ultra-fast database search: super-parallel holography versus quantum computing team: john shen...

40
Ultra-fast Database Search: Super-Parallel Holography versus Quantum Computing Team: John Shen (Graduate Student) Dr. Renu Tripathi (Post-Doc) Prashanth Ravishankar (UG) Matthew Hall (UG) Supported By: DARPA, AFOSR

Upload: devin-gain

Post on 16-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Ultra-fast Database Search:  Super-Parallel Holography versus Quantum Computing

Team:John Shen (Graduate Student)Dr. Renu Tripathi (Post-Doc)Prashanth Ravishankar (UG)Matthew Hall (UG)

Supported By:DARPA, AFOSR

QUANTUM COMPUTER

USES INDIVIDUAL QUANTUM SYSTEMS AS BITS

APPLICATIONS

FACTORING VERY LARGE NUMBERS EFFICIENTLY

SPEEDY DATA BASE SEARCH

QUANTUM MEMORY FOR QUANTUM COMMUNICATION SYSTEMS

SIMULATION OF QUANTUM SYSTEMS

COMPUTING POWER IS EXPONENTIAL IN NUMBER OF BITS

WHY IS QUANTUM COMPUTER POWERFUL ? : ENTANGLEMENT

QUANTUM COMPUTER: SIMPLE DEFINITION

1 2 3 4 ……………………………………………………………………… n

N=2n ALLOWED STATES: |1>=|0,0,0,0,0,0,…….0,0,0>

|2>=|0,0,0,0,0,0,…….0,0,1>

|N>=|1,1,1,1,1,1,…….1,1,1>

CREATE AN OPERATOR: ji

NjNi

jijiQ

,

1,1,

ˆ

A MACHINE CAPABLE OF PRODUCING THIS OPERATOR, REPRESENTED AS AN NXNMATRIX, IS A QUANTUM COMPUTER

CAN BE REALIZED WITH SINGLE BIT OPERATION AND NEAREST-NEIGHBOR INTERACTION

EFFICIENT DATA BASE SEARCH WITH A QUANTUM COMPUTER

1 2 3 4 ……………………………………………………………………… n

PREPARE THE SYSTEM IN AN EQUAL SUPER-POSITION OF EACH OF THE N=2n STATES, REPRESENTING THE STORED DATA BASE:

|1>=|0,0,0,0,0,0,…….0,0,0>

|2>=|0,0,0,0,0,0,…….0,0,1>

|N>=|1,1,1,1,1,1,…….1,1,1>

|1> |2> |3> ………………………………………...... |N>

EFFICIENT DATA BASE SEARCH WITH A QUANTUM COMPUTER

1 2 3 4 ……………………………………………………………………… n

OBJECT OF SEARCH IS ONE OF THESE STATES:

|1>=|0,0,0,0,0,0,…….0,0,0>

|2>=|0,0,0,0,0,0,…….0,0,1>

|N>=|1,1,1,1,1,1,…….1,1,1>

|K>

|1> |2> |3> ………………………………………...... |N>

EFFICIENT DATA BASE SEARCH WITH A QUANTUM COMPUTER

1 2 3 4 ……………………………………………………………………… n

QUANTUM COMPUTER USED TO FLIP THE SIGN OF THIS STATE ONLY:

|1>=|0,0,0,0,0,0,…….0,0,0>|2>=|0,0,0,0,0,0,…….0,0,1>

|N>=|1,1,1,1,1,1,…….1,1,1>

|K> -|K>

|1> |2> |3> ………………………………………...... |N>

EFFICIENT DATA BASE SEARCH WITH A QUANTUM COMPUTER

1 2 3 4 ……………………………………………………………………… n

COMPUTE AVERAGE, AND FLIP EACH STATE AROUND THE AVERAGE:

Vi A+(A-Vi)

|1> |2> |3> ………………………………………...... |N>

|1> |2> |3> ………………………………………...... |N>

EFFICIENT DATA BASE SEARCH WITH A QUANTUM COMPUTER

1 2 3 4 ……………………………………………………………………… n

AFTER O(N) STEPS, SYSTEM IS NEARLY IN

|1>=|0,0,0,0,0,0,…….0,0,0>

|2>=|0,0,0,0,0,0,…….0,0,1>

|N>=|1,1,1,1,1,1,…….1,1,1>

|K>

|1> |2> |3> ………………………………………...... |N>

SUMMARY SO FAR

A quantum computer can search through N unsorted objects in O(N1/2) steps, using only O(Log2N) quantum bits (Grover’s Algorithm: GA)

The specific device we discussed is the Holographic Super-Correlator, which performs angularly-multiplexed correlation in a thick hologram in many spatial spots simultaneously

However, given the necessity to store the database for a long time, it is likely that the user would need O(N) classical resources anyway

As such, the real significance of GA is that the search requires O(N1/2) steps

Here we show a practical search engine that takes only O(N1/2) steps

It requires O(N) resources for memory, and O(N1/2) resources for search

HOLOGRAPHIC OPTICAL CORRELATOR: BASIC IDEA

HOLOGRAPHIC OPTICAL CORRELATOR: BASIC IDEA

PROBLEMS: (A) SPATIAL MULTIPLEXING IS POTENTIALLY SLOW (B) CAN NOT COMPARE ALL OF THEM SIMULATANEOUSLY

HOLOGRAPHIC SUPER CORRELATOR : BASIC CONCEPT

LA

SER

DIGITAL LOGIC

FOR

THRESHOLDING

AND

DECODING

TARGET ID: 7968023

SLM

BE

LA

SER

LA

SER

RE

AD

LA

SER

DIGITAL LOGIC

FOR

THRESHOLDING

AND

DECODING

TARGET ID: 7968023

SLM

BEAM EXPANDER

HOLOGRAPHIC MEMORY

TARGET IMAGE

LENSLET ARRAY

HOLOGRAPHIC REDIRECTOR

HOLOGRAPHIC MUX/DEMUX

IMAGE FLATTENINGBEAM REDUCER BEAM

EXPANDER

LENSLET ARRAY

CCD ARRAY

CC

D A

RR

AY

BEAM SPLITTER

APERTURE

HOLOGRAPHIC MULTIPLEXER/DEMULTIPLEXER

WRITINGA 1X3 HMD

INDIVIDUALREADING

SIMULTANEOUSREADING

TARGET ID: 7968023

SLM

CC

DA

BS

BS

HMDX HMDXHR HMULLA HR

BE

BEIFBR

AP

LLA

CCDA

M/# Needed: N

HOLOGRAPHIC REDIRECTOR

WRITINGA 3 ELEMENTHRO

READINGA 3 ELEMENTHRO

TARGET ID: 7968023

SLM

CC

DA

BS

BS

HMDX HMDXHR HMULLA HR

BE

BEIFBR

AP

LLA

CCDA

M/# Needed: 1

HOLOGRAPHIC MEMORY UNIT

TARGET ID: 7968023

SLM

CC

DA

BS

BS

HMDX HMDXHR HMULLA HR

BE

BEIFBR

AP

LLA

CCDA

Substrate: PDA/MemplexTM

Size: 15 cm X 15 cm X 5 mm

Number of Cells: 1600

Images in each cell: 1000X8

Bits per image: 1028X1028

Capacity: 13 mil images/1.6 TB

MEMORY WRITING SETUP

16-BIT BUS

16-BIT BUS

GALVODRIVER

TEL 1

TEL 3

TE

L 2

PBS50/50 BS

GM1

M2

LA

SE

R

M1

SH

UT

TE

R

HMU

SLM

2D STAGEDRIVER

2D

STA

GE

COMPUTER

DVD

SLM DRIVER

CONTROLPANEL DATA PAGE

2 PLATE

NCO

MB

. LO

GIC GM2

2D SCANNING MECHANISM

Diode LaserDetector

BS

ReflectiveScreen withHole s

CP-X

CP-Y

FP(dx,dy)

MMU

Feedback

X

Y

CONTROLBOX

CP Scanning Mechanism

HMU

LENSLET ARRAY

TARGET ID: 7968023

SLM

CC

DA

BS

BS

HMDX HMDXHR HMULLA HR

BE

BEIFBR

AP

LLA

CCDA

SCHEMATIC REAL

DEMONSTRATION OF HMDX

CORRELATION WITH DIRECT IMAGE FROM SLM

Recorded Holographic Images Image Correlation Diffraction Spots Diffraction Intensity

SIMULTANEOUS CORRELATION WITH 3X3 HMDX

1x9 SPLITTER

3x3 REDIRECTOR

3X3 HMU

8 POSSIBLE DIFFRACTION BEAMSFROM EACH MEMORY CELL

1x9 SPLITTER

3x3 REDIRECTOR

3X3 HMU

8 POSSIBLE DIFFRACTION BEAMSFROM EACH MEMORY CELL

SIMULTANEOUS CORRELATION WITH 3X3 HMDX

12

3

S1

S2

S30

2

4

6

8

10

12

Efficiency

Column

Row

Splitter Diffraction Efficiency

12

3

S1

S2

S30

2

4

6

8

10

12

Efficiency

Column

Row

Splitter Diffraction Efficiency

a.

b.

c.

d.

a.

b.

c.

d.

SIMULTANEOUS CORRELATION WITH 3X3 HMDX

1

2

3S1

S2

S3 0

10

20

30

40

50

60

70

80

Efficiency

Column

Row

Redirector Diffraction Efficiency

SIMULTANEOUS CORRELATION WITH 3X3 HMDX

3.81 cm.

3.81

cm

.

1 2 3

4

7

5 6

8 9

3.84 mm.

3.84

mm

.

2.0 mm.

a.

SPA

TIA

L P

OSI

TIO

N

1

2

3

4

5

6

7

8

9

A B C D E F G H

STORAGE ANGLEb.

SPA

TIA

L P

OSI

TIO

N

1

2

3

4

5

6

7

8

9

A B C D E F G H

STORAGE ANGLEb.

SIMULTANEOUS CORRELATION WITH 3X3 HMDX

1 2 3 4

5 6 7 8 9

c.3.81 cm.

3.81

cm

.1 2 3

4

7

5 6

8 9

3.84 mm.

3.84

mm

.

2.0 mm.

a.

a.

b.

SIMULTANEOUS CORRELATION WITH 3X3 HMDX:3X8 IMAGES IN EACH LOCATION

1x9 SPLITTER

3x3 REDIRECTOR

3X3 HMU

3x8 POSSIBLE DIFFRACTION BEAMSFROM EACH MEMORY CELL

1x9 SPLITTER

3x3 REDIRECTOR

3X3 HMU

3x8 POSSIBLE DIFFRACTION BEAMSFROM EACH MEMORY CELL

SIMULTANEOUS CORRELATION WITH 3X3 HMDX:3X8 IMAGES IN EACH LOCATION

0.95 0

0.79 0

a.

+0.95° Vertical Angle Set

0° Vertical Angle Set

-0.71° Vertical Angle Set

b.

SIMULTANEOUS CORRELATION WITH 3X3 HMDX:3X8 IMAGES IN EACH LOCATION

Correlation for images 1 to 8

(First Row).

Correlation for images 9 to 16

(Second Row).

Correlation for images 17 to 24

(Third Row).

Correlation for images 1 to 8

(First Row).

Correlation for images 9 to 16

(Second Row).

Correlation for images 17 to 24

(Third Row).

0.95 0

0.79 0

a.

+0.95° Vertical Angle Set

0° Vertical Angle Set

-0.71° Vertical Angle Set

b.

COMPARISON WITH QUANTUM DATABASE SEARCHL

ASE

R

SLM

CC

DA

BS

BS

HMDXHMDXHR HMU LLA HR

BE

BEIFBR

AP

LLA

CCDA

IF

N Spatial Locations

N Im

ages Per L

ocation

O(N) Steps Needed to Search Through N Unsorted Objects

Same Speed-Up As Offered By Grover’s Algorithm for Quantum Database Search

PROPOSED SUPER-PARALLEL HRAM

IMAGING CCD

RETRIEVED IMAGE

IMAGE FLATTENING

BEAM EXPANDER

APERTURE

2-D BEAM DEFLECTOR

REDIRECTOR

SHUTTER LENSLET ARRAY

HOLOGRAPHIC MULTIPLEXER/DEMULTIPLEXER

HOLOGRAPHIC MEMORY UNIT REDUCING

TELESCOPE

READ LASER

TARGET ID: 7968023TARGET ID: 7968

REDIRECTOR

APERTURE

CCDHMU

TELESCOPE

HOLOGRAPHIC REDIRECTOR

READ OUT DATA

READ BEAM

338 HMU

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

SPLITTER

Data Read-Out From Location 3X2

PRELIMINARY RESULTS FROM SIMPLE GEOMETRY

HOLOGRAPHIC OPTICAL CORRELATOR: THIN MEDIUM: UAV GUIDANCE

HOLOGRAPHIC OPTICAL CORRELATOR: THIN MEDIUM: UAV GUIDANCE

HOLOGRAPHIC OPTICAL CORRELATOR: ASSOCIATIVE MEMORY

READ/WRITELASER(690 NM)

SLMMIRROR

MEMORYCUBE: BR

FT LENS FT LENSBS BS

AMPLIFY &THRESHOLD ACTIVATION

LASER(635 NM)

TRANSLATION STAGE

SHIFT-INVARIANTASSOCIATIVEMEMORY

CCD

HOLOGRAPHIC OPTICAL CORRELATOR: ASSOCIATIVE MEMORY

INPUTIMAGE

THRESHOLDED CORRELATION PEAKS

PAGE 1 PAGE 2 PAGE 3

IMAGE ID’D & RECALLED

MATERIALS FOR TWO-PHOTON MEMORY: BACTERIORHODOPSIN

PROPOSED SUPER-PARALLEL ASSOCIATIVE MEMORY

Holographic MemoryLenslet ArrayHolographic

Redirector

Holographic Mux/Demux

TARGET ID: 7968023TARGET ID: 7968023

Aperture

CCD

AC

TIV

AT

ION

LA

SE

R

RE

AD

LA

SE

R

Aperture

SLM

inpu

t

TRAN STAGELENSLET ARRAY

DET ARRAY

Holographic Redirector

MIRROR

FLC SHUTTERARRAY

Holographic MemoryLenslet ArrayHolographic

Redirector

Holographic Mux/Demux

TARGET ID: 7968023TARGET ID: 7968023

Aperture

CCD

AC

TIV

AT

ION

LA

SE

R

RE

AD

LA

SE

R

Aperture

SLM

inpu

t

TRAN STAGELENSLET ARRAY

DET ARRAY

Holographic Redirector

MIRROR

FLC SHUTTERARRAY

Holographic MemoryLenslet ArrayHolographic

Redirector

Holographic Mux/Demux

TARGET ID: 7968023TARGET ID: 7968023TARGET ID: 7968023TARGET ID: 7968023

Aperture

CCD

AC

TIV

AT

ION

LA

SE

RA

CT

IVA

TIO

NL

AS

ER

RE

AD

LA

SE

R

ApertureAperture

SLM

inpu

t

TRAN STAGETRAN STAGETRAN STAGELENSLET ARRAY

DET ARRAY

Holographic Redirector

MIRROR

FLC SHUTTERARRAY

1. M.S. Shahriar, R. Tripathi, M. Kleinschmit, J. Donoghue, W. Weathers, M. Huq, J.T. Shen, "Super-Parallel Holographic Optical Correlator for Ultrafast Database Search", Opt. Letts. 28, pp. 525-527 (2003)2. M.S. Shahriar, J. Riccobono, M. Kleinschmit, and J. Shen " Coherent and Incoherent Beam Combination Using Thick Holographic Substrates" to appear in Opt. Commun. (2003).3. L. Wong, M. Bock, B. Ham, M.S. Shahriar, and P. Hemmer, “Ultra-High Density Optical Data Storage,” in Symposium on Electro-Optics: Present and Future, Optical Society of America book series on Trends in Optics and Photonics (1998).4. P. Hemmer, M.S. Shahriar, J. Ludman, H.J. Caulfield, "Holographic Optical Memories," in Holography for the New Millenium, J. Ludman, H.J Caulfield, J. Riccobono, eds. (Springer- Verlag, New York, 2002), pp. 179-189. 5. Hassaun A. Jones-Bey, "Holographic Correlation Improves on DSP by Six Orders of Magnitude," The Laser Focus World, July 2002.6. A. Adibi, K. Buse, D. Psaltis: ""Non-volatile holographic recording in doubly-doped lithium niobate,"" Nature, vol. 393, pp. 665-668, 1998.7. Robert R. Birge, Nathan B. Gillespie, Enrique W. Izaguirre, Anakarin Kusnetzow, Albert F. Lawrence, Deepak Singh, Q. Wang Song, Edward Schmidt, Jeffrey A. Stuart, Sukeerthi Seetharaman, and Kevin J. Wise, " Biomolecular Electronics: Protein-Based Associative Processors and Volumetric Memories,"J. Phys. Chem. B, 103, 10746-10766 (1999).

SOME REFERENCES FOR HIGH-SPEED HOLOGRAPHIC SEARCH

SUMMARY

Aquantum computer can search through N unsorted objects in O(N1/2) steps, using only O(Log2N) quantum bits (Grover’s Algorithm: GA)

Using existing materials and technology, this will enable simultaneous search through ten million images, encoded using a terabyte capacity memory

The specific device we discussed is the Holographic Super-Correlator, which performs angularly-multiplexed correlation in a thick hologram in many spatial spots simultaneously

COMPARABLE TO QUANTUM-COMPUTER, BUT ACTUALLY EXISTS

However, given the necessity to store the database for a long time, it is likely that the user would need O(N) classical resources anyway

As such, the real significance of GA is that the search requires O(N1/2) steps

Here we show a practical search engine that takes only O(N1/2) steps

It requires O(N) resources for memory, and O(N1/2) resources for search