uml an overview

23
UML an overview

Upload: laasya

Post on 14-Jan-2016

17 views

Category:

Documents


0 download

DESCRIPTION

UML an overview. Background. What are object-oriented (OO) methods? OO methods provide a set of techniques for analyzing, decomposing, and modularizing software system architectures - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: UML an overview

UMLan overview

Page 2: UML an overview

Background

What are object-oriented (OO) methods?

OO methods provide a set of techniques for analyzing, decomposing, and modularizing software system architectures

In general, OO methods are characterized by structuring the system architecture on the basis of its objects (and classes of objects) rather than the actions it performs

What are the benefits of OO?

OO enhances key software quality factors of a system and its constituent components

What is the rationale for using OO?

In general, systems evolve and functionality changes, but objects and classes tend to remain stable over time

Page 3: UML an overview

Background

Software Quality Factors Object-oriented techniques enhance key external and internal software

quality factors, e.g.,1. External (visible to end-users)(a) Correctness(b) Robustness and reliability(c) Performance2. Internal (visible to developers)(a) Modularity(b) Flexibility/Extensibility(c) Reusability(d) Compatibility (via standard/uniform interfaces)

Page 4: UML an overview

Background

OOA, OOD, and OOP

Object-oriented methods may be applied to different phases in the software life-cycle

e.g., analysis, design, implementation, etc. OO analysis (OOA) is a process of discovery

Where a development team models and under-stands the requirements of the system

OO design (OOD) is a process of invention and adaptation

Where the development team creates the abstractions and mechanisms necessary to meet the system's behavioral requirements determined during analysis

Page 5: UML an overview

Unified Modeling Language (UML) used for both database and software modeling version 1.1 was adopted in November 1997 by the Object Management Group

(OMG) as a standard language for object-oriented analysis and design Initially based on a combination of the Booch, OMT (Object Modeling

Technique) and OOSE (Object-Oriented Software Engineering) methods, UML was refined and extended by a consortium of several companies, and is undergoing minor revisions by the OMG Revision Task Force.

Ivar Jacobson is known as the father of Use Cases.

Page 6: UML an overview
Page 7: UML an overview

UML Diagrams

UML includes diagrams for use cases static structures (class and object diagrams) behavior (state-chart, activity, sequence and collaboration diagrams) implementation (component and deployment diagrams).

For data modeling purposes UML uses class diagrams, to which constraints in a textual language may be added

Page 8: UML an overview

Use Case Diagrams

Use Case Diagrams describe the functionality of a system and users of the system. These diagrams contain the following elements:

• Actors, which represent users of a system, including human users and other systems.

• Use Cases, which represent functionality or services provided by a system to users.

Use case diagrams

Page 9: UML an overview

High Level Use Case Diagram

Manage Resources

Manage Projects

System Admin

Resource Manager

Project Manager

System Administrator

Page 10: UML an overview

Class Diagrams

Class Diagrams describe the static structure of a system, or how it is structured rather than how it behaves. These diagrams contain the following elements.

• Classes, which represent entities with common characteristics or features. These features include attributes, operations and associations.

• Associations, which represent relationships that relate two or more other classes where the relationships have common characteristics or features. These attributes and operations.

Page 11: UML an overview

High-Level Resource Class Diagram

Skill

Resources

Salaried Hourly

Resource-Skill

Page 12: UML an overview

Detailed Resource Class Diagram

Skill

Name: String

Desc: String

Create(): Skill

setName(): (Name:String)

getName(): String

setDesc(): (Desc:String)

getDesc(): String

destroy()

Resource

Salaried Hourly

Resource Skill

Page 13: UML an overview
Page 14: UML an overview

UML class notation is a rectangle divided into three parts: class name, attributes, and operations. Names of abstract classes, such as Payment, are in italics. Relationships between classes are the connecting links.

Page 15: UML an overview

Our class diagram has three kinds of relationships . association -- a relationship between instances of the two

classes. There is an association between two classes if an instance of one class must know about the other in order to perform its work. In a diagram, an association is a link connecting two classes.

aggregation -- an association in which one class belongs to a collection. An aggregation has a diamond end pointing to the part containing the whole. In our diagram, Order has a collection of OrderDetails.

generalization -- an inheritance link indicating one class is a superclass of the other. A generalization has a triangle pointing to the superclass. Payment is a superclass of Cash, Check, and Credit.

Page 16: UML an overview

An association has two ends. An end may have a role name to clarify the nature of the association. For example, an OrderDetail is a line item of each Order.

A navigability arrow on an association shows which direction the association can be traversed or queried. An OrderDetail can be queried about its Item, but not the other way around. The arrow also lets you know who "owns" the association's implementation; in this case, OrderDetail has an Item. Associations with no navigability arrows are bi-directional.

The multiplicity of an association end is the number of possible instances of the class associated with a single instance of the other end. Multiplicities are single numbers or ranges of numbers. In our example, there can be only one Customer for each Order, but a Customer can have any number of Orders.

Page 17: UML an overview

the most common multiplicities.

MultiplicitiesMeaning0..1zero or one instance. The notation n . . m indicates n to m instances.

0..*  or  *no limit on the number of instances (including none).

1exactly one instance1..*at least one instance

Page 18: UML an overview

Every class diagram has classes, associations, and multiplicities.

Navigability and roles are optional items placed in a diagram to provide clarity.

Page 19: UML an overview

Object Diagrams

Object Diagrams describe the static structure of a system at a particular time. Whereas a class model describes all possible situations, an object model describes a particular situation. Object diagrams contain the following elements:

• Objects, which represent particular entities. These are instances of classes.

• Links, which represent particular relationships between objects. These are instances of associations.

.

Page 20: UML an overview

Sequence Diagrams

Sequence Diagrams describe interactions among classes. These interactions are modeled as exchange of messages. These diagrams focus on classes and the messages they exchange to accomplish some desired behavior. Sequence diagrams are a type of interaction diagrams. Sequence diagrams contain the following elements:

• Class roles, which represent roles that objects may play within the interaction.

• Lifelines, which represent the existence of an object over a period of time.

• Activations, which represent the time during which an object is performing an operation.

• Messages, which represent communication between objects.

Page 21: UML an overview

Sequence Diagram

Page 22: UML an overview

Advantages of UML

You can model just about any type of application, running on any type and combination of hardware, operating system, programming language, and network, in UML.

Used for modeling middleware Built upon the MOF™ metamodel for OO modeling UML Profiles (that is, subsets of UML tailored for specific purposes) help you

model Transactional, Real-time, and Fault-Tolerant systems in a natural way. 

Refernces http://www.omg.org/gettingstarted/what_is_uml.htm

Page 23: UML an overview

Advantages of UML

• UML is effective for modeling large, complex software

systems

• It is simple to learn for most developers, but provides

advanced features for expert analysts, designers and architects

• It can specify systems in an implementation-independent manner

• 10-20% of the constructs are used 80-90% of the time

• Structural modeling specifies a skeleton that can be refined

and extended with additional structure and behavior

• Use case modeling specifies the functional requirements of

system in an object-oriented manner