(chap 6. velocity analysis)contents.kocw.net/kocw/document/2014/chungbuk/shineungsoo1/9.pdf · to...

12
6. 속도 해석 (Chap 6. Velocity Analysis) Once a position analysis is done, the next step is to determine the velocities of all links and points of interest in the mechanism. We need to know the velocities in our mechanism or machine, both to calculate the stored kinetic energy and to determine the link’s accelerations which are needed for dynamic force calculations. Many methods and approaches exist to find velocities in mechanisms. We will investigate the properties of instant center of velocity which can shed much light on a mechanism’s velocity behavior with very little effort. Also, we will derive the analytic solution for the four-bar and the slider-crank mechanisms.

Upload: others

Post on 27-Jan-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

6장. 속도 해석 (Chap 6. Velocity Analysis)

Once a position analysis is done, the next step

is to determine the velocities of all links and

points of interest in the mechanism. We need

to know the velocities in our mechanism or

machine, both to calculate the stored kinetic energy and to determine the link’s

accelerations which are needed for dynamic force calculations. Many methods

and approaches exist to find velocities in mechanisms. We will investigate the

properties of instant center of velocity which can shed much light on a

mechanism’s velocity behavior with very little effort. Also, we will derive the

analytic solution for the four-bar and the slider-crank mechanisms.

Page 2: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

속도 해석

6.1 속도 정의 (Definition of velocity)

• 속도 (Velocity)

- 위치의 시갂에 대한 변화율. (the rate of change of position with respect to time)

- 벡터 또는 복소수로 정의.

R

w P

A (고정)

q

y

x

q

2dt

RdV

(선형 속도: linear velocity)

dt

dqw (각속도: angular velocity)

PA

PA

dt

RdV PA

PA

dt

)ep(dV

j

PA

q

dt

dejp j q

q qw jejp

q

w 2j

epq

w j2j

eep

PAPA RV

w

pVPA

V

Page 3: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

속도 해석

6.1 속도 정의 (Definition of velocity)

• 속도 차이 (Velocity difference)

X

VA

R

P

A (고정)

PA

VPA

VP APPA VVV

P점의 A점에 대한 상대 속도

PAAP VVV

- P점의 절대 속도

VA

VPA

VP

Page 4: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

속도 해석

6.3 속도 순갂중심 (Instant center of velocity)

• 정의 (Definition)

- 평면운동을 하는 두 물체에서 순갂적으로 같은 속도를 갖는 공통의 점. (A point, common to two bodies in plane, which point has the same

instantaneous velocity in each body. )

I2,3

1

2

3

4

I1,2

I3,4

I4,1

62

)14(4C24

Total number of centros

2

)1n(nC2n

순갂중심은 이웃하지 않은 링크 갂에도 정의!

Page 5: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

속도 해석

6.3 속도 순갂중심 (Instant center of velocity)

• 케네디 법칙 (Kennedy rule)

1

2 3

I1,2 I1,3

2PR

I2,3

3PR

VP2

VP3

평면 운동을 하는 3개의 링크는 3개의 순갂중심을 가지며 일직선상에 놓인다. (Any three bodies in plane motion will exactly three instantaneous centers, and they will lie on the same straight line.)

순갂중심은 링크 밖에도 존재 가능!

Page 6: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

예제 6.2: 4절 기구 순갂 중심

1 2

3

4

I1,2

I2,3 I3,4

I4,1 3

4

1

2

I1,3

I2,4

1. 원을 그리고 원주상에 링크번호를 적는다.

2. 관찰을 통해 알 수 있는 순갂중심(1차순갂중심)을 최대한 찾고 두 링크의 원주상

번호를 실선으로 연결한다.

3. 순갂중심을 찾아야 하는 링크의 조합을 확인하고 원주상의 번호를 점선으로

연결한다.

4. 위에서 그린 점선을 공유하면서 다른 두 변이 실선인 두 개의 삼각형을 찾는다.

5. 각 삼각형에 대해 케네디법칙을 적용하고 두 직선의 교점을 구한다.

(Excerpted from the textbook)

Page 7: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

예제 6.3: 슬라이더-크랭크 기구 순갂 중심

1. 원을 그리고 원주상에 링크번호를 적는다.

2. 관찰을 통해 알 수 있는 순갂중심(1차순갂중심)을 최대한 찾고 두 링크의 원주상

번호를 실선으로 연결한다.

3. 순갂중심을 찾아야 하는 링크의 조합을 확인하고 원주상의 번호를 점선으로

연결한다.

4. 위에서 그린 점선을 공유하면서 다른 두 변이 실선인 두 개의 삼각형을 찾는다.

5. 각 삼각형에 대해 케네디법칙을 적용하고 두 직선의 교점을 구한다.

3

4

1

2

I1,2

I2,3

I3,4

I1,4

I1,3

I1,4

I2,4

8

8

Page 8: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

속도 해석

슬라이더-크랭크 기구 순갂 중심 6절 기구 순갂 중심

Page 9: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

I1,4

I2,3 I3,4

I1,2 I2,4

I1,3

w2 w4

w3

6.4 순갂중심을 이용한 속도해석 (Velocity Analysis with Instant Centers)

42 vv

24,22,1 )II( w

24,24,1

4,22,14 )II(

)II(ww

Magnitude of Velocity =

Magnitude of Position X Angular Velocity

(measured from a fixed point)

32 vv

33,23,123,22,1 )II()II( ww

23,23,1

3,22,13 )II(

)II(ww

43 vv

44,34,134,33,1 )II()II( ww

34,34,1

4,33,14 )II(

)II(ww 2

3,23,1

3,22,1

4,34,1

4,33,1

)II(

)II(

)II(

)II(w

44,24,1 )II( w

I2,4

I2,3

I3,4

V2 =V4

V2 =V3

Page 10: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

속도 해석

I24: V2=V4 4241422412 )II()II( ww

s/r2

1

)II(

)II(2

2414

24124 ww

슬라이더-크랭크 기구의 속도 해석

Page 11: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

속도 해석

15

Length (cm)

Link 2: 2.0

Link 3: 6.9

Link 4: 6.0

Link 5: 6.0

O1O2: 6.0

O2B : 4.0

32 vv

A :

33,23,123,22,1 )()( ww IIII

I1,2 I1,4

I3,4

I4,5

I5,6

I2,3

I1,3

I1,5

A

w2

w3

120

rpm

II

II64.660

207.20

2

)(

)(2

3,23,1

3,22,1

3

ww

C

43 vv

B :

44,34,134,33,1 )()( ww IIII

rpm

II

II57.2064.6

4

439.16

)(

)(3

4,34,1

4,33,1

4

ww

B

w4

15sin

)(

120sin

)( 4,12,13,12,1 IIII cmIIII 07.20)(

15sin

120sin)( 4,12,13,12,1

15sin

)(

45sin

)( 4,12,13,14,1 IIII cmIIII 39.16)(

15sin

45sin)( 4,12,13,14,1

54

vvC :

55,45,145,44,1 )()( ww IIII

rpm

II

II57.2057.20

6

6

)(

)(5

5,45,1

5,44,1

5

ww

w5

30

6v scmII

/39.22

60

257.2036)( 66,55,1

w

6절 기구 속도 해석

Page 12: (Chap 6. Velocity Analysis)contents.kocw.net/KOCW/document/2014/Chungbuk/shineungsoo1/9.pdf · to know the velocities in our mechanism or machine, both to calculate the stored kinetic

속도 해석

Frame

Front

V

V

Frame

Front

• Rear Suspension Design (Ford Vintage, 1970)

1

2 3

4

I1,2 I2,3

I3,4

I1,4 I1,3

Paved road

Uneven road

This causes the car to steer. Undesirable behavior.

링크 설계에서 순갂중심 활용 (Using Instant Centers in Linkage Design)