fluid mechanics - chapter 2: aerodynamics · aerodynamics "a branch of dynamics that deals with the...

50
LITTORAL CÔTE D’OPALE Fluid Mechanics Chapter 2: Aerodynamics Mathieu Bardoux IUT du Littoral Côte d’Opale Département Génie Thermique et Énergie

Upload: others

Post on 19-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • LITTORAL CÔTE D’OPALE

    Fluid MechanicsChapter 2: Aerodynamics

    Mathieu Bardoux

    IUT du Littoral Côte d’OpaleDépartement Génie Thermique et Énergie

  • Summary

    1 Definition

    2 Flow of a perfect fluid

    3 Viscous flow

    4 Boundary layerDefinitionDescriptionAirflow separation

    5 Aircraft aerodynamicsMach regimesLift and stall

    6 Momentum in fluid mechanics

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 2 / 46

  • Definition

    Summary

    1 Definition

    2 Flow of a perfect fluid

    3 Viscous flow

    4 Boundary layerDefinitionDescriptionAirflow separation

    5 Aircraft aerodynamicsMach regimesLift and stall

    6 Momentum in fluid mechanics

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 3 / 46

  • Definition

    Definition

    Aerodynamics

    "a branch of dynamics that deals with the motion of air and othergaseous fluids and with the forces acting on bodies in motion relativeto such fluids" 1.

    1. Merriam-Webster DictionaryMathieu Bardoux (IUTLCO GTE) Fluid Mechanics 4 / 46

  • Flow of a perfect fluid

    Summary

    1 Definition

    2 Flow of a perfect fluid

    3 Viscous flow

    4 Boundary layerDefinitionDescriptionAirflow separation

    5 Aircraft aerodynamicsMach regimesLift and stall

    6 Momentum in fluid mechanics

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 5 / 46

  • Flow of a perfect fluid

    Flow of a perfect fluid

    A body of any shape in uniform motion in an incompressible perfectfluid extending to infinity, undergoes no resistance on the part of thefluid.

    V8 V8

    Local deformation of the fluid velocity field

    The resulting forces applied to the object are therefore zero.Watch out : the sum of the moments of force may not be zero !

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 6 / 46

  • Viscous flow

    Summary

    1 Definition

    2 Flow of a perfect fluid

    3 Viscous flow

    4 Boundary layerDefinitionDescriptionAirflow separation

    5 Aircraft aerodynamicsMach regimesLift and stall

    6 Momentum in fluid mechanics

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 7 / 46

  • Viscous flow

    Body in motion in a viscous fluid :

    Fluid-solid contact on surface dS :

    V8

    dS

    pressure

    viscosity

    I perpendicular component = pressureI parallel component = viscosity

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 8 / 46

  • Viscous flow

    Body in motion in a viscous fluid :

    Resultant force = pressure forces + viscous forces.

    V8

    Pressuretotal force

    Viscosity total force

    Resultant

    R =∫

    S

    # »

    PrM ·dS +∫

    S

    # »

    ViM ·dS =# »

    Pr +#»

    Vi

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 9 / 46

  • Viscous flow

    Body in motion in a viscous fluid :

    Resultant force = lift force + drag force.

    V8

    Lift force

    Drag force

    Resultant

    R =#»

    L +#»

    D

    Drag⇒ parallel to V∞ ; Lift⇒ perpendicular to V∞.Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 9 / 46

  • Viscous flow

    Determination of aerodynamic forces

    Drag :# »

    FD =12ρv2CD S

    CD = dimensionless drag coefficient.A = cross sectional area

    Lift :# »

    FL =12ρv2CL S

    CL = dimensionless lift coefficient.

    CD and CL are functions of body’s shape/orientation, Reynolds’number of the flow, etc. . .

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 10 / 46

  • Viscous flow

    CD as a function of shape

    Airplane wing : 0,005

    Car (competition) : 0,14

    Car (berlin) : 0,3

    Cube : 1,05

    Usain Bolt : 1,2

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 11 / 46

  • Viscous flow

    CD as a function of flow pattern

    102 104 106103 105 107

    0.1

    0.5

    1.0

    1.5

    Re

    Cd

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 12 / 46

  • Boundary layer

    Summary

    1 Definition

    2 Flow of a perfect fluid

    3 Viscous flow

    4 Boundary layerDefinitionDescriptionAirflow separation

    5 Aircraft aerodynamicsMach regimesLift and stall

    6 Momentum in fluid mechanics

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 13 / 46

  • Boundary layer Definition

    Boundary layer : definition

    Viscous fluid⇒ slowing down next to the body.

    Perfect fluid

    Boundarylayer

    Viscous fluid

    I Boundary layer is the area where flow velocity is modified(v < 0,99 · v∞).

    I This layer is very thin and widens downstream.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 14 / 46

  • Boundary layer Description

    Boundary layer : description

    I High speed gradient⇒ viscousity effectsI Outside, the flow is not significally modifiedI Develops from the stagnation point.I Low Reynolds⇒ high viscosity⇒ laminar flowI High Reynolds⇒ first laminar, then turbulent

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 15 / 46

  • Boundary layer Airflow separation

    Airflow separation

    I When the boundary layer separates from the surface.I A reversed flow appears downstream of the separation point.I At separation point, velocity profile is orthogonal to the wall.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 16 / 46

  • Boundary layer Airflow separation

    Airflow separation

    Separationline

    Separationpoint

    Boundary layer

    Reversed flow (wake)

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 17 / 46

  • Boundary layer Airflow separation

    Airflow separation

    I Increased pressure drop (diffusers)I Increased dragI Loss of lift (wings)I Yield loss (turbomachines)I Adjustment difficultiesI Vibrations⇒ structural failuresI Kármán vortex street

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 18 / 46

  • Boundary layer Airflow separation

    Airflow separation

    Guadalupe Island – Nasa, public domain

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 19 / 46

  • Aircraft aerodynamics

    Summary

    1 Definition

    2 Flow of a perfect fluid

    3 Viscous flow

    4 Boundary layerDefinitionDescriptionAirflow separation

    5 Aircraft aerodynamicsMach regimesLift and stall

    6 Momentum in fluid mechanics

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 20 / 46

  • Aircraft aerodynamics Mach regimes

    Mach regimes

    Dimensionless ratio between flow velocity v , and sound celerity c :

    Subsonic :vc< 1⇐⇒Ma < 1

    Transsonic :vc≈ 1⇐⇒Ma ≈ 1

    Supersonic :vc> 1⇐⇒Ma > 1

    Nota bene :I c is a function of T , ρ. . .I Sound barrier : aerodynamic drag increases dramatically nearMa= 1.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 21 / 46

  • Aircraft aerodynamics Mach regimes

    Sound propagationStill source

    The sound propagates in all directions around the source.

    The wave fronts form concentric circles.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 22 / 46

  • Aircraft aerodynamics Mach regimes

    Sound propagationSubsonic source

    The sound propagates in all directions around the source.

    The wave fronts are closer in front of the source than behind it.⇒ Doppler effect.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 23 / 46

  • Aircraft aerodynamics Mach regimes

    Sound propagationTransonic source

    The wave fronts accumulate in front of the source.

    The drag increases sharply : sound barrier.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 24 / 46

  • Aircraft aerodynamics Mach regimes

    Sound propagationSupersonic source

    The waves form a Mach cone.

    The sound reaches an observer with delay and produces acharacteristic deflagration.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 25 / 46

  • Aircraft aerodynamics Lift and stall

    How do planes fly?

    Y2432

    Weight

    Lift

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 26 / 46

  • Aircraft aerodynamics Lift and stall

    How do planes fly?

    Airfoil

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 27 / 46

  • Aircraft aerodynamics Lift and stall

    Angle of attack

    Angle of attack α creates the lift.

    AirfoilAngleof attack

    I The flow "adheres" to the wing by viscosity.I The higher α, the stronger the lift.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 28 / 46

  • Aircraft aerodynamics Lift and stall

    Angle of attackNot to be confused

    Attitude : orientation of an aircraft with respect to the horizon

    Slope : orientation of the motion vector with respect to thehorizon

    Angle of attack : orientation of an aircraft with respect to the motionvector

    Attitude = Slope + angle of attack

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 29 / 46

  • Aircraft aerodynamics Lift and stall

    Angle of attackNot to be confused

    Attitude : orientation of an aircraft with respect to the horizon

    Slope : orientation of the motion vector with respect to thehorizon

    Angle of attack : orientation of an aircraft with respect to the motionvector

    Attitude = Slope + angle of attack

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 29 / 46

  • Aircraft aerodynamics Lift and stall

    Angle of attackNot to be confused

    Y2432

    Slope Attitude

    Angle ofattack

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 30 / 46

  • Aircraft aerodynamics Lift and stall

    Angle of attackNot to be confused

    Y2432Slope

    AttitudeAngle ofattack

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 30 / 46

  • Aircraft aerodynamics Lift and stall

    Angle of attackPressure field

    Xfoil simulation

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 31 / 46

    http://web.mit.edu/drela/Public/web/xfoil/

  • Aircraft aerodynamics Lift and stall

    Angle of attackPressure field

    Xfoil simulation

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 31 / 46

    http://web.mit.edu/drela/Public/web/xfoil/

  • Aircraft aerodynamics Lift and stall

    Stall

    Too high α⇒ the airflow separates from the wing

    Airfoil

    Angleof attack

    I This is stall.I The lift drops sharply.

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 32 / 46

  • Aircraft aerodynamics Lift and stall

    Wing liftdepending on the angle of attack

    2

    1.75

    1.5

    1.25

    1

    0.75

    0.5

    0.25

    0−10° −5° 0° 5° 10° 15° 20° 25° 30°

    Angle of attack

    Lift

    coe

    ffic

    ient

    SM701 airfoil (public domain)Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 33 / 46

  • Aircraft aerodynamics Lift and stall

    Wing optimization?

    Spitfire Mk IIa (Adrian Pingstone, public domain)

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 34 / 46

  • Aircraft aerodynamics Lift and stall

    Wing optimization?

    Airbus A380 (Simon_sees , licence cc-by-2.0)

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 35 / 46

  • Aircraft aerodynamics Lift and stall

    Wing optimization?

    Concorde (Adrian Pingstone, public domain)

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 36 / 46

  • Aircraft aerodynamics Lift and stall

    Wing optimization?

    Boeing X-29 (Image Nasa, public domain)

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 37 / 46

  • Aircraft aerodynamics Lift and stall

    Wing optimization?

    Leadingedge

    Trailingedge

    c0

    c1

    Sweepangle

    Upper surface

    Lower surface

    e

    Leading edge

    Trailingedge

    I Wingspan : distance between thewing tips

    I Chord (c) : distance between leadingedge and trailing edge

    I Tappering : ratio between tip chordand root chord

    I Aspect ratio : the span divided bythe mean or average chord

    I Thickness (e) : distance betweenupper and lower surface of the wing

    I Sweep angle : angle between thewing and the perpendicular to thelongitudinal axis

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 38 / 46

  • Aircraft aerodynamics Lift and stall

    Wing optimization?

    I Swept wingrepels the appearance of compression effectsdecreases drag force in transonic+ regimestabilizes the roll flightdecreases lift force

    I Thicknessincreases stall angleincreases structural strengthincreases drag force

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 39 / 46

  • Aircraft aerodynamics Lift and stall

    Wing optimization?

    The ideal wing shape depends on the planned flying speed :I Subsonic :

    unsweptthick

    I Supersonic :high sweep anglelow thickness

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 40 / 46

  • Momentum in fluid mechanics

    Summary

    1 Definition

    2 Flow of a perfect fluid

    3 Viscous flow

    4 Boundary layerDefinitionDescriptionAirflow separation

    5 Aircraft aerodynamicsMach regimesLift and stall

    6 Momentum in fluid mechanics

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 41 / 46

  • Momentum in fluid mechanics

    Definition

    Linear momentum of :

    a body of mass m : #»p = m · #»va fluid parcel of mass dm , located in point M :

    d #»p = # »vM ·dm = # »vM · ρ ·dVa certain volume of fluide : #»p =

    ∫V

    # »vM · ρ ·dVThree-dimensionnal vector quantity, measured in kg ·m · s−1

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 42 / 46

  • Momentum in fluid mechanics

    Conservation law

    Newton’s second law of motion

    Let’s consider a body in an inertial reference frame :

    Σ#»

    F =d #»pdt

    If m is constant :

    d #»pdt

    =d(m #»v )

    dt= m

    d #»vdt

    + #»vdmdt

    = md #»vdt

    Momentum conservation law

    In a closed system, the total momentum is constant.

    d #»pdt

    =#»

    0

    This is equivalent to the shift symmetry of space (Emmy Noether,1918).

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 43 / 46

  • Momentum in fluid mechanics

    Momentum theorem

    I Newton’s second law, on a fluid parcel :

    d(d #»p )dt

    = d#»

    F

    I Volume integration :

    ddt

    ∫V

    # »vM · ρ ·dV =∫

    Vd

    F =#»

    R

    R = resultant of external forcesI Momentum theorem :

    d #»pdt

    = Σ#»

    F ext

    ⇒ Newton’s second law, generalized to fluids

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 44 / 46

  • Momentum in fluid mechanics

    Navier-Stokes equationaka Cauchy momentum equation

    dρ #»vdt

    +#»∇ · (ρ #»v ⊗ #»v ) = − #»∇p +µ∇2 #»v

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 45 / 46

  • Momentum in fluid mechanics

    Conclusion

    In this chapter, we haveI Studied the forces exerted on a solid in a moving fluidI Defined the boundary layer and saw its effectsI Discovered the physical bases of airplane flightI Generalized Newton’s second law to fluids

    Mathieu Bardoux (IUTLCO GTE) Fluid Mechanics 46 / 46

    DefinitionFlow of a perfect fluidViscous flowBoundary layerAircraft aerodynamicsMomentum in fluid mechanics