering velocity, minimal differences between designs was shown in simulation