3. logic gate

36
3. Logic Gate 3.1 Introduction static, fully complementary CMOS psudo-nMOS, domino logic 3.2 Combinational Logic Functions combinational logic ---- specification expression logic gate networks ---- implementation area, delay, power ---- costs

Upload: vila

Post on 30-Jan-2016

96 views

Category:

Documents


0 download

DESCRIPTION

3. Logic Gate. 3.1 Introduction static, fully complementary CMOS psudo-nMOS, domino logic 3.2 Combinational Logic Functions combinational logic ---- specification expression logic gate networks ---- implementation area, delay, power ---- costs. literal. [Completeness] - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 3. Logic Gate

3. Logic Gate

• 3.1 Introductionstatic, fully complementary CMOSpsudo-nMOS, domino logic

• 3.2 Combinational Logic Functionscombinational logic ---- specificationexpressionlogic gate networks ---- implementationarea, delay, power ---- costs

Page 2: 3. Logic Gate

literal

[Completeness]•Function {|}=NAND function: complete

•1: a|(a|a) = a|a’ = 1•0: {a|(a|a}|{a|(a|a)} = 1|1 = 0.•a’: a|a = a’.•ab: (a|b)|(a|b) = ab•a+b: (a|a)|(b|b) = a’|b’=a+b

•NOR function: complete•AND and OR function: not complete

[Irredundant] no literal can be removed. redundant Ab+ab’=a

Page 3: 3. Logic Gate

3.3 Static Complementary Gates3.3.1 Gate Structure

Pullup network (pMOS)•output is connected to VDD

Pulldown network (nMOS)•Output is connected to VSS

VDD

VSS

Page 4: 3. Logic Gate

Pullup network (pMOS)•output is connected to VDD when ab=0.

Pulldown network (nMOS)•Output is connected to VSS when ab=1.

VDD

VSS

CMOS NAND

Page 5: 3. Logic Gate

Pullup network (pMOS)•output is connected to VDD when a+b=0.

Pulldown network (nMOS)•Output is connected to VSS when a+b=1.

VDD

VSS

CMOS NOR

Page 6: 3. Logic Gate

Static Complementary gate[a(b+c)]’

Dual graph

Page 7: 3. Logic Gate

And Or Inverter (AOI) gate(ab+c)’

Page 8: 3. Logic Gate

3.3.2 Basic Gate Layouts

Layout ofInverter

Page 9: 3. Logic Gate

Layout ofNAND gate

Page 10: 3. Logic Gate

Layout ofNOR gate

Page 11: 3. Logic Gate

Layout ofa wide transistorby split intotwo sections.

Page 12: 3. Logic Gate

3.3.3 Logic Levels

VOH: minimum voltage output for logic 1.VOL: maximum voltage output for logic 0.VIH: minimum voltage input

for logic 1.VIL: maximum voltage input

for logic 0.

VOL < VILVOH > VIH

Page 13: 3. Logic Gate

Minimum size transistors

VIL

VIH

VOL

VOHNoise Margin

NML = VIL-VOL

NMH = VOH-VIH

Page 14: 3. Logic Gate

3.3.4 Delay

Page 15: 3. Logic Gate
Page 16: 3. Logic Gate
Page 17: 3. Logic Gate
Page 18: 3. Logic Gate
Page 19: 3. Logic Gate
Page 20: 3. Logic Gate

3.3.5 Power Consumption

Page 21: 3. Logic Gate

• Speed-power product

= power-delay product

SP=(1/f)P=CV2

3.3.6 The Speed-Power Product

Page 22: 3. Logic Gate

3.3.7 Layout and Parasitics

Resistance parastics

Page 23: 3. Logic Gate

3.3.8 Driving Large Loads

Alpha=(Cbig/Cg)(1/n)Ttot =Nopt=

Page 24: 3. Logic Gate

Delta1=r1 x (C1+---+Cn) =n rcDelta2=r2 x (C2+----+Cn) =(n-1)rc

DeltaN=rn x Cn =rctotal=Delta1+ ----- + DeltaN =n(n+1)/2 x rc

3.4 Wires and Delay3.4.1 Elmore Delay Model

Page 25: 3. Logic Gate

3.4.2 Wire Sizing

Optimum-shaped wire

Page 26: 3. Logic Gate

3.4.3 RC Trees

Page 27: 3. Logic Gate

3.5 Switch Logic

Logic 0 transfer

Logic 1 transfer

Page 28: 3. Logic Gate

3.6 Alternative Gate Cirucits3.6.1 Pseudo-nMOS Logic

Page 29: 3. Logic Gate
Page 30: 3. Logic Gate

3.6.2 DCVS (Differential Cascaded voltages switch logic) Logic

Page 31: 3. Logic Gate
Page 32: 3. Logic Gate

3.6.3 Domino Logic

Page 33: 3. Logic Gate

Successive evaluation in a domino logic network

Page 34: 3. Logic Gate
Page 35: 3. Logic Gate
Page 36: 3. Logic Gate

Charge sharing