design calculation tank

Upload: ibiceng

Post on 05-Jul-2018

762 views

Category:

Documents


97 download

TRANSCRIPT

  • 8/16/2019 Design Calculation Tank

    1/28

    Total Working Volume of Tank 225.0 m^3Type of Roof Cone Roof

    Tank Filling Rate 20.0 m^3/hr Tank Emptying Rate 20.0 m^3/hr

    Material For Roof IS 2062 Gr BYield Value 250.00 MPa Tensile Value 410.00 MPa

    Material For Bottom Sketch Plate IS 2062 Gr BYield Value 250.00 MPa Tensile Value 410.00 MPa

    Material For Shell IS 2062 Gr BYield Value 250.00 MPa Tensile Value 410.00 MPa

    Joint Efficiency 0.85 for shell onlySeismic Zone Factor Z(Zone-2B) 0.16 IS 1893 :Part IWind Load 47.00 m/sec IS 875 : Part III1.5 mm for Roof

    Product stored O-toulineCorrosion Allowance 3 mm for Bottom

    3 mm for Shell course0 mm roof structure either side

    Operating Pressure Full of LiquidDesign Specific Gravity 0.978

    Design Temperature 75 deg. C = 167 FOperating Temperature 45 deg. C

    Design External Negative Pressure ( pv ) 509.845 kg/m^2 49.965 mbar (g)Total Design height of Tank ( Ho + h ) 9.5639 m = 31.38 ft

    Design Liquid Height of Tank ( Ho ) 8.000 m = 26.25 ftDesign Internal Pressure ( h ) 1529.530 kg/m^2 149.894 mbar (g)

    Diameter of the Tank 6.000 m = 19.69 ftTotal Height of the Tank 8.000 m = 26.25 ft

    Location Gujarat (Dahej)Code API-650

    Item No.:T 1044 Job No.:6 m dia x 8 m ht tank Date : 1ST MAY 15 Page No.: Rev 0

    Design Calculation Report

    Data Sheet No.:

  • 8/16/2019 Design Calculation Tank

    2/28

    t t = 4.9 x 6 x ( 9.564 - 0.3 )x 1 / (175.71x0.85) tt = 1.82 mm

    As per API 650 3.6.1.1 min thk of shell = 5 mm

    Design Condition is Governing

    td = 4.91 mm

    Test Thickness :

    tt = 4.9 x D x ( H - 0.3 ) x 1.00 / ( St x E )

    Design Thickness :

    td = 4.9 x D x ( H - 0.3 ) x G / ( Sd x E ) + CA td = 4.9 x 6 x ( 9.564 - 0.3 ) x 0.978 / ( 164 x 0.85) + 3

    175.71 MPa

    St = 175.71 MPa

    Calculation of Shell Thickness ( Refer Cl. 3.6.3.2 of API 650 )

    St = 187.50 MPa OR St =

    3/7 x Tensile StressSt = 3/4 x 250 OR St = 3/7 x 410St = 3/4 x Yield Stress OR St =

    Allowable Hydrostatic Test Stress ( St ) ( Refer Clause 3.6.2.2-API 650 )

    Sd= 164.00 MPa

    Sd = 164.00 MPa

    164.00 MPaSd = 166.67 MPa OR Sd =Sd = 2/3 x 250 x 1 OR Sd = 2/5 x 410Sd = 2/3 x Yield Stress OR Sd = 2/5 x Tensile Stress Allowable Design stress ( Sd ) ( Refer Clause 3.6.2.1-API 650 )

    Allowable Stress Values for Shell

    Design Of Shell

    Multiplication Factor ( M ) = 1.000 ( Table M-1 Appexdix M API 650 )

  • 8/16/2019 Design Calculation Tank

    3/28

    Provide Curb Angle 80 x 80 x 8 thk --- ALL AROUND THE TANK

    mm^2

    Kg

    0.00

    Weight/mtr 9.4848

    (Cl. No. 5.1.5.9 e API 650)

    3.26 0.25 3.2612

    area 1216

    1563.9 1.56

    9 0 1563.9 1.56 3.263.26 0.25 3.26

    8000

    11 0 1563.9 1.56 3.26 0.25 3.2610 0 1563.9 1.56 0.00

    0.25 3.26 0.003.36 0.35 3.36 8.00

    0.25 3.26 0.008 0 1563.9 1.56

    IS 2062 Gr B7 0 1563.9 1.56 3.26

    3.26 0.25 3.26 0.00

    0.64 3.67 8.00 IS 2062 Gr B3.98 0.94 3.98 8.00

    6 500 2063.9 2.06

    IS 2062 Gr B5 1500 3563.9 3.56 3.67

    1.23 4.29 8.00 IS 2062 Gr B4.60 1.53 4.60 10.00

    4 1500 5063.9 5.06

    IS 2062 Gr B3 1500 6563.9 6.56 4.292 1500 8063.9 8.061 1500 9563.9 9.56 4.91

    Thickness of upper courses :

    Coursefrom

    Bottom

    Height ofcourse in

    mm

    Head incl.Internal

    pressure inmm

    Head incl.Internal pressure

    in m

    1.82 4.91 10.00 IS 2062 Gr B

    td incl.CA

    tthigher of

    td & ttt

    providedMaterial

  • 8/16/2019 Design Calculation Tank

    4/28

    =

    =

    =

    Clause 5.3.4

    180.97 km/hr 113.11 miles/hr

    Importance Factor ( Iw ) = 1.0 (As per specification) ( Table 16K )

    Design Wind Pressure ( q ) = 1.43 x 0.8 x 1391.67 x 11592.07 N/m^2

    162.29 kg/m^2 50.3 m/s

    Wind stagnation Pressure ( qs ) = 0.63 x ( Basic wind speed ) ̂ 21391.67 N/m^2

    Design Wind Pressure ( q ) = Ce x Cq x qs x Iw

    Combined Height Factor ( Ce ) = 1.43 ( Table 16G ) Exposure CPressure Coefficient ( Cq ) = 0.8 ( Table 16H ) Tanks

    Design Wind Pressure ( Pz ) = 225.54 kg/m^2 60.7 m/s

    218.61 km/hr 136.63 miles/hr

    Wind calculation as per UBC Code

    Basic Wind Speed ( Vb ) 47.00 m/s

    47 x 1.07 x 1.05 x 1 x 1.1560.7 m/s

    Design Wind Pressure ( Pz ) = 0.6 x Vz^ 2/9.81 ( As per 5.4 IS 875 : Part 3 )0.6 x 60.73^2 / 9.81225.54 kg/m^2

    Topography Factor ( k3 ) 1.00

    Site Wind Speed ( Vz ) = Vbx k1 x k2 x k3x k4

    Clause 5.3.3Terrain Factor ( k2 ) 1.05 Clause 5.3.2.2

    Probability Factor ( k1 ) 1.07 Clause 5.3.1

    Importance Factor for Cyclonic Region( k4 ) 1.15

    Select the Code IS 875 : Part III

    Wind calculation as per IS 875 : Part 3

    Basic Wind Speed ( Vb ) 47.0 m/s

  • 8/16/2019 Design Calculation Tank

    5/28

    ==

    =

    9.47 x 5 x (5 / 6 )^1.5 x ( 190 / 394.75 )^28.34 m

    H1 = 9.47 t x ( t / D)^1.5 x (190 / V )^2 ( Cl. 5.9.7.1 & M.6 API 650)

    27.02 m

    Corroded condition

    Corroded thickness of the top course of tank = 5.00 mm

    H1 = 9.47 t x ( t / D)^1.5 x (190 / V )^2 ( Cl. 5.9.7.1 & M.6 API 650)9.47 x 8 x (8 / 6 )^1.5 x ( 190 / 394.75 )^2

    Thickness of the top course of tank = 8.00 mm

    Diameter of the tank = 6.000 m

    Diameter of the tank = 6.00 m

    Uncorroded condition

    Ratio of modulus of elasticity Ed/Er = 199000 / 199000 = 1.0000

    Modulus of elasticity at room temp = Er 199000 MPa ( Cl. M.6 Appendix M API 650)Modulus of elasticity at design temp = Ed 199000 MPa

    109.65 m/s

    394.75 km/hr

    Maximum Unstiffened height of the shell ( H1 ) ( Cl. 5.9.7.1 - API 650)

    Design Temperature = 75 deg. C

    Stability of tank shell for external wind load ( Cl. 5.9.7 API 650)

    Wind load 225.54 kg/m^2 Design wind pressure

    Total Pressure 735.38 kg/m^2 7214.11 N/m^2Design Vacuum 509.85 kg/m^2 Design vacuum -509.845 kg/m^2

  • 8/16/2019 Design Calculation Tank

    6/28

    0.00 m0.00 mProvide Wind Girdet at 0.00 m from curb angle Transposed width =

    Provide Wind Girdet at 0.00 m from curb angle Transposed width =

    Provide Wind Girdet at 4.000 m from curb angle Transposed width =0.00 mProvide Wind Girdet at 0.00 m from curb angle Transposed width =

    Wtr < H1 Therefore Wind Stiffeners are not needed

    Unstiffened height of shell ( H1 ) uncorroded 27.02 m H1 corroded

    4.0000 m

    8.00

    Sum of transposed width ( Wtr ) uncorroded 8.00 m Wtr corroded 8.00 m

    8.34 m

    1 1.5 10 10 1.50 8.00 7 7 1.502 1.5 10 10 1.50 6.50 7 7 1.50

    5.005 1.506.50

    4 1.5 8 8 1.503 1.5 8 8 1.50 5.00 5

    3.50 5 5 1.502.005 1.503.50

    6 0.5 8 8 0.505 1.5 8 8 1.50 2.00 5

    0.50 5 5 0.500.005 0.000.50

    8 0 0 8 0.007 0 0 8 0.00 0.00 -3

    0.00 -3 5 0.000.005 0.000.00

    10 0 0 8 0.009 0 0 8 0.00 0.00 -3

    0.00 -3 5 0.000.005 0.000.00

    Transposedwidth in mm

    Sum oftrans.

    Width inm

    12 0 0 8 0.0011 0 0 8 0.00 0.00 -3

    0.00 0 5 0.00 0.00

    Calculation of transposed width of the shell ( Cl. 5.9.7.2 API - 650 )

    CourseHeight ofcourse in

    m

    t actualin mm

    t uniformin mm

    Uncorroded condition Corroded condition

    Transposedwidth in m

    Sum oftrans.

    Width inm

    t actualin mm

    t uniformin mm

  • 8/16/2019 Design Calculation Tank

    7/28

    ==

    Total Weight 2479.08 approx.Sketch plate 10 mm thk 2479.08 approx. Annular plate 0 mm thk 0.00 approx.

    Bottom plate weight

    Minimum thickness of Annular plate = 6 + 3 ( Table 5-1 API 650 )

    0.0 mm Annular plate IS 2062 Gr BThickness provided = 10.0 mm Sketch plate IS 2062 Gr B

    9.00 mm ( t

  • 8/16/2019 Design Calculation Tank

    8/28

    5.0(3/16 inch)+1.5mm

    1654.62 kg Corroded weight

    6.50 mm

    Provided thickness of the roof = 8.00 mm

    Selected thickness of Roof is O.K.

    ( Cl. 5.10.4.1 API 650 )Slope of Roof is O.K.

    Minimum Thickness of the roof plate = ( Cl. 5.10.2.2 API 650 )

    = 0.0624 rad

    Weight of the roof plate = 2036.45 kg Uncorroded weight

    Diameter of the Tank = 6.00 m C.A. for roof =

    = 0.2618 rad

    1.5 mm

    Slope of the roof ( theta ) = 15 deg.

    Minimum Slope of the roof = 1:16 = 3.576 deg.

    = 15.00 deg.

    Cone Roof

  • 8/16/2019 Design Calculation Tank

    9/28

    Internal Design Pressure ( P ) = 14.9996 kPa

    W h = 8

    2. 3 5 m m

    Angle (theta) bet. the roof and horizontal plate = 15.00 deg. = 0.262 rad

    C.A. for shell = 3.0 mmThickness of the roof = 8.0 mm C.A. for roof = 1.5 mm

    Diameter of the tank ( D ) = 6.00 mThickness of the top course of shell = 8.0 mm

    Design of shell to roof junction for internal pressure ( Appendix F API 650 )

    80 x 80 x 8

    or or = 82.35 mm 300.0 mm

    = 82.35 mm

    Maximum width of participating roof ( Wh ) = 0.3 ( R2 x th ) 0̂.5 or 300 mm whichever is less= 0.3 ( 11591.11 x 6.5 )^0.5 300.0 mm

    Inside radius of the tank shell ( Rc ) = 3000.0 mmLength of the normal to the roof ( R2 ) = Rc / sin theta = 11591.1 mm

    Fig. F-2 Detail b API 650

    Corroded thickness of the shell plate ( tc ) = 5.0 mmCorroded thickness of the roof plate ( th ) = 6.5 mm

    W c = 7

    3 . 4 8 m m

    R2 = 11591.11 mm

    tc = 5 mm (corroded)

    Rc = 3000 mm

    W h = 8

    2. 3 5 m m

    th = 6.5 mm (corroded)

    theta = 15 deg.

  • 8/16/2019 Design Calculation Tank

    10/28

    = 6^2 ( 15 - 0.08 x 6.5 )1.1 tan ( 15 )

    = 1768.53 mm^2 = 17.69 cm^2

    Shell to Roof junction is O.K.

    1.1 tan ( theta )Required Compression Area ( Ar ) = D^2 ( P - 0.08 th ) ( Cl. F.5.1 API 650 )

    2118.67 mm^2 = 21.19 cm^2

    Ratio = 250 / 205 = 1.2195 (Cl. M.3.6 API 650)

    Material for the Roof IS 2062 Gr BYield Value at maximum operating temperature = 250.00 MPa

    = 73.48 mm

    Total area resisting pressure ( Ap ) = ( Wh x th ) + ( Wc x tc ) + Area of curb angle

    Maximum width of participating shell ( Wc ) = 0.6 ( Rc x tc )^0.5= 0.6 ( 3000 x 5 )^0.5

    ( 82.35 x 6.5 ) + ( 73.48 x 5 ) + 1216

  • 8/16/2019 Design Calculation Tank

    11/28

    Tank weight uncorroded / area of tank

    = or = or =

    ts min ==

    =

    Unstiffened Shell : (Cl. V.8.1- API 650)

    Height of unstiffened shell subject to external pressure buckling if following is satisfied

    mtr mtr mm

    mtr MpaMpammmmmmmtr

    ( Fy / E )^0.5 = 0.035

    [ D / ts min ]^0.75 = 1.1465( Hts / D ) = 0.6667

    X cone = nom thickness of roof plate 6.50Ls = (L1 + L2) / 2 or (H / 2) 4

    ts shell= nom thickness of bottom shell plate 7.00ts bottom= nom thickness of bottom plate under shell 7.00

    Hts = 4.000

    nom thickness of thinnest shell course

    Transformed height of shellFy = 250E = Modulus of elasticity of roof plate material 200000

    Yield Strength of material

    H= Height of tank , 8.000

    5.38 mm

    [ D / ts min ]^0.75 x [ ( H ts / D ) * ( Fy / E )^0.5 ] >= 0.00675

    D = Nominal dia of tank ,

    ts min = 5.00

    Min Shell Thickness for Shell for external load : (Cl. V.8.1.3- API 650)

    73.05 x ( Hts * Ps )^0.4 x D^0.6 / E^0.473.05 x ( 4x4.9999)^0.4 x6^0.6 / (200000^)0.4

    6.00

    External pressure ( Pe ) = 5.00 kPa

    7.98 kPa 10.376 kpa10.376 kPa

    Total Design External Pressure ( Pr ) = Greater of DL + ( Lr or S ) + 0.4 Pe or DL + Pe + 0.4 ( Lr or S )( Cl. V.7 API 650 ) 4.976 + 1 + 0.4 x 5 4.976 + 5 + 0.4 x 1

    Live load ( Lr ) = 20 lb/ft^2 = 1.00 kPa V.3.1 aganist Lr, page V2

    Dead load ( DL ) = w / a 4.976 kPa

    Snow load ( S ) = 0.00 kPa

    Design of tank for external pressure ( Appendix V API 650 )This is applicable only when operating external pressure exceeds 0.25 kPa = 25.5 mm w /c & up to 6.9 kPaDiameter of the tank ( D ) = 6.000 m

    Area of tank = a 28.274 m^2Tank weight uncorroded = w 14345.9 kg

  • 8/16/2019 Design Calculation Tank

    12/28

    Kg = Wind gust factor == Kh = Wind height factor =

    = ==

    ==

    =Provided Spacing between the stiffeners (Ls) =

    ==

    ( V.8.2.2.3 API 650 )= 19999.49 N/m

    Required moment of inertia ( I req ) = 37.5 Q D^3 / E ( N^2 - 1 ) ( V.8.2.2.5 API 650 )= 23.14 cm^4

    ( 445 x 6 3̂ / 5 x 4^2 )^0.5

    3.336

    Design of intermediate stiffener

    Number of waves into which shell will buckle( N )

    4.000

    N = 6

    Radial Load imposed of Stiffener ( Q ) = 1000 Ps Ls

    34.66 < 100

    N = 5.888

    Spacing between the stiffeners ( Ls ) = Hts / ( Ns + 1 ) ( V.8.2.2.2 API 650 )

    Ns +1 = 4 / 3.336 = 1.1991Ns = 0.1991

    N^2 = ( 445xD^3 / t smin HTS^2)^0.5 ( V.8.2.2.1 API 650 )

    5^2.5 x 200000 / [ 45609 * 6^1.5 x 5 ]3.336 m

    Ns +1 = Ls / H safe ( V.8.2.1.3 API 650 )

    kPa

    H safe = ( ts min)^2.5* E / [ 45609 *D^1.5 * Ps ] ( V.8.2.1.2 API 650 )

    + ve value of Ns indicates that stiffeners are required

    Ps = Pe = 5.00 kPa

    Ps = Total design External pressure = 4.9999

    Ps = Total design External pressure , greater of following

    Ps = W + 0.4 Pe = 3.1535 kPa

    V.3.1 Defination

    [ D / ts min ]^0.75 x [ ( Hts / D ) * ( Fy / E )^0.5 ] = 0.02702

    1.1535 kPa V =specified design wind velocity 169.20 kPa117.576 kg/m2

    W = 0.0000333 * V^2 * Kg * Kh 1.10.0000333 x 169.2^2 x 1.1 x 1.1 1.1

    > 0.00675

    Tank is subjected to buckling

  • 8/16/2019 Design Calculation Tank

    13/28

    1

    3

    2

    =

    =

    ==

    Total weight of wind girders ( 15% extra for stiffeners ) 67.17 kg

    Toe size 0 mm x 0 mm thk 0.00 kgTotal for each 58.41 kg

    WeightWeb size 65 mm x 6 mm thk 58.41 kg

    582.51 mm^25.83 cm^2

    Hence area provided is O.K.

    Intermediate stiffener Quantity = 1 Nos.

    Area required ( A req ) = Q D / 2 fc ( V.8.2.2.6 API 650 )19999.49 x 6 / ( 2 x 103 )

    Minimum value of fc = 103 Mpa Allowable compressive stress ( fc ) = 103

    Iyy = Iaa + Igg - M^2/A43.34 cm^4

    10.44 56.63

    Mpa

    Allowable compressive stress ( fc ) = 0.4 x 20682.4 Mpa

    Iyy > I req Hence O.K

    Yield strength ( Fy ) = 206 Mpa

    336.81 13.84

    12.68 41.19 13.733 14.53 x 0.45 6.54 6.73 43.96

    Igg cm^4

    1 0 x 0 0.00 0.00 0.00 0.00 0.00

    295.62 0.112 0.6 x 6.5 3.90 3.25

    d in cm

    2 6.5 0.63 0.45 14.53

    M = A x dcm^3

    Iaa cm^4

    It. Mkd. x , cm y , cm1 0 0

    Sectionmarked

    Size cm x cm Area cm^2

    145.266 thk

    4.5 thk shell ( cor ) 0

    65 0 thk

  • 8/16/2019 Design Calculation Tank

    14/28

    Stability of Tank against Wind Load + Internal Pressure

    = == =

    =

    = ( As per 5.11.2 )===

    ==

    2058.59 x 6^2 x pi / 2116410.40 kg-m

    59 x 7 x ( 250 x 9.564 )^0.520194.75 N/m2058.59 kg/m

    Moment due to liquid ( MF ) = wa x D x pi x ( D / 2 )

    43246.44 x 6 / 2

    30704.09 kg-m

    Internal Pressure = 1529.530 kg/m^2Upward Force ( Fpi ) = 1529.53 x 6^2 x pi / 4

    Design liquid level Height ( H ) = 9.564 m

    wa 59 tb ( Fby . H )^0.5

    129739.33 kg-m

    Corroded thickness of the bottom plate under thebottom shell course ( tb ) = 7.00 mm

    Minimum Yield strength of bottom plate under thebottom shell course ( Fby ) = 250.00 MPa

    Wind Moment about the base Mw = Wind of shell + Wind on roof ( upward )( 4569.95 x 8 / 2 ) + 4141.42 x ( 6 / 2 )

    Area of roof = 28.274 m^2upward Wind force of the roof = 28.274 x 146.47

    43246.44 kg

    Moment due to internal pressure ( Mpi ) = Fpi x D / 2

    Wind force on the shell = 6.5 x 87.88 x 8 ( 0.5 m extra for ladder )4569.95 kg

    Filling height of the tank ( H ) 8.00 mProduct Specific Gravity ( G ) 0.978

    4141.42 kg

    146.47

    Diameter of the tank ( D ) 6.000 mHeight of the tank ( h ) 8.00 m

    Wind load on projected area of conical surfaces 30 psf 146.47 kg/m^2 1.000

    Velocity ratio ( m ) = (105.75 / 118.75)^2 0.793

    Wind load on various surfaces q (psf) q (kg/m^2) m Multi. q x m^2(kg/m^2)

    Wind load on projected area of cylindrical surfaces 18 psf 87.88 kg/m^2 1.000 87.88

    Design Wind velocity as per code= 52.78 m/sec 190.00 km/hr 118.75 mph

    ( CL. 5.11.1 & 5.2.1 j -API 650 )

    Wind speed Vb = 47.00 m/sec 169.20 km/hr 105.75 mph

  • 8/16/2019 Design Calculation Tank

    15/28

    =

    =

    &

    +63715.83 kg

    Dead weight of tank ( corroded ) = 10408.29 kg

    Upward Force = 1529.53 x 6^2 x pi / 443246.44 kg

    Total Uplift = 20469.39 43246.44

    4 x 30704.09 / 620469.39 kg

    Internal Pressure = 1529.53 kg/m^2

    0.6 Mw + Mpi > MDL / 1.5 Mw + 0.4 Mpi > ( MDL + MF ) / 2 Tank is Unstable against wind. Provide anchor bolts.( Cl. 5.11.2 API 650 )

    Uplift due to Wind moment = 4 x Mw / D

    82599.82 kg-m

    ( MDL + MF ) / 2 = ( 31224.88 + 116410.4 ) / 273817.64 kg-m

    148161.78 kg-m

    MDL / 1.5 = 20816.59 kg-m

    Mw + 0.4Mpi = 30704.09 + 0.4 x 129739.33

    10408.29 x 6 / 231224.88 kg-m

    0.6 Mw + Mpi = 0.6 x 30704.09 + 129739.33

    Total corroded weight ( Wc ) 10408.29 kg approx.

    Moment due to corroded weight ( MDL ) = Wc x D / 2

    Weight of external stiffener 67.17 kg approx.

    Weight of wind girder 0.00 kgWeight of Curb Angle 178.78 kg

    Weight of roof plates 1654.62 kgWeight of roof structure @ 20 kg/m^2 565.49 kg approx.Weight of handrail on roof @ 20 kg/m run 376.99 kg approx.

    Weight of corroded shell 6815.25 kgWeight of stairway + Platform @ 0 kg/m 0.00 kg approx.Weight of Nozzles 750.00 kg approx.

    Corroded condition

    Corroded weight of tank

  • 8/16/2019 Design Calculation Tank

    16/28

    Corroded dia of bolt =

    Total weight ( Wuc ) 14345.91 kg approx.

    Uplift due to Wind moment = 4 x Mw / D4 x 30704.09 / 620469.39 kg

    Weight of external stiffener 67.17 kg approx.

    Weight of handrail on roof @ 20 kg/m run 376.99 kg approx.Weight of wind girder 0.00 kgWeight of Curb Angle 178.78 kg

    Weight of Nozzles 750.00 kg approx.Weight of roof plates 2036.45 kgWeight of roof structure @ 30 kg/m^2 565.49 kg approx.

    Weight of stairway + Platform @ 0 kg/m 0.00 kg approx.

    Hence Safe

    Test Condition

    Weight of tank ( Uncorroded )

    Weight of shell 10371.03 kg

    Depth of Anchor Bolts

    25.00 mmBond strength of concrete = 8.20 kg/cm^2

    Allowable stress for bolts = 140.00 N/mm^2

    = 517.33 mmProvided Depth = 1500.00 mm

    Perimeter of bolt = 7.85 cmDepth of Bolts required = 51.733 cm

    Root area of the bolts 375.83 mm^2

    Load per bolt = 53307.54 / 16

    Root dia. of the bolts = ( 27 - 2 * 1 ) x 0.875 21.875 mm

    ( Table 5-21a , API 650 )

    Hence Safe

    3331.72 kg32684.19 N

    Developed Stress in one bolt = 86.97 N/mm^2

    Provide M27 size of Anchor Bolts 27No. of Bolts Provided 16

    Yield Strength of Bolt material 482.80

    Hence spacing between the bolts 1201.66 mm Number of bolts selected are O.K.Maximum spacing between the bolts 3000.00 mm ( Cl. 5.12.3 API 650 )

    N/mm2Tensile Strength of Bolt material 620.74 N/mm2

    Design For Anchor Bolts on basis of wind load and internal presure

    Material of Anchor bolts SA 193 GR.B7

  • 8/16/2019 Design Calculation Tank

    17/28

    +

    -

    =

    Hence Safe

    Perimeter of bolt = 8.48 cmDepth of Bolts required = 43.26 cm

    Bond strength of concrete = 8.20 kg/cm^2 8.2 x 1.25 = 10.25 kg/cm^2

    Hence Safe

    Provided Depth = 1500.00 mm

    Depth of Anchor BoltsProvide M27 size of Anchor Bolts 27

    = 432.62 mm

    Developed Stress in one bolt = 84.17 N/mm^2 Allowable stress for bolts = 140.00 N/mm^2 ( Table 5-21a , API 650 )

    Load per bolt = 60181.54 / 163761.35 kg36898.80 N

    Root dia. of the bolts = ( 27 - 0 ) x 0.875 23.625 mm ( Uncorroded )

    Root area of the bolts 438.36 mm^2

    Hence spacing between the bolts 1201.66 mm Number of bolts selected are O.K.Maximum spacing between the bolts 3000.00 mm ( Cl. 5.12.3 API 650 )

    Provide M27 size of Anchor Bolts 27No. of Bolts Provided 16

    14345.9160181.54 kg

    +ve Value of Net Uplift indicates that Anchor Bolts are required.

    Design For Anchor Bolts on basis of Test Condition

    74527.45 kg

    Dead weight of tank ( Uncorroded ) = 14345.91 kg

    Net Uplift = 74527.45

    54058.05

    Test Pressure = 1.25 x 1529.53 ( F.7.6 API 650 )1911.91 kg/m^2

    Upward Force = 1911.9125 x 6^2 x pi / 454058.05 kg

    Total Uplift = 20469.39

  • 8/16/2019 Design Calculation Tank

    18/28

    =

    =

    ==

    W2 / Wt = 0.18

    ( W1 ) Weight of effective mass of the tank contents thatmove in unison with the tank shell = 2231183.99 N

    ( E.3.2.1 API 650 )264464.83 kg2594399.98 N

    W1 / Wt = 0.86 ( Figure E-2 API 650 )

    0.75 x 2 / 2.5710.5833

    Total Weight of tank Contents ( Wt ) = ¶ x( D )^2 x H x density/4

    Lateral earthquake force coefficient ( C2 ) = 0.75 S / T ( E.3.3.2 API 650 )

    D / H = 0.63

    ( k ) Factor obtained for the ratio D / H = 0.58 ( Figure E-4 API 650 )

    T = 2.57

  • 8/16/2019 Design Calculation Tank

    19/28

    =

    =

    =

    33511.28 N/m

    ( G ) Design Specific Gravity = 0.978( H ) Maximum Design liquid level = 9.56 m

    ( tb )Corroded thk. of the bottom plate under the shel l = 7.00 mm( Fby ) Minimum specified yield strength of the bottom = 250.00 MPa

    WL = 99 x 7 ( 250 x 0.978 x 9.56 )^0.5

    Thickness of the bottom plate under the shell 10.00 mmCorrosion Allowance for the bottom plate = 3.00 mm

    Resistance to Overturning ( E.4 API 650 )

    ( WL ) Maximum weight of the tank contents that may be

    used to resist the shell overturning moment = 99 tb ( Fby x G x H )^0.5 ( E.4.1 API 650 )

    C1 W1 X1 = 5633470.18 428387.3254

    M = 2585513.99 N-m = 263559.02 kg-m

    C2 W2 X2 = 2084227.78 87170.29Total = 8079731.22 540329.19 N

    Z * I = 0.32 Shear force

    C1 Ws Xs = 231094.60 19534.03C1 Wr Ht = 130938.66 5237.55

    2780.72 kg 27278.89 N

    Total Weight of tank roof (Wr) = 27278.89

    M = Zl [ C1 Ws Xs + C1 Wr Ht + C1 W1 X1 + C2 W2 X2 ]

    27278.89 N

    Moment at Base

    101739.76 N

    ( Xs ) Height of the bottom of the shell to shell's C.G. = 3.786 m

    Weight of tank roof = Roof plate + Roof Structure + Curb Angle

    ( X2 ) Height from the bottom of the tank shell to thecentroid of lateral seismic force applied to W2 = 7.65 m

    ( Ws ) Total weight of tank shell uncorroded = 10371.03 kg

    X2 / H = 0.8

    ( X1 ) Height from the bottom of the tank shell to thecentroid of lateral seismic force applied to W1 = 4.21 m

    ( W2 ) Weight of effective mass of the tank contents thatmove in the first sloshing = 466992.00 N

    X1 / H = 0.44 ( Figure E-3 API 650 )

  • 8/16/2019 Design Calculation Tank

    20/28

    ==

    = N/m of shell circumference

    Now,

    ==

    =

    =Now , G H D^2 / t^2 = 0.978 x 8 x 6^2 / 7^2

    5.75 < 44

    Nominal Tank Daimeter ( D ) = 6.00 mMin.specified yield strength of bottom shell course ( Fty )= 250.00 MPa

    Maximum longitudinal stress ( Sb ) = b / 1000 t

    Design Specific Gravity ( G ) = 0.978Maximum Design liquid level ( H ) = 8.00 m

    14.12 N/mm^2

    Maximum Allowable Shell Compression ( E.5.3 API 650 )

    Corroded thickness of the bottom shell course ( t ) = 7.00 mm

    98857.83 N/m7431.18 + 1.273 x 2585513.99 / 6^2

    ( E.5.2 API 650 )

    Anchored Tanks

    ( b ) Maximum longitudinal compressive force at thebottom of the shell = Wt + 1.273 M / D^2

    Anchor bolts are required

    [ D^2 ( Wt + WL ) ] = 663513.5073M / [ D^2 ( Wt + WL ) ] = 3.90

    7431.18

    ( Wt + WL ) = 18430.93 N/m of shell circumference

    Wt = 757.51 kg/ m of shell circumference

    Weight of Curb Angle 178.78 kg

    Weight of roof structure @ 20 kg/m^2 565.49 kg approx.Weight of handrail on roof @ 20 kg/m run 376.99 kg approx.

    Total weight 14278.74 kg approx.

    Weight of roof plates 2036.45 kg

    Weight of tank shell and portion of the fixed roof supported by shell ( Wt )

    Weight of shell 10371.03 kgWeight of stairway + Platform @ 0 kg/m 0.00 kg approx.

    Weight of wind girder 0.00 kg

    Shell Compression ( E.5 API 650 )

    Weight of Nozzles 750.00 kg approx.

    Maximum value of WL = 196 G H D ( E.4.1 API 650 )196 x 0.978 x 9.564 x 610999.75 N/m

    Hence ,WL = 10999.75 N/m

  • 8/16/2019 Design Calculation Tank

    21/28

    ==

    ==

    Corroded dia of bolt =

    Provided Depth = 1500.00 mm

    Hence Safe

    Depth of Bolts required = 111.66 cm = 1116.56 mm

    101327.90 N

    Stress in one bolt = 269.61 N/mm^2 Allowable stress for bolts = 0.8 Fy ( Table 3-21a , API 650 )

    Bond strength of concrete = 10.91 kg/cm^2Perimeter of bolt = 8.48 cm

    386.24 N/mm^2

    Hence Safe

    Depth of Anchor Bolts27.00 mm

    ( 33% extra for seismic )

    1.273 x 2585513.99 / 6^2 - 5416.8686009.79 N/m1621246.35 N

    Load per bolt = 1621246.35 / 16

    Root area of the bolts 375.83 mm^2

    Minimum Anchorage = 1.273 * M / D^2 - Wt(corroded)

    Root dia. of the bolts = ( 27 - 2 * 1 ) x 0.875 21.875 mm

    Hence spacing between the bolts 1203.62 mm Number of bolts selected are O.K.Maximum spacing between the bolts 3000.00 mm ( Cl. 3.12.3 API 650 )

    Minimum Anchorage

    Provide M27 size of Anchor Bolts 27No. of Bolts Provided 16

    Material for Anchor Bolts SA 193 GR B7Yield Strength of Anchor bolt material (Fy)= 482.80 N/mm^2

    Maximum longitudinal stress ( Sb ) = 14.12 MPa

    Hence O.K.

    0.5 x 250125.00 MPa

    Hence Fa = 59.71 MPa

    83 x 7 / 2.5 x 6 + 7.5 ( 0.978 x 8 )^0.559.71 MPa

    Maximum value of Fa = 0.5 x Fty ( E.5.3 API 650 )

    Follow Formula 1 to calculate Fa

    Formula 1

    Maximum Allowable Compressive Stress ( Fa ) = 83 t / 2.5 D + 7.5 ( G H )̂ 0.5 ( E.5.3 API 650 )

  • 8/16/2019 Design Calculation Tank

    22/28

    Diameter of Tank D=

    Seismic moment Ms=

    Dead load of Tank W2= corroded=

    Uplift load ==

    Cl. 4.6 to IS 1367

    Yield Strength of Bolt =

    ( Table 3-21 a)

    Bond strength of concrete = 10.91 kg/cm^2

    Root area of the bolts 346.36 mm^2

    482.8 N/mm2

    Stress in one bolt = 295.54 N/mm^2

    Hence spacing between the bolts 1282.16 mm

    Hence Safe

    = 1127.96 mmProvided Depth = 1500.00 mm

    Perimeter of bolt = 8.48 cmDepth of Bolts required =

    Allowable stress for bolts = 386.2 N/mm^2

    Load per bolt = 1637802.43 / 16102362.65 N

    Material of Bolt =

    112.80 cm

    Hence Safe

    Depth of Anchor Bolts

    Root dia. of the bolts = ( 27 -1.5) x 0.875 21.000 mm ( Uncorroded )

    2585513.99 N-m

    8753.68 kg85873.56 N

    Number of bolts selected are O.K.Maximum spacing between the bolts 3000.00 mm

    No. of Bolts Provided 16

    (4 x2585513.99 / 6) - 85873.561637802.43 N

    Design For Anchor Bolts

    Provide M27 size of Anchor Bolts 27

    6.0 m

    Uplift due to Seismic & Internal Pressure ( As per API 650 Table 3-21 a)

    Uplift load = (4 Ms/D)-W2

  • 8/16/2019 Design Calculation Tank

    23/28

    * marked are based on DRG REF STANDARD DRAWING STD.TK.GEN.7314

    BQ = 40 mm = 1.575 inchesa* = 175 mm = 6.890 inches jb* = 150 mm = 5.906 inchesc* = 32 mm = 1.260 inches a g 175

    Hole dia.d* = 52 mm = 2.047 inchese* = 70 mm = 2.756 inchespcd* = 6180 mm = 243.307 inches f radius,R = 3003 mm = 118.228 inchese min = 60.601 mm = 2.386 inches bf=B-d/2 = 44 mm = 1.732 inchesf min = 29.175 mm = 1.149 inches radiusB* = 70 mm = 2.756 inches cg* = 110 mm = 4.331 inches k

    A* = 268 mm = 10.551 inches t j* = 16 mm = 0.630 inches Ak = 95 mm = 3.740 inches em = 10 mm = 0.394 inches m wt = 20 mm = 0.787 inches Shell thk + Pad thk Qw = 10 mm = 0.394 inches pcd

    P = design load in N =36898.80 N= 3761.35 KG ( wind + Test Pressure ) appx32684.19 N= 3331.72 KG ( wind + Operating pressure ) appx

    106416.62 N= 10847.77 KG ( Seismic condition+ Intr pressure ) appx10847.77 KG ( Maximum of above load ) appx

    Minimum cross sectional area of bolt = 375.83 mm^2 ( Corroded )Yield strength of bolt = 482.80 N/mm^2Max. Load (P) =1.5 x Bolt load = 159624.9 N 35.873 kips

    Z = reduction factor = 1.0 / [ { 0.177 a m / ( R t ) 0̂.5 } *( m / t ) 2̂ + 1 ]= 0.988

    AS PER AISI T-192 VOL II PART VII- ANCHOR BOLT CHAIR

  • 8/16/2019 Design Calculation Tank

    24/28

    TOP PLATE DESIGN :

    Critical stress in top plate = S === 15.312 ksi = 1076.59 kg/cm^2

    Allowable stress = 1757.72 kg/cm^2Hence Safe

    OR c = [ P / S f * ( 0.375 g - 0.22 d) ]^0.5 [ 35.873 / ( 15.312*1.732 ) * ( 0.375 *4.331 - 0.22 *2.047 ) ]^0.5

    1.2598 ksi = 88.58 kg/cm^2

    Bending plus direct stress in top plate = S =

    P e / t^2 = 159.455

    [ 1.32 *0.988/ { ( 1.43 * 6.89 *10.551^2 / 118.228 *0.787 ) +(4* 6.89 *111.3236 )^0.333 } ]= 0.0496(0.031 / ( R t )^0.5) = 0.0032

    S= 159.455 * ( 0.0496 + 0.0032 )= 8.4248 ksi =

    25 Ksi = 1757.72 kg/cm^2

    Hence Safe

    VERTICAL PLATE :16.00 mm0.37 in

    = 9.44 mm

    j k = 2.3560P / 25 = 1.4349

    Hence, Provided thickness & Height is OK.

    0.04 ( h - c) =

    j k => P / 25

    35.873 *2.756 / 0.787^2 =[ ( 1.32* Z / {(1.43aA 2̂/Rt +(4 a A 2̂)^0.333} ] =

    592.34 kg/cm^2

    MAXIMUM RECOMMANDED STRESS =

    P / f c^2 * ( 0.375 g - 0.22 d)35.873 / ( 1.732*1.26^2 ) * ( 0.375 *4.331 - 0.22 *2.047 )

    P e / t^2 * [ ( 1.32Z / {(1.43aA^2/Rt +(4 a A^2)^0.333} + (0.031 / ( R t )^0.5)]

    Min thk =

  • 8/16/2019 Design Calculation Tank

    25/28

    MEA PLANT - DAHEJIBI Chematur Engineering & Consultancy Ltd. Made by

    Checked by Approved by

    Doc. No. : Revision: 0 5/1/2015Tag. No. :REFERENCE CODE API 2000

    PRODUCT STORED :TANK DIM. : 6.00 mTANK HEIGHT : 8.00 mMAX. PUMP OUT RATE : 20.00 m³/ hr MAX. PUMP IN RATE : 20.00 m³/ hr CAPACITY OF TANK : 226.19 m³CROSS SECTIONAL AREA OF SHELL : 28.27 mCROSS SECTIONAL AREA OF ROOF : 28.27 m 2

    TOTAL AREA : 56.55 m 2

    FLASH POINT : > 37.8 0C

    DESIGN FILLING RATE : 23 m³/ hr DESIGN EMPTYING RATE : 23 m³/ hr

    REQUIREMENT OF FREE AIR

    A) IN BREATHING (VACUUM RELIEF)

    PUMP OUT RATE R e : 23 m³/ hr REQUIREMENT OF FREE AIRDUE TO WATER MOVEMENT,Q1 = 0.94 x Re Ref:-Table 1-B OF API2000

    = 21.62 m³/ hr Constant = 0.94

    REQUIRED AIR CAPACITY FOR THERMAL EFFECT,Q2 = 50.60 m³/ hr Ref:-Table 2-B OF API2000CAPACITY DUE TO CO2 FILTER SYSTEM, Q5 = 0.00 m³/ hr TOTAL REQUIRED AIR BREATHING CAPACITY, Q in = Q1+Q2+Q5

    = 72.22 m³/ hr

    As per the standard practice, we design bleeder vent for 1.15 times its pump in / out rate capacity Add 15% extra to cater for tank drainage in case of pump out condition….Hence

    Title : DESIGN CALCULATION FOR VENT

    IBIC-198-200-ESS-T1044-0001T1044

    Client AARTI INDUSTRIES LIMITED

    Project Name :

    Consultant

    RAW WATER

  • 8/16/2019 Design Calculation Tank

    26/28

  • 8/16/2019 Design Calculation Tank

    27/28

    BULK BILL OF QUANTITY6 m dia x 8 m ht tank Item No.:T 1044Tank dia = 6 mtr Gujarat (Dahej)Tank Height = 8 mtr

    1 . WEIGHT CALCULATION FOR TANK SHELL :Dia of HT.OF COURSE t mm Weight , kg C.A. , mm Weight , kg

    Tank ,mtr in mtr from top ACTUAL Uncorroded Corroded66 0 0 0.0 3 0.06 0 0 0.0 3 0.06 0 0 0.0 3 0.06 0.5 8 592.6 3 370.46 1.5 8 1777.9 3 1111.2 IS 2062 Gr B 10371.0 kg6 1.5 8 1777.9 3 1111.26 1.5 8 1777.9 3 1111.26 1.5 10 2222.4 3 1555.76 1.5 10 2222.4 3 1555.76

    10371.0 6815.2

    2 . WEIGHT CALCULATION FOR TANK OVER ALL :

    WT. OF TANK UNCorroded wt., kg Appx= Shell = 10371.0= Stairway + Plt Form @150 kg / m = 0.0= Nozzle ( Appx.) = 750.0= Roof plates = slope as 15 deg. 2036.5 8 thk= Roof Structure @ 45 kg / m^2 = 565.5= Hand rail on Roof @ 22 kg / m run = 377.0= Wind Girder 0.0= Curb ring 960 x 30 thk = 178.8= Miscellanious cleats, platforms etc.. = 428.4

    bottom Annular plt ( IS 2062,A ) 10 t Butt welded 0.0bottom sketch plate 10 t Butt welded 2479.1

    add 4 % contingency / westage => 687.4

    Total = 17873.6 kg Appx per tank

    3 . WEIGHT BASED ON MATERIALS :

    SA 537 CL 1 => 0.0 + 0.00 = 0.0 kg per tank

    IS 2062 GR A / B OR A 36 => 17873.6 kg per tank

    TOTAL = 17873.6 kg per tankNOS OF TANK = 1 nos

    TOTAL = 17874 KG FOR 1TANK

    4. SPECIALS :1 Stress relieving of tank outside of foundation - REQURED for Cleanout door - 1 NosRequired for Compression Girder

  • 8/16/2019 Design Calculation Tank

    28/28

    2 Painting & sand blasting TO SA 2 1/2 FINISHExternal surface System 7 of spec

    = Shell 150.8 m^2= Stairway+P. Form = 9.6 m^2=' Cone roof plate 29.7 m^2= Nozzle , appx = 8.0 m^2= Floating Roof plates 0.0 m^2=Hand Rail 0.46 per m run 8.7 m^2=Wind girder 0.00 47.88 47.9 m^2

    bottom 29.7 m^2TOTAL => 284.3 m^2

    16.0 mtr long

    FOR 1 TANK = 284.3 m^2

    Internal surface System C of specshell, COMPLETE 150.80 m^2bottom 28.84 m^2= Roof plates = 29.69 m^2= Roof structure = 23.75 m^2= Floating Roof Support = 0.00 m^2=Pontoon inside = 0.00 m^2

    TOTAL => 233.1 m^2FOR 1 TANK = 233.1 m^2

    3

    4 CIVIL REQUIREMENT Not by tank vendor as per note 6 of data sheet rev B1

    Consider seperately at your end if in scopeWe need to provide Leak detection system also, if in scope

    5 FIRE FIGHTING REQD, TO BE CONSIDERED SEPERATLY ( Foam and Cooling water system )6 CATHODIC PROTECTION IF TO BE CONSIDERED SEPERATLY7 PLEASE CONSIDER NOZZLE PIPE ( EXTRA STRONG) AND FLANGES AS PER SPECIFICATION8 INSTRUMENTS AND CONTROLS SHALL BE TO p & I AND DATA SHEET EXTRA

    ( Level Instruments, temp instruments, vent etc..)