energy recovery linacs (erl) - nsf · llnl nsf wrkshp 9 jan 08 chess & lepp 1 energy recovery...

57
LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP CHESS & LEPP 1 Energy Recovery Energy Recovery Linacs Linacs (ERL) (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department Cornell University, Ithaca, New York 14853-2501 [email protected] *for the ERL/LEPP/CHESS development team http://erl.chess.cornell.edu

Upload: others

Post on 11-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

1

Energy Recovery Energy Recovery LinacsLinacs (ERL)(ERL)

Sol M. Gruner*Cornell High Energy Synchrotron Source & Physics Department

Cornell University, Ithaca, New York [email protected]

*for the ERL/LEPP/CHESS development team

http://erl.chess.cornell.edu

Page 2: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

2

Outline

• What is an ERL?

• What can it do?

• What is the present status?

Page 3: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

3

Outline

• What is an ERL?

• What can it do?

• What is the present status?

Page 4: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

4

1. Transversely coherent flux.2. Time structure. 3. Source size to optimize nanobeams.

What limits science at storage rings?

Sources that overcome these limitations will be truly transformative!

Emittance dilution is a result of storage

Coherent Flux ~ Current / (EmittX x Emitt Y)

Page 5: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

5

Advantages:

• Injector determines emittances, pulse length, current.

• Flexibility of pulse timing and pulse length.

• Small source size ideal for nanoprobes

• No fill decay.Disadvantage: You’d go broke!!

(5 GeV) x (100 mA) = 500 MW!!

LINACS present an alternative

LINAC (5 GeV, 100 mA) Long Undulator

Electron beam dump

X-rays Brilliant Injector

Page 6: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

6

Energy Recovery LinacEnergy Recovery Linaca radically new SR concepta radically new SR concept

Accelerating bunch Returning bunch A superconducting linac is required for

high energy recovery efficiency

Page 7: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

7

ERL will excel in Spectral Brightness, Source Size and Pulse Duration

• ERL hi-brightness for coherence applications.• Electron source size of a few microns– good

for intense, nm diameter, hard x-ray beams.• Bunch compression allows pulses < 100fs.• Same beam characteristics in Hor. & Vert.• Great flexibility in modes of operation.

Page 8: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

8

Avg. Coherent Flux

Coherent Fraction

Transverse Coherence

Page 9: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

9

l The bunch length can be made much smaller than in a ring.l Bunch charge (e.g., flux) can be traded against brightness.l Rep rate is very flexible.

<100fs 2psESRF 16ps

ERL can produce very short bunches

Page 10: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

10

Outline

• What is an ERL?

• What can it do?

• What is the present status?

Page 11: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

• SRI workshops

• APS workshops

• Coherence 2007

• Gordon Conference

• …

Page 12: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

12

What Goes on Deep in the Earth & Planets?

• Phys & Chem completely altered. PV>RH

• Many superconductors

• Chemical dynamics drastically modified

• Impacts ore generation, earthquake dynamics, volcanism, weather

Why ERL?• DAC expts photon starved at existing

sources

• ERL nanobeams 103 – 105 intensity

• Enables dynamical studies

• High average flux preserves DACSun et al., Science, 312 (2006) 1199

Page 13: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

13

Can We Improve Polycrystalline Materials?

• Most real materials polycrystalline

• Properties far from single crystal ideal

• Wish to probe matter on single grain length scales

Why ERL?• 80x80x80 voxels takes 3 hr → few seconds

APS. ORNL group

Pfeifer et al, Nature, 2006

• Nanocrystalline matter is new frontier. Revolution in lensless imaging. Requires coherence.

• 150 s/frame x 50 frame ≈ 2 hr → few seconds

• Can study dynamics: annealing, strain, coarsening, etc.

Page 14: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

14

Can We Determine Macromolecular Structure Without Crystals?

D. Starodub et al. (Spence U Ariz./ALS/LLNL)

50m/sec, 200 ns in beam

Page 15: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

15

Can We Probe Dynamics of Macromolecules in Solution?

• Life, polymers, etc. all involve dissolved macromolecules.

• Proteins & RNA fold, multimers associate & disassociate, polymers collapse, etc.

• No good way exists to probe global structural dynamics of large molecules in solution.

• Laminar flow cells access microseconds

Why ERL?• Existing sources limit expt to msec.

• ERL would reach to microseconds

Page 16: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

16

What is the Nature of the Glass Transition?

• The glass transition is one of the most important outstanding questions in all of science (Science magazine, 125th anniv. Issue)

• “The deepest and most interesting unsolved problem in solid statetheory is probably the nature of glass and the glass transition.”Phil Anderson, Science, 1995.

• If we knew where every atom was in a nanoparticle of glass as it melted, we’d have an enormous handle on the glass transition. (Jim Sethna)

Why ERL?

• Lensless coherent imaging offers a way to repetitivelydetermine atomic structure of aperiodic matter as it is warmed.

Page 17: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

17

REASONS TO DEVELOP ERLs

1. A large user community already exists. ERLs can do all experiments at the most advanced 3rd gen SR sources, thus meeting growth in demand for SR.

2. ERLs enable SR experiments not now possible. Follows from high coherence, short pulses and flexible bunch structure. Leads to transformative science.

3. ERLs are a promising technology with limits yet to be determined.ERL retrofits to storage rings and ERL XFELs are good possiblities.

Page 18: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

18

Outline

• What is an ERL?

• What can it do?

• What is the present status?

Where are we headed?

Where are we now?

Page 19: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

19

Next-Generation NSF Light Source Must Meet 3 Criteria:

1. It must be transformational.

2. It must complement DOE sources.

3. It must succeed.

Page 20: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

20

World’s first SR beam line, 1952

Cornell’s Impact on Synchrotron Science, most with NSF support

CHESS today

High pressure protein crystal cryocooling2005

First dedicated HP Diamond Anvil Station1988

ERL study2000

Pulsed laser deposition system & layer-by-layer growth studies2004

Narrow bandwidth artificial multilayers 2005Confocal microscope developed and applied to art works 2004

ERL injector development2007

41 attosecond imaging of disturbances in water2004Microfabricated crystal cryomounts2003Envelope phasing of macromolecules2001First microsecond x-ray Pixel Array Detectors2001

Image plate developments1985

LNS (LEPP) started by Bethe returning from Los Alamos1945

First fully SC powered x-ray storage ring 1999

CEBAF cavities developed & tested at CESR1984

Cornell SC synchrotron tests1975Tigner proposes ERL idea1965World’s first SR beamline on 300 MeV synchrotron1952

First TESLA cavity1995K+ Channel structure1998

First Complete Stokes Polarimetry for X-rays1992

First mammalian virus structure 1985

First hard x-ray circular polarization phase plate1987

First microsecond time resolved XAFS1993

First CCD detectors for protein crystallography1991Development of cryoloop protein crystal freezing1989APS undulator A tested at CESR1989Long-period standing waves demonstrated1988

Discovery of resonant x-ray magnetic scattering1988

Cryogenic monochromator crystal cooling1986

Demonstration of curved crystal sagittal focusing1982First storage ring SC tests1982Cornell Electron Storage ring (CESR) & CHESS start1979

ERL

Tomboulian & Hartman

Page 21: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

21

Cornell ERL Project

• ERL Study (w/ Jlab) (Completed in 2001)

• Phase I: R&D on injector, linac modules, machine issues. Engineering studies for Phase II(in process: $30M NSF & NY State in 2005/2006; continued R&D proposed).

• Phase II proposal in 2008.

• Build a high energy (5 GeV) ERL x-ray facility at Cornell as an upgrade to CESR. (~5 year construction)

Operate ERL as University-based NSF user facility.

Page 22: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

22

Mission 1: High Research Impact & Productivity

Some CHESS Macromolecular Covers

Page 23: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

23

People are our most important “product”

Mission 2: Train scientists who populate other labs

Page 24: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

24

Schematic ERL Layout View5 GeV

Key: 1=Main injector; 2=first 2.5 GeV linac; 3=East return loop;

4=second 2.5 GeV linac + cryoplant; 5=South undulator beamlines

6=West return loop (CESR); 7=North undulator beamlines;8=Beam dump; 9=dump for non-energy recovered fast-pulse

undulator beam line.

Page 25: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

25

ERL Parameters

110.20.2Relative energy spread (x10-3)No

<10050000.1

10000.15

Fast, Lo-Rep Rate

YesYesYesEnergy recovered?

<10020002000RMS bunch length (fs)TBD830Geom. emittance (pm)130013001300Repetition rate (MHz)TBD1977Bunch charge (pC)TBD25100Current (mA)

555Energy (GeV)

Fast, Hi-Rep Rate

Hi-Coherence Hi-Flux Modes

Beamlines will NOT look like typical 3rd generation beamlines. Optimize for experiments that take advantage of unique ERL properties. Emphasis on helical undulators, windowless beamlineswith minimal or no optics, multilayers, specimen chambers with multiple simultaneous probes (e.g., EM, optical, magnetic), tailored detectors.

Page 26: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

26

ERLs have many challenges*

– Production of very small emittance beam– Emittance preservation in beam transport sections and linacs – Achieve sufficient beam stability for 100 mA beam current – Beam diagnostic for small emittance, short bunch beams – Control of beam loss – High gradient, high Q cavity operation with excellent field stability, HOM loads– Short period, short gap, but long undulators with phased segments– X-ray windows that preserve coherence– X-ray BPMs that work on a submicron scale– X-ray monochromators that don’t distort under a high-heat load– X-ray optics to make a nm diameter hard x-ray beams– X-ray mirrors with extraordinarily small slope error & roughness– Specialized x-ray detectors optimized for most challenging applications. – Etc.

The nature of these challenges range from basic science to engineering. Based on R&D to date, there are excellent prospects

for success.But a lot of work needs to be done!

*XFELs have a comparable list

Page 27: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

27

Outline

• What is an ERL?

• What can it do?

• What is the present status?

Where are we headed?

Where are we now?

Page 28: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

28

Ongoing Cornell R&D Activities

1) DC electron source • Gun development• HV power supply• Photocathode development• ERL injector lab• Laser system development

2) Superconducting RF • RF control

(tests at CESR/JLAB)• HOM absorbers• Injector klystron• Input coupler (with MEPI)• Injector cavity / Cryomodule

3) Beam dynamics• Injector optimization with space charge• Beam break up instability (BBU)• Optics design

4) Accelerator design• Optics• Beam dynamics• Beam stability

5) X-ray beamline design• X-ray optics• Undulator design

DC Photo Cathode

Page 29: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

Injector Development:

Two stages

• Now: Operate gun and diagnostics in gun lab.

• 1st Quarter ‘08:Operate full injector assembly, the heart of the ERL.

Gun Lab Plan View

Injector Plan View

Page 30: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

30

Photoemission Gun

Laser in

Electron beam out

Cathode Entry

Max capabilities:

750 kV

100 mA

Page 31: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

31

GaAs Photocathode

GaAs:Cs is cathode of choice

- good quantum efficiency

- low thermal emittance

- fast time response (@520 nm)

- need extreme UHV for lifetime

- minimum thermal emittance near bandgap (lower QE)

- R&D on other cathodes

Page 32: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

32

Load Lock System

•Load lock chamber w/quick bakeout capability

•Heater chamber

•Cathode preparation and transfer chamber

Can swap a fresh cathode into the gun in ~30 minutes

Page 33: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

33

Beam Line looking toward Gun

Page 34: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

34

Gun and Power Supply in Tank

Page 35: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

35

750 kV, 100 mA Power Supply

Page 36: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

Fiber Laser Description

Pump diode

Yb

fiber

Oscillator Pre-Amplifier Amplifier

15 mW300 pJ

60 mW1.2 nJ

4 W80 nJ

5

4

3

2

1

0

Sig

nal p

ower

[wat

ts]

151050 Coupled pump power [watts]

efficiency: 60%

Page 37: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

37

Pump diode

WDM

Mirror

Mirror

Grating

Isolator

HWPQWP

QWP

PBS Mirror

Yb fiber

λ = 1040 nmpulse duration ~ 2.5 pspower ~ 15 mW

Laser Oscillator

8

0

Inte

nsity

[a.u

.]

-6 -4 -2 0 2 4 6 Time [ps]

2.6 ps

Page 38: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

38

Laser Shaping

Use ‘optical pulse-stretcher’ to get 20-40 ps flat-top pulses from 2 ps laser (DPA –divided pulse amplifier)

Gauss to flat top using commercial aspheric lens

Page 39: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

39

Initial Beam Tests

• Goal: full understanding of gun beam phase space• Build gun & diagnostics line• Full phase space characterization capability after the gun• Temporal measurements with the deflecting cavity• Lifetime studies

Page 40: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

40

Cathode Response Time

Deflecting cavity transforms bunch length into transverse spot on view screen.

Gives direct of bunch length measurement

Page 41: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

41

Cathode Response Data

laser

laserlaser

e beam

e beame beam

2 crysta

ls

3 crysta

ls

1 crysta

l

Page 42: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

42

Full Injector Prototype Progress

Page 43: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

43

Two-cell niobium cavity for ERL injector

Page 44: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

44

Vertical Cold Test

Page 45: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

45

RF Input Coupler

Compress Air Inletfor Bellows CoolingCompress

Air Inletfor Window Cooling

Air Outlets

300 K Intercept

80 K Intercepts

5 K Intercept

Page 46: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

46

2-cell injector cavity with tuners andpower couplers attached

Page 47: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

47

Higher-Order Mode Power

2 K

Bunch excites EM cavity eigenmodes (Higher-Order Modes)

bunch

Page 48: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

48

Cornell ERL HOM Absorber

• Extensive research program to find absorber materials which

– are effective at 80 K– And absorb over required

frequency range

• Three materials selected to cover full frequency range

• Simulated damping for 100s of modes all modes are sufficiently damped

• The injector cryomodule will be the first high current, short bunch s.c. cavity module.

Flange to Cavity

Flange to Cavity

RF Absorbing

Tiles

HOM Probes

Cooling Channel

(GHe)Shielded Bellow

Page 49: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

49

Cryomodule design

Frequency TunerRF Cavity in He

Vessel

HOM Absorber

Input Coupler

Cryogenic System

Page 50: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

50

Full 5-cavity String Out of Cryostat

Page 51: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

51

ERL injector klystron

K3415LS S/N 03 Transfer Curve @ CORNELL

0

20

40

60

80

100

120

140

160

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Drive Power (W)

Out

put P

ower

(kW

)

45kV 42kV 37kV 38kV 40kVEfficiency 51.1%

Efficiency 54.8%

e2v designed high CW power klystron.Parameters: 7-cavity tube, max. beam voltage 45 kV, current 5.87 A, full power collector, max. output power 135 kW @ >50% efficiency, gain >45 dB, bandwidth >±2 MHz @ 1 dB and >±3 MHz @ 3 dB.First tube delivered and successfully tested in March, 2007.Transfer curves were measured for several HV settings.

Page 52: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

52

Injector Assembly 7 Jan 2008

Page 53: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

53

Meanwhile, NYS Supports Proposal Development

Site Test Borings and Hydrogeology

Page 54: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

54

Tunnel Options

Cryoplant Studies

Page 55: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

55

Architectural & Environmental Site Studies

Etc.

Page 56: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

56

Cornell ERL Project

• ERL Study (w/ Jlab) (Completed in 2001)

• Phase I: R&D on injector, linac modules, machine issues. Engineering studies for Phase II(in process: $30M NSF & NY State in 2005/2006; continued R&D proposed).

• Phase II proposal in 2008.

• Build a high energy (5 GeV) ERL x-ray facility at Cornell as an upgrade to CESR. (~5 year construction)

Operate ERL as University-based NSF user facility.

Page 57: Energy Recovery Linacs (ERL) - NSF · LLNL NSF Wrkshp 9 Jan 08 CHESS & LEPP 1 Energy Recovery Linacs (ERL) Sol M. Gruner* Cornell High Energy Synchrotron Source & Physics Department

LLNL NSF Wrkshp 9 Jan 08

CHESS & LEPPCHESS & LEPP

57

END