engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

66
MECHANICS PREVENTIVE MAINTENANCE AND ENERGY CONSERVATION L | C | LOGISTICS PLANT MANUFACTURING AND BUILDING FACILITIES EQUIPMENT Engineering-Book ENGINEERING FUNDAMENTALS AND HOW IT WORKS September 2014 Expertise in Process Engineering Optimization Solutions & Industrial Engineering Projects Management Supply Chain Manufacturing & DC Facilities Logistics Operations Planning Management

Upload: luis-cabrera

Post on 25-Jan-2015

229 views

Category:

Engineering


5 download

DESCRIPTION

Plant Manufacturing and Building Facilities Engineering

TRANSCRIPT

Page 1: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

MECHANICS PREVENTIVE MAINTENANCE AND ENERGY CONSERVATION

L | C | LOGISTICS

PLANT MANUFACTURING AND BUILDING FACILITIES EQUIPMENT

Engineering-Book

ENGINEERING FUNDAMENTALS AND HOW IT WORKS

September 2014

Expertise in Process Engineering Optimization Solutions & Industrial Engineering Projects Management 

Supply Chain Manufacturing & DC Facilities Logistics Operations Planning Management

Page 2: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities management is an interdisciplinary field primarily devoted to

the maintenance, cleaning and care of large commercial, institutional

And manufacturing buildings, such as: hotels, resorts, schools, office

complexes, sports arenas or convention centers, and factory offices

Duties may include the care of HVAC systems, HVAC electric controllers,

Low Voltage Electric Power systems, electric motors, diesel engines,

pumps, valves, piping, water treatment and waste water plants, Vertical

Transportation, building plumbing, fixtures and lighting systems, landscape

decoration; and other FM safety, cleaning and office equipments

Facilities management (FM) is the total facilities management of all

services that support the core business of an administration organization

Facilities Management

Meaning of Facilities Management

Page 3: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

Benefits of Facilities Management

Facility Management Services provides to its clients

a dedicated technical team to solve the day to day

problems associated with: facility assets failure due to

usage and age deterioration, performs preventive and

corrective maintenance, as well as repair and cleaning

0utsourcing facility management provides the following:

healthy, comfortable, safe, clean and secure environment

with consistent and standardized management procedures

and overall support services quality improvements

extended asset life and reduced assets repairs costs

Page 4: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

Roles

Highly Skilled Professional Engineers, technicians in refrigeration, electricity,

mechanics, water, environment, safety, sanitation, carpenters, plumbers, lifts,

electrical escalators, dock levellers, rolling shutter doors, office phone, LCD TV

Staff

FM Help Desk Operator and work orders administration

Management

Chief Engineer, Supervisors, technical advisor

Page 5: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

Help Desk Operator The main responsibilities of the Help Desk Operator are:

accept requests for assistance or problem reports from users,

obtain necessary information from users to adequately describe

the request or problem report,

enter information into the problem tracking system,

directly respond to the request or problem if within own areas of expertise,

complete information on problem reports that were solved personally and

close report in problem tracking system,

direct the request or problem to the most appropriate support area

(e.g., Electrical, HVAC, Mechanical, Carpentry, VT),

liaison with user to ensure that requests or problem reports have been

satisfactorily handled

Page 6: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

S/No System Sub-System Sub-System

(Asset Description)

Priority Level Response Time Completion Time

1Vertical

Transportation

Roller shutter-manual, highspeed & motorised;Docklevellers;Rolling doors;Elevators;

 

P1 Critical Immediate <= 3 hours

P2 UrgentSame Day

< 1 DaysOne hour for elevator only

P3 Routine 7 Days 15 DaysP4 Planned 30 Days 30 Days

P5 Project As Agreed As Agreed

2Non Mechanical Building Maintenance

Plumbing & Sanitary;Building;Electrical;IT & Electronics;

 

P1 Critical Immediate < 1 DayP2 Urgent Same Day < 2 Days

P3 Routine 7 Days<3 days for minor & 10 days for major

P4 Planned 30 Days 30 days

P5 Project As Agreed As Agreed

3 HVAC

Air curtain;Dehumidifier;Split units AC;VRV/VRF;AHU, F&CU,Chillers, Cooling Towers,Pressurized Fans, Exhaust Fans, Ventilation fans;Mechanical; Electrical

 

P1 Critical Immediate < 1 DayP2 Urgent Same Day < 3 Days

P3 Routine 7 Days<3 days for minor repair & 10 days for major

P4 Planned 30 Days 30 Days

P5 Project As Agreed As Agreed

DOCUMENTATION RECEIVED FROM CLIENT TABLE OF PRIORITY LEVELS

Page 7: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

ON-SITE SERVICES

Page 8: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

ON-SITE SERVICES

Page 9: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

S/No

Request Details Assigned DetailsSLA Status

SLA Status     System (HVAC Electric Building Toilet Other)

Date & Time dd/mm/yy

hh:mmRequestor

Recorded By

PO Ref NoWRF Ref. No /

PM Ref.

Type*(RM / CM /

PRO / Quote / Move / CS /

FS / PM)

Priority Date commited dd/mm/yy

Description of Request

Status

Description Of Work Done Remarks

                       

   

     

Page 10: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

Assigned Details

Sub-System / Asset Usage

Description

   

Remark

Assigned Details

SLA Status Actual SLA Actual SLA  

WRF Ref. No / PM

Ref.

Used spare part/consumable

(As per Inventory list)Location

Detail of Location

Assigned To

Targeted Response

(Date & Time)

Actual Response

(Date & Time)

Actual Completion

(Date & Time)

Feedback from End-

User

  Spare part Qty                  

 

 

   

 

 

 

Page 11: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

Spare Parts Assigned Details

                     

WRF Ref. No / PM Ref. Spare Parts Used In

  HVAC Electrical NMBM VT PM RM CM PRO Quote Move status

Page 12: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

Page 13: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

sodexo.com

Facilities Management

WORK ORDER FORM

Date & Time:   Reported By:   WRF Ref. No:

  (ie. DD/MM/YY HH:MM) - Contact No:   Received By:

  Email Address: -

Type Of WO:Loại WO:

 *(RM / CM / PRO / Quote / Move /

CS / FS)WO Remarks:  

Details of RequestLocation: Equipment Details:

   Description of Request: Priority Level   *(Critical / Urgent / Routine / Planned / Project)Assigned To:  System:   *(VT / HVAC / NMBM / CS / FS)Dept:  Sub-system:   Contact No:  Site Attendance ReportInform Location Owner:Name:   Approval:  

 Permit To Work (PTW Required?) :   *(YES / NO)          PTW Reference No. :  

 Observation on site: Action Taken Details of Spares Used

Item Code Item Description Issue Qty Return Qty Total Final Issued Qty Receipt Sign Store Personnel Sign                                                    

Follow Up Actions (If Required) 

Actual Date & Time Responded   Actual Completion Date & Time:      (ie. DD/MM/YY HH:MM)     (ie. DD/MM/YY HH:MM)Requestor Feedback: Details Of Feedback:Acknowledgement of Completion: (Name/Date/Time/Signature)Requestor

Acknowledgement of Completion(Name/Date/Time/Signature)Sodexo Supervisor

Page 14: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

PROACTIVE MAINTENANCE LOG REPORT INSTRUCTION              Introduction                  

1 Proactive Walkthrough shall be scheduled and assigned          2 Proactive Walkthrough Checklist' for Internal & External shall be use as a guide to conduct inspection.                           Recording                  3 Observation by respective personnel shall be entered into hard copy of the 'Proactive Maintenance Log Record' (PML).4 Submit completed Proactive Maintenance Log Record to Helpdesk as soon as walkthrough completed.                           Helpdesk                    5 Helpdesk shall assign a PML reference no. to the log record and entered the observation details in PML Soft Copy6 Helpdesk issue the PML record to Supervisor or Maintenance Manager who in turn issue them to Day Technician.

7 Supervisor or Maintenance Manager shall issue PML record (or selected observation) to Shift Technician where appropiate8 Technicians to proceed and conduct Proactive Maintenance          9 Technician must envisage to complete the Proactive Maintenance within 1 week.                               Works that are KIV, requires spares or are Chargeable or Requires Additional Spares (to Order)  

10 For Works requiring Spares, technician draw spares from store and indicate PML reference no to the items drawn out.

11 For works that requires additional spares or are chargeable, Technician to enter remarks and refer them back to Helpdesk.12 Helpdesk opens a Quote Work Order for such faults.            13 For KIV works, Technician must indicate reason for the works to be defered or kept in view.                             Completion                  

13 Once completed, Technician return the PML to Helpdesk for record in the soft copy.      14 PML shall be signed and filed by Helpdesk.              

Page 15: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

PROACTIVE MAINTENANCE LOG RECORD                 Date of Inspection

     Proactive Maintenance Log Reference No.

                 Location Inspected

       :

                 

S No.

Date & Time

Description Of Proactive Maintenance Works

Sub LocationObserved

By

Helpdesk - WOF

Reference No.

Date & Time

Status (Completed/ KIV)

Remarks

                 

                 

                 

Inspection Conducted By:         Received By Helpdesk/Supervisor:

                 

Signature, Date & Time:         Signature, Date & Time:                 

Page 16: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

ROOT CAUSE ANALYSIS

S/No

Request Details    

Description of Request

Assigned Details

System

SLA Status

Date & Time RequestorRecorded BySodexo

LocationDetail of Location

WRF Ref. No

Type Of Work Order *

Assigned To

Priority Level

                       

Problem Description 

 

  

Root Cause Description 

 

 

 

Solution Description 

 

 

 

recommendation 

 

 

 

Page 17: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

S No. Duties Responsibilities Time

1

Take Over of Shift DutiesKeys & Card AccessMobile PhoneLog Out Tag OutCentral & Personal ToolsPPEStore

Shift Leaders 0600hrs – 0615hrs

2 Sodexo Morning Briefing All 0700hrs – 0715hrs

3

Review & Submission of Reports:Summary of Work Order ReportSummary of Preventive MaintenanceSummary of Proactive Work OrdersSummary of Spares & Consumables

Supervisor/ Manager 0715hrs – 0745hrs

4 P&G Safety Tool Box Meeting All 0800hrs – 0820hrs

5 Daily meeting with Client Supervisor/ Manager 0900hrs

6 Daily Walkthrough Management 0830hrs – 0930hrs

7 Take Over of Shift Duties Shift Leaders Future

8 Daily Walkthrough Shift Team 1900hrs – 2000hrs

9 Take Over of Shift Duties Shift Leaders 1800hrs – 1815hrs

DAILY TASK & MORNING BRIEFING

Page 18: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive MaintenanceDAILY OPERATIONAL MEETING WITH TECHNICAL TEAM

MINUTES OF MEETING – Day /Month / Year/ (time)Date Venue Attendees    

         

Summary WO

No. PO Ref. WO Ref. Type PriorityDate

commitedDescription Status Remarks

1                Inventory

No. WO Ref. Spare part Qty Asset Usage Description LocationDetail

Location1            

      Total        Daily PM

No. PM Ref. Spare part Qty Asset Usage Description LocationDetail

location1        

      Total        Minutes of Meeting Yesterday

No.WO type

Plan QtyActual qty

Remarks

1          Minutes of Meeting Today

No.WO type

Plan QtyActual qty

Remarks

1                Safety Information No. Description Action Remarks 1.            2.                       Instruction from Representative No. Description Action Remarks

1                Help needed by tecnicians No. Description Action Remarks

1                 

Page 19: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

TOOLBOX TALK – TOPIC 1 (HEARING CONSERVATION)

LIMITS OF EXPOSURE :

OSHA Regulations state that when noise levels exceeds 82 dB for an eight-hour TWA, a hearing conservation program must be in place.

PERMISSIBLE NOISE EXPOSURE :

Duration per day, in hour

Sound level dBA slow response

8 906 924 953 972 100

1 ½ 1021 105½ 110

¼ or less 115

Page 20: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

TOOLBOX TALK – TOPIC 2 (HOT WORKS)

HOT WORK : Any spark-producing work such as welding, ox-acetylene cutting, grinding, or open flame

HOT WORK PERMIT :A permit that, when signed by authorized personnel, allows hot work to be done in specific designated areas within the limitations listed on the permit. Only those named on the permit are allowed to perform the hot work. A permit is valid only for one (1) operations shift (8 hrs)

SPECIAL HAZARD AREA :Areas that have the following characteristics:Explosive atmospheresSpecial circumstances which prevent the removal of highly flammable and combustible materialsIgnition sources that cannot be shut downHot work being performed on any pipe, tank, vessel, drum, and so on that contains flammable liquid, vapors, or gasesWork that penetrates the roof and/or electrical classified areas

Hot work in special hazard areas requires approval by two Authorizers.

Page 21: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

TOOLBOX TALK – TOPIC 3 (BARRICADES & SIGNBOARDS)BARRICADES: Barricades will be used to isolate areas where there is unusual hazard to approaching personnel or to protect personnel inside a barricade from external hazards

Examples:

Open grating and holes or openings in floor or roof areaExcavationsElevated works/Overhead works where a falling object hazard existsChemical spills, leaks, or line breaksMaintenance Works

SIGNBOARDS:

Signs should be posted and should be visible when work is being performed that constitutes a hazard or potential hazard. Signs also should be posted wherever a reminder of accident prevention requirements would be beneficial or where the hazard

Page 22: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

TOOLBOX TALK – TOPIC 4 (SITE TIDYING & CLEANING)

Page 23: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

MANAGEMENT OF LOCKOUT TAGOUT SYSTEM

1. Purpose•For the protection of workers, equipment being worked on will be at its lowest practical energy state to prevent the accidental release of energy or the inadvertent operation of equipment.

•This instruction establishes requirements that will be followed when locking and tagging equipment during operations. Particular circumstances or conditions may warrant more restrictive measures.

Energy sources (e.g. steam, air, oil, hot water) will be disconnected or isolated, and precautions taken to prevent loose or movable parts from rotating or otherwise moving and becoming a hazard.

Page 24: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

2. Scope

The instruction applies to all Sodexo site personnel whom will be required to execute technical works and need to lockout/tagout energy sources during the course of work.

3. Procedure

•Duty Supervisor and Lead Technician will draw out the lockout lock, MCB hasp, a multi-lock device and his personal tag. One of his personal tag will be in place of the lock in the lockout/tagout cabinet.

•All technicians whom require to lockout/tagout energy sources will draw out a lock and personal tag. One of their personal tag will be in place of the lock in the lockout/tagout cabinet.

Page 25: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

•The duty supervisor and Lead Technician will be responsible for administration of the lockout/tagout system on site.

•The Sodexo Maintenance Manager or Supervisor will review and approve the Permit-To-Work for all internal lockout/tagout requirements only

•Where a lockout/tagout is required for the following types of work, the Permit To Work(P & G) form will need to be submitted to P & G Safety team and technical team Head for review and approval:

•Routine works requiring PTW without JSA;

•Confined Space Entry;

•Working On Height;

•Hot Works;

•Minor project Works;

Page 26: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

Review safety procedures.

Set priorities for all maintenance work.

Assign cost accounts.

Complete the work order.

Review the backlog and develop plans for controlling it.

Predict the maintenance load using effective forecasting technique.

A job priority ranking reflects:

The criticality of the jobThe availability of all materials needed for the work order in the plantThe production master scheduleRealistic estimates and what is likely to happenFlexibility in the schedule

Page 27: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

Effective planning and scheduling

contribute significantly to the following:

Reduced maintenance cost.

Improved utilization of the maintenance workforce by reducing delays and interruptions.

Improved quality of maintenance work by adopting the best methods and procedures and assigning the most qualified workers for the job

Minimizing the idle time of maintenance workers

Maximizing the efficient use of work time, material, and equipment

Maintaining the operating equipment at a responsive level to the need of production in terms of delivery schedule and quality

Page 28: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

Classification of Maintenance Work According to Planning and Scheduling Purposes

Routine maintenance: are maintenance operations of a periodic nature. They are planned and scheduled and in advance. They are covered by blanket orders

Emergency or breakdown maintenance: interrupt maintenance schedules in order to be performed. They are planned and scheduled as they happened

Design modifications: are planned and scheduled and they depend on eliminating the cause of repeated breakdowns

Scheduled overhaul and shutdowns of the plant: planned and scheduled in advanced

Overhaul, general repairs, and replacement: planned and scheduled in advanced

Preventive maintenance: planned and scheduled in advanced

The maintenance management system should aim to have over 90% of the maintenance work planned and scheduled

Page 29: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Planned Preventive Maintenance

Determine the Maintenance works procedure

Prepare for each Facilities Asset/Equipment the maintenance procedure in detail

Develop Maintenance Schedule, showing sequence and timing of the activities

Establish the Job Risk Assessment for the maintenance works

Determine if they requires a Work permit prior to the execution of Maintenance works

Plan and order parts and materials required for the Maintenance works as per schedule

Check if special tools and equipment are needed and obtain them

Assign technicians with appropriate skills

Establish the crew size for the maintenance works

Maintenance works focus on cleaning equipment components, checking their condition,

functionality; secure proper connectivity and tightness of all component, and replace

those that are not working properly or are about to fail

Page 30: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

AC Split Units Maintenance ProcedureSAFETY CHECKLISTPPE (safety gloves, shoes, helmet, goggles etc.)Barricade work areaWorking at height safetyOther safety measures or permits as requiredTASK DESCRIPTION-MONTHLYCheck and clean air filter and unit casing.Check and clean drip tray. Flush drain pipeCheck and clean condenser coil if necessaryCheck and clean blower fan.Lubricate all fan and motor bearingsCheck all mounting bolts and fan guard of condenser unit.Check all mounting bolts for indoor unit.Record air flow reading (cfm)Clean indoor unitTest proper functioning of thermostatCheck low pressure of freon gasCheck electrical contactor and isolatorRecord running current for the compressor motor (ampere) and compare against name plateClean area after servicing

Page 31: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

Page 32: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities ManagementS/NO JOB

HAZARD EXPOSURE/ DETAILED HAZARD

PLANT, EQUIPMENT AND TOOLS USED

HEALTH AND SAFETY RISKS

EXISTING OPERATION CONTROLS & PPE

RISK RATING

    RECOMMEND ADDITIONAL OPERATION CONTROLS

Residual risk rating

    COMPLET ON DATE & ASSIGN TO

           

          S L R   S L R              1

Check and clean air filter and unit casing.

Ladder/wash tap

Eye injury & fall

Googles/hand gloves/safety harness & proper usage of ladder

2 2 4

If motorized lifter is used-require to be trained & certified

2 2 4   EMPLOYEE NAME (PRINT NAME)

EMPLOYEE SIGNATURE

DATE

2

Check and clean drip tray. Flush drain pipe

Wet/dry vacuum cleaner

Eye injury

Googles/hand gloves

2 2 4No further controls required

       

3

Check and clean condenser coil if necessary

Water jet hose

Eye injury

Googles/hand gloves-caution when jet spraying

2 5 10No further controls required

        EMPLOYEE NAME (PRINT NAME)

EMPLOYEE SIGNATURE

DATE

4Check and clean blower fan.

ragsEye injury/moving parts

Googles/hand gloves/Logout & Tagout

2 2 4No further controls required

       

Page 33: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management5

Lubricate all fan and motor bearings

Grease gun

Moving parts

Googles/hand gloves/Logout & Tagout

2 2 4

No further controls required

        RISK ASSESSMENT NAME

AUTHOR’S SIGNATURE

ASSESSMENT DATE

6

Check all mounting bolts and fan guard of condenser unit.

Hand tools

Hand injury

Self care when using hand tools

2 2 4

No further controls required

       

7Check all mounting bolts for indoor unit.

Hand tools

Hand injury

Self care when using hand tools

2 2 4

No further controls required

        MANAGERS NAME

MANAGER’S SIGNATURE

ASSESSMENT DATE

8Clean indoor unit

ragsEye irritation

Googles/hand gloves

2 2 4

No further controls required

       

9Test proper functioning of thermostat

No tools NonNon required

- - -

No further controls required

       

10

Check low pressure of freon gas

Gas manifold

NonNon required

- - -

No further controls required

        SAFETY DEPARTMENT NAME

SAFETY OFFICER’S SIGNATURE

APPROVED DATE

11

Check electrical contactor and isolator

Visual inspection

Electrocution

Goggles & electrical gloves

2 2 4

No further controls required

       

Page 34: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management13 Record

running current for the compressor motor (ampere) and compare against name plate

Ampere meter

Electrocution

Goggles & electrical gloves

2 2 4

No further controls required

       

 

Page 35: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Monthly Preventive Maintenance day by day monthly cycle

It includes all the activities related to the preparation of:

The work job order

Bill of materials

Purchase requisition

Necessary drawings

Labor planning sheetincluding standardworks times

All data needed priorto scheduling andreleasing of the jobwork order

Page 36: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

KPI 2014  

  Client Score guide:

  Location 95% - 100%: Excellent

  Review by   85% - 94% : Good

  Date review <85% : Unsatisfactory

No Performance Total points

Minus points

Actual points

Comments

I Productivity        

1 100% Training record is documented to prove that technicians have been trained to provide good service.

10 0 10  

2 Re-work on work orders < 2% 10 0 10  

3 Maintenance site cleanliness maintained and captured as per standard = 100%.

10 0 10  

4 Master plan and month plan completion rate > 95%

10 0 10  

5 Control faclitily by planning CM&PM and providing spare part in <3 days> 95% work orders

20 0 20  

6 Use 3rd party vendor for repairing <2% work orders.

10 0 10  

7 Minor repairs completed < 3 days > 95% of work orders (after issue of PO# or approval for parts if applicable)

20 0 20  

8 Major repairs completed < 10 days > 95% of work orders (after issue of PO# or approval for parts if applicable)

10 0 10  

9 Emergency work orders completed < 24 hours on > 90% of work orders

20 0 20  

10 Replacement parts supplied in < 3 days > 95% of work orders (after issue of PO# or approval for parts)

10 0 10  

11 Late completion of scheduled work orders <2% 10 0 10  

Page 37: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

II Quality of work        1 Clearly and timely communication between

maintenance team and user to keep work process on track.

20 0 20  

2 Root cause defined on corrective maintenance > 95%

20 0 20  

3 No unresolved defects found during walkthrough in facilities inspection.

10 0 10  

4 Root cause and work order proper documentation followed 100%

10 0 10  

5 Customer satisfaction feedback capture on work order >95%

10 0 10  

6 Working based on facilities standard for providing a professional service.

10 0 10  

III Cost controlling        1 Do more work by technician team to reduce

the 3rd party to involve<1% of work orders.20 0 20  

2 Actual cost at or below estimate for work orders > 95%

10 0 10  

3 Adhere to repair Plan as per budget accordingly.

10 0 10  

4 Performance of % of unplanned repair budget vs. time elapsed is within +2%.

10 0 10  

IV Delivery        

1 Work orders for in scope maintenance services completed on time > 95%

10 0 10  

2 Proper prioritization of work orders > 95% 10 0 10  3 Adequate resources avaialble for in scope

maintenance services > 95%10 0 10  

4 Dropped requests for maintenance service = 0%

10 0 10  

Page 38: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Facilities Management

V Safety        

1 Zero record of injury. 30 0 30  

2 Behavior Observation System compliance and participant > 95%.

10 0 10  

3 Job Safety Assessment and safety procedure are in place and compliance 100%.

10 0 10  

4 100% staff follow defined plant's regulation. 10 0 10  

5 Zero incident while providing maintenance service in the plant.

20 0 20  

VI Moral        

1 Proactively Suggest simple improvement. 10 0 10  

2 100% job done based on quality, safety to prove a moral service in etablishing satisfaction.

10 0 10  

3 Actively propose new areas where technicians expertise can be applied to the benefit of the facilities.

10 0 10  

420 0 420

Page 39: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Integrated Building Management

Operating and maintaining the Utilities and Power distribution of the plant by using BMS(Building Management system) with optimal man power

HVACFire protectionLightingAccess controlSecurityand others…

Energy efficiency - Cost savings- Improved working conditions- Environmental benefits

Page 40: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Integrated Building Management

Page 41: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Integrated Building Management

Monitoring & controls of chiller management system.

Monitoring & controls of primary pumps & secondary pumps

Monitoring the variable frequency drive in secondary pumps, AHU

Monitoring the Fire fighting pumps

Controlling the AHU temp through set point adjustment for maintaining room

temp 24+°C

Integrated parameters like

* Chiller

* UPS

* Diesel generators

* Precision Air conditioner

* Package units

Page 42: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Integrated Building Management

Supply air temp sensorReturn air temp sensorRH sensorActuatorCO2 sensorCO sensorDPSDPT

Parameters

-Pressure-Flow-Air Velocity-Valves-Damper Actuators-Humidity-Water Detection-Occupancy Detection-Test Equipment-CO2 content

Page 43: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Client

Communication Network

Client InterfaceClient InterfaceObject Model

Request DrivenService

Application

Active Service

Application

Data Model

DynamicDB

Component

BMS Service

BACnet Interface Echelon Interface Remote Interface

Data InterfaceData Interface

DatabaseDatabase

To BACnet NetworkTo BACnet Network To Echelon NetworkTo Echelon Network To Remote ConnectionTo Remote Connection

Integrated Building Management

Page 44: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Sample screen shots

Page 45: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Energy conservation refers to reducing energy through using less of an energy service.

Energy conservation differs from efficient energy use, which refers to using less energy for a constant service

For example, driving less is an example of energy conservation

Driving the same amount with a higher mileage vehicle is an example of energy efficiency

Energy conservation and efficiency are both energy reduction techniques

Energy benchmarking - process of collecting, analyzing and relating energy performance data of comparable activities with the purpose of evaluating and comparing performance between or within equipment

Page 46: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Cooling Tower; a properly sized cooling tower is designed to cool water to within 5 degrees of wet bulb temperature.

lbs of water per hour cooled x temperature change in degrees F = BTU's/ hr cooling capacity. 12,000 BTU's hr = 1 TonR tons of refrigeration12,000 BTU/hr / 3412 = 3.517 Kw hr

Chiller Sizing Information; Before you begin, you must know three factors:The incoming water temperatureThe chill water temperature you requireThe flow rate

General sizing formula:

Calculate Temperature Differential (ΔT°F) ΔT°F = Incoming Water Temperature (°F) - Required Chill Water TemperatureCalculate BTU/hr. BTU/hr. = Gallons per hr x 8.33 x ΔT°FCalculate tons of cooling capacity Tons = BTU/hr. ÷ 12,000Oversize the chiller by 20% Ideal Size in Tons = Tons x 1.2You have the ideal size for your needs in tons of refrigeration

Page 47: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

How to Calculate the Capacity for an Industrial ChillerIndustrial chillers work by letting a fluid flow through the device. The fluid has a high specific heat capacity, which means that it absorbs and releases a lot of energy when its temperature rises and falls. The greater the fluid's temperature change as it goes through the chiller, the greater the chiller's capacity for moving energy. The other relevant factor is the fluid's rate of transfer through the chiller. The chiller's capacity is proportional to this flow rate

1. Find the refrigerant's temperature change as it passes through the chiller. For instance, if refrigeration fluid enters the chiller at 60 degrees Fahrenheit and leaves it at 79 degrees Fahrenheit: 79 - 60 = 19 degrees.2. Multiply the temperature rise by 500, a conversion constant: 19 x 500 = 9,500. 3. Multiply this answer by the fluid's flow rate, measured in gallons per minute. For instance, if 320 gallons go through the chiller each minute: 9,500 x 320 = 3,040,000. This is the capacity of the chiller, measured in British Thermal Units (BTUs) per hour.

4. Divide your answer by 3,412 to convert your answer to kilowatts: 3,040,000 / 3,412 = 890.97 kW/hr

Page 48: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Chiller efficiency in terms of the energy efficiency ratio, or EER, and the coefficient of performance, or COP, for chillers

total heat removed in Btu/hr = h

h = 500 X q X dt = 40 tons of refrigeration hrq = chilled water flow rate in gpm, (example 40 gmp)dt = chilled water's total temperature differential, (example 24 F)

h = 500 X 40 gpm X 24 deg-F = 480,000 Btu/hr. Kw hr = 480,000 / 3412 = 140.681 Ton of refrigeration = 12,000 Btu/hr,

System running at 24.8 Kw hr, EER = 480,000 / 24,800 = 19.35 > 13-14 standard for AC split unitCOP = 19.35 x 0.293 = 5.67 => 140.68 / 24.8

Page 49: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy SavingAir handling unit capacity calculation 136 gpm to tone Small units (up to 1,000 cfm, 500 L/s) may be placed inside ceiling spaceAir handling unit is a device to treat air. It has the ability to perform air circulation, ventilation, heating, cooling, humidification/dehumidification and filtering. On average you will need one ton of capacity per 500 square feet ( x 0.092903 = 46.45 m2)

Cooling load is defined as the rate at which heat has to be removed from a space to maintain a constant temperature; the cooling load is calculated in units of BTU/hr, which represents the speed heat is removed

Estimate the cooling load factor, or CLF, for your type of space using the following as a guide: residential/apartment, CLF is 1.0; office, CLF is 1.2; classroom, CLF is 1.5; and assembly, CLF is 2.5. CLF is in units of CFM/SF which is cubic feet per minute per square feet; example if: 500 SF x 2.5 CLF = 1,250 CFM

Air cooling requirements in cubic feet per minute = floor area x cooling load factorTotal cooling load, TCL = 1.08 x CFM x T If the interior design temperature is 75 degrees F, cooling coil temperature is 55 degrees F CFM is 1,250 CFM, then TCL = 1.08 x CFM x "T = 1.08 (1,250) (75-55) = 27,000 BTU/hr27,000 / 3412 = 7.91 Kw/hr; 27,000 / 12000 = 2.25 ton refrigeration hr.

Page 50: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

The lux is one lumen per square meter (lm/m2), and the corresponding radiometric unit, which measures irradiance, is the watt per square meter (W/m2)

A flux of 1000 lumens, concentrated into an area of one square meter, lights up that square meter with an luminance of 1000 lux. However, the same 1000 lumens, spread out over ten square meters, produces a dimmer luminance of only 100 lux

There is no single conversion factor between lx and W/m2; there is a different conversion factor for every wavelength, and it is not possible to make a conversion unless one knows the spectral composition of the light

Lifetime: LEDs can have a relatively long useful life. One report estimates 35,000 to 50,000 hours of useful life, though time to complete failure may be longer

Fluorescent tubes typically are rated at about 10,000 to 15,000 hours, depending partly on the conditions of use, and incandescent light bulbs at 1,000 to 2,000 hours.

Several demonstrations have shown that reduced maintenance costs from this extended lifetime, rather than energy savings, is the primary factor in determining the payback period for an LED product

Page 51: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

In practice, most buildings that use a lot of lighting use fluorescent lighting, which has 22% luminous efficiency compared with 5% for filaments, so changing to LED lighting would give only 34% reduction in electrical power and carbon emissions

A typical 100 watt tungsten filament incandescent lamp may convert only 5% of its power input to visible white light (400–700 nm wavelength), whereas typical fluorescent lamps convert about 22% of the power input to visible white light

The efficacy of fluorescent tubes ranges from about 16 lumens per watt for a 4 watt tube with an ordinary ballast to over 100 lumens per watt with a modern electronic ballast, commonly averaging 50 to 67 lm/W overall

Page 52: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

AC is the form in which electric power is delivered to businesses and residenceAC voltage may be increased or decreased with a transformer

Use of a higher voltage leads to significantly more efficient transmission of power

The power losses in a conductor are a product of the square of the current and the resistance of the conductor, described by the formula

This means that when transmitting a fixed power on a given wire, if the current is doubled, the power loss will be four times greater

The power transmitted is equal to the product of the current and the voltage (assuming no phase difference)

where represents a load resistance

Since the current tends to flow in the periphery of conductors, the effective cross-section of the conductor is reduced. This increases the effective AC resistance of the conductor, since resistance is inversely proportional to the cross-sectional area

The AC resistance often is many times higher than the DC resistance, causing a much higher energy loss due to ohm heating (also called I2R loss)

Page 53: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Thus, the same amount of power can be transmitted with a lower current by increasing the voltage. It is therefore advantageous when transmitting large amounts of power to distribute the power with high voltages (often hundreds of kilovolts)

High voltage transmission lines deliver power from electric generation plants over long distances using alternating current

However, high voltages also have disadvantages, the main one being the increased insulation required, and generally increased difficulty in their safe handling

In a power plant, power is generated at a convenient voltage for the design of a generator, and then stepped up to a high voltage for transmission

Near the loads, the transmission voltage is stepped down to the voltages used by equipment

Page 54: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Direct current (DC) is the unidirectional flow of electric charge

Direct current is produced by sources such as batteries, thermocouples, solar cells, and commutator-type electric machines of the dynamo type

Direct current may flow in a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams

The electric current flows in a constant direction, distinguishing it from alternating current

Electric motor found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives, electric motors can be powered by direct current (DC) sources, such as from batteries, motor vehicles or rectifiers, or by alternating current (AC) sources, such as from the power grid, inverters or generators

Page 55: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Efficiency

To calculate a motor's efficiency, the mechanical output power is divided by the electrical input power:

,where is energy conversion efficiency, is electrical input power, and is mechanical output power:

where is input voltage, is input current, is output torque, and is output angular velocity

Electric power is the rate at which electric energy is transferred by an electric circuit.

The SI unit of power is the watt, one joule per second; It is equal to the energy expended (or work done) in applying a force of one Newton through a distance of one meter (1 Newton meter or N·m), or in passing an electric current of one ampere through a resistance of one ohm for one second

Page 56: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Cavitation is the formation of vapor cavities in a liquid – i.e. small liquid-free zones ("bubbles" or "voids") – that are the consequence of forces acting upon the liquid

It usually occurs when a liquid is subjected to rapid changes of pressure that cause the formation of cavities where the pressure is relatively low

When subjected to higher pressure, the voids implode and can generate an intense shockwave

The most common examples of this kind of wear are to pump impellers, and bends where a sudden change in the direction of liquid occurs

In pipe systems, cavitation typically occurs either as the result of an increase in the kinetic energy (through an area constriction) or an increase in the pipe elevation.

When uncontrolled, cavitation is damaging; by controlling the flow of the cavitation, however, the power can be harnessed and non-destructive

Page 57: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Hard water is water that has high mineral content (in contrast with "soft water")Hard water is formed when water percolates through deposits of calcium and magnesium-containing minerals such as limestone, chalk and dolomite

Temporary hardnessTemporary hardness is a type of water hardness caused by the presence of dissolved bicarbonate minerals (calcium bicarbonate and magnesium bicarbonate)

When dissolved these minerals yield calcium and magnesium cat ions (Ca2+, Mg2+) and carbonate and bicarbonate anions (CO3

2-, HCO3-)

The presence of the metal cat ions makes the water hard. However, unlike the permanent hardness caused by sulfate and chloride compounds, this "temporary" hardness can be reduced either by boiling the water, or by the addition of lime (calcium hydroxide) through the softening process of lime softening

Boiling promotes the formation of carbonate from the bicarbonate and precipitates calcium carbonate out of solution, leaving water that is softer upon cooling

Total Permanent Hardness = Calcium Hardness + Magnesium Hardness

Page 58: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Water softening is the removal of calcium, magnesium, and certain other metal cat ions in hard water. The resulting soft water is more compatible with soap and extends the lifetime of plumbing. Water softening is usually achieved using lime softening or ion-exchange resins

Ion-exchange resin devicesConventional water-softening appliances intended for household use depend on an ion-exchange resin in which "hardness ions" - mainly Ca2+ and Mg2+ - are exchanged for sodium ions; ion exchange devices reduce the hardness by replacing magnesium and calcium (Mg2+ and Ca2+) with sodium or potassium ions (Na+ and K+)“

Regeneration of ion exchange resinsWhen all the available Na+ ions have been replaced with calcium or magnesium ions, the resin must be re-charged by eluting the Ca2+ and Mg2+ ions using a solution of sodium chloride or sodium hydroxide depending on the type of resin used

For anionic resins, regeneration typically uses a solution of sodium hydroxide (lye) or potassium hydroxide

The waste waters eluted from the ion exchange column containing the unwanted calcium and magnesium salts are typically discharged to the sewage system.

Page 59: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Energy

In a thermodynamically closed system, any power dissipated into the system that is being maintained at a set temperature (which is a standard mode of operation for modern air conditioners)

requires that the rate of energy removal by the air conditioner increase

This increase has the effect that, for each unit of energy input into the system

(say to power a light bulb in the closed system),

the air conditioner removes that energy

In order to do so, the air conditioner must increase its power consumption by the inverse of its "efficiency" (coefficient of performance)

times the amount of power dissipated into the system

Page 60: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

As an example, assume that inside the closed system a 100 W heating element is activated, and the air conditioner has an coefficient of performance of 200%.

The air conditioner's power consumption will increase by 50 W to compensate for this, thus making the 100 W heating element cost a total of 150 W of power

It is typical for air conditioners to operate at "efficiencies" of significantly greater than 100%

However, it may be noted that the input electrical energy is of higher thermodynamic quality (lower entropy) than the output thermal energy (heat energy)

Page 61: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Air conditioner equipment power in the U.S. is often described in terms of "tons of refrigeration"

A ton of refrigeration is approximately equal to the cooling power of one short ton (2000 pounds or 907 kilograms) of ice melting in a 24-hour period

The value is defined as 12,000 BTU per hour, or 3517 watts

Residential central air systems are usually from 1 to 5 tons (3 to 20 kilowatts (kW)) in capacity

In an automobile, the A/C system will use around 4 horsepower (3 kW) of the engine's power

Page 62: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Thermal insulation is the reduction of heat transfer (the transfer of thermal energy between objects of differing temperature) between objects in thermal contact or in range of radiation influence

Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials

Heat flow is an inevitable consequence of contact between objects of differing temperature

Thermal insulation provides a region of insulation in which thermal conduction is reduced or thermal radiation is reflected rather than absorbed by the lower-temperature body

The insulating capability of a material is measured with thermal conductivity (k)

Low thermal conductivity is equivalent to high insulating capability (R-value)

In thermal engineering, other important properties of insulating materials are product density (ρ) and specific heat capacity (c)

Page 63: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Factors influencing performanceInsulation performance is influenced by many factors the most prominent of which include: Thermal conductivity ("k" or "λ" value); Surface emissivity ("ε" valueinsulation thickness; Density; Specific heat capacity; Thermal bridging

It is important to note that the factors influencing performance may vary over time as material ages or environmental conditions change

Calculating requirementsIndustry standards are often rules of thumb. Both heat transfer and layer analysis may be performed in large industrial applications, but in household situations (appliances and building insulation), air tightness is the key in reducing heat transfer due to air leakage (forced or natural convection)

Once air tightness is achieved, it has often been sufficient to choose the thickness of the insulating layer based on rules of thumb. Diminishing returns are achieved with each successive doubling of the insulating layer

It can be shown that for some systems, there is a minimum insulation thickness required for an improvement to be realized

Page 64: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pumps and refrigerators

A heat pump is a machine or device that moves heat from one location (the 'source') at a lower temperature to another location (the 'sink' or 'heat sink') at a higher temperature using mechanical work or a high-temperature heat source

Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink (as when warming the inside of a home on a cold day), or a "refrigerator" if the objective is to cool the heat source (as in the normal operation of a freezer)

In either case, the operating principles are identical

Heat is moved from a cold place to a warm place

Heat pump and refrigeration cycles can be classified as vapor compression, vapor absorption, gas cycle, or Stirling cycle types

Page 65: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Energy Conservation and Energy Saving

In this cycle, a circulating refrigerant such as Freon enters the compressor as a vapor. The vapor is compressed at constant entropy and exits the compressor superheated. The superheated vapor travels through the condenser which first cools and removes the superheat and then condenses the vapor into a liquid by removing additional heat at constant pressure and temperature. The liquid refrigerant goes through the expansion valve (also called a throttle valve) where its pressure abruptly decreases, causing flash evaporation and auto-refrigeration of, typically, less than half of the liquid.

Page 66: Engineering plant facilities 12 mechanics building preventive maintenance and energy conservation

Thank You

L | C | LOGISTICS

PLANT MANUFACTURING AND BUILDING FACILITIES EQUIPMENTEngineering-Book

ENGINEERING FUNDAMENTALS AND HOW IT WORKS

MECHANICS PREVENTIVE MAINTENANCE AND ENERGY CONSERVATION