exploiting temporal delays in interpreting eeg/meg data in terms of brain connectivity fraunhofer...

29
Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Upload: gary-houston

Post on 20-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Exploiting temporal delays in interpreting EEG/MEG data in terms of

brain connectivity

Fraunhofer FIRST, Berlin

G. Nolte

Page 2: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Problem of volume conduction

)(1 tx

)(2 tx )(3 tx)(4 tx

?

Page 3: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

)(iz complex Fourier amplitude in the i.th channel

Cross-spectrum

)()()( jiij zzS Cross-spectrum

Coherency = normalized cross-spectrum

)()(

)()(

jjii

ijij

SS

SC

Coherence = absolute value of coherency

)()( ijij CCoh

Page 4: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Power: Task-Rest

Coherence: C3-others Coherence: C4-others

C3 C4

EEG-simulation of ERD (two sources)

Rest: Real background + simulated dipolesTask: Real background

Fake!! Sources were indepent!!

Page 5: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Rest Coherence

Page 6: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

EEG-simulation of ERD (1 source)

Rest: Real background + simulated dipoleTask: Real background

Inverse using beamformer (DICS) on cortex

Simulated dipole Estimated power ratio: Rest/Task

Page 7: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Coh., signal+background Coh., background

Coh., difference

seed

Page 8: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Coh., signal+background Coh., background

Coh., difference

seed

seedoriginal dipole location

Page 9: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Observation:

Independent sources do not contribute to the imaginary part of the cross-spectrum

1 (non-interacting) source

Interaction with time delay

volume cond.

Many sources

Page 10: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

)()(

)()(

2

1

ii

ii

sbz

saz

Assumption:

sources are non-interacting

imaginary part of coherency must arise from interacting sources

Explicit derivation

)()()( 2112 zzS

real for instantaneous volume conduction(Stinstra and Peters, 1998)

Real !

2)(iii

i

sba )()(,

jijiji

ssba

=0 for ij

Page 11: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Coherence

Imaginary coherency

Page 12: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Imaginary coherency

Coherence

movement

Power

Selfpaced movement, C3-C4 relationships

Observations:

• coherence follows power

• imaginary part has onset 5secs before movement

• imaginary part not related to power

Nolte, et.al., Clinic. Neurophys., 2004

Page 13: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Significance; False Discovery Rate (FDR)

Page 14: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Simulated non-interacting sources

Imaginary coherency

Interaction exists!

Task-related activity exists!

Is task-related actvity interacting?

differences should be based on cross-spectra

2/12/1 Bjj

Bii

Bij

Ajj

Aii

Aij

SS

S

SS

S

2/12/1 Bjj

Bii

Ajj

Aii

Bij

Aij

SSSS

SS

Page 15: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

movement

2/12/1 Bjj

Bii

Bij

Ajj

Aii

Aij

SS

S

SS

S

2/12/1 Bjj

Bii

Ajj

Aii

Bij

Aij

SSSS

SS

Difference of normalized cross-spectra

Normalized difference of cross-spectra

Page 16: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Imag, Cross-Spectrum, Left-Right

Page 17: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

MEG, Cross-Spectrum; imag, alpha

Page 18: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Imaginary part, 5 dipoles

S1

S2

Page 19: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

“Philosophy”

Page 20: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

“Philosophy”

Page 21: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Method A

interesting phenomena non-interesting phenomena

Data

Method B

“Philosophy”

Page 22: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Pairwise Interacting Source Analysis (PISA)

2211 )()()( atsatstx

independent

ICA

spectrum

ICAwith temporal decorrelation(Sobi, TDSEP)

TT aafpaafpfC 222111 )()()(

spatial pattern

ISA

))((ˆ))(Im( 11111TT abbafpfC

“interaction spectrum” 2 spatial patterns

Nolte, et.al., Phys. Rev. E., 2006

Page 23: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

EEG, imagined foot movement

ISA1 ISA2

• finds systems blindly

• no 1/f spectrum

• clear higher harmonics

Page 24: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Observation:

2D-subspace of channel space

Model for each grid-point:

3D-subspace

MUSIC

Angle

Page 25: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

A: measured field

B

MUSICchannel-subspaces for each voxel (here 2 dipole-directions)

field for dipole in x-direction

field for dipole in y-direction

AP BPProjector on A Projector on B

1cos1 show weplotsin -Φ-

ABA PPPΦ of eigenvaluelargest cos2

Page 26: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

MUSIC RAP-MUSIC

Example 1

Page 27: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

MUSIC RAP-MUSIC

Example 2

Page 28: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

ISA-pattern;

left mu-rhythm

RAP-MUSIC

first scan

Page 29: Exploiting temporal delays in interpreting EEG/MEG data in terms of brain connectivity Fraunhofer FIRST, Berlin G. Nolte

Conclusion

• Imaginary parts of cross-spectra is not affected by non-interacting sources valuable quantity to study interactions

• ICA-like decompositions finds and separates interacting systems blindly

• Localization with MUSIC and/or dipole fit