design analysis deep excavations session01

53
November 2009 Excavation Overview Wong Kai Sin 1 A Short Course on DEEP EXCAVATIONS By WONG Kai Sin [email protected] 1 November/December 2009 New Zealand Excavation Overview Time Session Topic Session 1 Overview 09:00 – 10:30 1 Overview 10:30 – 11:00 Coffee Break 11:00 – 12:30 2 Design (Part 1) 12:30 - 01:30 Lunch 01:30 03:00 3 Mohr-Coulomb Soil Model & 2 Design (Part 2) 03:00 – 03:30 Coffee Break 03:30 – 05:00 4 How to reduce wall deflection Excavation Overview

Upload: freddie-koo

Post on 06-Jul-2016

36 views

Category:

Documents


8 download

DESCRIPTION

Design Analysis Deep Excavations

TRANSCRIPT

November 2009 Excavation Overview

Wong Kai Sin 1

A Short Course on 

DEEP EXCAVATIONS

By

WONG Kai Sin

[email protected]   

1

November/December  2009

New Zealand

Excavation Overview

Time Session Topic

Session 1 Overview

p09:00 – 10:30 1 Overview10:30 – 11:00 Coffee Break

11:00 – 12:30 2 Design (Part 1)12:30 - 01:30 Lunch

01:30 – 03:00 3 Mohr-Coulomb Soil Model &

2

Design (Part 2)03:00 – 03:30 Coffee Break

03:30 – 05:00 4 How to reduce wall deflection

Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 2

Overview of          Braced Excavation

• Types of walls 

•Methods of excavation

•Modes of failure

3Excavation Overview

Anatomy of a Braced Excavation

struts

wall

walers

walers

struts

kingposts

4

wall

Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 3

Types of Retaining Walls for Excavation

5

Cantilever Wall Anchored or Propped Wall

Braced Wall

Excavation Overview

Wall Types of Deep Excavations

Diaphragm WallDiaphragm Wall

Sheetpile Wall

Bored Pile Wall

Soldier Pile Wall

6

DCM or Grout Mixed Pile Wall

Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 4

7Excavation Overview

8Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 5

Concrete Diaphragm Wall

9

Stop‐ends & water‐proofs

Excavation Overview

10Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 6

Braced Excavation with Sheetpile Wall

struts

wall

walers

walers

struts

kingposts

11

wall

Excavation Overview

Sheetpile Installation

12Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 7

Bored Pile Walls

13

Contiguous Bored Pile Wall Secant Bored Pile Wall

Excavation Overview

18.5m Cantilever CBP wall at NUS

Contiguous   Bored Pile Wall

14Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 8

Construction of Secant Bored Pile Wall

15Excavation Overview

Braced Excavation with Soldier Pile Wall

16Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 9

Construction of DCM or Grout Mixed Pile Wall

17Excavation Overview

Grout Mixed Pile Wall

18Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 10

struts

wall

walers

walers

walers

struts

wall

kingposts

Conventional Bottom‐Up

19

wallBottom‐Up Excavation Method

Excavation Overview

Top‐Down Excavation

20Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 11

Top‐Down Excavation at Boon Keng Station

21Excavation Overview

Up‐Down Construction Method

22Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 12

Up‐Down Construction Method

23Excavation Overview

Island Method of  Excavation

24Excavation Overview

November 2009 Excavation Overview

Wong Kai Sin 13

Under Water Excavation

atat 

Marina South

25Excavation Overview

26Excavation Overview

November 2009 Deformation & Failure Modes

Wong Kai Sin 1

Wall and Ground Movements in Excavation 

FILL

MARINE CLAY

200 to 300 m

Damage ?? Damage ??Damage ??

1

OLD ALLUVIUM

SAND

Deformation & Failure Modes

Main Cause of Wall DeflectionUndrained Shear Distortion in Clay

Vaterland 1, Oslo (NGI, 1962)

Ad

As

2

No volume change!

Ad ~ As

Ad

As

Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 2

Wall Deflection and Ground settlementVaterland 1, Oslo (NGI, 1962)

3Deformation & Failure Modes

Wall Deflection and Ground settlementVaterland 1, Oslo (NGI, 1962)

A

4

B C

Area “A”  =  Area “B”  +  Area “C”

Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 3

Wall Deflections at Different Stages of 

Excavation

Deformation & Failure Modes 5

Example of questionable wall deflection profiles

Variations of Piezometric Levels 

with Time

-2

0

2

4

12-S

ep-

9811

-Nov

-98

10-J

an-

9911

-Mar

-99

10-M

ay-

9909

-Jul

-99

07-S

ep-

9906

-Nov

-99

05-J

an-

0005

-Mar

-00

04-M

ay-

0003

-Jul

-00

01-S

ep-

0031

-Oct

-00

30-D

ec-

0028

-Feb

-01

29-A

pr-

0128

-Jun

-01

27-A

ug-

01

wn

(m)

Casting of base slab

Deformation & Failure Modes 6

4

6

8

10

Dra

wdo

w

GWP3071 GWP3081 GWP3051-1 GWP3051-2 GWP3051-3

November 2009 Deformation & Failure Modes

Wong Kai Sin 4

Development of Strut Forces during Excavation

7Deformation & Failure Modes

Development of Strut Forces during Excavation

8Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 5

9Deformation & Failure Modes

Development of Bending Moment During Excavation

Deformation & Failure Modes 10

November 2009 Deformation & Failure Modes

Wong Kai Sin 6

Major Factors Affecting Soil and Wall Movements in Deep Excavations

• Depth of penetration, D• Undrained shear strength, cu

11

p p ,

•Wall stiffness, EI

• Vertical strut spacing

• Construction workmanship

g , u

• Depth of excavation, H

•Width of excavation, B

• Depth to hard stratum, T

Deformation & Failure Modes

Effect of Shear Strength on Wall 

Deflection

12Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 7

Effect of Shear Strength on Wall 

Deflection

13Deformation & Failure Modes

Effect of Excavation Width 

on Wall Deflection

14Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 8

Effect of Clay Thickness on Wall 

Deflection

15Deformation & Failure Modes

Sheetpile wall

Diaphragm wall

Effect of Wall Stiffness on Wall 

Deflection

wall wall

16Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 9

Modes of Failure

Collapse Excessive Deformation

17Deformation & Failure Modes

Basal Heave Stability

qo

qult

18

When qo > qult, failure in imminent.

Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 10

Basal Heave Failure in Taipei

19Deformation & Failure Modes

Basal Heave Failure due to Stockpiling

Excessive Surcharge

q = 20 kPa

20Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 11

Basal Heave Failure due to Stockpiling

Stockpile

21Courtesy of Dr Lim PC

Deformation & Failure Modes

Basal Heave Stability

Wall Rotation

22Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 12

Basal Heave Stability

Wall Raking

23Deformation & Failure Modes

Basal Heave Stability

Lifting of King Posts

Jet Grout Slab

24Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 13

Lifting of Kingpost due to Bottom Heave

25Deformation & Failure Modes

Basal Heave Stability

Not all basal heave instability lead to catastrophic failures

26

Formation Level

Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 14

Piping &

Loss of Fines

27Deformation & Failure Modes

Strut Failure

28Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 15

Strut Failures

29Deformation & Failure Modes

Effect on Adjacent StructuresStructures

30Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 16

Effect of Excessive Movements

Damaged Pavement

31

After Choong (2003)

Deformation & Failure Modes

Buildings on Shallow Foundations

32

Race Course Road

Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 17

Buildings on Shallow Foundations

33Deformation & Failure Modes

Building on Mixed Foundations(Shirlaw et al., 2003)

NewSundaySchool

New kindergarten section Old

Church, wrapped in extension

34Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 18

Building on Mixed Foundations

35Deformation & Failure Modes

Lowering of Ground Water Table

Causes:

Pumping

Well pointWell point

Pumping

Wall leakage Sand

Marine Clay

36

Old Alluvium

Lowering of ground water table will increase the effective stress in soft clay and result in consolidation settlement.

Deformation & Failure Modes

November 2009 Deformation & Failure Modes

Wong Kai Sin 19

Effect of Lowering of Groundwater Table 

37Deformation & Failure Modes

38Deformation & Failure Modes

November 2009 Observational Method

Wong Kai Sin 1

Observational Approach in Deep Excavation

Design

1

ConstructionMonitoring

Obervational Method

In a perfect world …….

All we need is one analysis & one design!

2Obervational Method

November 2009 Observational Method

Wong Kai Sin 2

In the imperfect world …. with imperfect design!

Too many uncertainties:

• Soil conditionsSoil conditions

• Ground water

• Loading

• Construction sequence

• Workmanship

• Time delayNot easy to account for all 

3

y

• 3‐D effect

• Proficiency of designer

• Limitations of software

these uncertainties in the design.

Obervational Method

In the imperfect world …….

•Watch every steps carefully.

Design

•Make adjustments when necessary.

• Improvise as excavation proceeds.

4

ConstructionMonitoring

Obervational Method

November 2009 Observational Method

Wong Kai Sin 3

Role & Responsibility 

Design

ConstructionMonitoring

Team Role and Responsibility

Design • Produce a good design• Monitor performance of system• Modify design

C t ti B ild di t d i

g

5

Construction • Build according to design• Monitor performance of system• Feedback problems & unusual findings

Monitoring • Install and monitor instruments• Feedback problems & unusual findings

Obervational Method

What is Observational Approach?

It is a check‐and‐balance process that enable us to:

• Check adequacy of the design• Anticipate potential problems • Modify the design where necessary• Optimise the design

6

• Make contingency plan• Avoid unnecessary delay

Obervational Method

November 2009 Observational Method

Wong Kai Sin 4

An Example on Application of Observational Method

(9th Rankine Lecture by R. B. Peck, 1969) 

Peck’s APD

7

Design

Obervational Method

Predict Modify Design

Implementation of Observational Approach

0

5

0 20 40 60 80 100

Wall Deflection (mm)

Excavate

Monitor

Compare

Design

Re‐analyse

8

5

10

15

20

25

30

Dep

th (m

)

Compare

Back‐analyseFavourable?Yes No

Obervational Method

November 2009 Observational Method

Wong Kai Sin 5

Designer, Contractor and Instrumentation Specialist have to work together!

Predict Modify Design

Excavate

Monitor

Compare

Design

Re‐analyse0

5

0 20 40 60 80 100

Wall Deflection (mm)

Computed

9

Compare

Back‐analyseFavourable?Yes No

10

15

20

25

30

Dep

th (m

)

Measured

Alert LevelObervational Method

Back‐Analysis: To calibrate input parameters to produce reasonable agreement with field measurements.

Predict Modify Design

Excavate

Monitor

Compare

Re‐analyse

00 20 40 60 80 100

Wall Deflection (mm)

10

Back‐analyseFavourable?Yes No

5

10

15

20

25

30

Dep

th (m

) Computed

Measured

Design

Back‐Analyzed

Obervational Method

November 2009 Observational Method

Wong Kai Sin 6

Predict

Excavate

Modify Design

Re‐Analysis: Use calibrated parameters to re‐analyse

0

5

10

0 20 40 60 80 100

Wall Deflection (mm)

(m)

Excavate

Monitor

Compare

Re‐analyse

15

20

25

30

Dep

th (

0

5

0 20 40 60 80 100 120

Wall Deflection (mm)

11

Back‐analyseFavourable?Yes No10

15

20

25

30

Dep

th (m

)

Obervational Method

Designing Temporary Work is a Continuous Process

Design &Analysis

ConstructionControl

InstrumentationMonitoring

Initial Design Final Design

12

(Work Drawings) (As‐Built)

Start Finish

Excavation

Obervational Method

November 2009 Site Investigation

Wong Kai Sin 1

Site Investigation

Site Investigation 1

How many borings should we drill?

In general, the more the merrier!

It depends on ho m ch e kno abo t the site and theIt depends on how much we know about the site and the nature of project. It is a very subjective decision.

Be careful of “Penny Wise but Dollar Foolish”!

Site Investigation 2

November 2009 Site Investigation

Wong Kai Sin 2

Problem of having too few borings

Site Investigation 3

Boring 1 Boring 2

Problem of having too few borings

Bedrock

Unforeseen Ground Conditions?

Site Investigation 4

November 2009 Site Investigation

Wong Kai Sin 3

Surprise!

Site Investigation 5

$$$

Problem of having too many borings

S.I. will take a long time

Tight schedule affects quality

Multiple drillers and multiple laboratories

Design completed ahead of S.I.

BCA’s Advisory Note:  1 boring every 300 m2.

Site Investigation 6

November 2009 Site Investigation

Wong Kai Sin 4

Site Investigation

Which one is better practice?

[B] 45 borings [A] 15 borings 

Site Investigation 7

Site Investigation

150 m

How many borings?  Where?

90 m

BCA’s Advisory Note:  1 boring every 300 m2.

Therefore, 45 borings over 13,500 m2.Site Investigation 8

November 2009 Site Investigation

Wong Kai Sin 5

Site Investigation

150 m

It is better to conduct it in phases!

90 m

Phase 1 Phase 2 Phase 3

Site Investigation 9

FillEE

Fill

Control Section for Construction Control

Control Section E

UMC

F2 upper

LMC

F2 lowerF2

LMC

LMC

OA N = 20

F2 upper

UMC

E

JGP1

JGP2

Section

F2 lower

OA N = 20OA N = 30

OA N = 70

OA N = 100OA N = 70OA N = 30OA N = 20

JGP2

Additional borings at Control Section!

Site Investigation 10

November 2009 Site Investigation

Wong Kai Sin 6

Site Investigation

Type of soil sampler

SPT split‐barrel

Shelby tube

Piston

M i

Type of in‐situ tests

SPT

FVT

CPT

P tMazier

Thick‐walled tube

Pressuremeter

Permeability

The Designer must instruct the driller what to do!Site Investigation 11

Undrained Shear Strength of Clay cu

Laboratory Tests(Undisturbed Samples)

In‐Situ Tests

FVTUCUUCUCKoUTCCKoUTECK UDSS

SPTCPTPMTDMT

Each test gives a CKoUDSSMiniature VaneConeTorvanePocket Penetrometer

gdifferent cu!

Which test should we do?

Site Investigation 12

November 2009 Site Investigation

Wong Kai Sin 7

What should we do with the Factual Reports?

Site Investigation 13

Scrutinize the test results

Test A Test B

cu= 40 kPaφu = 0

cu= 28 kPaφu = 0

Which one is more reliable?Site Investigation 14

November 2009 Site Investigation

Wong Kai Sin 8

Proper way of trimming soil sample

Site Investigation 15

An expedient way to “trim” a sample

How to prepare a “disturbed” sample?!

Site Investigation 16

November 2009 Site Investigation

Wong Kai Sin 9

You get what you paid for!

Site Investigation 17

Trimmed Sample Untrimmed Sample

UU CU

Mazier Samples

Site Investigation 18

November 2009 Site Investigation

Wong Kai Sin 10

0

10

0 20 40 60 80 100 120 140 160

Cu from UU Tests (kPa)

UU test results

Example 1  ‐‐ Undrained Strength of Marine Clay

Sand Fill

10

20

30

40

Dep

th (m

)

Upper Marine Clay

Lower Marine Clay

40

50

60

Old Alluvium

Site Investigation 19

Example 1 ‐‐ Are field vane strength more reliable?

0

10

0 20 40 60 80 100 120

Cu (kPa)

10

20

30

40

Dep

th (m

)

Vane

UU

50

60

Site Investigation 20

November 2009 Site Investigation

Wong Kai Sin 11

How do we differentiate between good and bad data?

i h dibl ?

0

0 20 40 60 80 100 120

Cu (kPa)

M t I dibl ?Highest Incredible?

10

20

30

Dep

th (m

)

Vane  UU  

Most Incredible?

Fully consolidated

Before reclamation

Worst Incredible?

40

50

60

Site Investigation 21

Example 1 ‐ Results of field vane tests from two companies

0

5

0 20 40 60 80 100 120

Cu (kPa)

S dfill

0

5

0 20 40 60 80 100 120

Cu (kPa)

5

10

15

20

25

30

35

Dep

th (m

)

Sandfill

Marine Clay

5

10

15

20

25

30

35

Dep

th (m

)

Sandfill

Marine Clay

35

40

45

50Old Alluvium

Company B

35

40

45

50Old Alluvium

Company A

Site Investigation 22

November 2009 Site Investigation

Wong Kai Sin 12

Data from Company A

Data from Company B

Should we engage another company for 3rd opinion?

Should we use the average values from A and B?

Site Investigation 23

Example 2 – cu from CPTU

Site Investigation 24

November 2009 Site Investigation

Wong Kai Sin 13

0

10

0 20 40 60 80 100 120

Undrained Shear Strength (kPa)

CPT-1Contractor

(qt – σv)cu = ‐‐‐‐‐‐‐‐‐‐‐‐‐

NktContractor

20

30

40

Dep

th (m

)

AC - Nk=12

Client - Nk=20

Consultant A Nkt=12

C lt t C N 20

Vane

Must calibrate cone factor “Nkt” against other data

50

60

AC - Nk=14Client - Nk=20

Consultant B Nkt=14Consultant C Nkt=20

Site Investigation 25

p’o & p’c (kPa) 

0

5

0 50 100 150 200 250 300 350 400

P'c from Consol

P'o

0

5

0 10 20 30 40 50 60 70 80

Cu (kPa)

BH3-UUBH3-vaneBH3-consolBH4-consol0.22*P'oBH4-UU

cu (kPa) 

Example 3  ‐‐ parameters from a uniform soil deposit

10

15

20

25

30

Dep

th (m

)

10

15

20

25

30

Dep

th (m

)

BH4-vaneBH1-vaneBH2-vaneBH1-UUBH2-UU

35

40

If all data fall within a narrow band, we can use the best fitting curve for the entire site.

30

35

40

Data from entire siteData from entire site

Site Investigation 26

November 2009 Site Investigation

Wong Kai Sin 14

Example 4   

Importance of location specific soil condition

0 10 20 30 40 50 60 70 80

Cu (kPa)cu (kPa) 

0 10 20 30 40 50 60 70 80

Cu (kPa)

A

A

cu (kPa) 0

5

10

15

20

25

Dep

th (m

)

BH3-UUBH3-vaneBH3-consolBH4-consol0.22*P'oBH4-UUBH4-vaneBH1-vaneBH2-vaneBH1-UUBH2-UU

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

Dep

th (m

)

BH3-UUBH3-vaneBH3-consolBH4-consol0.22*P'oBH4-UUBH4-vaneBH1-vaneBH2-vaneBH1-UUBH2-UU

30

35

40

Entire Site

25

30

35

40

Section A‐A

Site Investigation 27

A

A

0 10 20 30 40 50 60 70 80

Cu (kPa)cu (kPa) 

0 10 20 30 40 50 60 70 80

Cu (kPa)cu (kPa) 

Example 4   

Importance of location specific soil condition

0

5

10

15

20

25

Dep

th (m

)

A3-UUA3-vaneA3-consolA4-consol0.22*P'oA4-UUA4-vaneM2081-vaneM2081A-vaneM2081-UUM2081A-UUCPT-CR4-Nkt=30

0

5

10

15

20

25

Dep

th (m

)

BH3-UUBH3-vaneBH3-consolBH4-consol0.22*P'oBH4-UUBH4-vaneBH1-vaneBH2-vaneBH1-UUBH2-UU

Section A‐A

30

35

40

30

35

40

Entire Site

Site Investigation 28

November 2009 Site Investigation

Wong Kai Sin 15

10

11

12

13

14

15

16

17

18

0 20 40 60 80 100 120 140 160 180 200 220 240

Effective Stress (kPa)

Dep

th (m

)

Example 5   

Importance of location specific soil condition at 

a reclaimed site

10

11

12

13

14

0 40 80 120 160 200 240 280

Effective Stress (kPa)

)

19

20

21

22

po'

CPT1

UU-BH1

consol - BH1Fill

Soft Clay

Silty Sand / Sandy Silt15

16

17

18

19

20

21

22

Dep

th (m

)

po'

CPT2

UU - BH2

Stress and strength of soft clay at 

reclaimed site can be very variable.

Site Investigation 29

Example 6 ‐‐ Reliability of SPT blowcount in sand

Fill

Marine Clay

F1 N = 2 EquivalentOld 

Alluvium

F1 N = 2 Equivalent  N~10

Site Investigation 30