cw problems and solutions

15
CURTAIN WAL L  I SSUES , PROBLEMS , AN D SOLUTIONS KARIM P . ALLANA, RRC, RWC, PE;  AND DON CARTER  ALLANA BUICK  & BERS , I NC . 990 Commercial  Street, Palo  Alto , CA 94303 Phone: 650-543-5638   Fax: 650-354-8828  E-mail: [email protected] S YMPO SIUM ON B UILDIN G E NVELOPE T ECHNOLO GY O CTO BER 2 0 1 2 A LLANA 97

Upload: tomwilkins

Post on 03-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 1/15

CURTAIN  WALL   ISSUES, PROBLEMS, AND  SOLUTIONS 

KARIM  P. ALLANA, RRC, RWC, PE; AND DON CARTER 

 ALLANA BUICK  & BERS,  I NC . 990 Commercial Street, Palo  Alto, CA 94303 

Phone: 650-543-5638 • Fax: 650-354-8828  • E-mail: [email protected] 

S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2 A L L A N A •

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 2/15

ABSTRACTCurtainwallsare taken for granted, evenby designprofessionals. Allcurtain wall sys-

temsandmaterialspresentuniquechallenges inappearance,design, installation,mainte-

nance, and repair. These issues will be addressed by the presenter with real-life, practicalexamplesbackedbyengineeringexpertise. Theprimaryfocuswillbeglasscurtainwallsandwindowwalls, including failures. Thepresentation isbasedon theauthors’ casestudiesof thefailuresof curtainwalls,windows,sealants,andflashings,providingusefulinformationon design failures and testing. Included are definitions of  curtain wall types, various sys-

temsandcomponents,anddifferencesbetweenstickandunitizedcurtainwalls.

SPEAKERK  ARIM  P.  ALLANA, RRC, RWC, PE  —  ALLANA BUICK  & BERS,  I NC . 

With more than 25 years of  experience in construction engineering, forensic investiga-

tion, and design, KARIM ALLANA, RRC, RWC, PE, is CEO and senior principal of  AllanaBuick&Bers,Inc.HeearnedhisBSincivilengineeringfromSantaClaraUniversityandisalicensedprofessionalengineerinCalifornia,Hawaii,Nevada,andWashington.Allanahasbeen in the AE and construciton fields for over 30 years, specializing in forensic analysisand sustainable construction of  roofing, waterproofing, and the building envelope. He hasactedasaconsultantandexpertwitness in200-plusconstructiondefectprojectsand isafrequentspeakerandpresenteratprofessional forums.

NONPRESENTINGCOAUTHORDON  C  ARTER  —  ALLANA BUICK  & BERS,  I NC . 

AseniorcurtainwallconsultantwithAllanaBuick&Bers,DONCARTERhasmorethan45 yearsof experienceintheassessment,design,andconstructionadministrationof store-

front, curtain walls, and glazing systems. Carter was previously a senior consultant withIBA Consultants and worked on the majority of  high rises built in the greater Miami areasince1995.Priortothat,hewasatestengineerwithaconstructionresearchlaboratoryandaprojectmanagerwithPermastellisaGroup (formerlyGlassalum International).

9 8 • AL L A N A S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 3/15

Fig e E po ed ie of c ain all componen

CURTAIN  WALL   ISSUES, PROBLEMS, AND  SOLUTIONS 

INTRODUCTION Curtainwalldesignandinstallationcan

be taken for granted, even by architects,engineers, and experienced contractors.However,allcurtainwallsystemsandmate-

rials present unique challenges in appear-

ance, design, installation, maintenance,andrepair. Theseissuesandpotentialprob-

lems will be addressed in this paper, withreal-life,practicalexamplesbackedbyengi-

neeringexpertise. Thepaperisbasedontheauthors’ case

studiesof thefailuresof curtainwalls,win-

dows, sealants, and flashings, providinguseful

information

on

design

failures

and

testing. Included are definitions of  curtainwall types, various systems and compo-nents, and differences between stick andunitized curtain walls. Included is anoverviewof curtainwalltypes,definitionsof various systems and components, and dif-

ferences between curtain walls, windowwalls,andstorefronts. Testing,designstan-

dards, and the use of  mock-ups are woventhroughoutthepresentation.

Curtainwallsconsistof manymaterialsfound in high-rise steel or concrete build-

ingsandeventwo-storywood-framedbuild-ings. Typicalcurtain wall materials includethe following:

•  Aluminum extrusions are the load-

bearing element of  most moderncurtain wall systems and are avail-

able indifferentalloysasthedesignloadsandsafety factorsrequire.

•  Glass(visionandspandrel)•  Aluminum panels in sheet, plate or

aluminumcomposites•  Stone—typically granite—due to its

superiorresistancetowindloadcom-

paredtomarbleorotherproducts•  Glass-fiber-reinforcedconcrete(GFRC)

panels•  Louvers•  OperablewindowsEach type of  curtain wall system or

material presents its own unique appear-

ance, design, installation, maintenance,and repair challenges, to be addressed bythe author. The primary focus will be glass

curtain walls; however,windowwalls,windows,and storefront systemsarealsocovered.

As architectural appealandapplicationshave increased, thecomplexities of  dealingwith energy usage dy-

namics, rain and wind,and durability have be-comeevermoredifficultfor the designer.  Theauthor reviews the im-

plication

of 

different

styles, materials, man-

ufacturers, and instal-lationmethods.DEFINITION AND DESCRIPTION OF CURTAIN WALL  SYSTEMS 

Acurtainwallistheexterior façade of  abuilding that 1) spanstwo or more floors inheight; and 2) is non-structural,i.e.,doesnotsupport any loadsexceptforitsowngravi-

ty load, while transfer-

ring wind and other loads to the buildingstructure via connections to each floor,columns, or the roof.  Thus, “curtain”impliesthatthewallishungfromthebuild-

ing’sstructural frame,generallytheedgeof theslab.

Curtain walls, as well as other exteriorglazing systems must be properly designedtoaddressthe following:

•  Structural integrity•  Movement (thermal, seismic, and

differential)•  Weathertightness•  Condensation•   Thermal insulation (curtain walls

only)•  Firesafing (curtainwallsonly)Otherproject- orsite-specificconsidera-

ur  1 –  x  s  v w  urt  w  ts. tions such as the following need toaddressed:

•  Soundtransmission•  Hurricane-bornedebrisresistance

•  BombblastresistanceSeeFigure 1.As the curtain wall is mostly nonstru

tural, itcanbemadeof a lightweightmarial, reducing construction costs throustandardization of  installation, fast-tra

methods,andreduced loadon thebuildi

frame, leading to lower structural cosAnothergreatadvantage isthatwhengla

isusedasthecurtainwall,naturallightcpenetrate intothebuilding.

Curtain wall frames are commoninfilled with glass but can be infilled w

stone veneer, metal panels, operable ven

S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2 A L L A N A •

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 4/15

Fig e Hallidie b ilding San F anci co C So ce

Wo ld chi ec eMap o g and Wikipedia

Fig e Bole Clo hing Compan b ilding Kan a Ci

MO So ce Wikipedia

ur  2 –  y t  y u  , s s ty,. ur  :  .

ur  3 –  u  , r  s , . ur   : r  r t tur   . r  .

andothercomponents. Today, curtain wall systems are typically designed with extruded

aluminum members, although the first curtain walls were made of steel.THE BASIC GLAZING SYSTEMS CurtainWall

Prefab or assembled units attached to the structure as describedpreviously. Recent improvements in design do not require “dropping”the

building

from

a

swing

stage

to

install

sealants.

Older

designs

required this expensive last step to weatherproofing the  joinerybetweenpre-assembledunits.WindowWall

Horizontalbands (ribbons)of fixed/operablewindows,todaymost-

ly factory-assembled and glazed; connected between floors or otherstructuralelementssuchasprecastconcrete.Windows

Individualunits—fixedoroperable—set inawall. Thesearesome-

times referred to as punched windows, connected to studframing,CMU,orprecastconcrete.Storefront

 Typicallystick-builtfloortoceiling,includeentrancedoorsandvestibules.Fieldinstalledfromthefloor;framesfirst,thenglass placed in the frame. Note that storefronts may containoperable windows but should not be used at elevations toohigh above the first floor, due to their relatively weak struc-turalcapacity.Notethatamonumentallobbyorentrancewithclear vertical spans over 12 ft. will require a stronger—i.e.,deeper—structuralmember inordertoresistwindloads.BRIEF HISTORY OF CURTAIN WALLS CurtainWallsThroughHistory

 Theoldestcurtainwallsconsistedof manydifferenttypesof materials:thickmasonry,brick,terracotta,andwood. Thelimitationonallthesematerialswasweight,seriouslylimitingtheheighttowhichtheycouldbebuilt. Theotherlimitationonthese older types of  curtain walls was that not much lightcouldpenetrate.Priortothemiddleof thenineteenthcentury,buildingswereconstructedwiththeexteriorwallsof thebuild-ing,typicallymasonrysupportingtheloadof theentirestruc-

ture. Thedevelopmentandwidespreaduseof structuralsteel(and later, reinforced concrete) allowed relatively smallcolumns to support large loads. Grad-ually, designers wereable todeterminehow todesignexteriorwalls tobenonload-

bearing and thus much lighter and more open. This allowedincreaseduseof glass as anexterior façadeand the modern-daycurtainwall.GlassCurtainWalls intheUnitedStates

 ThefirstglasscurtainwallintheUnitedStatesreportedlywasdesignedbythearchitectLouisS.Curtissandinstalledin1909inKansasCityontheBoleyClothingCompanybuilding.

 ThatbuildingisnowlistedontheNationalRegisterof HistoricPlacesandisstillinuse (Figure 2 ).

Another building that is sometimes credited as being thefirst glass curtain wall building, the Hallidie building in San

100 • A L L A N A S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 5/15

Fig e To e Ma o b ilding

Me ico Ci So ce Te a ec Inc

Fig e

Le e Ho e

Ne Yo k

Ci So ce

Wikipedia

Fig e

Bell lan

To e

Philadelphi

P So c

Francisco, which was constructed nine yearslaterin1918,isstill inoperationandhouses the Northern California Chapter of the American Institute of  Architects (AIA).Although not the first glass curtain wallbuilding,itisagoodexampleof amodernistbuildingwithacurtainwall(Figure 3 ).Notethe steel mullions (vertical members) andother support members. Glasswas typical-

ly

held

in

place

with

clips

and

weather-proofedwithglazingcompound. The first curtain wall installed in New

York City, in the Lever House building(Skidmore,Owings,andMerrill,1952),wasa major innovation in the extensive use of steelmullions(Figure 4 ).

In the 1960s, there was the first wide-

spread use of  aluminum extrusions forload-bearingmullions.Aluminumofferstheuniqueadvantageof beingable tobeeasilyextrudedintonearlyanyshaperequiredfordesign and aesthetic purposes. Customshapes can be designed and manufacturedwith relative ease, although each newdesign brings new complexities in installa-

tion, testing, and maintenance, discussedlaterinthisarticle.Granite-CladCurtainWalls intheU.S.

Figure 5  depicts the Bell Atlantic TowerinPhiladelphia,cladinglassand65%gran-

ite. The stone for this 500,000-sq.-ft. cur-tain wall was quarried in Sweden, thenshipped in blocks to Italy, where it wasfabricated into 3-cm-thick infill panelswithpolished,honed,andflamedfinish-es. Thegranitepanelswerethenshippedto Miami, installed into 10,500 unitizedpanels, and shipped to Philadelphia byflatbed trailers, where floors 3 through42 were wrapped in curtain wall at therateof twofloorsperweek.OtherCurtainWallsAroundtheWorld

 Two other unique examples of  cur-

tain walls are the Torre Mayor buildingin Mexico City and the Espirito SantoPlaza, an office building in Miami. Thefirst building, shown in Figure  6 , mea-

sures 738 ft., consisting of  55 stories.DuetoMexicoCity’slocationinaknownearthquake area, it was designed towithstand an earthquake measuring 9ontheRichterScale.Itwasbuiltwith96hydraulic dampers installed diagonallyin the elevator shafts, perpendicular tothe diamond or X-patterned bracingsteel faintly visible through the convex ur  6 –  rr  y  r  u  ,

x  ty. ur  :  r  t  , .

ur  4 – v  r  us w  r ty. ur 

.

ur  5

t w

. ur Buildi

DesignaConstructi

Magazin

S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2 A L L A N A • 1

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 6/15

Fig e E pi i o San o B ilding Miami No e

conical hape and comple i of b ilding face

So ce Vi acon Inc

Fig e S ick a embl nde con c ion

ur  7 –  s  r t  t  u  , . t s  x ty  u  .

ur  :  r  , .

steel sections—highly sus-

ceptible to rust—was aban-

doned in favor of  tubularaluminum extrusions. Notonly is aluminum “rust-

proof,” it can be easilyextruded into more complexshapesthanwouldbepossi-

blewith steel. The improvedweatherability

of 

aluminum,

combinedwiththisabilitytoaddress complex architec-tural detailing, has made itthematerialof choicetoday.SeeFigure 8 .

Stick system assembliestend to be a more attractivesystem for smaller two- tothree-story  jobs becausedelivery is quicker and thesystems are more afford-

able. Installers need to takeinto consideration that allthe critical joints are sealedat the  jobsite and may besubject to dirt, wind, andother environmental conta-

minants.However, therearefaçade in Figure  6 . In January 2003, a 7.6magnitude earthquake shook Mexico City,but the building was not damaged, andmany occupants were unaware of  thequake.  This curtain wall provided designchallenges due to sloped and reverse-slopeglazing and the building face curvature,achievedwithsegmentedpanels.

Figure 7 isaphotoof theEspiritoSantoBuilding, the 36-story Miami building, thearchitecture of  which is based loosely onthe Saint Louis Arch. Design and installa-

tion challenges faced in this building alsoincludedslopedglazing, theconical façade,hundredsof customextrusions,averylargenumber of  complicated construction de-tails, thousands of  fabrication documentsheets, and extensive laboratory testing,including large- and small-missile impact.Designwind loadsforthecurtainwallwere+140/-180 psf. The design and construc-

tionof thisbuildingwasaidedby3-Dmod-

eling.TYPES OF CURTAIN WALL  SYSTEMS StickSystems

 Theoriginalglasscurtainwallstructur-

al framing was hot-rolled steel sections,erected in piece-by-piece fashion or in“sticks.” As noted previously, the use of 

some disadvantages to thestick-builtinstallationof curtainwalls:

•   Thermalmovement joints. Themainload-bearing vertical mullions arenormally installed in lengths span-

ning two floors, with splice  jointsnecessarily occurring in the glazed

areas—typically the spandrel glaz-

ing. On a typical 2.5-in. system,glazedwithinsulatedglass,theedge-clearancerequirementsfortheglass,plus frame fabricationtoleranceandglass size tolerance, translate into amaximum 0.5-in. splice joint. Whenthe +50% movement capacity of  thesilicone sealant in the  joint is fac-

toredinto

the

equation,

the

resulting

totalmovementthatthe0.5-in. jointcan accommodate is +0.25 inch.

 Thus, for this 2.5-in.-face-dimen-

sion, off-the-shelf  standard system(spanning two 12.5-ft. floors, withthermal expansion and contractionat the industry-standard 180ºF sur-

facetemperature),thethermalmove-

ment is approximately 0.1875 of  aninch,leavingonly .0625 in. forothertolerances, such as fabrication anderection.

•  Differential floor live-load deflec-tions/axial shortening of  steelcolumnsonhighrisesduetogravityload,or long-termcreepof high-riseconcrete structures due to sus-

tainedgravityloads. Thetypical2.5-

in. face dimension standard sys-tems, as demonstrated above, can-

not factorthesemovements intothe0.5-in. thermal expansion  joint every25ft. Theseaddedmovementsare generally calculated by thestructural engineer to fall between

Expansion Joints 

ur  8 –  t  ss  y u  r  stru  t  . 

1 02 • A L L A N A S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 7/15

Fig e Uni ized mod la con c ion

Fig e M llion de ail

Preglazed unit 

Hoist 

Spandrel Vision

 

ur 

9 – 

,

u r 

stru t 

0.1250and0.25 in. This isonerea-

sonwhytypicaldouble-span,2.5-in.stick systems are acknowledged byresponsible manufacturers as notbeing applicable to high-rise build-

ings. Designers and end-users alikeshouldrecognizeallmovements, in-cluding seismic, which could provedetrimental to the wall’s long-termperformance. (Note: If  the designerallows for double horizontal,caulked stack  joints every 25 ft.,then this type of  system could beengineered to handle many types of movements, not including seismicmovements.)

•  Lateral seismic displacement vs.glass breakage.  The stick system,havingtubularverticalmullions,canonly accommodate lateral displace-ment of  the glass openings withintheglassrabbetorpocket. Theglassmust float within the pockets whenthe original square or rectangular-

shapedopeningbecomestrapezoidalin the displaced position, withoutmaking contact with the mullions.Also note that should any floor becantilevered,averticalcomponentof seismicdisplacementhasbeenintro-ducedthatmustnowbeconsidered.In the 2006 IBC, there is a require-

mentthatnoglassfalloutof abuild-ing during a seismic event.  Thedesignermust:

 —   Minimizetheheightof thetallestliteof glass

 —   Increasethemullionfacedimen-

sions —   Specify all glass to be heat-

strengthened or annealed, lami-

nated glass having one face ad-hered to the frame (one face of each laminated lite in a double-

laminated insulated glass unit[IGU])withasiliconesealant

 Thestandardsticksystem cannot meetthis code requirementin Zone 4 when theseismic drift is H/50(H=height)or2%andthe nonlaminatedglassheightis>5.5ft.Note that at H/50, a12.5-ft. floor spacingwill yielda3-in. later-al displacement ateachsucceeding floor.UnitizedSystems(Modular)

Unitized curtainwalls arecomposedof large units that areassembled and glazedinthefactory,shippedto the site, and erect-

ed on the building. ur  10 –  u  t  . 

Verticalandhorizontalmullionsof themo

ulesmate togetherwiththeadjoiningmo

ules.Modulesaregenerallyconstructedostory tall and one module wide but m

incorporatemultiplemodules. Typicalun

are 5 ft. wide. Unitized curtain walls calso have the advantages of  speed, low

field installationcosts,andenhancedqu

ity control within an interior climate co

trolledfabrication

environment.

Consideble economic benefits (i.e., lower costs c

be realized on larger projects). Appropria

leadtimewillneedtobefactoredintoap ject timeline, as unitized systems requ

engineering. Often the additional costthe engineering is prohibitive to smalprojectsandonlyeconomicallymakessen

on largerprojects.SeeFigure 9 .Modern unitized systems incorpora

pressured-equalized rain screen princip

thathave enhancedresistance torainpe

etrationviaseparationof theinboardvap

barrierfromthewettedsurfaces. Thisisacomplished by incorporating into t

design,interiorchambersthatarevented

the exterior side, thus creating pressuequilibrium between the exterior and t

chambers. This design minimizes develo

ment of  a static water head created duriperiods of  rainfall driven by high win

(Figures 10 and11). Theunitized or panelizedsystemsov

comethedisadvantagesof  thesticksyste

describedearlierbythe following:•   Thermalmovement,production,a

S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2 A L L A N A • 1

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 8/15

Fig e S ackjoin de ail

Fig e ncho de ail No e Thi p ojec did no eq i e a pocke on op

of lab d e o comp e floo ing and he lab in e a c om made

ur 

11 – 

t  t .

erection tolerances, differential floor deflections, and columnshortening/long-termcreeparealladdressedindimensioningthestack

 joint

(i.e.,

the

 joint

on

each

floor

where

the

upper

unit

is

stackedatopthe lowerunit). (SeeFigure 11.)

•  Seismicdisplacementisaddressedviathetippingmotionof adja-centunitsas the two-piecemaleand femalematingverticalmul-

lions slide vertically, relative to each other, as the floor abovemovesleft/rightrelativetothefloorbelow.Usingedgeblockinginthe vertical glazing rabbets (glass to aluminum) enables theunits/panelstoretaintheirrectangularshapeandpreventsedge-

of-glasscontactwith the frame. Thisretentionof theglasswithin theopening is furtherenhancedif theperimeterof eachliteisfullyadheredtotheframe with structural silicone adhesive. (SeeFigures 10 and11.)

ur  12 –  r  t  . (  t  :  s  r  t  t r  u r  t  t s  u  t  ut  r  r  , t  s  s  rt w  s  ust  - .) 

1 04 • A L L A N A S Y M P O S I U M O N

Lock Bolt  MOUNTING AND  INSTALLATION Stick-AssemblyCurtainWalls

Verticalmullionsspanningtwofloorsaretyp-

ically anchored with steel or aluminum clipangles mounted on the face of  the slab by weld-ing to a hot-rolled screed angle or by expansionbolts/epoxy bolts into reinforced concrete. Thedead load/wind loadanchorhas horizontalslotsfor adjusting the mullion cantilever in and out,whilethewind-load-onlyanchorhasverticalslotsto bolt the mullion with slip pads to allow forthermalmovement.Embedded“Halfen”channelsortubescastintotheslabcanreplaceweldingorfieldhammerdrillingof theslab.UnitizedCurtainWalls

 Typical connections are to the top of  a slabcastwitharecessedpocketandHalfenembeddedinserts. An extruded aluminum or formed-steelangle plate is then bolted to the insert and can-

tilevered off  the slab, toed up to engage with amating anchor bolted to each side of  the units.

 The mating frame-hook anchors contain  jack

B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 9/15

Fig e Windo all ill de ail

Fig e The mal epa a o de ail

bolts used to raise the units to the correctelevation.  The bottom of  each unit nestswithintheheadof thelowerunit,andalockboltisusedsotheunitsdonot“walk”afterinstallation. In all applications—stick orunitized—curtain walls must be can-tileveredoutboardof theslabtoallowroomforAISCorACItolerancesforsteelandcon-

crete erection, plus differences in as-builtfloor

registration,

one

above

the

next.

 To

accommodate this buildup of  clearances, itisnotuncommontodesignclearancesfromthe back of  the mullion to the face of  theslabof 2.5 in.,+/-1.5 in. (Figure 12 ).WindowWall

 Thishorizontalribbonof fixedoropera-

ble windows is always connected betweenslabs or other construction such as studframing,CMU,precast,orGFRC. Thewind-

loadtransferoccursateachendof thever-

tical mullions and  jambs, with the deadload transferred at the sill. Industry bestpractice dictates the use of  continuous sillflashing or extruded sill starters/sill cans,the latter of  which not only provide accessto seal the fastener penetrations, but alsomechanically lock the frame sills to resistwind loads. Depending on theheight of  thewindow wall, an extruded head recep-

tor/head can be required as a means of anchorage, also allowing vertical/lateralmovements. In all cases, the window wallhead condition and jamb condition requireproper integration with surrounding water-

proofing.Figure 13 depictsatypicalwindowwallsill.Windows

Similar to window walls, this system isalways connected on all four sides to thesurrounding construction, and best prac-tice requires sill flashing or sill receptorsand head flashings, integrated with adja-

cent waterproofing. Both “equal leg” and“unequalleg”windowscanbeinstalledwithclips all around, allowing minimal verticalthermal expansion, while unequal leg orflanged frames can be connected throughthe flangetothestructure.Itisalso impor-

tantthattheybeproperlydetailedtotransi-

tion or integrate with the adjacent water-proofing.Storefront

Asthenameimplies,thissystemisbestemployed as display windows and en-

trances at sidewalk elevations, recessedfrom the exterior face of  any upper floors,

ur 

13 – 

w w 

t . 

forprotectionfromraincascadingdownthewallsabove.Storefrontsystemsaregeneral-ly rated as the lowest performing systems,with reference to air and water penetrationin particular, and, secondarily, regardingstructuralcapacity.Similartowindowwall,storefronts are connected at head and sill,andoftenconnectedonallfoursidestotheadjacent construction.  They must haveflashings designed into the storefront,including pan flashings under entry doorthresholdswhenstorefrontsareinstalledatorneartheexteriorfaceof thebuilding. Thebetter-performing storefrontsystems incorporate extrud-edsillstartersorcansunderthefixedglassareas.Aswithwindow walls and windows,head flashings are requiredand must also be integratedwith the adjacent water-

proofing.ENERGY PERFORMANCE 

As the model buildingcodes become increasinglyrestrictiveconcerningenergyconsumption, the designcommunity must avail itself of  existing and emergingtechnologies in both glazingsystems and glass. As re-

cently as 2010, the Amer-

ican Society of  Heating,

Refrigerating, and Air-Conditioning En

neers (ASHRAE) considered revisingstandard90.1,whichestablishesminimu

requirementsforenergy-efficientdesignsbuildings other than low-rise, to lower t

allowedpercentageof visionglazinginexriorwallsfrom40%to30%of thefloorar

Muchtothebenefitof raw-glassproduce

glass fabricators, window and curtain wmanufacturers, and glazing contracto

thisreduction inallowedvisionglazingh

not yetbeenadopted. The aforementioned beneficiaries

ur  14 –  r  s  r t r  t . 

S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2 A L L A N A • 1

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 10/15

ASHRAE’s failuretoacthadbeen, forquitesome time, aggressively investing in newtechnologies toreduceenergyconsumptioninnewconstruction.Inglazing,forexample,

•  Triple-pane insulatingglass• Low-E (low emissivity) coatings on

oneormoresurfacesof an IGU• Argonandkryptongas-filled IGUs• Warm-edgespacers in IGUS• ElectronicallytintableglassForgenerationof electricity• Photovoltaicglassunits (PVGU)Forthealuminumframing•  Thermal separators such as PVC or

elastomericgaskets(Figure 14 )• Poured and debridged polyurethane

thermalbreaks(Figure 15 )• Glass-reinforced polyamide thermal

breaks (Figure 16 )• Structural silicone glazing (SSG),

two-sideor four-side (Figure 17 )Fortheexteriorwalldesign• Double-skin façade (DFS) as in

Figure 18 • Shadingdevices (Figure 19 )

Criticaltotheen-ergy performance of the curtain wall arethese three attri-butes:

• Continuityof theairbarrier• Center glass “U” value/whole-win-

dow“U”value• Solarheatgaincoefficient (SHGC)

Continuityof theAirBarrier The air barrier within the curtain wall

system—from the exterior face of  glassacross glazing gaskets/sealants to theframe—and from the frame, across fluid-

applied sealant joints to the weather-resis-

tivebarrier(WRB)intheadjacentconstruc-

tion, must be uninterrupted. Often, thechoice of  sealant(s) plus the joint design at

1 06 • A L L A N A S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2

ur  15 –  ur  r  yur  t  t  r r  s  t  .Fig e Po ed and deb idged pol e hane he mal

b eak de ail

Fig e Glaze einfo ced pol amide he mal b eak

de ail

Fig e S c al ilicone glazing SSG de ail

ur  16 –  -r  r  y  t r  r s t .

ur  17 –  tru tur  s  (   )  t  . 

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 11/15

the perimeter of  all glazing systems is notgiven the proper consideration. The archi-

tect,inthesealantsspecification,willsome-

times specify a one- or two-part polyure-

thanesealant forthis joint,notrealizing• Polyurethane will not adhere to sili-

cone sealants, which are the mostcommon frame joint sealants in theglazing industry,and

• Polyurethanedegradesquicklywhen

exposedtoUVrays. The forces this joint must withstand in

compression,extension,andsheararealsofrequently overlooked in the architect’sperimetercaulk-jointdesigns.Inthecaseof open-backhorizontalheadmembers and tubular vertical membersrunning through the head members, thesehollows don’t work with preengineered

assemblies.  The integration of  engineertransitionassemblies isbestusedwith fatory-assembled aluminum/vinyl windo

having mitered corners. It is more diffic

to implement with hollow aluminum extr

sionsand/oropen-backextrusionswithothe contractor-installing sealed enclosur

intheendsof thetubes. Thesealantsneedtobecompatiblew

theWRB.Inmanycases,theWRBadjace

to the fenestration isbest installedwithaluminum foil-faced peal-and-stick me

brane;thatway,therearenoworriesabo

compatibility issues between the perimesealantandthe foiled-facedWRB.CenterGlassUValue/WholeWindowUValue

 Thepast20 yearshavemarkedanexpnential improvement in glass technolo

Metrics such as U value, whole-windowvalue,andothersarenowcommonterms

specifying glazing.  The rate of  heat lo

through glass is termed center-of-glassvalue or factor, and the lower the U fact

the greater the glass’s resistance to he

flow.  There are now double-pane IGavailable with low E coatings on both li

and argon-gas-filled with center-of-glass

S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2 A L L A N A • 1

ur  19 –  v  .ig e Shading de ice

Fig e Do ble kin façade b ffe façade e ac ai façade in face façadeur  18 –  u  -s  : u r  , xtr  t r  tw  - . 

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 12/15

Fig e Sealan fail e be een p eca c ain

all

values as low as 0.20 or R-5. For whole-

window “U” value, including glass andframe, the National Fenestration RatingCouncil (NFRC)hasdevelopedaprocedure,NFRC100,fordeterminingthe fenestrationproduct U value.  This whole-window Uvalue is commonly higher than the center-

of-glass U value. A high-performance, dou-

ble-glazed window can have U values of 0.30

or

lower.

As

the

description

of 

U

value

implies,lowUvaluesaremostimportantinheating-dominated climates, although theyarealsobeneficial incooling-dominatedcli-

mates.SolarHeat-GainCoefficient (SHGC)

Solarheatgaincoefficient (SHGC) isthefraction of  incident solar radiation passingthroughawindow,bothdirectlytransmittedand absorbed, then released inward. SHGCisexpressedasanumberbetween0and1.

 The lower theSHGCof awindowassembly,the lesssolarheat it transmits. Thenation-ally recognized SHGC rating method is theNFRC200procedure fordetermining fenes-tration product solar heat gain coefficientand visible transmittance at normal inci-

dence. Whole-window SHGC is lower thanglassonlySHGC,andisgenerallybelow0.7.While solar heat gain can provide free heatin winter, it can also lead to overheating insummer.  To best balance solar heat gainwith an appropriate SHGC, the designermust consider climate, orientation, shadingconditions,andotherfactors.CURTAIN WALL  TEST PROCEDURES 

 Testingcanoccuratvariousstagesof aproject, includingpreconstructionmock-upstagesandforensicinvestigationsforpossi-

ble defect analysis.  The curtain wall testproceduresoutlined inthissectionare lab-

oratory performance testing and not field-

testingproceduresforinstalledfenestrationsystems.  There is a wide array of  testingprocedures available to the designer andinstaller, includingthe following.AirInfiltration – ASTME283

Staticpressuretesttomeasureairinfil-

trationthroughthespecimenbyevacuatingair from the test chamber, typically mea-

suredat6.24psf.forarchitecturalproductsand 1.57 psf. forone- to two-storyresiden-tial. The maximum allowed industry stan-

dard for architectural fixed glazing is 0.06cfmat6.24psf.

StaticWaterInfiltration – ASTME331Static pressure test to determine leak

resistance through the specimen by spray-ing water at a uniform rate of  5 gals./hr./sq.ft.,whilesimultaneouslyevacuatingairfromthetestchamberatthespecifiedwatertest pressure (WTP). Typically, the WTP isspecifiedat20%of thepositivedesignwindload, but not less than 6.24 psf. (defaultpressure

for

architectural

rated

systems

and 2.86 psf. for residential systems).Allana Buick & Bers recommends WTP at20% (recommended by AAMA) of  positivedesignwindpressure(Pd),butnotlessthan12 psf. (for any curtain wall taller than tenfloors).DynamicWaterInfiltration – AAMA501.1

Dynamic test using the same rate of water delivery in ASTM E331 but using anaircraftenginetoprovidereal-worldpositivepressure to the specimen’s exterior. WTPdetermined inthesamemannerasabove.StructuralTesting – ASTME330

1.   Testing via static air pressure atboth the (+) and (-) Pd while mea-

suring frame and glass deflections.Industry standarddeflection limitsa.  For spans up to

12.5 ft.=L/175b.  For spans >12.5

ft. and up to 40ft.=L/240+0.25

c.  For glass = 1.0 in. (NOTE: In h i g h - v e l o c i t y  hurricane zones [HVHZ]), this limit does not apply, provided the glass strength analysis performed per ASTM E1300 proves that the probability of  breakage due to wind pressure doesnotexceed8 lts/1000 for ver-

tical glazing and sloped glazing ≤15 degrees from vertical; for sloped glazing >15 degrees from 

vertical,theprobabilityof break-

agemaynotexceed1 lt/1000.2.  After passing the structural tests at

Pd, the specimens must pass thetest or proof  load that provides thissafety factor:a.  For vertical glazing and sloped

glazing ≤15 degrees from verti-

cal,Pd ismultipliedby1.5.b.

 For

sloped

glazing

>15

degrees,

Pdismultipliedby2.0.

c.  Deflections are not recorded,and the specimens pass whenthere is no glass breakage andthe permanent set (deformation)is≤0.2%of span forarchitectur-al products and ≤0.4% for resi-

dentialproducts.d.  Sloped glazing in areas subject

to snow accumulation musthave the wind pressure Pd in-

creased by a factor representingexpectedsnow load.e.  Seismic  or  Wind-induced  Inter- 

story Drift  – AAMA501.4 – Statictestmethodfocusesprimarilyonchanges in serviceability of  thespecimen after horizontal rack-

ing at the design displacement

ur  20 –  t  ur  tw  r  st/  urt w .

1 08 • A L L A N A S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 13/15

Fig e Sealan join id h oo na o

o handle hea in ealan

Fig e Segmen ed indo all

Fig e P ec ed eala

can handle e en io

ur  21 –  t  t w  t t  rr  w t  s r s  t.

ur  22 –  r  ur  s 200%  xt  s 

(Dp), after which the specimen is subjected to repeat air and water tests.  Then, after the “proof” test at 1.5 Pd, 501.4 is repeated at 1.5 Dp. Pass/fail criteria are dependent upon the building’s use and occu-

pancy. OtherTests

1.  AAMA 501.5  –   Ther mal Cycling 

2.  AAMA 501.6 –  Seismic Drift CausingGlassFallout 

3.  AAMA 501.7  –  Vertical SeismicDisplacement 

4.  ASTM E1886 and E1996  –  Large and Small Missile ImpactandCycling 

5. Blastresistance6.  Window-washing tie-back 

loadtest FORENSIC CASE STUDIES SealantFailures

 The linearcoefficientof  thermalexpansionof aluminum isdou-ble that of  concrete. Narrow vertical aluminum-strip windows wereinstalledfourfloorshighbetweenprecastconcretepanels(seeFigure 20 ). Thesealantat thewindow jambs failedand caused water infil-tration.

 The sealant joint at the window jambs was not designed wideenough to accommodate the resulting shear forces from differentialthermal movement (see Figure  21). These joints were even too nar-rowtoprecludereplacingtheexistingsealantwithonehavingtwicetheextensioncapacityof theoriginal.

Perimeter sealant failure was proven and documented via test-ing. This failurewasaddressedbythisremedialprocess.

 The most cost-effective remedy to this leaking problem was to

Typical aluminum spandrel and vents 

ur  23 –  t  w  w w  . 

S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2 A L L A N A • 1

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 14/15

Fig e Windo all de ail

Fig e In e io a e leak damage

Fig e B In e io a e leak damage

ur  24 –  w w  t .

ur  25  –  t r  r w  t r- .

ur  25  –  t r  r w  t r- .

overlaythefailedsealantwithprecuredsili-

cone with at least four times the extensioncapacity of  the original sealant (see Figure 22 ). One half  inch of  each edge of  the pre-

cured silicone was adhered to the alu-

minumandconcretewithsiliconesealant.Failureof WindowWallSystem

 The segmented (chorded in plan) win-

dow

wall

was

unitized

and

installed

from

the building interior (Figure  23 ). Like allwindow walls, it was anchored betweenother construction—floor slabs in thiscase—but the bottom 8 to 10 in. werenotched vertically to permit the remaining2.5-in.exteriorportiontobypassthefaceof slab, terminating with a sealant  joint against the outboard cantilevered headreceptor of  the window wall on the floorbelow (Figure 24 ).

Evidence of  water penetration (Figure 25 ) was subsequently proven to occur byASTM E1105 water testing. The most diffi-cult problem to remedy was the ongoingslowdissolvingof thebitumencontainedinthe waterproofing membrane (Figures  26 and27 ). Thisproblemwastracedtochemi-

cal incompatibilitybetween thewaterproof-

ing membrane and lap sealants/head receptorperimetersealant.Duetotheover-

lapping shingle design of  the window wallabove and outboard the membrane (referback to Figure  24 ), the only remediation

1 10 • A L L A N A S Y M P O S I U M O N B U I L D I N G E N V E L O P E T E C H N O L O G Y • O C T O B E R 2 01 2

8/12/2019 CW Problems and Solutions

http://slidepdf.com/reader/full/cw-problems-and-solutions 15/15

Fig e Bi men memb ane

mel ing

Fig e In e io ai

f om mel ing bi me

possible is to demolish and replace theentirewindowwallandmembrane.CONCLUSION 

 The modern curtain wall, havingreached a high level of  sophistication with-

inthepastfivedecades,continuestoevolveinresponse toarchitecturaldesigncoupledwith energy conservation and energy pro-

duction. Therecentexponentialimprovementsin

glasstechnology,combinedwithmoreenergy-

efficient framing systems, bode well forownersanddesignerswhostrivetoimprovethe built environment through reductionsin carbon emissions, maximizing daylight-

ingwithoutincreasingenergyconsumption,reducing glare, and increasing thermalcomfort.

However, as curtain wall constructionhasevolved,newconsiderationsandissueshave arisen as evidenced by the case stud-

ies. As we continue this evolution to meetnew, more demanding performance re-quirements,itcanbeanticipatedthatmoreconsiderationsandchallengeswillarise.

ur  26 –  tu  r t  .

ur  27 –  t  r  r st r  t  tu 

Typical through-

wall vent 

Bitumen melting of  the 

south segmented window wall 

system