experience in reserve allocation - sintef.no · 22 water courses: 25 reservoirs & 32 balancing...

24
Experiences in optimal allocation of reserve obligations across a hydro power plant portfolio Hydro Power Scheduling Workshop 2018 Hubert Abgottspon

Upload: phunghanh

Post on 29-Jun-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 1

Experiencesin optimal allocation of reserve obligationsacross a hydro power plant portfolioHydro Power Scheduling Workshop 2018

Hubert Abgottspon

Page 2: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 2

Introducing Axpo Trading AGActivities all over Europe

HydropowerNuclear powerGas-fired power plantsRenewable energy plantsWind power

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 3: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 3

Introducing Axpo Trading AG

22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump-turbines & 4 var-speed pump-turbines

H. Abgottspon: Experiences in optimal allocation of reserve obligations

pool of diverse water courses

Page 4: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 4

Basic system setup: model-based decision supportCombination of short-term deterministic and long-term stochastic tools

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 5: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 5

Basic system setup: model-based decision support

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Chain of different optimizations

Opp-Cost Auction Reserve-Distribution

MarginalCosts DA-Bidding Auction Optimization Checks /

Simulation ID - trading Reserve Distributor Control

Time W-1 D-1 D h-1 real time

IntradayDay-AheadWeek-Ahead

Page 6: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 6

Basic system setup: model-based decision support

This talk: handling provision of spinning reserves:

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Chain of different optimizations

Opp-Cost Auction Reserve-Distribution

MarginalCosts DA-Bidding Auction Optimization Checks /

Simulation ID - trading Reserve Distributor Control

Time W-1 D-1 D h-1 real time

IntradayDay-AheadWeek-Ahead

Page 7: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 7

Basic system setup: model-based decision supportReserve market in Switzerland

Spinning Reserves: Weekly auctions on Tuesday pay-as-bid FCR ± 74MW aFRR +400MW, -400MW

Take decision on Tuesday with major impacton operation in the front week

-30 MW

+30 MW

0 MW+30 MW-30 MW

t

Income generated from ancillary services and spot

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 8: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 8

Basic system setup: model-based decision support

This talk: handling provision of spinning reserves

Two tasks:1. Decision support for bidding of reserves: Reserve Opportunity Cost Calculation2. Providing reserve obligations with least costs: Intraday Reserve Re-Distribution

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Short-term perspective starts week-ahead

Opp-Cost Auction Reserve-Distribution

MarginalCosts DA-Bidding Auction Optimization Checks /

Simulation ID - trading Reserve Distributor Control

Time W-1 D-1 D h-1 real time

IntradayDay-AheadWeek-Ahead

Page 9: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 9Seite 9

1. Reserve Opportunity Cost Calculation

Opp-Cost Auction Reserve-Distribution

MarginalCosts DA-Bidding Auction Optimization Checks /

Simulation ID - trading Reserve Distributor Control

Time W-1 D-1 D h-1 real time

IntradayDay-AheadWeek-Ahead

Page 10: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 10

1. Reserve Opportunity Cost Calculation

Purpose:Find financial impact when reserves are provided.-> support for bidding

Opportunity Costs

Einsatzpreis/Opportunitätskost.

Max. Leistung

Leistung = 0

6h 12h 18h 24h

Marktpreis

PreisLeistung/Betrieb

0% 0% 0%100%100%

Leistung ohne SDL nach Markt

Handel

without reserves

revenue 1

6h 12h 18h 24h

Marktpreis

0% 0% 0%100%100%

Arbeitspunkt / Leistung mit SDL

Primärleistung +20 MW

Sekundärleistung +90 MWGrundlast +10 MW

-90 MW

-20 MW

Handel

with reserves

revenue 2Opportunity Costs = revenue 1 - revenue 2

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 11: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 11

1. Reserve Opportunity Cost Calculation

Optimization: Given amount of reserves: distribute it most optimally: Pool on unit level pay-as-bid –> average costs meaningful (?) Scenarios:

No aFRR Different amounts of aFRR per water course Different amounts of aFRR within the pool

Curve shape and turning points support the bidding strategy

Decision support

€/MW

±20 ±60 ±100 ±140

Planned secondary reserve

Expe

cted

inco

me

redu

ctio

n co

mpa

red

to se

lling

on

spot

Summer week

Winter week

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 12: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 12

1. Reserve Opportunity Cost Calculation

Importance of pool: asymmetric provision distribute simultaneously FCR, aFRR, mFRR provide reserves with pumps

Experience: pool in principle lower opportunity costs difference depends on many factors

Challenges & Experiences: Pool optimization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Produktionsprofil mit S (inkl. PSW )MW €/MWh

10

20

30

40

50

60

0

50

100

150

200

250

300

350

-250

-200

-150

-100

-50

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 13: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 13

1. Reserve Opportunity Cost Calculation

Clustering: “realistic” schedules -> de-optimization

Challenges & Experiences: Clustering

“ramping costs” = 0

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 14: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 14

1. Reserve Opportunity Cost Calculation

Clustering: “realistic” schedules -> de-optimization

Challenges & Experiences: Clustering

“ramping costs” = 100

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 15: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 15

1. Reserve Opportunity Cost CalculationChallenges & Experiences: Clustering

“ramping costs” = 1000Clustering: “realistic” schedules -> de-optimization

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 16: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 16

1. Reserve Opportunity Cost CalculationChallenges & Experiences: Clustering

“ramping costs” = 1000Clustering: “realistic” schedules -> de-optimization

Challenges: “tuning” of clustering costs dependence of clustering costs: availability of units interdependencies, e.g. cascades current level of market price

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 17: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 17

1. Reserve Opportunity Cost Calculation

When model not 100% clean: Cplex can have difficulties with solving mixed-integer problem: numerical instabilities (coefficients 1e-5 to 1e7) penalties -> relative MIP-gap not much use -> useless opportunity costs (even negative possible!)

Interdependence of penalties: size of penalties often arbitrarily chosen however: as long as model is clean: not much influence(since penalties “not active”)

Unsolved issue: what to do when penalties are active? guidelines of size of penalties?

Challenges & Experiences: Penalties

Picture from gurobi.com

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 18: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 18

1. Reserve Opportunity Cost Calculation

Complexity: 250k variables, 150k constraints, 1.5k binaries Performance tuning: hardware: same solution: 3h – 6h same calculation time available: 456 – 460 Mio Euro

parameters (SHOP and Cplex): baseline: 30min -> 353.3Mio Euro tuned for one instance: 4min -> 352.9Mio Euro

model: time granularity choice of water courses / type of reserves

Challenges & Experiences: Computational Performance

geplant Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Dije 21 Uhr

Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi

Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do

Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr

Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa

So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So

MO Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 19: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 19Seite 19

2. Intraday Reserve Re-Distribution

Opp-Cost Auction Reserve-Distribution

MarginalCosts DA-Bidding Auction Optimization Checks /

Simulation ID - trading Reserve Distributor Control

Time W-1 D-1 D h-1 real time

IntradayDay-AheadWeek-Ahead

Page 20: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 20

2. Intraday Reserve Re-Distribution

Purpose: intraday: decide where to fulfill reserve obligations: which units in the pool rerun if new information get available

In principle, not much difference to week-ahead reserve allocation. However: known production profile for each unit time effort < 5min robustness

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 21: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 21

2. Intraday Reserve Re-Distribution

Since pool optimization not yet stable enough, heuristic: based on “merit order list” of water courses (based on marginal costs) six different lists: up/down FCR, aFRR, mFRR known operating points of all units very robust, whole process < 2min, rerun every 15min automatically

Heuristic approach

GW oben

Pmin

0

Pplan

PRL_posWC A: Prio 1

Verfügbare Statik

Pmax 2 MWGW oben

Pmin

0

Pplan

PRL_posWC A: Prio 3

Verfügbare Statik

Pmax 2 MW

10 MW

GW oben

Pmin

0

Pplan

PRL_posWC A: Prio 1

Verfügbare Statik

Pmax 2 MW

TRL_pos

10 MW

5 MW

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 22: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 22Seite 22

3. Outlook

Page 23: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 23

3. Outlook

Goal: Bring reserve allocation optimization forward, in order to:

Daily reserve bidding support Intraday re-distribution based on same optimization (meaningful?) Multi-market bidding support: DA, ID, reserves Bidding support for long-term reserve auctions

H. Abgottspon: Experiences in optimal allocation of reserve obligations

Page 24: Experience in reserve allocation - sintef.no · 22 water courses: 25 Reservoirs & 32 balancing basins 54 stations: 130 turbines, 6 pumps, 17 pump- turbines & 4 var-speed pump- turbines

Seite 24

Many thanks for your attentionAxpo Trading AG | Baden | Switzerland