feg2d3 -inw- 2016 · ekspresi deret fourier diberikan berikut ini

48
FEG2D3 -INW- 2016

Upload: trinhtuong

Post on 28-Jun-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

FEG2D3

-INW-

2016

Page 2: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

convert time-domain signals into frequency-domain (or spectral) representations.

In 1807, Jean Baptiste Joseph Fourier submitted a paper using trigonometric series to represent “any” periodic signals

But Lagrange rejected it!!

In 1822, Fourier published a book “The Analytical Theory of Heat”

He also claimed that “any” periodic signal could be represented byFourier series.

He however obtained a representation for aperiodic signalsi.e., Fourier integral or transform

Fourier did not actually contribute to the mathematical theoryof Fourier series

4/27/2016FEG2D3 - INW 2

Page 3: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW

3

Page 4: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

a continuous-time signal x(t) to be periodic if there is a positive nonzero value of T for which:

𝑥 𝑡 + 𝑇 = 𝑥 𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡

The fundamental period 𝑇0 of 𝑥(𝑡) is the smallest positive value of T

𝑓0 =1

𝑇0is referred to as the fundamental frequency

Two basic examples of periodic signals are the real sinusoidal signal

And the complex exponential signal𝑥 𝑡 = 𝑒𝑗𝜔𝑡

4/27/2016FEG2D3 - INW 4

Page 5: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

The complex exponential Fourier series representation of a periodic signal x(t) with fundamental period T0 is given by

𝑥 𝑡 =

𝑘=−∞

𝑐𝑘𝑒𝑗𝑘𝜔0𝑡 ; 𝜔0 =

2𝜋

𝑇0

where c, are known as the complex Fourier coefficients and are given by

𝑐𝑘 =1

𝑇0න

𝑇0

𝑥(𝑡)𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

Where𝑇0denotes the integral over any one period and 0 to To or -To/2 to T0/2 is

commonly used for the integration.4/27/2016FEG2D3 - INW 5

Page 6: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Set k = 0, then:

𝑐0 =1

𝑇0න

𝑇0

𝑥(𝑡) 𝑑𝑡

which indicates that c0 equals the average value of x(t) over a period.

When x(t) is real, then it follows that:

𝑐−𝑘 = 𝑐𝑘∗

where the asterisk indicates the complex conjugate.

4/27/2016FEG2D3 - INW 6

Page 7: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

The trigonometric Fourier series representation of a periodic signal x(t) with fundamental period T0 is given by

where ak and bk are the Fourier coefficients given by

4/27/2016FEG2D3 - INW 7

Page 8: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

If a periodic signal x(t) is even, then bk = 0 and its Fourier series contains only cosine terms:

If x(t) is odd, then ak = 0 and its Fourier series contains only sine terms:

4/27/2016FEG2D3 - INW 9

Page 9: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016

Sinyal Sinusoid Kompleks

x(t) = 𝒆𝒋𝒌ω𝒐𝒕 = 𝒄𝒐𝒔𝒌ω𝒐𝒕+ j sin𝒌ω𝒐𝒕

Konjugate

x*(t) = 𝒆−𝒋𝒌ω𝒐𝒕= 𝒄𝒐𝒔𝒌ω𝒐𝒕- j sin𝒌ω𝒐𝒕

Rumus Euler

cos 𝒌ω𝒐𝒕 = 𝒆𝒋𝒌ω𝒐𝒕+𝒆−𝒋𝒌ω𝒐𝒕

2sin 𝒌ω𝒐𝒕 =

𝒆𝒋𝒌ω𝒐𝒕−𝒆−𝒋𝒌ω𝒐𝒕

2𝑗

FEG2D3 - INW 10

Page 10: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Tentukan koefisien DF untuk sinyal x(t)

Perioda x(t) adalah T=2, ω𝒐 =𝟐π

𝑻=

𝟐π

𝟐= π

x(t) = 𝑒−2𝑡, 0 ≤ 𝑡 ≤ 2 ; x(t) = 𝟏

𝑻𝟎𝑻𝒙 𝒕 𝒆−𝒋𝒌ω𝒐𝒕𝒅𝒕

x(t) = 𝟏

𝟐𝟎𝟐𝑒−2𝑡 𝒆−𝒋𝒌ω𝒐𝒕𝒅𝒕

4/27/2016FEG2D3 - INW 11

Page 11: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

X[k] = 𝟏

𝟐𝟎𝟐𝑒−2𝑡 𝒆−𝒋𝒌π𝒕𝒅𝒕

X[k] = 𝟏

𝟐𝟎𝟐𝑒−(2+𝒋𝒌π)𝑡 𝒅𝒕

X[k] = −1

2(2+𝒋𝒌π)𝑒−(2+𝒋𝒌π)𝑡 |

20

X[k] = −1

4+𝒋𝒌𝟐π𝑒− 2+𝒋𝒌π 2 − 𝑒− 2+𝒋𝒌π 0

X[k] = −1

4+𝒋𝒌𝟐π𝑒− 2+𝒋𝒌π 2 − 𝑒0

X[k] = −1

4+𝒋𝒌𝟐π𝑒−4−𝟐𝒋𝒌π − 1

X[k] = −1

4+𝒋𝒌𝟐π𝑒−4𝑒−𝟐𝒋𝒌π − 1

X[k] = −1

4+𝒋𝒌𝟐π𝑒−4(1) − 1

4/27/2016FEG2D3 - INW 12

𝑒−𝟐𝒋𝒌π = 𝒄𝒐𝒔𝟐𝒌π − 𝒋𝒔𝒊𝒏𝒌π𝑒−𝟐𝒋𝒌π = 𝟏 − 𝟎𝑒−𝟐𝒋𝒌π = 𝟏 , 𝒖𝒏𝒕𝒖𝒌 0 ≤ 𝑘 ≤ ~

Page 12: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Tentukan representasi Deret Fourier Sinyal :

x(t) = 3 cos (π

2𝑡 +

π

4) memakai metoda inspeksi.

ω𝒐 = π

2, T=

ω𝒐=

2ππ

2

= 𝟒 (Perioda fundamental/Perioda Dasar)

x(t) = 3 cos (π

2𝑡 +

π

4) = 3

𝑒𝑗(π2𝑡+

π4)+𝑒

−𝑗(π2𝑡+

π4)

2

x(t) = 3

2𝑒𝑗

π

4𝑒𝑗π

2𝑡 +

3

2𝑒−𝑗

π

4𝑒−𝑗π

2𝑡

Maka X[k] =

3

2𝑒−𝑗

π

4 , 𝒖𝒏𝒕𝒖𝒌 𝒌 = −𝟏

3

2𝑒𝑗

π

4 , 𝒖𝒏𝒕𝒖𝒌 𝒌 = 𝟏

𝟎 , 𝒏𝒊𝒍𝒂𝒊 𝒍𝒂𝒊𝒏

x(t) = σ𝑘=−~~ X[k] 𝒆𝒋𝒌ω𝒐𝒕

4/27/2016FEG2D3 - INW 13

Page 13: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 14

Page 14: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 15

Page 15: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Tentukan deret Fourier dari bentuk gelombang periodik berikut ini

4/27/2016FEG2D3 - INW 16

Page 16: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Ekspresi deret Fourier diberikan berikut ini

Tujuan kita adalah mendapatkan koefisien deret a0, an, dan bn

Dari gambar diperoleh

T=2

ω0=2π/T= π

4/27/2016FEG2D3 - INW 17

Page 17: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 18

Page 18: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 19

Page 19: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Dengan mensubtitusikan koefisien diperoleh:

Dapat diringkas sebagai:

4/27/2016FEG2D3 - INW 20

Page 20: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Jika sinyal periodik tersebut diketahui simetrik genap

maka diperoleh

Page 21: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Jika sinyal periodik tersebut diketahui simetrik ganjil

maka diperoleh

Page 22: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Jika sinyal periodik tersebut diketahui simetrik ganjil setengah gelombang maka diperoleh

Page 23: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW

24

Page 24: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Let x( t ) be a nonperiodic signal of finite duration, that is,

𝑥 𝑡 = 0 ; 𝑡 > 𝑇1

Such a signal is shown below . Let xT0(t) be a periodic signal formed by repeating x(r) with fundamental period T,

4/27/2016FEG2D3 - INW 25

Page 25: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

If we let 𝑇0 → ∞

The complex exponential Fourier series of 𝑥𝑇0(𝑡) is given by

where

4/27/2016FEG2D3 - INW 26

Page 26: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Since xT0 t = x(t) for t < T0/2 and also since x( t) = 0 outside this interval

Let us define 𝑋(𝜔) as

4/27/2016FEG2D3 - INW 27

Page 27: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

the complex Fourier coefficients ck can be expressed as

4/27/2016FEG2D3 - INW 28

Page 28: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

The function 𝑋 𝜔 is called the Fourier transform of 𝑥 𝑡

While the invers Fourier Transform is

4/27/2016FEG2D3 - INW 29

Page 29: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW

31

Page 30: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

1. Linearity

2. Time Shifting

the effect of a shift in the time domain is simply to add a linear term −ωt0, to the original phase spectrum θ(ω). This is known as a linear phase shift of the Fourier transform X ω

3. Frequency ShiftingThe multiplication of x(t) by a complex exponential signal 𝑒𝑗𝜔0𝑡is sometimes called complex modulation. Thus, Equation below shows that complex modulation in the time domain corresponds to a shift of X ω in the frequency domain.

4/27/2016FEG2D3 - INW 32

Page 31: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4. Time Scaling

where 𝑎 is a real constant.

This equation indicates that scaling the time variable t by the factor 𝑎

causes an inverse scaling of the frequency variable ω by 1

𝑎

as well as an amplitude scaling of X𝜔

𝑎by

1

𝑎(. Thus, the scaling

property implies that time compression of a signal (a > 1) results in its spectral expansion and that time expansion of the signal (a < 1) results in its spectral compression.

4/27/2016FEG2D3 - INW 33

Page 32: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

5. Time Reversal

time reversal of x(t) produces a like reversal of the frequency axis for 𝑋(𝜔). Equation below is readily obtained by setting 𝑎 = −1

6. Duality or symmetry

7. Differentiation in the Time Domain

4/27/2016FEG2D3 - INW 34

Page 33: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

8. Differentiation in the Frequency Domain

9. Integration in the time domain

10. Convolution

11. Multiplication

4/27/2016FEG2D3 - INW 35

Page 34: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 38

Page 35: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 39

Page 36: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 40

Page 37: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

The output 𝑦(𝑡) of a continuous-time LTI system equals the convolution of the input 𝑥(𝑡) with the impulse response ℎ(𝑡)

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ(𝑡)

Applying the convolution property, we obtain:𝑌 𝜔 = 𝑋 𝜔 𝐻 𝜔

Relationships between inputs and outputs in an LTI system shown by:

4/27/2016FEG2D3 - INW 41

Page 38: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

Where 𝑌 𝜔 , 𝑋(𝜔) and 𝐻(𝜔) are the Fourier transforms of 𝑦 𝑡 , 𝑥(𝑡) and ℎ(𝑡), respectively we have

𝐻 𝜔 =𝑌(𝜔)

𝑋(𝜔)

The function 𝐻(𝜔) is called the frequency response of the system.

Let 𝐻 𝜔 = 𝐻(𝜔) 𝑒𝑗𝜃𝐻(𝜔)

Then |𝐻 𝜔 | is called the magnitude response of the system

And 𝜃𝐻(𝜔) is called the phase response of the system𝜃𝐻 𝜔 = tan−1𝜔

4/27/2016FEG2D3 - INW 42

Page 39: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

A system described by: 𝑦′ 𝑡 + 2𝑦 𝑡 = 𝑥 𝑡 + 𝑥′(𝑡)

Find the impulse response ℎ(𝑡) of the system

Answer𝑗𝜔𝑌 𝜔 + 2𝑌 𝜔 = 𝑋 𝜔 + 𝑗𝜔𝑋(𝜔)

Or 𝑗𝜔 + 2 𝑌 𝜔 = 1 + 𝑗𝜔 𝑋 𝜔

𝐻 𝜔 =𝑌(𝜔)

𝑋(𝜔)=1 + 𝑗𝜔

2 + 𝑗𝜔=2 + 𝑗𝜔 − 1

2 + 𝑗𝜔= 1 −

1

2 + 𝑗𝜔

Inverse Fourier Transform of 𝐻(𝜔), the impulse response ℎ(𝑡) is

ℎ 𝑡 = 𝛿 𝑡 − 𝑒−2𝑡𝑢(𝑡)

4/27/2016FEG2D3 - INW 43

Page 40: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

𝑑𝑦(𝑡)

𝑑𝑥+ 2𝑦 𝑡 = 𝑥(𝑡)

Find the output 𝑦(𝑡) if 𝑥 𝑡 = 𝑒−1𝑢(𝑡)

Answer:𝑗𝜔𝑌 𝜔 + 2𝑌 𝜔 = 𝑋(𝜔)

𝐻 𝜔 =𝑌(𝜔)

𝑋(𝜔=

1

2 + 𝑗𝜔

𝑒−1𝑢 𝑡 ↔1

1+𝑗𝜔

𝑌(𝜔)= X(𝜔) H 𝜔 =1

(1+𝑗𝜔)(2+𝑗𝜔)=

1

1+𝑗𝜔−

1

2+𝑗𝜔↔ 𝑦 𝑡 = 𝑒−𝑡 − 𝑒−2𝑡 𝑢(𝑡)

4/27/2016FEG2D3 - INW 44

Page 41: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW

45

Page 42: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 46

Page 43: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 47

Page 44: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 ↔ 𝑌 Ω = 𝑋 Ω 𝐻 Ω

𝐻 Ω =𝑌(Ω)

𝑋(Ω)→ 𝐻 Ω = |𝐻(Ω)|𝑒−𝑗𝜃𝐻(Ω)

The relationship is figured by:

4/27/2016FEG2D3 - INW 48

As in the continuous-time case,

the function 𝐻(Ω) is called the

frequency response of the

system. |H Ω | the magnitude

response and 𝜃𝐻(Ω) is the phase

response

Page 45: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

A causal discrete time LTI system is described by:

𝑦 𝑛 −3

4𝑦 𝑛 − 1 +

1

8𝑦[𝑛 − 2] = 𝑥[𝑛]

a. Determine the frequency response 𝐻 Ω

b. Find the impulse response ℎ 𝑛

𝑌 Ω −3

4𝑒−𝑗Ω𝑌 Ω +

1

8𝑒−𝑗2Ω𝑌 Ω = 𝑋(Ω)

1 −3

4𝑒−𝑗Ω +

1

8𝑒−𝑗2Ω 𝑌 Ω = 𝑋(Ω)

𝐻 Ω =1

1 −12𝑒−𝑗Ω 1 −

14𝑒−𝑗Ω

↔2

1 −12𝑒−𝑗Ω

−1

1 −14𝑒−𝑗Ω

ℎ 𝑛 = 21

2

𝑛

−1

4

𝑛

𝑢[𝑛]

4/27/2016FEG2D3 - INW 49

Page 46: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

𝑦 𝑛 −1

2𝑦 𝑛 − 1 = 𝑥 𝑛 +

1

2𝑥[𝑛 − 1]

Determine 𝐻 Ω , ℎ 𝑛

𝑌 Ω −1

2𝑒−𝑗Ω𝑌 Ω = 𝑋 Ω +

1

2𝑒−𝑗Ω𝑋 Ω

𝐻 Ω =1+

1

2𝑒−𝑗Ω

1−1

2𝑒−𝑗Ω

=1

1−1

2𝑒−𝑗Ω

+1

2

𝑒−𝑗Ω

1−1

2𝑒−𝑗Ω

4/27/2016FEG2D3 - INW 50

Page 47: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 51

Page 48: FEG2D3 -INW- 2016 · Ekspresi deret Fourier diberikan berikut ini

4/27/2016FEG2D3 - INW 52