v2v implementation in developing...

15
V2V IMPLEMENTATION IN DEVELOPING COUNTRIES By Ahmed Yasser Mohamed Abd El-Khalek A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In Electronics and Communications Engineering FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Upload: others

Post on 09-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • V2V IMPLEMENTATION IN DEVELOPING

    COUNTRIES

    By

    Ahmed Yasser Mohamed Abd El-Khalek

    A Thesis Submitted to the

    Faculty of Engineering at Cairo University

    In Partial Fulfillment of the

    Requirements for the Degree of

    MASTER OF SCIENCE

    In

    Electronics and Communications Engineering

    FACULTY OF ENGINEERING, CAIRO UNIVERSITY

    GIZA, EGYPT

    2018

  • V2V IMPLEMENTATION IN DEVELOPING

    COUNTRIES

    By

    Ahmed Yasser Mohamed Abd El-Khalek

    A Thesis Submitted to the

    Faculty of Engineering at Cairo University

    In Partial Fulfillment of the

    Requirements for the Degree of

    MASTER OF SCIENCE

    In

    Electronics and Communications Engineering

    Under the Supervision of

    Prof. Dr. Neamat S. Abdel Kader

    ……………………………….

    Dr. Mohamed Ali El Zorkany

    ……………………………….

    Professor

    Electronics and Communications

    Department

    Faculty of Engineering, Cairo University

    Assistant Professor

    National Telecommunications Institute,

    Cairo, Egypt

    FACULTY OF ENGINEERING, CAIRO UNIVERSITY

    GIZA, EGYPT

    2018

  • V2V IMPLEMENTATION IN DEVELOPING

    COUNTRIES

    By

    Ahmed Yasser Mohamed Abd El-Khalek

    A Thesis Submitted to the

    Faculty of Engineering at Cairo University

    In Partial Fulfillment of the

    Requirements for the Degree of

    MASTER OF SCIENCE

    In

    Electronics and Communications Engineering

    Approved by the Examining Committee

    Prof. Dr. Neamat Sayed Abdel Kader Thesis Main Advisor

    Ass. Prof. Dr. Ahmed Khattab Fathi Khattab Internal Examiner

    Prof. Dr. Ahmed El-Sayed El-Araby El-Mahdy External Examiner - Faculty of Information Engineering and Technology Dean - German University in Cairo

    FACULTY OF ENGINEERING, CAIRO UNIVERSITY

    GIZA, EGYPT

    2018

  • Engineer’s Name: Ahmed Yasser Mohamed Abd El-Khalek

    Date of Birth: 01/10/1984

    Nationality: Egyptian

    E-mail: [email protected]

    Phone: 01001099887

    Address: District 7 Neighborhood 4, Shiekh Zayed, Egypt

    Registration Date: 01/10/2014

    Awarding Date: …./…./2018

    Degree: Master of Science

    Department: Electronics and Communications Engineering

    Supervisors:

    Prof. Dr. Neamat Sayed Abdel Kader

    Dr. Mohamed Ali El Zorkany

    Examiners:

    Prof. Dr. Neamat Sayed Abdel Kader (Thesis Main Advisor) Ass. Prof. Dr. Ahmed Khattab Fathi Khattab (Internal Examiner) Prof. Dr. Ahmed El-Sayed El-Araby El-Mahdy (External Examiner) (Faculty of Information Engineering and Technology Dean – German

    University in Cairo)

    Title of Thesis:

    V2V Implementation In Developing Countries

    Key Words:

    Internet of Things (IoT); Vehicle to Vehicle (V2V); Intelligent Transportation

    Systems (ITS); Routing Protocols; Ad hoc On-Demand Distance Vector (AODV)

    Summary:

    No. of daily vehicles accidents and traffic jams in the developing countries is

    exceeding every year, although we know that the use of the Road Side Units (RSU) as

    access points and essential in the Vehicle to Vehicle (V2V) communication systems to let

    Intelligent Transportation Systems (ITS) more accurate and safe, the developing countries

    like Egypt don't have well established infrastructure and didn’t implement the RSU, so this

    research will try to open new horizons in the best way to implement V2V without RSU

    using an optimized current protocol after selecting it from the simulation phase based on

    the most useful protocol from the research perspective and then to compare this protocol

    with and without RSU in order to check if the KPIs are nearly same or better after doing

    more optimization on the protocol in the scenario without the RSU, and finally to

    implement a mobile application to justify the simulation results.

    mailto:[email protected]

  • i

    Acknowledgments

    There are so many people to thank for helping me during the last four years, I will

    try to thank all of them for being a part in my Master's fruitful journey.

    First I would like to express the deepest appreciation to my supervisor, Prof.

    Neamat S. Abdel Kader for her generous guidance, encouragement, and patience.

    Thank you so much for providing indispensable advice, information and support on

    different aspects.

    I would like to thank my supervisor Dr. Mohamed Zorkany for his devotion of time

    to my research, encouragement, provide the facility and endless support for keeping me

    focused in my research, he has been invaluable on both an academic and personal level,

    which I am extremely grateful.

    I would like to thank my wife May, my sons Youssef and Selim for their personal

    support and great patience at all times. My parents, brother have given me their

    unequivocal support throughout, as always for which my mere expression of thanks

    likewise does not suffice.

    The assistance, cooperation, and experience of my fellow graduate students were

    essential for the completion of my master's degree , I 'd like to thank Ramy El Gammal, Mona Hosney and Ahmed Shawky for all of their restless support and help.

    Of course, I would like to thank the members of my department, Electronics and

    Electrical Telecommunications Department. The faculty, staff, and students really made

    my graduate studies period one I 'll always remember.

  • ii

    Table of Contents

    ACKNOWLEDGMENTS ............................................................................................. I

    TABLE OF CONTENTS .............................................................................................. II

    LIST OF FIGURES .....................................................................................................VI

    NOMENCLATURE ................................................................................................... VII

    ABSTRACT ................................................................................................................... X

    CHAPTER 1 : VEHICLE TO VEHICLE “V2V” OVER INTELLIGNET

    TRANSPORTATION SYSTEMS “ITS” ..................................................................... 1

    1.1. ITS .................................................................................................................. 1

    1.2. VANET .......................................................................................................... 1

    1.3. V2V ................................................................................................................ 3

    1.4. RESEARCH METHODOLOGY ............................................................................ 7

    1.4.1. PROBLEM DEFINITION ....................................................................................................... 7

    1.4.2. THESIS GOAL ..................................................................................................................... 8

    1.4.3. PROPOSED SOLUTION ........................................................................................................ 8

    1.4.4. THESIS ORGANIZATION ..................................................................................................... 8

    CHAPTER 2 : VEHICLE TO VEHICLE: SCOPE, IMPORTANCE,

    CHALLENGES, RESEARCH DIRECTIONS, AND RELATED WORK ............. 10

    2.1. INTRODUCTION ............................................................................................. 10

    2.2. ITS DEFINITIONS ...................................................................................... 10

    2.2.1. WIRELESS COMMUNICATION ........................................................................................... 11

    2.3. V2V SCOPE AND VISION ............................................................................... 12

    2.3.1. V2V SCOPE ..................................................................................................................... 12

    2.3.2. V2V STANDARD COMMUNICATION MODEL .................................................................... 13

    2.3.2.1. DEDICATED SHORT RANGE COMMUNICATIONS “DSRC” ........................................ 13 2.3.2.2. IEEE 802.11P........................................................................................................ 17 2.3.3. V2V RESEARCH DIRECTIONS .......................................................................................... 21

    2.3.4. V2V RESEARCH DIRECTIONS DESCRIPTION .................................................................... 21

    2.3.4.1. V2V PERFORMANCE EVALUATION ....................................................................... 21

    2.3.4.2. V2V NEW PROTOCOL DESIGN .............................................................................. 22 2.3.4.3. V2V INTEGRATION ............................................................................................... 24

    2.3.4.4. V2V SECURITY ..................................................................................................... 25

  • iii

    2.3.4.5. V2V IMPLEMENTATION AND ENHANCEMENTS...................................................... 27

    2.4. RELATED WORK ............................................................................................. 28

    2.4.1. CURRENT ITS SETUP ......................................................................................................... 28

    2.5. CONCLUSION ................................................................................................. 38

    CHAPTER 3 : PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS ..... 39

    3.1. INTRODUCTION ............................................................................................. 39

    3.2. ROUTING PROTOCOLS CATEGORIES .............................................................. 39

    3.2.1. TOPOLOGY BASED ROUTING PROTOCOLS ....................................................................... 39

    3.2.1.1. PROACTIVE ROUTING PROTOCOLS ........................................................................ 40

    3.2.1.2. REACTIVE ROUTING PROTOCOLS .......................................................................... 40 3.2.1.3. HYBRID ROUTING PROTOCOLS ............................................................................. 41 3.2.2. GEOGRAPHIC ROUTING PROTOCOLS ................................................................................ 41

    3.2.2.1. DTN ..................................................................................................................... 41

    3.2.2.2. NON-DTN............................................................................................................ 42

    3.3. USED ROUTING PROTOCOLS IN THE STUDY ................................................... 42

    3.3.1 AD HOC ON-DEMAND DISTANCE VECTOR (AODV) ......................................................... 42

    3.3.2 DYNAMIC SOURCE ROUTING (DSR) ........................................................................ 45

    3.3.3 OPTIMIZED LINK STATE ROUTING (OLSR) ......................................................... 48

    3.3.4 GEOGRAPHICAL ROUTING PROTOCOL (GRP) ................................................................... 49

    3.4. PROPOSED V2V COMPARISON METHODOLOGY ............................................ 52

    3.4.1.SIMULATION ENVIRONMENT ...................................................................... 52

    3.4.2. SIMULATION TOOL “RIVERBED MODELER” ............................................... 53

    3.4.2.1 RIVERBED DEFINITION .................................................................................... 53

    3.4.2.2 RIVERBED MAIN FEATURES ........................................................................... 55

    3.4.3. PERFORMANCE METRICS ........................................................................... 55

    3.4.3.1. VANET DELAY .................................................................................................... 55

    3.4.3.2. VANET THROUGHPUT ......................................................................................... 56

    3.4.3.3. VANET RETRANSMISSION ATTEMPTS.................................................................. 56

    3.4.3.4. VANET DROPPED DATA ...................................................................................... 56

    3.4.3.5. VANET LOAD ...................................................................................................... 56

    3.4.3.6. VANET TRAFFIC RECEIVED ................................................................................. 57

    3.4.4. V2V ROUTING PROTOCOL SELECTION PHASE ........................................... 57

    3.4.4.1. VANET DELAY .................................................................................................... 58

    3.4.4.1.1. FIRST SCENARIO ................................................................................... 58

    3.4.4.1.2. SECOND SCENARIO ............................................................................... 58 3.4.4.2. VANET THROUGHPUT ......................................................................................... 59

    3.4.4.2.1. FIRST SCENARIO ................................................................................... 59

    3.4.4.2.2. SECOND SCENARIO ............................................................................... 59 3.4.4.3. VANET RETRANSMISSION ATTEMPTS.................................................................. 60

    3.4.4.3.1. FIRST SCENARIO ................................................................................... 60

    3.4.4.3.2. SECOND SCENARIO ............................................................................... 60 3.4.4.4. VANET DROPPED DATA ...................................................................................... 61

    3.4.4.4.1. FIRST SCENARIO ................................................................................... 61

    3.4.4.4.2. SECOND SCENARIO ............................................................................... 61 3.4.4.5. VANET LOAD ...................................................................................................... 62

    3.4.4.5.1. FIRST SCENARIO ................................................................................... 62

    3.4.4.5.2. SECOND SCENARIO ............................................................................... 62

  • iv

    3.4.4.6. VANET TRAFFIC RECEIVED ................................................................................. 63

    3.4.4.6.1. FIRST SCENARIO ................................................................................... 63

    3.4.4.6.2. SECOND SCENARIO ............................................................................... 63 3.4.4.7. SIMULATION RESULTS ........................................................................................... 64 3.4.4.8. CONCLUSION ......................................................................................................... 65

    CHAPTER 4: PERFORMANCE ANALYSIS BETWEEN THE ITS

    SOLUTION WITH AND WITHOUT RSU ........................................................... 66

    4.1. INTRODUCTION ............................................................................................. 66

    4.2. V2V IMPLEMENTATION ................................................................................ 66

    4.3. V2V PERFORMANCE EVALUATION ............................................................... 70

    4.3.1. SIMULATION ENVIRONMENT ........................................................... 70

    4.3.2. ITS SETUP WITH RSU VS ITS SETUP WITHOUT RSU ................................ 70

    4.3.2.1. VANET DELAY .................................................................................................... 71 4.3.2.1.1. FIRST SCENARIO ................................................................................... 71

    4.3.2.1.2. SECOND SCENARIO ............................................................................... 71 4.3.2.2. VANET THROUGHPUT ......................................................................................... 72

    4.3.2.2.1. FIRST SCENARIO ................................................................................... 72

    4.3.2.2.2. SECOND SCENARIO ............................................................................... 72 4.3.2.3. VANET RETRANSMISSION ATTEMPTS.................................................................. 73

    4.3.2.3.1. FIRST SCENARIO ................................................................................... 73

    4.3.2.3.2. SECOND SCENARIO ............................................................................... 73 4.3.2.4. VANET LOAD ...................................................................................................... 74

    4.3.2.4.1. FIRST SCENARIO ................................................................................... 74

    4.3.2.4.2. SECOND SCENARIO ............................................................................... 74 4.3.2.5. AODV NUMBER OF HOPS PER ROUTE .................................................................. 75

    4.3.2.5.1. FIRST SCENARIO ................................................................................... 75

    4.3.2.5.2. SECOND SCENARIO ............................................................................... 75 4.3.2.6. AODV ROUTE DISCOVERY TIME .......................................................................... 76

    4.3.2.6.1. FIRST SCENARIO ................................................................................... 76

    4.3.2.6.2. SECOND SCENARIO ............................................................................... 76 4.3.2.7. SIMULATION RESULTS ........................................................................................... 77

    4.3.2.8. CONCLUSION ......................................................................................................... 78

    CHAPTER 5 : PROPOSED PRACTICAL IMPLEMENTATION OF THE V2V

    SYSTEM ........................................................................................................................ 79

    5.1. INTRODUCTION ............................................................................................. 79

    5.2. V2V/ITS MAIN COMPONENTS ...................................................................... 79

    5.3. MAIN COMPONENTS DESCRIPTION ................................................................. 80

    5.3.1. NODES .............................................................................................................................. 80

    5.3.2. SERVER ............................................................................................................................ 81

    5.3.3. V2V ................................................................................................................................. 82

    5.3.4. V2I ................................................................................................................................... 82

    5.4. NODE BLOCK DIAGRAM ................................................................................ 82

    5.5. SOFTWARE DESIGN ....................................................................................... 83

    5.6. FLOW CHART ................................................................................................ 85

    5.6.1 SOURCE UNIT FLOW CHART ............................................................................................. 85

    5.6.2 OTHER UNITS FLOW CHART ............................................................................................. 86

  • v

    5.7. ROUTING MODEL .......................................................................................... 87

    5.8. SETUP MODEL ............................................................................................... 87

    5.9. TEST SCENARIOS ........................................................................................... 88

    5.10. MOBILE APPLICATION SCREEN SHOTS............................................................ 91

    5.10.1. SOURCE UNIT VIEW ........................................................................................................ 91

    5.10.2. DESTINATION UNIT VIEW ................................................................................................ 91

    5.11. SIMULATION RESULTS ................................................................................... 92

    5.12. CONCLUSION ................................................................................................. 92

    CHAPTER 6 : CONCLUSIONS AND FUTURE WORK ........................................ 93

    6.1. CONCLUSION ................................................................................................. 93

    6.2. FUTURE WORK.............................................................................................. 94

    6.3. LIST OF PUBLICATIONS ................................................................................. 94

    6.4. LIST OF ACCEPTED PAPERS ........................................................................... 94

    REFERENCES ............................................................................................................. 95

  • vi

    List of Figures and Tables

    Figure 1.1: VANET Platform ........................................................................................ 2

    Figure 1.2: V2V Communications ................................................................................ 4

    Figure 1.3: ITS Challenges ............................................................................................ 5

    Figure 1.4: V2V Technological Readiness .................................................................... 6

    Figure 1.5: VANET Interactions ................................................................................... 7

    Figure 2.1: ITS............................................................................................................. 11

    Figure 2.2: V2V and V2I ............................................................................................. 13

    Figure 2.3: DSRC Communication Model .................................................................. 16

    Figure 2.4: IEEE 802.11P Packet Frame ..................................................................... 17

    Table 2.1: 802.11a and 802.11p comparison ............................................................... 18

    Figure 2.5: V2V Research Directions ......................................................................... 21

    Figure 2.6: Performance Evaluations Graphs .............................................................. 22

    Figure 2.7: V2V/V2I Protocol Sample ........................................................................ 23

    Figure 2.8: V2V/V2I over Cloud................................................................................. 25

    Figure 2.9: V2V Security Challenges .......................................................................... 26

    Figure 2.10: V2V/V2I Deployment ............................................................................. 28

    Figure 2.11: Current ITS Setup ................................................................................... 29

    Figure 2.12: 802.11p Roadmap Vs LTE Roadmap ..................................................... 31

    Figure 2.13: V2X Integration with Cloud ................................................................... 32

    Figure 2.14: Full Integrated ITS Implementation........................................................ 33

    Figure 2.15: Architecture example of V2I systems ..................................................... 34

    Figure 2.16: Orange Labs ITS Solution ...................................................................... 36

    Figure 3.1: Routing Protocols...................................................................................... 39

    Figure 3.2: AODV Scenario ........................................................................................ 43

    Figure 3.3: AODV Routing Protocol........................................................................... 45

    Figure 3.4: DSR routing Protocol ................................................................................ 46

    Figure 3.5: MPR Technique ........................................................................................ 48

    Figure 3.6: Greedy Routing Strategy ........................................................................... 50

    Figure 3.7: GRP Routing Protocol .............................................................................. 51

    Figure 3.8: Planner Graph Traversal ........................................................................... 51

    Figure 3.9: ITS setup-Low Traffic-Without RSU ....................................................... 52

    Figure 3.10: ITS setup-High Traffic-With RSU.......................................................... 52

    Table 3.1: Simulation Parameters ................................................................................ 53

    Figure 3.11: Riverbed Modeler ................................................................................... 54

    Figure 3.12: VANET Delay-Low Traffic .................................................................... 58

    Figure 3.13: VANET Delay-High Traffic ................................................................... 58

    Figure 3.14: VANET Throughput-Low Traffic .......................................................... 59

    Figure 3.15: VANET Throughput-High Traffic .......................................................... 59

    Figure 3.16: VANET Retransmission Attempts-Low Traffic ..................................... 60

    Figure 3.17: VANET Retransmission Attempts-High Traffic .................................... 60

    Figure 3.18: VANET Dropped Data-Low Traffic ....................................................... 61

    Figure 3.19: VANET Dropped Data-High Traffic ...................................................... 61

    Figure 3.20: VANET Load-Low Traffic ..................................................................... 62

    Figure 3.21: VANET Load-High Traffic .................................................................... 62

    Figure 3.22: VANET Traffic Received-Low Traffic .................................................. 63

  • vii

    Figure 3.23: VANET Traffic Received-High Traffic.................................................. 63

    Figure 4.1: ITS architecture based on V2V without RSU ........................................... 66

    Figure 4.2: Fully integrated ITS without RSU ............................................................ 67

    Figure 4.3: ITS architecture without RSU ................................................................... 67

    Figure 4.4: VANET Delay-Low Traffic ...................................................................... 71

    Figure 4.5: VANET Delay-High Traffic ..................................................................... 71

    Figure 4.6: VANET Throughput-Low Traffic ............................................................ 72

    Figure 4.7: VANET Throughput-High Traffic ............................................................ 72

    Figure 4.8: VANET Retransmission Attempts-Low Traffic ....................................... 73

    Figure 4.9: VANET Retransmission Attempts-High Traffic ...................................... 73

    Figure 4.10: VANET Load-Low Traffic ..................................................................... 74

    Figure 4.11: VANET Load-High Traffic .................................................................... 74

    Figure 4.12: AODV No. of Hops Per Route-Low Traffic ........................................... 75

    Figure 4.13: AODV No. of Hops Per Route-High Traffic .......................................... 75

    Figure 4.14: AODV Route Discovery Time-Low Traffic ........................................... 76

    Figure 4.15: AODV Route Discovery Time-High Traffic .......................................... 76

    Figure 5.1: V2V/ITS components ............................................................................... 79

    Figure 5.2: Web Application High Level Architecture ............................................... 81

    Figure 5.3: Node Block Diagram ................................................................................ 83

    Figure 5.4: Node H/W Architecture ............................................................................ 83

    Figure 5.5: V-Cycle Process ........................................................................................ 84

    Figure 5.6: Source Unit Flow Chart ............................................................................ 86

    Figure 5.7: Other Units Flow Chart ............................................................................. 87

    Figure 5.8: Setup Environment.................................................................................... 88

    Figure 5.9: Test Scenario Process Flow ...................................................................... 90

    Figure 5.10: Source Unit View .................................................................................... 91

    Figure 5.11: Destination Unit View ............................................................................ 91

  • viii

    Nomenclature

    AODV Ad hoc On-Demand Distance Vector

    AVI Automated Vehicle Identification

    BSM Basic Safety Messages

    CAM Cooperative Awareness Messages

    CCH Control Channel

    CSMA/CA Carrier-Sense Multiple Access with Collision Avoidance

    DENM Decentralized Environmental Notification Messages

    DOT Department Of Transportation

    DSR Dynamic Source Routing

    DSRC Dedicated Short Range Communications

    EDCA Enhanced Distributed Channel Access

    ETC Electronic Toll Collection

    ETR Electronic Toll Route

    EU European Union

    FCC Federal Communication Commission

    FCD Floating Car Data/Floating Cellular Data

    FHWA Federal Highway Administration

    FIFO First In First Out

    GSM Global System for Mobile Communications

    GRP Geographical Routing Protocol

    GPS Global Positioning System

    IERC International Energy Research Centre

    IOT Internet of Things

    ITS Intelligent Transportation System

    ITU International Telecommunication Union

    KPI Key Performance Indicator

    M2M Machine-to-Machine

    MAC Media Access Control

    MANET Mobile Ad-Hoc Network

    MDOT Michigan Department of Transportation

    MLME Mac Layer Management Entity

    NHTSA National Highway Traffic Safety Administration

    OLSR Optimized Link State Routing

    RFID Radio Frequency Identification

    RREQ Route Request

    RERR Route Error

    RREP Route Reply

    PRN Private Radio Networks

    RSU Road Side Unit

    SCH Service Channel

    STDMA Self-organizing Time Division Multiple Access

    TORA Temporally Ordered Routing Algorithm

    TTL Time To Live

    UMB Urban Multi-Hop Broadcasting

    V2I Vehicle To Infrastructure

    V2V Vehicle to Vehicle

  • ix

    VANET Vehicular Ad-Hoc Network

    VII Vehicle Infrastructure Integration Program

    WAVE Wireless Access for Vehicular Environments

  • x

    Abstract

    Day after day Intelligent Transportation Systems (ITS) become essential in traffic

    management with a lot of research directions and technologies. ITS is important for

    traffic management, and safety. One of its main points is the Vehicle to Vehicle (V2V)

    communication which is essential in the ITS full automated process. V2V

    communication decreases the number of hits between vehicles and the access points on

    the roads. Also, it is important in the developing countries which do not include

    Roadside Units (RSU).

    This thesis question "is it doable to have a V2V implementation in the developing

    countries?". Based on the answer of this question, the research is trying to obtain the

    best Vehicle to Vehicle (V2V) routing protocol to fit in these countries. The developing

    countries need to have a fully integrated ITS in order to avoid the exponential increase

    for vehicles accidents, and loss of lives. These developing countries need to increase

    their investments, but they have a very bad infrastructure in their roads. That is why

    they can't use Vehicle-To-Infrastructure (V2I), so the only available solution is the

    V2V.

    In this thesis, V2V implementation will be used as a standalone system solution for

    ITS architecture in these countries without RSU in order to overcome the current

    challenges. A full simulation for a Vehicular Ad-Hoc Network (VANET) based on

    V2V only will be done using Riverbed simulator. This simulator used to compare

    between different VANET routing protocols using the same scenario. Then, the best

    V2V routing protocol based on the paper Key Performance Indicators (KPIs) and point

    of view will be selected. The selected protocol will be used to compare between two

    different architectures, one with V2V+RSU implementation and the other one with

    V2V only implementation. Finally there will be a full complete picture for the VANET

    KPIs in the two implementations. These implementations done to validate if the V2V

    standalone implementation is suitable for real ITS implementation or it is still

    mandatory to use the RSU as fixed access point beside the V2V communication.

    The performance evaluation phase depends on some popular routing protocols

    (AODV, OLSR, DSR, GRP) which are used in VANET. But, there are no predefined

    steps to use them in the VANET. A lot of researches and development are done in this

    field in order improve performance, sustainability, and delay. Most of the recent

    researches are using different tools to evaluate scalability and efficiency of a protocol

    for VANET using standard tools like Riverbed simulator and NS2 or in-house

    developed tools. They are not well adapted to the specificities of these networks.

    In this thesis, an android mobile application will be developed to simulate our

    practical implementation for the recommended ITS solution. The simulations are done

    between three nodes and a traffic management server instead of the hardware unit due

  • xi

    to cost and implementation constraints. Also; this mobile application will include the

    same features like the hardware unit starting from GPS, WI-FI, 3G, and processing unit.

    The research main target is to succeed in decreasing a very important KPI which is

    the average number of retransmission attempts which will provide more accuracy.

    Latency, number of retransmissions and accuracy are part of the main development

    areas in this field because it is mandatory to obtain the most acceptable values related to

    this field.