in hydraulic engineeringhani/ofgbg19/slides_silje.pdf · 2019-12-23 · air entrainment stepped...

36
Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment In hydraulic engineering Silje Kreken Almeland Department of Civil and Environmental Engineering, NTNU, Trondheim, Norway Gothenburg Region OpenFOAM User Group Meeting November 20, 2019 Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 1 / 35

Upload: others

Post on 12-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Numerical modelling of air entrainmentIn hydraulic engineering

Silje Kreken Almeland

Department of Civil and Environmental Engineering,NTNU, Trondheim, Norway

Gothenburg Region OpenFOAM User Group MeetingNovember 20, 2019

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 1 / 35

Page 2: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Numerical modelling of air entrainment

Develop a sub-grid model for air entrainment based on interFoam

(a) Stepped Spillway1 (b) Hydraulic Jump2

1Photo taken from [2]2Photo taken from [1]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 2 / 35

Page 3: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Numerical modelling of air entrainment

Develop a sub-grid model for air entrainment based on interFoam

Testing airInterFoam[4]

(a) Stepped Spillway3 (b) Hydraulic Jump4

3Photo taken from [2]4Photo taken from [1]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 3 / 35

Page 4: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Defining the concept

1 Air entrainmentDefining the conceptState of the artairInterFoam

2 Stepped SpillwayInception point and surface elevationDependence on inputvariablesVoid fraction

3 Hydraulic JumpFeaturesResults

4 Conclusion

5 ReferencesSilje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 4 / 35

Page 5: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Defining the concept

Air entrainment in free surface flow

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 4 / 35

Page 6: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

State of the art

State of the art

Euler-Euler two fluid modeltwoPhaseEulerFoam

. Numerical diffusion at the interface for stratified flow

Interface capturing methodsinterFoam

. Challenging to capture the processes at the surface

Hybrid models

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 5 / 35

Page 7: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

State of the art

Subgrid models based on VoF

Existing subgrid models basedon VoF

Hirt (2003)[3] ⇒

Lopes (2017)[4] ⇒airInterFoam

https://openfoamwiki.net/index.php/Contrib/airInterFoam

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 6 / 35

Page 8: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

State of the art

interFoam

Solves a single set of mass- and momentum equations

∇U = 0

∂ρU

∂t+∇· (ρUU ) = −∇p∗ + g·x∇ρ+∇· τ + f

interFoam uses a VOF method with a compression term tocapture the interface

∂α

∂t+∇· (αU) +∇· [U rα(1− α)] = 0

where U r = U 1 −U 2 is the relative velocity

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 7 / 35

Page 9: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

airInterFoam

airInterFoam

∂αg∂t

+∇ · (ugαg)− b · ∇ · (νt∇αg) = Sg

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 8 / 35

Page 10: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

airInterFoam

airInterFoam

∂αg∂t

+∇ · (ugαg)− b · ∇ · (νt∇αg) = Sg

Sg =a

φent

⟨∂un∂n

⟩δfs

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 9 / 35

Page 11: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

airInterFoam

airInterFoam

∂αg∂t

+∇ · (ugαg)− b · ∇ · (νt∇αg) = Sg

Sg =a

φent

⟨∂un∂n

⟩δfs

k > kc, u > uc

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 10 / 35

Page 12: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

airInterFoam

airInterFoam

∂αg∂t

+∇ · (ugαg)− b · ∇ · (νt∇αg) = Sg

Sg =a

φent

⟨∂un∂n

⟩δfs

k > kc, u > uc

ug = ul + ur

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 11 / 35

Page 13: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

airInterFoam

airInterFoam

αg is calculated

αl is calculated independent of αg

α2 = 1− αl − αg

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 12 / 35

Page 14: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

airInterFoam

airInterFoam

Interacts with the αl-equation by reducing thecompression

fvc::flux

(

-fvc::flux(-phir, alpha2, alpharScheme),

alpha1,

alpharScheme

)

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 13 / 35

Page 15: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

airInterFoam

Test cases

. Stepped spillway

. Hydraulic jump

(a) Stepped Spillway5 (b) Hydraulic Jump6

5Photo taken from [2]6Photo taken from [1]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 14 / 35

Page 16: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Stepped Spillway

Sketch taken from [6]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 15 / 35

Page 17: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Stepped Spillway

(a) Step 3 (b) Step 4 (c) Step 5 (IP)

(d) Step 6 (e) Step 7 (f) Step 8

Photos taken from [6]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 16 / 35

Page 18: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Stepped Spillway

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 17 / 35

Page 19: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Inception point and surface elevation

Inception point and surface elevation

airInterFoam, kc = 0.2

a

aSketch taken from [6]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 18 / 35

Page 20: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Inception point and surface elevation

Inception point and surface elevation

a

aSketch taken from [6]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 19 / 35

Page 21: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Inception point and surface elevation

Inception point and surface elevation

a

aSketch taken from [6]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 20 / 35

Page 22: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Dependence on inputvariables

Dependent on inputvariables

(a) kc = 0.2, ∆x = 0.005 (b) kc = 0.2, ∆x = 0.0025

(c) kc = 0, ∆x = 0.005 (d) ∆x = 0.005, ug = ul + ur

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 21 / 35

Page 23: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Dependence on inputvariables

Inception point and surface elevation

a

aSketch taken from [6]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 22 / 35

Page 24: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Dependence on inputvariables

Inception point and surface elevation

a

aSketch taken from [6]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 23 / 35

Page 25: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Void fraction

Void fraction

(a) Step 5

(b) Step 6

(c) Step 7Photos taken from [6]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 24 / 35

Page 26: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Features

Hydraulic Jump

Froude number, Fr = u√gh

Figure: Hydraulic jump

Sketch taken from [7]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 25 / 35

Page 27: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Features

Hydraulic Jump

Void fraction profiles

Velocity profiles

Free surface contour

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 26 / 35

Page 28: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Features

Hydraulic Jump

Void fraction profiles

Velocity profiles

Free surface contour

Figure: Hydraulic jump

Sketch taken from [7]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 27 / 35

Page 29: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Features

Test Case

Froude number 4.8Physical experiments by Murzyn[5], reproduced byWitt[7] using interFoam

Figure: Hydraulic jump

Sketch taken from [7]

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 28 / 35

Page 30: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Results

interFoam – reproduction

(a) Current work , realizableKE

(b) Witt (2015)[7]

Figure: Mean flow field for αair.

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 29 / 35

Page 31: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Results

interFoam – realizableKE vs k-ε

realizableKE

k-ε

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 30 / 35

Page 32: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Results

interFoam – k-ε

∆x = 0.005

∆x = 0.0025

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 31 / 35

Page 33: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Results

interFoam – airInterFoam – k-ε

∆x = 0.005, interFoam

∆x = 0.0025, interFoam

∆x = 0.005, airInterFoam

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 32 / 35

Page 34: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Results

Dependence on parameters

ug = ul + ur, kc = 0.2

ug = ul, kc = 0.2

ug = ul, kc = 0.8

ug = ul, kc = 2

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 33 / 35

Page 35: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

Conclusion

Using a local reduction in interface compression gavesome air entrained into the flowGave results close to the experimental for prediction of

Inception pointSurface elevation curveVoid fraction (at lower parts of the spillway)

Sensitive toGrid refinementInput parameters

Behavior of hydraulic jump sensitive to choice ofturbulence model

too little air transported in lower parts and towards the end of the jump

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 34 / 35

Page 36: In hydraulic engineeringhani/OFGBG19/slides_silje.pdf · 2019-12-23 · Air entrainment Stepped Spillway Hydraulic Jump Conclusion References Numerical modelling of air entrainment

Air entrainment Stepped Spillway Hydraulic Jump Conclusion References

References I

[1] J. Ball.Hydraulic Jump.Available at https://www.flickr.com/photos/jball359/6998692825, 2019-11-20.

[2] C. Gonzalez.International symposium on hydraulic structures ciudad guayana, venezuela, october 2006 air entrainment and energydissipation on embankment spillways.11 2019.

[3] C. Hirt.Modeling turbulent entrainment of air at a free surface.Flow Science, Inc, 2003.

[4] P. Lopes, J. Leandro, and R. F. Carvalho.Self-aeration modelling using a sub-grid volume-of-fluid model.International Journal of Nonlinear Sciences and Numerical Simulation, 18(7-8), dec 2017.

[5] F. Murzyn, D. Mouaze, and J. Chaplin.Optical fibre probe measurements of bubbly flow in hydraulic jumps.International Journal of Multiphase Flow, 31(1):141–154, jan 2005.

[6] D. Valero and D. Bung.Hybrid investigation of air transport processes in moderately sloped stepped spillway flows.In E-proceedings of the 36th IAHR World Congress 28 June - 3 July, 2015, The Hague, the Netherlands, pages 1 – 10, 2015.

[7] A. Witt, J. Gulliver, and L. Shen.Simulating air entrainment and vortex dynamics in a hydraulic jump.International Journal of Multiphase Flow, 72:165 – 180, 2015.

Silje Kreken Almeland Numerical modelling of air entrainment 2019-11-20 35 / 35