ee376a information theory - stanford...

64
EE376A Information Theory Lecture 9: Polar Codes Mert Pilanci Stanford University February 5, 2019

Upload: others

Post on 11-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

EE376AInformation Theory

Lecture 9: Polar Codes

Mert Pilanci

Stanford University

February 5, 2019

Page 2: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Outline

I Channel coding and capacity

I Polar code construction

I Decoding

I Theoretical analysis

I Extensions

Page 3: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Channel coding

I Entropy

H(U) = E[log1

p(U)] = −

u

p(u) log p(u)

I Conditional Entropy

H(X|Y ) = E[log1

p(X|Y )] =

y

p(y)H(X|Y = y)

I Mutual Information

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y )

Page 4: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Channel coding

I Entropy

H(U) = E[log1

p(U)] = −

u

p(u) log p(u)

I Conditional Entropy

H(X|Y ) = E[log1

p(X|Y )] =

y

p(y)H(X|Y = y)

I Mutual Information

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y )

Page 5: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Channel coding

I Entropy

H(U) = E[log1

p(U)] = −

u

p(u) log p(u)

I Conditional Entropy

H(X|Y ) = E[log1

p(X|Y )] =

y

p(y)H(X|Y = y)

I Mutual Information

I(X;Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y )

Page 6: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Channel Capacity

I Channel capacity C is the maximal rate of reliablecommunication over memoryless channel characterized byP (Y |X)

I Theorem:

C = maxPX

I(X;Y )

Page 7: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Capacity of the binary erasure channel (BEC)

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:

1− ǫ

1− ǫ

ǫ

ǫ

1

0

1

0

BSC(ǫ)

1− ǫ

1− ǫ

ǫ

ǫ

1

0

1

0

?

BEC(ǫ)

I(X;Y ) = H(X)−H(X|Y )

= H(X)−H(X)ε− 0P (Y = 0)− 0P (Y = 1)

= (1− ε)H(X)

Picking X ∼ Ber(12), we have H(X) = 1. Thus, the capacity ofBEC is C = 1− ε

Page 8: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Channel Coding

rate logMn bits/channel use

probability of error Pe = P (J 6= J)

I If R < maxPx I(X;Y ), then rate R is achievable, i.e., thereexists schemes with rate ≥ R and Pe → 0

I If R > maxPx I(X;Y ), then R is not achievable.

Main result: maximum rate of reliable communicationC = maxPX

I(X;Y )

Page 9: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Channel Coding

rate logMn bits/channel use

probability of error Pe = P (J 6= J)

I If R < maxPx I(X;Y ), then rate R is achievable, i.e., thereexists schemes with rate ≥ R and Pe → 0

I If R > maxPx I(X;Y ), then R is not achievable.

Main result: maximum rate of reliable communicationC = maxPX

I(X;Y )

Page 10: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Channel Coding

rate logMn bits/channel use

probability of error Pe = P (J 6= J)

I If R < maxPx I(X;Y ), then rate R is achievable, i.e., thereexists schemes with rate ≥ R and Pe → 0

I If R > maxPx I(X;Y ), then R is not achievable.

Main result: maximum rate of reliable communicationC = maxPX

I(X;Y )

Page 11: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Today: Polar Codes

I Invented by Erdal Arikan in 2009

I First code with an explicit construction to provably achievethe channel capacity

I Nice structure with efficient encoding/decoding operations

I We will assume that the channel is symmetric, i.e., uniforminput distribution achieves capacity

Page 12: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Basic 2× 2 transformation

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

X2

X1

U1, U2, X1, X2 ∈ {0, 1} binary variables (in GF(2))

[X1

X2

]=

[1 10 1

] [U1

U2

]mod 2

or equivalently X1 = U1 ⊕ U2 and X2 = U2

Page 13: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Basic 2× 2 transformation

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

X2

X1

U1, U2, X1, X2 ∈ {0, 1} binary variables (in GF(2))

[X1

X2

]=

[1 10 1

] [U1

U2

]mod 2

or equivalently X1 = U1 ⊕ U2 and X2 = U2

Page 14: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Properties of G2

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

X2

X1

U =

[U1

U2

]X =

[X1

X2

]

Define G2 :=

[1 10 1

]then we have X = G2U

G22 := G2G2

G2G2U =

[1 10 1

] [1 10 1

] [U1

U2

]

Page 15: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Properties of G2

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

X2

X1

U =

[U1

U2

]X =

[X1

X2

]

Define G2 :=

[1 10 1

]then we have X = G2U

G22 := G2G2

G2G2U =

[1 10 1

] [1 10 1

] [U1

U2

]

Page 16: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Properties of G22

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

X2

X1+

U2

U1

Define G2 :=

[1 10 1

]then we have X = G2U

G22 := G2G2

G2G2U =

[1 10 1

] [1 10 1

] [U1

U2

]

=

[1 10 1

] [U1 ⊕ U2

U2

]

=

Page 17: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Erasure channel

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:

1− ǫ

1− ǫ

ǫ

ǫ

1

0

1

0

BSC(ǫ)

1− ǫ

1− ǫ

ǫ

ǫ

1

0

1

0

?

BEC(ǫ)

Page 18: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Naively combining erasure channels

Polarization Encoding Decoding Construction Performance

Symmetry assumption

Assume that the channel has “input-output symmetry.”

Examples:

1− ǫ

1− ǫ

ǫ

ǫ

1

0

1

0

BSC(ǫ)

1− ǫ

1− ǫ

ǫ

ǫ

1

0

1

0

?

BEC(ǫ)

I Repetition coding

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

U1

W

W

Y2

Y1

Page 19: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Combining two erasure channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

Invertible transformation does not alter capacity:I(U ;Y ) = I(X;Y )

Page 20: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Sequential decoding

First bit-channel W1 : U1 → (Y1, Y2)

Polarization Encoding Decoding Construction Performance

The first bit-channel W1

W1 : U1 → (Y1,Y2)

+

random U2

U1

W

W

Y2

Y1

C (W1) = I (U1;Y1,Y2)

Page 21: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Second bit-channel W2 : U2 → (Y1, Y2, U1)

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

Page 22: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Capacity is conserved

C(W1) + C(W2) = C(W ) + C(W ) = 2C(W )

C(W1) ≤ C(W ) ≤ C(W2)

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

Page 23: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Polarization process

ε

2ε− ε2

ε2

2(2ε− ε2)− (2ε− ε2)2

(2ε− ε2)2

2(ε2)− (ε2)2

(ε2)2

Page 24: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

A familiar update rule...

Let et be i.i.d. uniform ±1 for t = 1, 2...

wt+1 = wt + etwt(1− wt)

Page 25: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

A familiar update rule

Let et be i.i.d. uniform ±1 for t = 1, 2...

wt+1 = wt + etwt(1− wt)

Page 26: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Martingales

Let et be i.i.d. uniform ±1 for t = 1, 2...

wt+1 = wt + etwt(1− wt)

E[wt+1|wt] = wt

I Doob’s Martingale convergence theorem

(informal) Bounded Martingale processes converge to alimiting random variable w∞ such that E[|wt − w∞|]→ 0.

Page 27: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Martingales

Let et be i.i.d. uniform ±1 for t = 1, 2...

wt+1 = wt + etwt(1− wt)

E[wt+1|wt] = wt

I Doob’s Martingale convergence theorem

(informal) Bounded Martingale processes converge to alimiting random variable w∞ such that E[|wt − w∞|]→ 0.

Page 28: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Non-convergent paths

I Down - Up - Down - Up ....

ε↘ ε2 ↗ 2ε2 − ε4 =?ε

Page 29: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Non-convergent paths

I Down - Up - Down - Up ....

ε↘ ε2 ↗ 2ε2 − ε4 = ε if ε =√52 − 1

2 = 1φ ≈ 0.61803398875

Golden ratio : φ :=1 +√5

2≈ 1.61803398875

Page 30: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Non-convergent paths

I Down - Up - Down - Up ....

ε↘ ε2 ↗ 2ε2 − ε4 = ε if ε =√52 − 1

2 = 1φ ≈ 0.61803398875

Golden ratio : φ :=1 +√5

2≈ 1.61803398875

Page 31: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Non-convergent paths

I Down - Up - Down - Up ....

ε↘ ε2 ↗ 2ε2 − ε4 = ε if ε =√52 − 1

2 = 1φ ≈ 0.61803398875

Golden ratio : φ :=1 +√5

2≈ 1.61803398875

Page 32: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Google images: golden ratio in nature

Page 33: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Polarization theorem

Theorem

The bit-channel capacities {C (Wi )} polarize: for any δ ∈ (0, 1), as the construction size N grows

[no. channels with C (Wi ) > 1− δ

N

]−→ C (W )

and[no. channels with C (Wi ) < δ

N

]−→ 1− C (W )

0

δ

1− δ

1

Page 34: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Freezing noisy channels

Page 35: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Freezing noisy channels

Page 36: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Freezing noisy channels

Page 37: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Encoding

+

+

+

+

+

+

+

+

+

+

+

+

W

W

W

W

W

W

W

W

Y8

Y7

Y6

Y5

Y4

Y3

Y2

Y1

1

0

1

0

1

0

0

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

0

0

1

1

free

free

free

frozen

free

frozen

frozen

frozen

Page 38: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Polarization of general channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

W−(Y1, Y2|U1) =1

2

u2

W1(y1|u1 ⊕ u2)W2(y2|u2)

W+(Y1, Y2, U1|U2) =1

2W1(y1|u1 + u2)W2(y2|u2)

I(W−) + I(W+) = I(W ) + I(W ) = 2I(W )

I Mrs Gerber’s Lemma: If I(W ) = 1−H(p), thenI(W+)− I(W−1) ≥ 2H(2p(1− p))−H(p)

Page 39: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Polarization of general channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

W−(Y1, Y2|U1) =1

2

u2

W1(y1|u1 ⊕ u2)W2(y2|u2)

W+(Y1, Y2, U1|U2) =1

2W1(y1|u1 + u2)W2(y2|u2)

I(W−) + I(W+) = I(W ) + I(W ) = 2I(W )

I Mrs Gerber’s Lemma: If I(W ) = 1−H(p), thenI(W+)− I(W−1) ≥ 2H(2p(1− p))−H(p)

Page 40: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Polarization of general channels

Polarization Encoding Decoding Construction Performance

The second bit-channel W2

W2 : U2 → (Y1,Y2,U1)

+

U2

U1

W

W

Y2

Y1

W−(Y1, Y2|U1) =1

2

u2

W1(y1|u1 ⊕ u2)W2(y2|u2)

W+(Y1, Y2, U1|U2) =1

2W1(y1|u1 + u2)W2(y2|u2)

I(W−) + I(W+) = I(W ) + I(W ) = 2I(W )

I Mrs Gerber’s Lemma: If I(W ) = 1−H(p), thenI(W+)− I(W−1) ≥ 2H(2p(1− p))−H(p)

Page 41: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

General Polar Construction

Page 42: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

General Polar Construction

Page 43: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

General Polar Construction

Page 44: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 45: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 46: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 47: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 48: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 49: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 50: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 51: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 52: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 53: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 54: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 55: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 56: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Successive Cancellation Decoder

Page 57: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Polar Coding Theorem

Theorem

For any rate R < I (W ) and block-length N, the probability offrame error for polar codes under successive cancelation decoding isbounded as

Pe(N,R) = o(2−

√N+o(

√N))

Page 58: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Improved decoders

I List decoder (Tal and Vardy, 2011)

First produce L candidate decisionsPick the most likely word from the listComplexity O(LN logN)

Page 59: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

List decoder

Polarization Encoding Decoding Construction Performance

Tal-Vardy list decoder performance

Length n = 2048, rate R = 0.5, BPSK-AWGN channel, list-size L.

Page 60: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

Polar Coding Summary

Summary

Given W , N = 2n, and R < I (W ), a polar code can be constructedsuch that it has

◮ construction complexity O(Npoly(log(N))),

◮ encoding complexity ≈ N logN,

◮ successive-cancellation decoding complexity ≈ N logN,

◮ frame error probability Pe(N,R) = o(2−

√N+o(

√N)).

Page 61: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

5G Communications

I The jump from 4G to 5G is far larger than any previousjumps–from 2G to 3G; 3G to 4G

I The global 5G market is expected reach a value of 251 Bn by2025

I In 2016, 27 Gbps downlink speed was reached using PolarCodes!

I Current LTE download speed is 5-12 Mbps

I In November 2016, 3GPP agreed to adopt Polar codes forcontrol channels in 5G. LDPC codes will also be used in datachannels.

Page 62: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

5G Communications

I The jump from 4G to 5G is far larger than any previousjumps–from 2G to 3G; 3G to 4G

I The global 5G market is expected reach a value of 251 Bn by2025

I In 2016, 27 Gbps downlink speed was reached using PolarCodes!

I Current LTE download speed is 5-12 Mbps

I In November 2016, 3GPP agreed to adopt Polar codes forcontrol channels in 5G. LDPC codes will also be used in datachannels.

Page 63: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

5G Communications

I The jump from 4G to 5G is far larger than any previousjumps–from 2G to 3G; 3G to 4G

I The global 5G market is expected reach a value of 251 Bn by2025

I In 2016, 27 Gbps downlink speed was reached using PolarCodes!

I Current LTE download speed is 5-12 Mbps

I In November 2016, 3GPP agreed to adopt Polar codes forcontrol channels in 5G. LDPC codes will also be used in datachannels.

Page 64: EE376A Information Theory - Stanford Universityweb.stanford.edu/class/ee376a/files/polarcodes.pdfToday: Polar Codes I Invented by Erdal Arikan in 2009 I First code with an explicit

References

I E. Arikan, Channel Polarization: A Method for ConstructingCapacity-Achieving Codes for Symmetric Binary-InputMemoryless Channels, IEEE IT, 2009

I E. Arikan, Polar Coding Tutorial, Simons Institute, UCBerkeley, 2015

I B.C. Geiger, The Fractality of Polar and Reed–Muller Codes,Entropy, 2018