evolution in the context of deb theory bas kooijman dept theoretical biology vrije universiteit...

15
Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterd [email protected] http:// www.bio.vu.nl/thb / Wimereu, 2011/06/14

Post on 20-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Evolution in the context of DEB theory

Bas KooijmanDept theoretical biology

Vrije Universiteit [email protected]

http://www.bio.vu.nl/thb/

Wimereu, 2011/06/14

Page 2: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Mouse goes preying 2.1c

On the island Gough, the house mouse Mus musculus

preys on chicks of seabirds, Tristan albatross Diomedea dabbenena

Atlantic petrel Pterodroma incerta

The bird weights are 250 the mouse weight of 40 g,Mice typically weigh 15 g

99% of these bird speciesbreed on Gough and are

now threatened with extinction

Page 3: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Dwarfing in Platyrrhini 8.1.2

Perelman et al 2011 Plos Genetics 7, 3, e1001342

24

.82

0.2

MYA

CallitrixCallitrix

CebuellaCebuella

MicoMicoLeontopithecusLeontopithecus

AotusAotus

SaimiriSaimiri

CebusCebus

780-1250 g

400-450 g480-700 g

400-535 g

3500 g

700-1000 g

200-400 g

130 g

180 g

CallimicoCallimico

SaguinusSaguinus

Ceb

idae

Page 4: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Altricial & Precocial Finfoots 2.5.2e

Heliopais personata,Asian finfoot

Podica senegalensis,African finfoot

Heliornis fulicaAmerican finfoot

Page 5: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Central Metabolism 3.8.2b

polymers

monomers

waste/source

source

Page 6: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Evolution of central metabolism 10.2.1

i = inverseACS = acetyl-CoA Synthase pathway PP = Pentose Phosphate cycleTCA = TriCarboxylic Acid cycle

RC = Respiratory Chain Gly = Glycolysis

Kooijman, Hengeveld 2005

in prokaryotes (= bacteria)3.8 Ga 2.7 Ga

Page 7: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Evolution of DEB systems 10.3

variable structure

composition

strong homeostasisfor structure

delay of use ofinternal substrates

increase ofmaintenance costs

internalisation of maintenance asdemand process

installation ofmaturation program

strong homeostasisfor reserve

reproductionjuvenile embryo + adult

Kooijman & Troost 2007 Biol Rev, 82, 1-30

54321

specialization of structure

7

8

an

ima

ls

6

pro

ka

ryo

tes

9plants

Page 8: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Evolution of DEB systems 10.3a

• Start: variable biomass composition, passive uptake• Strong homeostasis stoichiometric constraints• Reserves: delay of use of internalised substrates storage, weak homeostasis• Maintenance requirements: turnover (e.g. active uptake by carriers), regulation• Maintenance from reserve instead of substrate; increase reserve capacity• Control of morphology via maturation; -rule cell cycle • Diversification of assimilation (litho- photo- heterotrophy)

Eukaryotisation: heterotrophic start; unique event?• Syntrophy & compartmentalisation: mitochondria, genome reorganisation• Phagocytosis, plastids (acquisition of phototrophy)

Plant trajectory: site fixation• Differentiation of root and shoot• Emergence of life stages• Increase of metabolic flexibility (draught)• Nutrient acquisition via transpiration• Symbioses with animals, fungi, bacteria (e.g. re-mineralisation leaf litter, pollination)

Animal trajectory: biotrophy• Reduction of number of reserves• Emergence of life stages• Further increase of maintenance costs• Further increase of reserve capacity• Socialisation• Supply demand systems

Page 9: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Symbiogenesis 10.4g

2.7 Ga 2.1 Ga 1.27 Gaphagocytosis

Page 10: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Symbiogenesis 10.4p

• symbioses: fundamental organisation of life based on syntrophy ranges from weak to strong interactions; basis of biodiversity• symbiogenesis: evolution of eukaryotes (mitochondria, plastids)• DEB model is closed under symbiogenesis: it is possible to model symbiogenesis of two initially independently living populations that follow the DEB rules by incremental changes of parameter values such that a single population emerges that again follows the DEB rules• essential property for models that apply to all organisms

Kooijman, Auger, Poggiale, Kooi 2003 Quantitative steps in symbiogenesis and the evolution of homeostasisBiological Reviews 78: 435 - 463

Page 11: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Symbiosis 10.4m

product

substrate

Page 12: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Symbiosis 10.4n

substrate substrate

Page 13: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Internalization

Structures merge Reserves merge

Free-living, clusteringFree-living, homogeneous

Steps in symbiogenesis 10.4o

Page 14: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Syntrophy 9.1.2

Coupling hydrogen & methane production energy generation aspect at aerobic/anaerobic interface

HOHCCHOCOOHC

OHCHHCHOH

HHOHCOOHOHC

222

34

42222

33242262

2432

23322262

ethanol acetate dihydrogen

dihydrogen methane

methane hydrates >300 m deep, < 8Clinked with nutrient supply

bicarbonate

Total:

Page 15: Evolution in the context of DEB theory Bas Kooijman Dept theoretical biology Vrije Universiteit Amsterdam Bas@bio.vu.nl

Allocation to soma 10.5.2

κ κ κ

pop

grow

th r

ate,

d-1

max

rep

rod

rate

, #d-1

surv

ivor

func

tion

Frequency distribution of κ among species in the add_my_pet collection:

Mean κ = 0.75, but optimum is κ = 0.5

Lika et al 2011 J. Sea Res, to appear