introduction to vmg sim

212
Introduction to VMGSim Block Week Fall 2009 University of Calgary August 31 .... September 3

Upload: cheng-huang

Post on 29-Dec-2015

629 views

Category:

Documents


33 download

TRANSCRIPT

Page 1: Introduction to VMG Sim

Introduction to VMGSim

Block Week

Fall 2009

University of Calgary

August 31 .... September 3

Page 2: Introduction to VMG Sim

Table of Contents

PFD Hotkeys

Propane Loop Summary

Propane Loop Example

Dewpoint Plant Summary

Dewpoint Plant Example

Import Propane Loop

IVIDEA Summary

Import Claus

Crude Tower Summary

Excel Unit Operation Summary

Excel Unit Operation Example

Gunther Summary

Gunter Example

Hydrate Inhibition 1

Hydrate Inhibition 2

Hydrate Inhibition 3

Butyl Acetate Summary

Butyl Acetate Example

IVIDEA Reporting Example

Hydrodealkylation Summary

Hydrodealkylation Example

Page 3: Introduction to VMG Sim

1. GeneralF4Reload stencilsF5Enter connection connector mode (drag to connect)Ctrl+FFind an object (unit or stream)Ctrl+BReturn to parent flowsheet in one stepCTRL+SHIFT+NShow stream name on PFDCTRL+SHIFT+TShow stream temperature on PFDCTRL+SHIFT+PShow stream pressure on PFDCTRL+SHIFT+FShow stream mole flow rate on PFDCTRL+SHIFT+MShow stream mass flow rate on PFD

VMGSim PFD Hot Keys

2. Zooming:

Zoom outCTRL+SHIFT+right-c1ickZoom inCTRL+SHIFT+left-c1ickZoom to Page SizeCTRL+WZoom out to single page viewCTRL+SHIFT+drag a rectangleZoom in on a selected areaCTRL+SHIFT, right-click, and drag the pagePan

4. TextEditing

CTRL+IItalicCTRL+UUnderlineCTRL+SHIFT+0Double underlineCTRL+SHIFT+AAll capsCTRL+SHIFT+KSmall capsCTRL+SHIFT+,Decrease font sizeCTRL+SHIFT+.Increase font sizeCTRL+=SubscriptCTRL+SHIFT+=Superscript

3. Icon Appearance

CTRL+HFlip HorizontalCTRL+JFlip VerticalCTRL+LRotate LeftCTRL+RRotate Right

5. Miscellanous

CTRL+1pointer ToolCTRL+2Text ToolF7Spelling checkerF6Browse the Palletes

Page 4: Introduction to VMG Sim

.~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Propane Refrigeration Loop Summary

Property PackageAdvanced Peng Robinson

ComponentsPropane

Stream InformationStream Name 51 53

VapFrac 0 1

T (F) 100 0

Propane 1

Unit Operation Sumnlary

Chiller (Heater)InO - 3000000 Btu/hr

Delta P - 0.5 psi

CP1 (Comperssor)Adiabatic Efficency - 75%

Condenser (Cooler)Delta P - 5psi

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 5: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

81

V182 83

Chiller

Compressor_Duty CP1

Contienser_Duty

Condenser

84

Propane Refrigeration Loop

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by Virtual Materials Group.

Page 6: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Propane Refrigeration LoopIn this tutorial we will create a simple Propane Refrigeration Loop.

Start a new VMGSim case by pressing the Cl button. Select the AdvancedPeng-Robinson property package.

Show Selection helper

r Add Solid Support

Canc-e1

Now navigate to the Components tab and we will add propane to the compoundlist.

family j;llC;;;;;;';~;;~;;~------ ----.......... - -.. :3 r' D,!a;I!'a.,.Iy'Gm"p,

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 7: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Type propane into the Compound textbox:

Eure Compound Search 'j .!ivpothetical Compound ICompoynd

.Eamily lAULCc;~;;;;:;t;~~~=~=-----~ r Detail Family Groups

l~ NamesP' formula

CA2N

Add Selected

PROPAr~E

propane, 1,1'-[ethylidenebls(oxy)}bis­propane, 2-(2-chloro-1, l,2-trifluoroethoxy}­propane I 1-(2-chloro-1, 1,2-trifluoroethoxy)­propane, 2-chloro-2-fluoro-propane, 2-chloro-1, 1, 1,3,3, 3~lexafluoro-

This will bring up a list of compounds with propane being first in the list. To selectand add propane to the property package press the Enter key twice.

After pressing enter the first time PROPANE will be selected.

E.ure Compound Seardl

Compoynd jpropane.Eamily .~~---~~"~==--~""""~~~'4

P NamesR formular~N

propaner 1, l'-[ethylidenebis(oxy)]bis­propane, 2-(2-chloro-1, 1, 2-trifluoroethoxy)­propane, 1-(2-chloro-1,1,2-trifluoroethoxy)­propane, 2-chloro-2-fluoro-propane, 2-ehloro-1, 1.lJ3,3r3~exafluoro-

Detail Family Groups

Pressing Enter a second time will add propane to the selected Compound(s) list.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

2

Page 8: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Properties of: RootThe,mo

Delete

DeleteAJI

The <New> to the right of PROPANE indicates that this component has not beenadded to the property package. You can do this by clicking the Apply button(which will allow you to make further modifications to the property package) or byclicking the OK button which is equivalent to clicking Apply but will also bring youto the model building environment. Your screen should appear similar to thefollowing screen shot:

© 2009, Vil1ual Materials Group, Inc. Do not copy unless authorized in writing by Vil1ualMaterials Group.

3

Page 9: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Start building the model by dragging and dropping a Material Stream from thePFD2 stencil.

Selecting the Material Stream

Dragging it onto the PFD.

The Material Stream after it has been dropped on the PFD.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 10: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

We now need to enter process information into this Material Stream. In order todo so the Material Stream form must be opened. A Material Stream/UnitOperation form can be opened in one of three ways: the icon in the PFD can bedouble clicked, the icon can be selected and then have the enter button pressedor the icon can be selected and then Open Form can be selected from the right­click menu.

Ignore

Hi4e Label

Hide

Show DataSheet

Toggle Stream/Connector

Refresh Tables

Create NeW~'I'laterial Balance Table...

Save PaqeAs...

Once the Material Stream form is opened enter in the following values.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

5

Page 11: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Summary IEquilibrium Results Iune Sizing I

Dbmole;h]1.00

Db/h][ft3l's]

0.0010G.O189,06

[Fraction][Fraction]

Detail View

Exclude From Summary

Description:

Spec from

Connected to [In lOut]VapFracT[F]P [psia]MoleFlo'N Dbmole~l]

f"1assFlolN Db/h]VolumeFlow [ft3/s]StdLiqVolumeFlow [ft3Is]StdGasVolumeFlow [f<Ifv1SCFD1L±:i F'roperties

.:':"j f"lolePROPANE

if} r'1assLfi StdLiqVolume

Print Create Port !gnored

Notice that once the Vapor Fraction, Temperature and Composition are enteredthe stream will flash and the pressure of the stream will be calculated.

Now drag and drop a Valve to the right of 81,

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

6

Page 12: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Valve

Drag and drop onto the dravofingpage.

More...

Connect S1 to the Valve by selecting the stream. Click on the green square onthe arrow head and hold the left mouse button down

--------------

/SI

Material StreaznT *100.0 fF1P 189.06 [psia}Mass Flow ~::Unknown> [1b/h]Volume Flow <unknown:> (ft3/S]

And then dragging it so that it falls on top of the connection point on the left handside of the Valve. A red square will appear when the Material Stream and theValve are aligned and a connection can be made, at this point release the leftmouse button.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

7

Page 13: Introduction to VMG Sim

" Virtual MaterialsGroup, Inc. Simulating with VMGSim

eJ*V1

\l1

Open the Valve form and expand the Properties node in the Material frame:

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

8

Page 14: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

174.1

100.0189.06

32.55944.10

29.633232.3050.0503

8.5490E~2

1.488

T[f]P [psia]Moleflo'l>l [lbmole.lh]r·lassflo'N Dbjh]\'/olumeflow [ft3js]StdUqVolumeflow [ft3/s]StdGasVolumeflo'N V'<lr"'lSCfD]r=: Properties (Alt+R)

Energy [Btujhr]H [Btu..1bmol]S [Btu~bmol-F]

r"lolecular'ilVeightr"'lassDensity Db/ft3]Cp [Btu!lbmol-f]ThermalConductivity [Btujhr-ft-f]Viscosity [cp]molarV [ft3~bmoO

Summary Equilibrium Results >!

f'1a in Data ,.. 1 1 Adva Illce~d:::::::::::::::::::::::::::::::::: :::.::::::::::: ::::::::::::;

f\Jame I>h'alue.................. ( •.•...........•.

Delta P [psi] IevCharacteristic linear% Opening [1%] 100.000

Notice how the enthalpy of the inlet of the Valve is passed to the outlet this isbecause the Valve Unit Operation represents an isenthalpic valve.

Add a new Material Stream and connect it to the outlet of the Valve.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

9

Page 15: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

81V1

Simulating with VMGSim

S2

Now add a Heater to the outlet of S2.

51

Lets rename this Heater to "Chiller" since it will represent the cold side of theChiller in the refrigeration loop. To do this open the Heater form and type Chillerin the Name text box.

INumberofsegmen~

Specify a pressure drop of 0.5 psi in the Main Data frame of the Chiller form.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

10

Page 16: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Fi~~b~~~fs~g~~~~T ... 'ilSummary fprofilel Plot IEquilibrium Results

~""'~~~"'''''''''.'''''''''~'''''''''''''''''')~ Ad~lanced!:.:.:::.:.::::.:::.:::::::.:::.:.:::::::::.::::....::.::::::.':.::::::::.:':'':)~=~==

L::::::::::::::::::::~~~9.)

Now connect a new Material Stream to the outlet of the Chiller and specify avapor fraction of 1 and a temperature of 0 F.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

11

Page 17: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Detail Vie'N

Exclude From Summary

Ignored

Objh][ft3/s]

1.00

38.37

ChiUer.Out

1..00

iII[Fraction] Obmole;,h]

I[Fraction]

IIFractionl

Connected to [In lOut]VapFracT [F).P [psia]MoleFlow Dbmolejh]r<lassFlow ~blh]

VolumeFlo\<\' [ft3/s1StdUqVolumeFlo'N [ft3Is]StdGas\>'olumeF[ow ~"1f'1SCFD]

L±I Properties1:::1 rv10le

PROPANE

Summary IEquilibrium Results I Line Sizing

"fateria I ' ~ , ~ ~ ,

Now connect a Compressor to 83 and set its adiabatic efficiency to be 75%.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

12

Page 18: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

El

Description:

1.000.0

38.37

Print

Is Recycle PortConnected Stream/Unit OpVapFracT[F]P [psia]fl"loleFlow Dbmole/h]1V1assFlov\' Db,Al]VolumeFlow Ift3/s]StdLlqVolumeFlow [ft3/s]StdGasVolumeFlov\' If.lf.1SCFD]

Summary Icurves!Plot i=.1 Nilin Data [t] AlIvaIlce,d::::::::::.:=::::=:::::::::::::::::::::::::.::::::::::.::==::::::=

~~I11E:_. ..... __. __._lI\,I:31~_. _InQ [HorsePower]Delta P [psi}Pressure Ratio

Ii,diabatic Efficiency [%] L:::::::::::::::!~~~:QiPolytropic Effidency [%]Speed (rpm]Adiabatic Head IfflPolytropic Head Ift]

Add a Cooler named "Condenser" and connect it's inlet to the outlet of theCompressor with a new Material Stream.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

13

Page 19: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

::~:

S1V1

S2Chiller

Condenser

CP1

.......

S f'1ain Data·

Name >J ValueOutQ [Btul'hr]Delta P [psi] 5.00DeltaT [f]

Specify a pressure drop of 5 psi in the Condenser.

INumber of Segments 1 rSummary !profilEd Plot IEquilibrium Results

!±,l Ad'J'anc:ed:::::::::::·=:::.::::::=:::::::::::::J

Now connect the unconnected end of S1 to the Condenser.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

14

Page 20: Introduction to VMG Sim

Virtual Materials

Group, Inc.. Simulating with VMGSim

,,:

V152 83

Chiller

CP1

81

Condenser

Notice how the information specified in S1 has been propagated into theCondenser.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

15

Page 21: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

0.00100.0

189.06

1.00

1.00135.7

194.06

S4.0ut

In

iT

5.0035.73

Value

r'1ateria 1···_··,··__···········································································-c··················· _ _ _ __.._......................... .....j

PorttlameIs Recycle PortConnected StreamjUnit OpVapFracTIF]P[psia]r·lo[eFlow Dbmole.lh]f"lassFlow Dbjh]Volumeflow [ft3/s]StdLiqVolumeFlo,,\! [ft3/s]StdGasVolumeFlow [r.1r.1SCFD]a·j Properties (Alt+R)E:J Fraction [Fraction]

PROPANEEtJ r·lassFraction [Fraction]EB Sb:JLiqVc,IFraction [Fraction]

Summary Profile J Plot 1EquJlibrium Results Ifll'llr"l ._ , _- ., !tI Advanced: ::::::::::::::::::::::.. :::::::1

Also notice that throughout the process there is enough information for eachMaterial Stream to flash, and only an extensive property remains to be specifiedin order for the flow sheet to solve completely. In this case we will specify a dutyof 3000000 Btu/hr in the Chiller.

© 2009. Virtual Materials Group, Inc. 00 not copy unless authorized in writing by VirtualMaterials Group.

16

Page 22: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

1,00

0,0

38.37

630.4327799,29

20,951

0.245

0,36897- 0.7

38,87

630.43

27799.297,777

0,245

5.7417E+O

S2.0ut

InPortName......-., .._- ' ----_..- •..•.•.•._._..~_ _ __ -

Is Recyde PortConnected StreamjUnit OpVapFracT IF]Pfpsia]

MoleFlo'N Dbmolelh]r"'lassFlow DblhlVolumeFlmv Ift3ls]StdLiqVolumeFlow [ft3Is]stdGasVolumeFlow [MfvlSCFC~

ttl Properties (Alt+R)Fraction [Fraction]

If] l·lassFraction [Fraction]I±I StdUqVolFraction [Fraction]if] IvloleFlow .Dbmoleth]

i["lumber ofSegments'" 11summarv~profilelploti Equilibrium Results i

n~j~B .__ ,"',.,_., _ ,., !tJ Adva Il·ced::::;;:::..::::.=::::::::::=:::::::::::::::::::::::!t~~=~=~

1:::1

With this duty available the flow rate of propane through the refrigeration loop willbe determined as will the Compressor and Condenser duties. Note that dutiescan be viewed/specified directly from the Unit Operation form, Energy Streamscan also be connected to the energy port of Unit Operations as shown below.

© 2009, Virlual Materials Group, Inc. 00 not copy unless authorized in writing by VirlualMaterials Group.

17

Page 23: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Compressocputy CP1

A summary of the Material and Energy Streams can easily be created usingSummary Sets. Select Summary Sets under the Reporting Menu:

~.;1aterial Stream Summary

Energy Stream Summary

co; fRep.orting] l~~in..~.ow Help

J-I Project Report

Summary Sets

PFDView PFDInse

Report Header

Report Settings

Create a Summary Set by clicking the Add button.

© 2009, Virtual Materials Group, Inc. 00 not copy unless authorized in writing by VirtualMaterials Group.

18

Page 24: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Summar9 Sets 'I

By default a Summary of Material Streams will be selected, click the OK button tocreate the Material Stream Summary.

Stream, I Unit Operation:> Selection , .. :-, .>?" Iii

IiUnit Op TypeF' .. ","" ..

"~I IIStreamj\1aterial P IndudeAII

.....

Available Items Selected Items

/S1

~jS2

IS3/S4

Move!Up

r·1ove -lDown

=idJI' i! Cancel I

, ". '"

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

19

Page 25: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

SummariesStream Haterial

6:9J.4] 630,'13

27799,29 27.799.29 27799.2:."0,261 ;,777 20.951

An Energy Stream Summary can be created by clicking the Add SummaryButton. Selecting the Stream Energy from the Unit Op Type and then clicking theOK button.

Shearns I Unit Operations Selection

The simulation of the propane refrigeration loop is complete with an easy way tolook at each of the Material and Energy Streams in a centralized location.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

20

Page 26: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

................. ;l{JiI! S10

88

Ovhd]eed

87

Vi

V2

M1

S3

Dewpoint Gas Plant

DeW_POinj~T...c;h~,

Ba11

Inlet_Gas

Stabilizer

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by Virtual Materials Group.

Page 27: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Dewpoint Gas Plant Summary

Property PackageAPR (Advanced Peng Robinson) for Natural Gas

ComponentsNitrogen, Carbon Dioxide, Methane, Ethane, Propane, IsoButane, n-Butane,IsoPentane, n-Pentane, n-Hexane, C7+ (Hypothetical compound NBP 215 F)Water, Ethylene Glycol (EG)

Stream InformationStream Name Inlet Gas EG Recycle

T (F) 140 165 -140

P (psia) 1060I

1060 -1060I

Mole Flow (Ibmollhr) --- --- -200

Mass Flow (Ib/hr) --- 50 ---StdGasVolumeFlow (MMSCFD) 2.0 --- ---

Nitrogen .057 a aCarbon Dioxide 0.010 a a

Methane 0.600 a 0.6

Ethane 0.100 a 0.4

Propane 0.120 a aIsoButane 0.030 a an-Butane 0.040 a a

IsoPentane 0.010 a an-Pentane 0.010 a an-Hexane 0.010 a I a

C7+ 0.010 a aWater 0.003 0.2 (mass frac) a

Ethylene Glycol 0.000 0.8 (mass frac) aAll compositions in mole fraction unless noted otherwise

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 28: Introduction to VMG Sim

'" Virtual MaterialsGroup, Inc. Simulating with VMGSim

Unit Operation SUlTlmary

Hx1Tube DP - 5 psi

Shell DP - 5 psi

Approach T =15 F

Hx2Tube DP - 5 psi

Shell DP - 5 psi

ChillerDelta P - 5psia

To LTST -10 F

HX2 Shell OutletT-88 F

Ovhd FeedP - 440 psia

V2Delta P - 575 psi

Stabilizer (Reboiled Absorber)12 Stages

Connect Ovhd Feed as Feed to Stage 1

Connect Stage 3 Feed as Feed to Stage 3

Top Stage Pressure - 435 psia

Reboiler Pressure - 440 psia

Specification: Mol Ratio of Ethane to Propane in Bottoms Product of 0.045

CP1Adiabatic Efficiency - 80%

AC1Delta P - 2 psi

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 29: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc.

Out T -140 F

Out P - 1060 psia

Dew Point T CheckVF -1

P - 800 psia

Simulating with VMGSim

Dew Point T Controller

Manipulated Variable (OP)

Connected Object - To LTS - Temperature

Process Variable (PV)

Connected Object - Dew Point T Check

Settings

StepSize - 10 F

OP Min - -100 F

OP Max -100 F

SP Value

Value - 15 F

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 30: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Dewpoint Gas PlantIn the following tutorial, a dewpoint gas plant will be developed. To start, theproperty package needs to be selected. For this example the "Advanced Peng­Robinson (APR) for Natural Gas" will be used.

Properties of: RootThermo

Property Package SelectionAdvanced SeJection r Natural Ga~ Processng

RefinervAdd Ga!> Treatillg Chem:cal solventAcid Gas-Treating Physical Soho'entSulfur treatinaPetrochemicals

Apply

The next step is to add the components necessary to the property package. Thefirst components that need to be added are: Nitrogen, Carbon Dioxide, Methane,Ethane, Propane, IsoButane, n-Butane, IsoPentane, n-Pentane, n-Hexane.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 31: Introduction to VMG Sim

Delete All

Camp Group •••

C{)mpare Comp ...

Apply

IALC~;;;PP~;;~;;;"""-'---'-"""""'-""""""" =:J I"'·' Detail F.alllil~' Groups:

CARBON DIOXIDE <Nev1>fv1ETl1ANE <New>ETHAl>:E <New>PROPA!',[E <New>­ISOBUTAhlE <Ne'/>'>n-ELfTANE <Ne'N>ISOPENTA,;\lE -<NE'.N >­n-PENTANE <New>n-HEXANE <New~

Virtual MaterialsGroup, Inc.

A hypothetical compound to model the heavier hydrocarbons (C7+) in the systemneeds to be added. In order to add a hypothetical compound, the propertypackage must be applied first. Therefore, press "Apply" and then go to the"Hypothetical Compound" tab at the top of the form.

I.' <reate!!Iank

(' Clone from~isting:

Add tlewHJ/po

Cancel

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

2

Page 32: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. . Simulating with VMGSim

To add a hypothetical compound, either a normal boiling point (NBP) or amolecular weight and a liquid density are needed. For this case, a normal boilingpoint of 215 F is known. First, click the "Add New Hypo" button and enter thename to be "C7+".

OK I_~--l Structure lIuilder_ I cancel···'!___...l.

Then go to the "Basic Properties" tab and enter a normal boiling point of 215 F.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

3

Page 33: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Pressing "OK" will add C7+ as a new compound. Returning to the "PureCompound Search" tab, water and ethylene glycol need to be added as the lasttwo compounds present in the property package.

,'-Created PropertyPkg

E.ufe Compound Seorch 1 tlvpothetical Compound j

Cnmpo!!nd IIfamily ,[ALLcomponen;---"----

r,1ETHANEETHANEPROPANEISOBlJTANEn-6UTAJ\/EISOPENTAN=n-FENTANEn+iEXANEC7+*WATERETHYLENE GLYCOL

~ j~ Detail FamIly G~OL..JPS

Sort ...

Delete

Oe!eleAlI

Cancel

Pressing "OK" will add the property packages and all of the includedcomponents. The first stream that needs to be added is the "Inlet Gas" stream,as below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 34: Introduction to VMG Sim

r-" Detail View

r Exclude From Summary

Summary IEquilibrium Resufts j line Sizing 1 tlotes I

Virtual MaterialsGroup, Inc.

Spec from

Simulating with VMGSim

Solved

2.202.202.202.20

0.660.00

6.598.78

26,35

12.522.20

131.76

21.96

r Ignored

Envl.In0.93148

14lW1060.00

219.606015.74

0.2690.067

2.00HO

: [Fraction]

1

!IFraction]i[Fra.0i0n]

Create Port

connected to [In (OutlVapFracT [F]P [psia]~1c,leFlow ObmoleihlMassFlow Dbih]VolumeFlow [ft3fs]StdLiqVolumeFlow Ift3!s]StdGasVolumeFlow [M~'SCFD]

EE Properties':;:; '.10Ie

NITROGENCARBON DIOXIDEMETHANEETHANEPROPANEISOBlJTANEn-BlJT"NEISOPENT.<\NEn-PENTANEn+iEXANEC7+:$WATERETHYLENE GLYCOL

ill ~'itass

lfl StdLiQVoluo:_e _

To see the vapor liquid equilibrium relationship a phase envelope needs to beadded. The PT diagram can be seen on the "Table" tab of the phase envelope.

© 2009, Virtual Materials Group, Inc, Do not copy unless authorized in writing by VirtualMaterials Group,

5

Page 35: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Summary:! Controls Table Ir;:-.---- C--------jPTDiagr.sm ~ Curve: IQl ~

14000

12000

ro10000 .u;

2,

BOOO ~(f)(f)

6000 ~0...

Table (. Plot

--Jr--- Q1 IFr =1)Q1 IFr = 0)

....•._.. Port

.••.•••• Critical

-400 -300 -200 -100

Print Hydrate

Temperature [FJ

4000

10G 200

Right dick to .how plotmenu

.r.; Dry Basis r Ignored

The inlet gas must then be sent through a separator to remove the liquid from thesales gas. To do this, add a stream out of the phase envelope and add a verticaltwo phase separator to the end of this stream as below. Then connect a streamto each outlet of the separator.

82

The gas stream will then enter a mixer, where the ethylene glycol and the recyclestream will be mixed with the gas. To do this, add a mixer to the flowsheet. Amixer comes with 2 inlet ports by default, but our case requires that 3 inlet portsbe in the mixer. There are two ways to add an extra port to the mixer. The firstway is to right click on the mixer on the PFD and select "Create Port". This willadd the required port.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

6

Page 36: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

o

Open Form

Ignore

Hi>!e Label

Hide

Show DataSheet

Create Port

Delete Port

Switch Icon To...

Refresh Tables

Create New fvlaterial Balance Table...

Save Page As, ..

.:itream Display Option ...

.Q.rawing Explorer

Align Shapes......................................................··············1

Paste ~pecial..,

,Ji, Cut

The second way is to open the mixer form and change the number of inlets from2 to 3 in the upper left hand corner of the form.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

7

Page 37: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

r IgnoredPrint I Create Port

i I M"I~FI,-".", UbmoleJhJ

Db,lh]: l'lc,lumeFlo'N [ft3/sJiISt,jLiq\,.'olunneFI"'N [ft3/s]

Std(;asVolurf,eFlc,w U-1~lSCFDJ

Properties (l\lt+R)Fraction [FraCTIon]NITROGENCARBON DIOXIDE

,.,'ETHANEETHl\/iEPROPANEISOBUT,/i,NE

Portj ICcnnected StreamjlJnit Op

?8F=--==~= ~ rP-....• . ••")+

"'",?ummary Equilibrium R~!JJt(1 Notesl

Etr~iafiillata---'~'-:'~~'-

i§pr,}ode lOW~!PlnOutletI

Now the recycle and ethylene glycol streams must be created, They should bespecified as below. Make sure that the In port of the recycle stream is made arecycle port. This is done by placing a "-" before the specifications entered intothe In port of the recycle stream. Also, note that the composition of the ethyleneglycol stream is on a mass basis.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

8

Page 38: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Solved

Spec From

r Detail Vie'/.,!

r ExcJude From Summary

Summary 'I Equilibrium Results line Sizing 'I Notes

r Ignored

0.00

0.00120.00

80.000.000.000.000.00

0.00

0.000.000.0f)

0.00

1.00

140.01060.00

200.004330.6Z

0.Z70

0.059

1.8Z15.E+O

toVapFracT[F]P [psia]MoleFiow Ubmolelh]l"1assFlow OblhIVolumeFlow [ft3!s]StdLiq'lolumeFlow [ft3ls]StdGasVolumeFlow IMlvlSCFD]FP Properties!,,! ly10le

NITROGEN

CARBON DIOXIDEr~ETHANE

ETHANEPROPANEISOBUTANEn-BllTANEISOPENTANEn-PENTANEn-HEXANEC7+"

HYDROGENETHYLENE GLYCOL

i±! Massit) Sb:lUqVolume

© 2009, Virtual Materials Group, Inc. 00 not copy unless authorized in writing by VirtualMaterials Group.

9

Page 39: Introduction to VMG Sim

l~~ Detail View

ir E.xclude From Summary

Snmmary 1Equilibrium Results lineS-amg INotes ~

r'Jaterial

Virtual MaterialsGroup, Inc.

Spec From

to [InjOut]

Simulating with VMGSim

VapFracT[F]P [psia]r~oleFlo\N Dbmole/h]tvlassFlow Db/h]VolumeFlow [fi3/S]StdUqVolumeFlow [fi3/s]StdGasVolumeFlow [MMSCFD].±' Pr,:,peruesc'i') Mole

i:::i tvlassNITROGENCARBON DIOXIDEr'1ETHiI.NEETHANEPROPANEIS08UTANEn-BUTANEISOPENTANEn-PENTANEn-HE:(ANEC7+"VoJATERETHYLHJE GLYCOL

.ti StdUqVolume

0.00165.0

1060.601.20

50.0U0,000

0,000

1.0925E-2

Dbmole!h][Fraction] OiJ;hj

6.600.600.006.60'11.00

0.006.600.000.000.006.60

n.lO0.80

[Fraction] [fi3I's]

0.000,00

o.no0.00o.no6.00(WO

0.000.00n.oo0.00

1(}.(l0

40.00

r Ignored

Now connect these streams to the mixer created previously.

The outlet of the mixer must then be sent through 2 shell and tube heatexchangers. This should be setup as below,

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

10

Page 40: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

s~;#P~--S-4--f'~tSH;~'··tM1

85Hx2

S6

----Il.I1JU-----,-----f'Inlel."Gas It'c.······1J

£lw1

The first heat exchanger is specified with an approach temperature 15 F. Bothheat exchangers are specified with a pressure drop of 5 psi on each side of theexchanger. The first exchanger is specified as below.

r Ignored

1055.00405,75

9651,55

0.12.0

3.695'IE+O

IIn5bell :OutTu!>., iOutshelltr ··FJ---------"i:J55.ln

0.99698HJ.O

1060.00405.75

9651.550.5330,120

3,695'IE+O

111 Counter Current j &'! I

InTu!>e---IT-----54.0ut

Add Energy Signai .". I PSF File ,., "1 Schematic

PortflameIs Recyde PortConnected Stream/Unit OJ)

VapFracT[FJP [psiaJMoleFlo'N Obmole,q,JMassFlow ObthJVolumeFlow Ift3!s]StdLiqVolumeFiow Ift3!s]StdGasVolumeFlow f!'1fvlSCFDl

Summary Settings I Profile IPlot Report I Notes IINumberofSegmenw

Similar pressure drop specifications will be made in the second heat exchanger.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

11

Page 41: Introduction to VMG Sim

Summary lsetlings I Profile IPlot Report flotes I?J Hain Data ::J Data- .... --------,------------- -------.-.--,

r,jame '>f Value Name !>; ValueTube DP [psi] 5.00 In Tub~:Si;-eii-DT[F] r----Shell DP [psi] 5.00 OutTube-Shell DT[FJ

UA [Btuihr-FJ,1 '1 Tube Delta T [FJApproach T [F] Shell Delta T [FJEnergy LostTube [Btu,11fl LJ:==========±:=========[l=================J,I±l[tl Detailed Rating ::::-----

1050.00405.75

9651.55

0.1203.6954E+O

1055.00-105.75

9651.55

0.1203.6954E+O

Virtual MaterialsGroup, Inc.

connected Stream;1Jnit OpVapFracT[F]P [psia]r'loleFlow Dbmaleth]~1assFlaw Db/hlValumeFlaw [ft3/s]StdLiqVolumeFlow [m/s]StdGasVolumeFlow U'1MSCFD]

EJ

__P_ri_nt_-, __A_d_dEn~e..::rg.:..y ...;Sig:..n_al_,,_.-J _~PS_F_F_ile_.'_"_I Schematic _I

The outlet of the heat exchanger goes through the chiller next, which will berepresented as a cooler. The chiller will cause a pressure drop of 5 psi to occur.Add the cooler and rename it "Chiller".

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

12

Page 42: Introduction to VMG Sim

1045,00405,75

9651,55

0.1203,6954E+O

with VMGSim

[]iOut

1050.00405.75

9651.55

0,1203.6954E+0

s.oo

11plot I Equilibrium Results I Notes 'I

0"1""·""""..·"""""""""""""""",,,,,,,,,,,,, [tl Advanced:::':

S6

Virtual MaterialsGroup, Inc.

Porl1'lame 'In.... . -.-._- _--. . __.__ _-~

Is Re(:yde Port iLlConne(:ted Stream/Unit Op :-'-"'5.;:::6.:.::;0.::;ut::.- --1llapFra(:T [F]P [PsiaJr<1oleF!ow Dbmole/h]~lassFiow Db/h]VolumeFlo'N [ft3/s]StdLiqVolumeFlo'N [fts/s1StdGasVolumeFlo'N I.MMSCFD]it) Properties (fi.lt+R);,,) Fra(:Jion [Fradion1

NITROGEN

EJ

Add a stream to the exit of the chiller and name it "To LTS". The temperature ofthis stream should be set to be 10 F.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

13

Page 43: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

5pecfrom

Simulating with VMGSim

50lved

Detail View

r' o

Exclude From Summary

Summary '1 Equilibrium Results I line Sizing I tlotesj

0.64082

5.4123.25

12.342.11

148.29100.54

_ r Ignored

1045.00405.75

9651.550.1530.120

3.69541:+0

[Fraction] DbmolelhI0.030420.005190.611940.247780.0573

0.01333

..............................;1,.0..,.0..

Print I. Create Port i Del<:te Port I

VolumeFlow [ft3ts]StdLiqVolumeFlow [ft3isIStdGasVolumeFlow [HlvlSCFD]

PropertiesHoleNITROGEN

CARBON DIOXIDEr"ETI-iANEETI-iANEPROPANEISOBLITANE

By going to the "Equilibrium Results" tab, it can be seen that there are threephases present in the stream exiting the chiller. The vapor stream consists of thesales gas, while one of the liquid streams contains the ethylene glycol. The otherliquid stream will be sent to a reboiled absorber for further processing.Therefore, to separate these phases, a three phase separator will be needed.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

14

Page 44: Introduction to VMG Sim

Solved

'LiquidO Ij9[jid1

0.6408 0.3547 0.0045

10.0 10,0 10.0

1045.00 1045.00 1045,00 I2551,0 37,0 -18751,234,710 ]O~-364 22.599

2.244 2.855 1,162 0.4770.4683 0,5989 0,2369 0.1142

23.79 20,84 28.99 33,48

10.6000 7,2986 24.9-396 70.155221.601 20,027 24.3'10 29,946

2830lE-2 1.4196E·2 6,493lE-2 2.3722E+l0,0379 0.0245 0.0531 0,1962

1.063 1.004 1.177 0.5030.5614 1.00 0.00 0.00'105.75 260.01 143.91 1.82

9651.55 5418,13 4172.35 61,070.253 0.206 0,046 0.0000.120 0,073 0.0-\7 0,000

0.03042 0.04044 0.01269 0.000050.00519 0,00513 0.00535 0.000560.61194 0.71346 0.43622 0.003770.24778 0.19885 0,33932 0.00057

0.0573 0,03019 0.10701 0.000.01333 0.00475 0,02899 0.000.01719 0,00538 0.03876 0.000.00382 0,00076 0,00941 0.00

0.0037 0.00067 0.00923 0.000.00282 0.00024 0.00751 0.00

0.002 0.0001 0.00546 0.000.00292 0.00002 0.00002 0.644370,00159 0.00 0,00003 0.35067.................._.._....- ..•.•.•..•...•..••••........•.•-- ............._...._-_.....

r Ignored

Description:

Print LCreate portj Delete Port I

~1QI~f'lo\\'D~I11()I~1.h.L ',fYlassFl""vUblhlVolumeFlowJft~Ls)

SldLiqVolumeFlow [fU/sl

Summary LE.~i.~~ji~.r.i~·~~:~~~j~JIUne Sizing INotes IPort

Virtual Materials

Group, Inc. Simulatin

Detall View

r~ Exdude From Summary

Spec From

Fra~~()~~til:lB()(3E:t~[F.~a.~~,,~]....Fraeti0I1,l::~~ON[)~O)(I[)E .. [Fr"cti()n]

Fr.oejj"r0.:.lI::r.H..I\I\lI:.!f!"c,U_°0.JFractic,n.~AJ'JE[Fr:.action] ..Fraetio~,l'.fl.9!'~~tJE: [Fra~ti()t1]

Fraeti0I1d§QBLrr.A.f'JE. IFrClctionJ ,.. .

~;:~~~is6~~ii~r~~~~1~~11F.ra.~ti()~~I1£.E_NIl\r'JE...IF.!acti()r11JFracti()n, f!±iEXANEJFractionJ .Fraetion.C7+' [Fraction] iF;acti~;;.i;'AiERIF;~~ti~~f-"--'i

,~r.!'~().~.;~:!y:f"S.~~:(.s.9UEr~<:!1"'::L....

Now add a three phase separator (SeparatorLLV), which will be our lowtemperature separator (LTS). Add material streams to each of the material portsand label them as below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

15

Page 45: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

87

Hx286

Chiller

68

The cooled separated streams will now be connected to the shell and tube heatexchangers to provide the additional cooling required to efficiently cool theproduct streams. The vapor stream will be connected to the first exchanger, withthe liquid product stream connected to the second exchanger.

Note that since the approach temperature is specified in the first exchangeralready, that it will solve once the vapor stream is connected to it.

Hx185

Chliler

The stream out of the heat exchanger should be labeled "HX2 Shell Outlet". Thisstream will have a temperature of 88 F.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

16

Page 46: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Spec from

Solved

with VMGSim

r Detail\liew

r Exclude From Summary

Summary Equilibrium Results IUneSizing 'I Notes)

0.005350.436220.339320,10701

0.02899

1.830,77

62,78

48.3315,404,17

0.62734

88.01040,00

143,91

4172.350,108

0,0471,3107E+0

Connected to [In lOut]VapFrac

,T[F]!p [psia]

I~~:;~\:' ~~~~leMiVolumeFlow [ft3/s]!StdLiq'VolumeFlo'N [ft3/s]!StdGasVolumeFlow U.1MSCFD]Ii+; Properties

IH ~::'OGENI CARBON DIOXIDE

METHANEETHANEPROPANE

IS0BUTANE

-r Ignored

By looking at the PFD, it can be seen that Hx2 is shown in red. Opening the heatexchanger form, it can be seen that there is a temperature cross in the heatexchanger.

Chiller

This can be seen by opening the "Plot" tab of the heat exchanger and seeing thetemperature profile.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

17

Page 47: Introduction to VMG Sim

......_"........• Tube··)Shell<··

1.0

Description:

Temperature cross (-5.83367917.149301) il1/Hx2

fHX2_Shell_Outiet

Number of Segments

·10+-------+------'&,0.0

Virtual Materials

Group, Inc. Simulatin with VMGSim

Print I Add Energy Signal... j PSF File... I---c------c----'

70

&0",.",,-------------,

.Summary I settings I profjler~.Ii:l!:.JI Report INotes IX Axis ISegment G'J Y Axis r---------,

Properties fAil Properties. -------a

Name: !Hx2

Once the recycle is closed, the temperature profile in the heat exchanger will beadjusted. Until that point, the process specifications do not need to be adjusted.

The next step is to prepare the two liquid streams that will be fed to the reboiledabsorber. Both the LTS liquid stream and the inlet separator streams must besent to the reboiled absorber. First, each of these streams must be sent througha valve to decrease the pressure of each stream.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

18

Page 48: Introduction to VMG Sim

ChillerHx2

Virtual Materials

Group, Inc. Simulating with VMGSim

s~lg~fSt--S-4-----,l.'~·'iHX1········~~·-"""5"""5--+

M1

The pressure of "Ovhd Feed" is setto be 440 psia, while the pressure dropacross V2 is set to be 575 psi.

r Ignored

44.9

143.914172.35

0.3080.047

1.3107E+D

[Fraction]0.012690.005350.436220.339320.107010.02899

toVapFracT{F]P [psia]r~oleFIO'N DbmoleihIMassFlo'N Dbih]volumeFlow [ft3!sIstdLiqVolumeFlow Ift3!s]StdGasVolumeFlow [r~MSCFD]

if: PropertiesZ:'1 r'1ole

NITROGENCARBON DIOXIDE",lETHANEETHANEPROPANEISOBUTA~IE

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

19

Page 49: Introduction to VMG Sim

Virtual MateriafsGroup, Inc.

0.011560.006030.230320.094460.20622

0.0061.3704£'1

0.011560.006030.230320.094460.20622n n7Qil.1

0.00l'iD.O

1060.0015.05

744.800.0070.006

13704£·1

575.00................................l...Q,.Q??J!

Unear100.000

NameDella P [psITCvCharacteristic~~. Opening [%]

IsConnected Stream/Unit OpVapFracT[F]P [psia]r~oleFlow Dbmole;h]~lassflow Ob,lh]VolumeFlow [ft3is]StdLiqVolumeFlo'N [Mis]StdGasVolumeFlow U~I'4SCFD]

if! Properties (Alt-tR)[3 Fraction [Fraction]

NTIROGB'JCARBON DIOXIDEfvlETHANEETHANEPROPANE

---+r:x:J---+ r5~g~=3Y;~d··· ~~

Summary ICurves I Equilibrium Results [ notes IO"I,,,~· - _ _ , ItJ Advanced

EJ

A reboiled absorber must be now be added to the PFD. It should be renamed"Stabilizer". The stabilizer should have 12 stages. By default, the reboiledabsorber has 2 stages, one tray and the reboiler. To add the additional 10stages, press the "Add/Remove Stages" button.

These stages should be added below the first stage.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

20

Page 50: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Add I Remove .~ stage(s)

below stage 1

overheadfeed <Jolew>1 .

!,...-~~~--....,

The feeds must now be connected. The overhead feed stream can beconnected to the pre-created feed connection by using the "Connected Obj"dropdown.

FEEDStageConnected Obj

e;::;D~~",:"e:,,:,::-ils ------{;~:~n';aj{~~!~XTI1~~;J~~2&;lert

Stage Stage.--'3_Feed.•Out j

T<Browse•••>

ype '0 , rawr:nnnp,tpd Ohi

A new feed must be added to allow for the second feed stream. This feed willenter at stage 3. To add this stream press the "<New>" cell in the feed section ofthe form.

Now connect the "Stage 3 Feed" stream to this connection.j

.... _ _ _ ._.__.._~_ _.._ _ _.._ __.__ 1. _._..

,overheadFeed feed <J

. 1 3i IOvhdJeed.O... !5tage_3Jee... c:::

loverheadV reboilerl <I

The last step is to specify the pressure and take care of the one necessarydegree of freedom. To do this, go to the "Spec/Estimates" tab. The pressure ofthe top stage will be set to be 435 psia, while the reboiler pressure will be 440psia.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

21

Page 51: Introduction to VMG Sim

with VMGSimVirtual Materials

Group, Inc.

~ /$tilhiliIf:<r (R>:,:b(lih::-d:~b~('fhf.f): 12 51<'19':::< n~,~,~~,~,'~',:::::,o::::,:'::':'-:":-:":: __,_. ._.__--,=~:':::.'::~.c=':Name: fStabil~ Description:

I_"Add/Re.mov-e.Stages ~~ I

Configuration Spec/Estimates Efficiencies] Profile; Convergence 1Notes I ~ ------.--jSpe<:ification Required = 1 (0 supplied). Delete ~name' to remove. Ddele 'Value' to tum Into viewed spec.

Viewed Specifications. Delete "lame' to remove. Enter a value to turn :jnto an active specification

12 EnergyIn reboflerQ<tlew>

Estimates

<flew>

r Ignored

Lastly, a bottoms product component ratio specification will be made. This ratiowill be a draw component ratio of ethane to propane of 0.045. To do this, press"<New>" under the "Specifications Required" section of the form. It will bring upthe following form.

The type of specification should be changed in the drop down menu andchanged to the "Draw Comp Ratio Spec".

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

22

Page 52: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Type Camp Ratio Spec

Stage Stage SpecDuty Spec

Value Duty to feed Ratio Spec-----1 Draw Property Spec

OK Draw Special Prop SpecDraw Component Spec

.1...- -1 ,"\.."'.,..

The draw used should be changed to be the reboiler product.

tlITROGHI

CARBON_DIOXIDENETHAtIEETHANE

nnOOA"II:

..'-NITROGEN

CARBON_DIOXIDEMETHANEETHANE

j,:t~I~R.~ti~s~~~~~~~~~-~-~------'_iJ

<New>Nume~t nqroneul nentUse the <Shift> ilnd <Control> keys for multiple selections

Ethane and propane need to be selected as the components used in the ratio,with the value of the ratio being set to 0.045.

OK

_-:II"loleRilitioSpec._~~~_. ······8

Cancel I

By pressing "OK" and then pressing the "Solve" button, the tower will now solve.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

23

Page 53: Introduction to VMG Sim

Schematic .... !

- - r Ignored

De~rlptlon:

Virtual MaterialsGroup, Inc.

W. Atways: Restart from Last Convi=="'?==-;

Restartl . l.astCo~

Configuration 1 Spec/Estimates 'j Iffkiencies 'j Profile: Convergence IHotes 1

InltiarlZation r-t-ethodrRi;;;;~~--~~"-'-----3 ~ tcb[l;~;lierat;;;:;-i-o~'~;'E~;'~;'(;:'048946--"--'- .....-----.---.---------------

tcbilizer kner Error 0,451:68tabllizer Imer Error 0,053443

Parameters ,tabilizer Ir.ner Error 0,025971

L~;fj-~~~~~~ffi~,,,~Il'1axouterErroy 0.0001 IlStabililer Inner Error 0,063362

l~~;~~~~_~L O.fi~:~ IS~~~!~ E~~[iig~~fii!ITriggerSo.fve 0 tabilizer Inner Error 0.000233TrvlastConverged 0 Inner Error 0,000112TtyToRest~rt 0 ImerErrar 0,000020

TryTo5otve 1. i:~?~~-~. ~~~~~~r 0,002926-y.~.p..f..~~~.~!~_q_~.~y.~......... 0 tabilizer Inner Ermr 0,007516

tabilizer Inner Error 0.-001443tcbiher Inner Error Q,0004Jltcbilli:er Irner Error 0,000111rebllizer Ironer Error I}. 000041

!Stabilizer Heraton 4 Outer Error 0,000555''stabilizer Inner Error 0.003359,'Stcbilirer Imer Errcor 0,001S$7'stebilirer Inner Error 0,000277Steblliler Inner Error 0,000054Stabilizer Iteraton 5 Outer Error 0,000084/Stabilizer Iener Error 0.000303lStabihzer Imer Error 0,000242i'Srebilizer Inner Error 0,000062

Now name the outlet streams as below.

The vapor stream from the stabilizer will be recompressed and used as therecycle. This stream needs to be connected to a compressor.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

24

Page 54: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc.

CP1

Simulating with VMGSim

An adiabatic efficiency of 80% should be specified in the compressor.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

25

Page 55: Introduction to VMG Sim

Virtual Materials

Group, Inc. . Simulating with VMGSim

Plot INotes I

r Ignored

134,63

3413.85

0.042

1.2Z61E+0

1.00

55.1435,00

134.633413.85

0,:379

0,042

1.Z261E+O

Data - , Lt.J Advanced :::::::::::::::::::::::::::::::::::::::::::::::::::::::ecce::::::::::::

Print

Name......................_- .

InQ [HorsePower]Delta P [psi]Pressure RatioAdiabatic Effidency [%] 80,00Polytropic Effidency [%]Speed [rpm]Adiabatic Head [ft]Polytropic Head [ft]

Portf IC'lflnected StreamjUnitOp

dM"leFI"w Dbmc<leihJDblh]

d VolumeFlow [ft3/s]IStdl-iqVe,lume:Flow [ft3/s]

f lSt,JGasVolurneFIc,w IMI~SCFD]

An air cooler will follow the compressor. It will have a pressure drop of 2 psi andan outlet temperature of 140 F and an outlet pressure of 1060 psia, With theoutlet conditions fully specified, and the pressure drop specified, the backwardpropagation of information allows the compressor to solve.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

26

Page 56: Introduction to VMG Sim

with VMGSim

1.00140.0

1060.00

........p.7.&~.:3413.85

0,1640,042

L2261E+0

1,00173,0

1062,00134,63'

34B.S50,1860,042

1,2261E+O

Solved

In lOutU . ·----TT

: S10.0ut

Description:

Virtual MaterialsGroup, Inc.

p"rttlame-- .._----------.-------

Is Recycle PortConnected Streamj1Jnit Op

VapFracT [F]P [psia]~lol.Flo'N Obmol.jh]f~assFlow ObIl-iJVolum.Flow [ft3/s]5tdUq'iolumeFlo"i [ft3!s]StdGasVolum.Flo'N [t'U~SCFD]

FE Properties {Alt+R)

[C) FracDon [FraCDon]NITROGENCARBON DIOXIDEf~ETrlANE

ETHANE

~INumber of 5eg,;,-nts,------1C11

Summary Profile1Plot INotes I~c!lcai~•...~~.~.~...••.•. :.::;:::.::::::.::::;. i±J Aclvanced=··.·::=··=

The "Recycle" stream can now be connected to the outlet of the air cooler. Thiswill allow the system to iterate and find a converged solution.

Lastly, the "Sales Gas" stream must be added out of the first heat exchanger.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

27

Page 57: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc.

62

Simulating with VMGSinl

It is required for transmission that at 800 psia, the dewpoint of the sales gas mustbe 15 F. To do this, a balance unit operation can be used. This will allow thematerial balance to be transmitted across the unit operation, allowing for thetemperature and pressure of the stream to be specified. Therefore, once thebalance unit operation is created and connected to the "Sales Gas" stream itshould be checked that the balance type in it is set to "Mole".

© 2009, Vit1ual Materials Group, Inc. Do not copy unless authorized in writing by Vit1ualMaterials Group.

28

Page 58: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

To calculate the dewpoint temperature, specify a pressure of 800 psia and avapor fraction of 1.

© 2009, Virtual Materials Grqup, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

29

Page 59: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

flame: IBall

with VMGSim

0.070.0123

1.0014.2

1040.00 800.00178.82 ,····::jz§:;:@

3722.570.2320.049

1.6286E+O

3722.57

0.070.0123

0.73696

0.118550.05039n fHlli1;~

0.2550.049

1. 6286E+O

Solved

.........._....~."--- --_._~.._-...,

CDnnected StreamJ1Jnit OpVapfracT [F]P [psia]r>lloleFJow Dbmolefh]~'assFlow Dbjh]volumeFJow [ft3/s]StdLiqVolumeFlow [ft3!s]stdGasVolumeFlow I~1"'sCFD]

':j.! Properties· (A1t+R)'.C) Fraction [Fraction]

NITROGENCARBON DIO)(lDENETHANEETHANEPROPANET~nRI fTJlNF

As can be seen, at these current conditions, the dew point at 800 psia is 14.2 F.To adjust this, the temperature out of the chiller needs to be adjusted. This canbe done by using a controller. First, create a stream out of the balance unitoperation called "Dewpoint T Check". Now create a controller. The OP of thecontroller will be the temperature of the "Dewpoint T Check" stream. To add this,open the controller form, and in the OP drop down menu, select "<New>".

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

30

Page 60: Introduction to VMG Sim

r Ignored

AC 1.Air Cooler AltitudeAC1,Air Cooler Cost

~AClAir Face Velodty

Settings' AC1.Air InletTA -ti ' ... , ...., .. AC1,Air I·lass Rate

L \,e AC1,Air OulletT~e:'JJ..l:fi!;ilJr, AC1..o.ir Relative HumidityI'lax Error ] AC l"i1.ir Side Delta PI'lax Absolut AC1,Air Std Volume RateI'lax controlll AC1.Air Volume Rate .

.. -: ,-.. ,.". AC1.Alrslde dp I'luitiplierAction AC1.Airside Film CoefficientUse Direction

Simulating with VMGSimVirtual Materials

Group, Inc.

Summary IPerformance -.-..------.-.-

r'·-'.·.·~ -..' -,.-- ' -.-.' -' ':'..' '........ -'-'~." i: Name I>! Value .. i

IPVfrarg~fv'a~ '. r··-- i,sp/rargetVal '

OP/I"1anVar

EJr-~------

With this new form, select "To LTS" as the connected unit operation and "!\Jew T"as the signal variable type.

Connected Unit Operation:

.signal varjabLeTypez

Cancel

Pressing "OK" will create a temperature signal port in "To LTS" and connect it tothe PV port of the controller. Repeat these steps to connect the temperature of"Dewpoint T Check" to PV.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group,

31

Page 61: Introduction to VMG Sim

r Ignored

I\"}[]

1.00E-040.02

60Direct

o

, Error. Absolute Error [F]Controller Iterations

ActionUse Direction

Virtual MaterialsGroup, Inc.

I:;]

r?\TJQ~;;P.:?!:~CT.:~h;'~!;::T.G

The set point of Dew Point T Check should be set to 15 F. Also, the OP Max andMin should be set to 100 F and -100 F respectively, with a step size of 10 F. Thisadjusts the temperature out of the chiller to be 10.9 F.

Direct

oUse Direction-100.0100.010.00

Print

Summary 1

:=J perforD1al'lce--····_·· ...... ~···1 ~~~~===~=;.;.==c1Name__ ._._. . l~JYllllJ~__. I RIPV/Targetvar [F} ... 15.0 I' []SP/Targetval [F] 15.0 IJM~~:F;~~;;;:·:············:···..···_· j' -;i.orli:iJtd:1

OP/}<1anVar [F] .. , L::::::::::::::::::::i.iJ.::~j I

The last step is to check that hydrates are not formed in the stream exiting thechiller. To do this, the Out port of "To LTS" must be cloned, so that it can beconnected to the Hydrate unit operation. To clone a material port, open the "ToLTS" stream and press the "Create Port" button. This will bring up the formbelow.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

32

Page 62: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Type:

Clone

with VMGSim

Since an Out port will be connected to the In port of the Hydrate unit operation,the type of port to be created should be switched to "Out".

Pressing OK will clone this port. Now create a Hydrate unit operation to connectthis newly created port to it. Opening the form, the cloned port can be connectedto the unit operation. In the "Connected Stream/Unit Op" dropdown, the clonedport can be found. It is named "To_LTS.Out_1" since it is the cloned version of"To_LTS.Out" port.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

33

Page 63: Introduction to VMG Sim

Dewpolnt_T_check.OutEG_to_Regen.OutStabilized Condesate.out:*J:el{*kl2d)~ITJ0ftl.%IP••£ffi~1l!0tl<Browse•••>

Print

Is PortConnected Stream{Unlt OpVapFracT [F]P [psia]r'loleFlow Obmole/h]r'lassFlow Oblh]VolumeFIO'I\' Ift3!s]5tdLiqVolumeFlc,w [ft3Is]StdGasVolumeFlow [r~~15CFD]

[tl Properties (Il,lt+R)Fraction [Fraction]NITROGENCARBON DIOXIDEt'lETHANEETHANEPROPANEISOBUTANEn-BLrrANE

Virtual MaterialsGroup, Inc.

EJ~i~ff>--+ f~~~~~~~~<

t'V'i.'l.

Summary '[ settings 1Equilibrium Results 1Notes ~

EJ Data'-" I±l Activate Data '----:---.-....-- .::::l

I~I~'···-

Once connected, it can be seen that a hydrate is not formed at these currentconditions. Also, it shows the formation temperature at the current pressure andthe formation pressure at the current pressure, as well as the approachtemperature to the formation temperature.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

34

Page 64: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Is PortConnected Stream;\Jnit Op\lapFracT [F]P [psia]~1oleFlow Dbmolelhlr·lassFlow Db/Ill\lolumeFlo'N [ft3/slS!dLiqVolumeFlow [ft3!slStdGas\!olumeFlow [r4~1SCFDl

if! Properties (Alt+R)!::::' Fra,:tion [Fraction]

NITROG8~

CARBON DIOXIDEf4ETHANEETHANEPROPANEISOBUTANEn-BLrrANE

0.-5221210.9

1045.00342.55

8895.730.2080.103

3. 1198E+0

0.045250.012520.580880.163670.127380.022060.02678

0.5221210.9

1045.00342.55

8895.730.2080.103

3.1198E+0

0.045250.012520.580880.163670.127380.022060.02678

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

35

Page 65: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Import Propane LoopNow that the dewpoint gas plant has been created, this can be combined with thepreviously developed propane loop to create an integrated project. The propaneloop will be used to accompany the chiller. The chiller created in the propaneloop will be one side of the chiller heat exchanger, being connected to the chillerin the dewpoint gas plant.

The first step in connecting the propane loop to the dewpoint gas plant is to openthe dewpoint gas plant case.. Next, under "File", select "Import". This will allowthe propane loop case to be imported into this project.

Tools Assistants

NEW Project

Open Project..

Import,,,

Report Export ...

Save Project

Save ProjedAs".

Exit

C:\Users\Carl Landra\Documents\.Block VVeek\DEwpointGasPlantvmp

C:\Users\Carl Landra\Documents\.BlockWeE;k\MDEAReporting.vmp

C:\.Users\Carl Landra\Documents\.Blockl>VEek\DewpointGasPlantDeveloping.vmp

C:\Users\Carl Landra\Documents\Block Week\reactor2UNIQUACdefaultsE'luil.vmp

C,\Users\,(arl Landra\Documents\Block Week\reactor2UNIQUACdefault,.vmp

C,\Users\Carl Landra\Documents\Block Week\reador2UNIQUACdefaultsSideRxns.vmp

This will open up the file form below. Select "propaneloop.vmp", or whichever fileis the propane loop case created previously.

File name' propaneloap.vmp

FoldEr!; A

,....J ~~•• t''"''.'a ....~......... ,'~••• ,.t"

LJ DE~vpointGa~PlantDe:veloping,bk5,vrnp

L.J DewpointGasPlantDe'.'elop-ing.vmp

LJ ExcdUnitOp.vmp

U GuntherR.ec.ydeMixer.vnlp

U GuntherRecycle-5treal11s,vmp

L~: MDEAExamplesmp

U MOElIP,epolting.bkl,'.mp

L..J r..,1DE,G.Reporting,vmp

Lj OilEx~mple,bkLvmpL..'j OitExample,':.'mp

:....J propane:laop.bkl.vmp

I?-i iJ prcpanelooF·vmp

LJ Teadorl.bld.vmp

LJ feactcrLvmp

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 66: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

This will now add the propane loop as a second flowsheet within the dewpointgas plant case. The separate flowsheets can be seen as different tabs at thebottom of the PFD.

In order to connect the flowsheets, the duty in the propane loop chiller duty mustbe removed. This is specified in the "Chiller" unit operation itself. With this valueremoved, the propane loop will no longer be solved, as the extensive variablerequired has been removed. .

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

2

Page 67: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

flame: fChiii;;~~-~-~---

E

1.00

38,37

n !gnored

1.00

INumber of Segments 11Summary IProfile IPlot. 1Equilibrium Results Notes I

Datia ------------- -----------.. --------, (tj Advanced::::

--------.--....----------------------------..-T=-------~·------·,,·--·--~-:-=----~--------------------'1-'-------------Porl1lame.__..._-_..~_. __ .. -. ..---_ ...-I. Recyde PortConnected Stream/Unll Op'v'apFracT [F]P [psia]'-loleFlow Dbmole/h]NassAo'N Db/h]

nVelumeFlow [ft3!s]1l~:~~:'~~~:;,~:~;:::vl[ft3!S]iIi [NNSCFD]

Properties (Alt+R)Fraction [Fracti',n]PROPANE

~CI\ilI;rjjlJt~

~ODDl:J00

SZ DonC~erVl

51

The "Chiller Duty" energy stream must now be disconnected from the chiller anddeleted on the propane loop flowsheet. The duty for the chiller will now bespecified by the chiller in the dewpoint gas plant. Therefore, an energy streammust be connected to the "Chiller" in the dewpoint gas plant.

To connect this stream across flowsheets, open up the "01" form. For the Outenergy port, in the "Connection" cell, press "<Browse>".

© 2009, Virtual Materials Group, Inc_ Do not copy unless authorized in writing by VirtualMaterials Group.

3

Page 68: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Name: fQl

Exclude From Summary

4.502E+5

E:;) Energy InIn [Btuillr]Energy Out

Out [Btuillr]

CP1.InQ-"~===-=1 Hxl.Energy Lost Tube

Hx2.Energy Lost TubeStabilizer.Enerql·Feed 11 reboiler

To connect to the In port of the propane loop chiller, select the "Chiller" under the"propaneloop" flowsheet.

~ancelR 5how Short listW 5how free PQrts onlyE.rintr",;"y,

i") i:,,: EnergyStreams

QiCompressors

CPi·H Re~oiledAbsorbers

Stabilizer, '.=i flowsheets

propaneloop

-l';: CompressorsCPi

Heaters

l¢.h..i.ii.~d

Once this is done, press "OK". As can be seen on the PFD, the energy streamon the dewpoint side of the chiller is now connected to the propane loopflowsheet.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 69: Introduction to VMG Sim

,!I Virtual MaterialsGroup, Inc. Simulating with VMGSim

propaneloop

82EO

01

83

H

On the propane loop side ofthe project, there is also now an energy stream thathas been created and is connected to the chiller. This chiller duty specificationnow allows for the propane flowrate through the loop to be specified based onthe chiller duty in the gas plant. This connection will update any time a changehas been made to the dewpoint plant.

Since the propane loop and the dewpoint gas plant each used different propertypackages, these can be seen by opening the thermodynamic model form can beseen by pressing the toolbar button indicated below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

5

Page 70: Introduction to VMG Sim

~ Virtual Materials

Group, Inc. . Simulating with VMGSimAs can be seen in this form, a different property package is used for the mainflowsheet than for the propane loop flowsheet. This can be seen below.

Since only an energy stream is being transferred between the flowsheets, thedifference between property packages is not significant. However, this is a veryimportant aspect to take into consideration when transferring material streamsacross property packages. This will be shown in another example where theClaus plant is imported into a created MDEA case.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

6

Page 71: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Gas SweeteningExample Using

MDEA~ _ ~ _ ~o ~ _, "00" 00 , .., , .. __ ,.., ..m ~ ~ "m ,,, .., .. m'''_o ..o_,~m,_.., ..,......,_,~_,,.... _.,_,..

Water_Balance_Calculator

, .. '.... 0'" ,oM .." .., ..,8", -, ~ -.... 'wi

!Rich_Amine_Loading_Contm,ller

l:5i¥"&:"lIilli;:j

~~~~1

Make:_up_w_at_e_r__i'-'"

Mi I1 1~ To_Coole,~ ,

Cooler Pi

R ..w~~

Sales_Gas

From_Crqss_ExchangeAcid_Gas

Flash_Tank_Vent

Rich_Amine_tcLCross_Exchange

Regenerator

d_Rich_Amine

Flash! Tank

Rich_From_AIT' • To Flash Tank'ADi Vi

Rich AmineContactor -

iGas_to_Abs

~Inlet_Separator Regenerated_Amine

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by Virtual Materials Group.

Page 72: Introduction to VMG Sim

,j Virtual MaterialsGroup, Inc. Simulating with VMGSim

Gas Sweetening Using MDEA Summary

Property PackageAmines Property Package

ComponentsNitrogen, Hydrogen Sulfide, Carbon Dioxide, Methane, Ethane, Propane,IsoButane, n-Butane, IsoPentane, n-Pentane, C6+ (Hypothetical compound NBP248 F) Water, Methyl Diethanolamine (MDEA)

Stream InformationStream Sour Gas Lean Amine Make Up Water

T (F) 90 -100 77

I P (psia) I1000 1010 ---

StdLiqVolumeFlow --- 1.782 (800 ---(ft3/s) gal(US)/min)

-

StdGasVolumeFlow 40 --- ---(MMSCFD)

Nitrogen 0.0279 0 0

I Hydrogen Sulfide 0.094 0 0

Carbon Dioxide 0.0493 0 I 0 I

I Methane II 0.7437 I 0 0

Ethane 0.0318 0 0

Propane 0.0167 0 0

IsoButane 0.0035 0 0

n-Butane 0.0089 0 0

IsoPentane 0.0033 0 0

n-Pentane 0.0035 0 0

C6+ 0.0166 0 0

Water 0.0008 0.55 (mass fraction) 1

Methyl 0 0.45 (mass fraction) 0Diethanolamine

All compositions in mole fraction unless noted otherwise

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 73: Introduction to VMG Sim

,Ii Virtual MaterialsGroup, Inc. Simulating with VMGSin1

Unit Operation Summary

Contactor

Absorber

25 Stages

Top stage pressure 995 psia

Bottom stage pressure 1000 psia

Tray dimensions - GPSA Estimate

Efficiency Model - Auto Calculate

Rich Lean Cross ExchangeTube DP - 5 psi

Shell DP- 5 psi

InTube - Rich Amine to Cross Exchange

OutTube T - 200 F

OutTube P - 60 psia

RegeneratorDistillation Column

22 Stages

Feed Stage - Stage 4

Condenser Pressure - 19.5 psia

Top Stage Pressure - 21.5 psia

Reboiler Pressure - 24.5 psia

Stage 1 Temperature Specification - 120 F

Draw Flow Spec - condenser liquid 0 Ibmol/hr

Duty to Feed Ratio Spec (StdLiqVol) Stage4 Feed / ReboilerQ - 900 Btu/gal(US)

Tray dimensions - GPSA Estimate

Efficiency Model - Auto Calculate

Mi

Parameters

CalcPressureMode - AIlPEqual

PiEfficiency - 75%

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 74: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc.

CoolerDeltaP - 5psi

Out T -100 F

Out P - 1000 psia

Simulating with VMGSim

Water Balance Calculator (ExceIOp)

Import

Component Molar flow Water Gas to Abs (water in)

Component Molar flow Water Sales Gas (water out)

Component Molar flow Water Flash Tank Vent (water out)

Component Molar flow Water Acid Gas (water out)

Export

Sum water out and subtract water in and Export the value to Molar Flow Rate ofMake Up Water

Rich Amine Loading Controller

Manipulated Variable

Connected Object - Lean Amine.StdLiqVol

Target Variable

Connected Object - AD1.AcidGas/Amine_(mol)

Settings

StepSize - 0.25

Target Value

Value - 0.40

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 75: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Import Claus PlantThis example will demonstrate how integrated flowsheet models can be builtusing existing case by importing and then connecting it to a MDEA gas treatingplant.

Begin by opening the MDEAExample.vmp created previously.

Open the File Menu bar and select Import.

New Project

Report Export .. :

Save Project

Save Project As",

Exit

c: "Program Files\Vf'lG \Vr.1GSimPkg3_1Ipoeumentation"f'janual Examples¥'lDEAExample, \Imp

C:\Program Files \Vr-1GWMGSimPkg3_1Ipocumentation¥'lanual Examples\IntroductiontoVMGSimto'Ners, vmp

C: \Program Files\\1v1G wr-1GSimPkg3_1'poeumentation\Manual Examples \ol,mmoniaRefrigeration, vmp

C:'.program FilesWr'lGWr'1GSimPkg28DREALReleaseIpocumentation\Tutorials\f>1anual-TutoriaI1, "ImpC: "program FilesWrvlG\Vr'lGSimPkg2SDREALRelease\Documentationl)'v1anuaIExamples\Atmospheric Crude Tower,vmp

C:\Documents and Settings\James van der Leel)'vly Documents\Quench Compare,vmp

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 76: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Once Import is chosen a file selection form will open. Select theGPSAClausPlantExample.vmp under the Manual Examples folder and thenpress the "Open" button.

Xrf' Heater, vmp

'xl HTRI_case_tutoriaI1_a,vmp

\;/' HTRU:ase_tutoriall_b. vmp

f'1l HTRI_case_tutoriaI3. vmp

'I' Hydrate, vmp

-- ---~-- -- - -- '---.-~-"~'--"~' .._-.. ~'~'-,-'~.'-~"-~.~.~ -···-··~~1

f\)if' ExcelUnitOp. 'Imp

'rj' expander. vmpExtractor. vmp

't{l FlowSheeting, 'Imp

\;,;:> GasOrilke, vmp

\Y'

r\lcs-rn;:.~~;;'~~ ..1'1!'~ CSTR2, vmp

I'tDepressuring1.vmp1"';7' Depl'essuring ExamplE Input FirE,vmp

itt DeprEssurino Example r··J2. BlowDo'l'.'n,bkl,vmp

I\lDEPressurin; Example N2 Blo'/,:Do'/'!n, vmp

lv' DistCurve. vmp

1'i;/ EjectorDEsign,'imp

1\/EjedorRating.vmp

1\')" envelope,vmp

I"X;/ eqReactor. vmp

I\D" Event Scheduler Example,vmp

1\:,.''' examplel.vmp

Recent

Desktop

'--~)My Documents

Filename: Open

My Network Files oftype:Places

Case Files r,vmp}

Open as read-on~'

Cancel

Once the "Open" button is pressed, this will begin the importing process. Afterthe Case is imported the GPSAClausPlantExample flowsheet will be the activesheet in the PFD.

Open the form for the Sour Feed stream.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

2

Page 77: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Solved

Spec From

l~ Detail View

r Exclude from Summary

L~.~·~.~l~~:ry,;Jl Equilibrium Results I line SiZing J Sulfur Detaill

Properties

f"'loleHYDROGEN SULfIDECARBON DIOXIDE

W.lITERf"'lETHANESULfURSULfUR2SULFUR6

SULFURSOXYGENNITROGEN

SULfUR DIOXIDE

r ;Ignored

GPSAClausPl...

Obmole/hI0.60649 291.060.32171 154.390.06199 29.750.00981 4.71

0.,00 0.000,00 {),OO

0.00 0.000.00 0.000.00 0.000.00 0.000.00 0.00

Db!hl[ft3/s]

0.99959110.0

20.70479.91

17326.0139.355

0.0964. 3708E+0

IFractiQnl[Fraction]

to

Print

Remove all of the specified information in Sour Feed. This will cause the Clausplant to become unsolved, and will allow Sour Feed to be specified by connectingit to the Acid Gas stream of the MDEA plant via a cross connector.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

3

Page 78: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

r Detail View

r Exdude From Summary

Equilibrium Results Iline Sizing ISulfur Detaill

GP5ACIausPI...VapFrac

(F]P [psia]

MoleFlow ~bmole!hJ

f¥lassFlow ~b!h]

VolumeFlow [ft3/sJStdLiqVolumeFlow [ft3/s]StdGasVolumeFlow ~"1r"'SCFDJ

Properties

r·loleHYDROGEN SULFIDECARBON DIOXIDE

"'\lATERf'4ETJ-1,Il,NE

SULFURSULFUR2SULFUR6SULFURSOXYGENNITROGENSULFUR DIOXIDE

Navigate to the Main Flowsheet.

Ublh][ill/sJ

r Ignored

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 79: Introduction to VMG Sim

4 Virtual MaterialsGroup, Inc. Simulating with ~~~~il!1~

Create a cross connector and connect it to the Acid Gas stream.

Open the form for the cross connector.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

5

Page 80: Introduction to VMG Sim

EI

Virtual MaterialsGroup, Inc.

Summary I

;IC(lnflected StreamjUnit Op

i 1~:~~~'~~~~i~~:~::}[ft3iS]if U-1r'lSCFD]ProPerties (Alt+R)Fraction [Fraction]NITROGENCARBON DIOXIDEHI'DROGEN SULFIDEMETHANEETHANEPROPANEIS08UTANEn.£LrrANEISOP8'iTANEn-PENTANEC6+"V...'ATERr'IETHYL DlETHANOLAMINEr·jassFraction [Fraction]StdVolFraction [Fraction]

; if:j:;' MoI'eFJc,w gbmc<!elh]

Properties (Alt+R)Fraction [Fraction]NITROGENCARBON DIOXIDEHYDROGEN SULFlDE14ETHANEETHANEPROPANEISOBLrrANEn-BLrrANEISOPENTANEn-PENTANEC6+"

METHYL DIETHANOLAl"1INENassFraction [Fraction]StdVdFraction [Fraction]NoleFlow [Ibmolelh]

Highlight the Connected Stream/Unit Op cell for the Outlet and select browsefrom the pull down menu.

532,8820169.96

Use the Navigation form and select Sour Feed in the GPSAClausPlantExampleflowsheet.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

6

Page 81: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

j" Showfree ports only

Click OK. This will cause the stream information for the Acid Gas stream to bepassed to Sour Feed.

HYDROGEN SULFIDE~1ElHANE

EJ}'ANE

PROPANE

ISOilUTAlifn'BUTANEISOPENTA1'~E

ri-f>ENTANE

Note that the difference in the components available in the Main andGPSAClausPlantExample flowsheets.

Move to the GPSAClausPlantExample flowsheet, notice that after the streaminformation from Acid Gas has been passed to Sour Feed there is enoughinformation for the Claus plant to solve.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

7

Page 82: Introduction to VMG Sim

.~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Notice that with the temperature and pressure specified to be transferred in thecross-connector, which is the default, that the acid gas is no longer entirelyvapor.

Air

'."""-".-:'~""-"~"-.

Air"Jet"Sat

Therefore, it should be seen what happens when different properties aretransferred in the cross connector. Return to the main flowsheet and open thecross connector's form. If the temperature intensive variable is ,replaced with thevapor fraction instead, it can be seen that the temperature is actually still 120.0 F.Therefore, this will provide more accurate results for the work done with theClaus plant.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

8

Page 83: Introduction to VMG Sim

/lame: rxl---~ Description: r-~-_..--.-----------­5<>lved

with VMGSimVirtual Materials

Group, Inc.

[Add"]i;-------- ----..fl::::!:.~.3--.... r;GPs,ll,CJausPlantExam, ,~~

Summary INotes "I

S Intensive Variables B Advanced

iIIntensive Var 1 VapFrac j r;:;;;:;;:;;;:;;;::;;;:;;;;;;---;o;;;;;;;:;;:]illntensiveVar2 pI

r Ignored

0,378380,5319

0,08689

0.00280,000,000,00

-5,549E+7

-102115.35,23537,92

0.11898,698

0,01021.4623E-2

319.0181.0000

Dbmole;h][!b/h]

:t VollumeFio'''' [ft3/s]

II~:~~~:~\~~'~~:I~~~:,;[ft3fS]II: [f'<l~lSCFD]

Properties (Alt+R)Energy [Btu/hr]H [BtuilbmoilS [Btu,1bmol-F]f'1olecul.rWeight~1.ssDen,ity [!b!ft3]Cp [Btu!1bmol-f'jTherm.ICc,nductivity [Btu!hr-ft-F]VIscosity [ep]malarV [ft3fibmoilZFactorFraction [Fraction]HYDROG8' SULFIDECARBON DIOXIDE'li'VATERf£HANESULFURSUlFUR2SULFUR6

0,000020,531690,37823

0'

0028

10.000250,00007

0.00

-5,551E+7

-102117,341,8-373-7,92

0.11978.772

0.01031,4326E-2

316,6540,9926

19,50543,71

20515,90

47.8250.113

4,9519E+oProperties (.<\It+R)Energy [Btu.ihr]H [BtufibmailS [Btufibmol-F]r-iolecularWeightMa5sDensity Dbfft3]Cp [Btu,1bmol-F] •ThermalConductivity [Btu,hr-ft-F]V~CQsity [ep]molarV [ft3/1bmol]ZFactorFraction [Fracton]NITROG8'1CARBON DIOXIDEHYDROG8, SULFIDEMETHANEETHANEPROPANEISOBlJfANE

One other area where different property packages can be used is with individualunit operations and streams. This will be shown by comparing the results for theamount of steam produced by the waste heat boiler. Currently, the steam isproduced using the properties obtained from the Claus property package, Thisproduces 250 psia steam with the following properties and flow rate.

© 2009, Virtual Materials Group, Inc, Do not copy unless authorized in writing by VirtualMaterials Group.

9

Page 84: Introduction to VMG Sim

Virtual Materials

Group, Inc. Simulatin with VMGSim

B Name: :1250 psi~wsl:ear" Description:

.solved

Spec from

0.000.00

581.12

r Ignored

11 lIn

Obmolelh]0.000.001.00

-5.891E+7-101394.8

-12.45318,02

0.48758.360

0.01991,6470E-2

36,9511.0000

1.00401.1,.······························,················,1

250.00581.12

10469,065.9650.047

5.2926E+OPropertiesEnergy D3tu/hr)H [B1JJflbmol]5 [B1JJ}1bmol-F]r.1olecularWelghtMassDensity Ob/ft31Cp [Btu.,~bmol-FJ

ThermalConductivity [Btu/hr-ft-F]Viscosity Tcp]molarV [ft3flbmol1ZFactorr,jole

HYDROGEN SULFIDECARBON DIOXIDEWATER

Connected to [In IOut)VapFracT [F]P [psia]r~oleFlow Dbmole/hIMassFlow Db/h]VolumeFlow [ft3!s]StdLiqllc,lumeFlow [ft3/s]iStdlGasVolLlmeF'low l.MMSCFDI

r- Detail View

r Exclude From Summary

Summary IEquilibrium Results IDne Sizing I Sulfur Detail I Notes I

Next, we will perform this same procedure, except with Steam 95 as the propertypackage. To do this, open the thermodynamic model window. Currently, it looksas below, with only the Amine and Claus property packages included.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

10

Page 85: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

ChemJcal Soh;entPhysi.-:al Solvent

f""' Add Solid Support

In order to use the Steam 95 package, press the u<Add New Package>" underthe "Created Property Package" section. This will create a "VMGThermo"package, which needs to be specified. The thermodynamic model of thispackage should be changed to "Steam 95".

Components; Settings! BoilerPlate

Then add water as the only component in this system.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

11

Page 86: Introduction to VMG Sim

" Virtual MaterialsGroup, Inc.

Add selected! ISimulating with VMGSim

Property Package Componenm ISettings] Boiler Plate J

Now press "Apply" to add this property package to the case.

Opening the "VMGThermo" property package node, it can be seen that there isthe option to add a new link to the property package. This property packagemust be linked to both the water and steam streams, as well as the heater. Todo this, select "<Browse>" under the "<Add New Link>" drop down menu.

Under the GPSAClausPlantExample, select the two streams that are needed,"250 psig steam" and "250 psig water", as well as the heater, H1. These musteach be done separately.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

12

Page 87: Introduction to VMG Sim

~ancel J

Simulating with VMGSimVirtual Materials

Group, Inc.

1-c;-D~~~:~~:~~~~m5I', H Absorbersj Contactor

i"i ValvesV1

,,'=, Flowsheets

'.,' GPSAClausPlan!Example:C) HaterialStreams

!~?~'~?=e'~.;.~.~~~~~:~~~]250...psig":NaterAirAir_ToJurnac.eAir_to_5atFl'Om_Bed-lFfom_Bed-2Fron1_'tlHBFurn&ceyeedSaturation_WaterSour_FeedSQur_Gas_TQ_FurnaceS~""}eep_Gas

ToReheater-1

ToSulfurPit-l

To_Bed-lTo_Bed-:?To_IndneratorTo_ReHeater'2

To_SulfurPit-2To_SulfurPit-3Tc,_WHB

EnergyStreams

Ql!;,;., rl;::uu:_~.p.:=IlrtionFlu·n;::lr~~

OKL::--=-

After each of these links has been made, press "OK" in the thermodynamicmodel form.

The steam out of the heater will now look as below. Note that the temperature isalmost identical to the previous temperature of 401.1 F. However, the flow rateof the Steam 95 steam is 0.047 MMSCFD larger than when the Claus propertypackage was used. These results are now more appropriate and will provide amore accurate design.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

13

Page 88: Introduction to VMG Sim

with VMGSim

1.00401,0

250.00586,30

10562,34

5.410

PrcopertiesEnergy [Bbu/hr]H [BlulQbmollS [Bbu}1bmol-F]MolecularWeightMassDensity Db/ill]Cp [Bbu,llbmol-F]mermaICondu,:tivity [Bbu/hr,ft-F]Viscosity [ep]molarV [ft3jQbme,1jZfacborf¥1oleWAlER

Virtual MaterialsGroup, Inc.

1 Detail View"I Exclude From Summary

Summary I£quilibrium Results !lineSizjng I Notes'l

iI r'loleF'lo'", Ubmole/h]i! M21ssfl(m Db/h]iI Vt.llurrleFlclw [ft3is]II SbdLiq'iiolurneFII)'N [ill/5]IStljGa,sVoJ'umf~Flow [r.lf'1SCFD]

B !'Iame:f2~Q' ste;~ Description:

.solved

© 2009, Vittual Materials Group, Inc. Do not copy unless authorized in writing by VittualMaterials Group.

14

Page 89: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Crude TowerExample

Crude Feed

M1

Crude Furnace

Crude_Feed_1

Crude_Steam

Ven~Gas

-------~~ Condenser_Water

Kerosene

DieselDieselSS-Steam

Gas Oil

AGOSS:Steam

ResidueCrude_Tower

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by Virtual Materials Group.

Page 90: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Crude Tower Summary

Property PackageAdvanced Peng-Robinson Property Package

ComponentsMethane, Ethane, Propane, IsoButane, n-Butane, Water, "Oil Pseudo-Comps"

Stream InformationI

Stream Crude_Feed AGOSS- DieselSS- Crude-Steam Steam Steam

T (F) 450 300 300 375

P (psia) 75 va 50 150

Mass Flow (Ib/hr)I --- 3000 3000 7500

StdLiqVolumeFlow 100000 --- --- ---(bbllday)

StdGasVolumeFlow --- --- --- ---(MMSCFD)

ut::::lilled oil" 0.0 0.0 0.0ane

Ethane "Defined oil" 0.0I

0.0 0.0

Propane "Defined oil" I 0.0 I 0.0 0.0

IsoButane "Defined oil" 0.0 0.0 0.0

n-Butane "Defined oil" 0.0 0.0 0.0

Water "Defined oil" 1.0 1.0 1.0

Oil Psudeo-Comps I "Defined oil" I 0.0 0,0 0.0

All compositions in mole fraction unless noted otherwise

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 91: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Oil Assay Summary

AtmCrudeTowerFeedBulk LD60 [API (60/60F)] = 29.0

Light Ends (Volume Percent): Methane = 0.0065

Propane = 0.32

n-Butane = 0.82

TBP Curve (Volume Percent): 0.0 = 15 F

4.5 = 90 F

9.0=165F

14.5 = 240 F

20.0 = 310 F

30.0 = 435 F

40.0 = 524 F

50.0 = 620 F

60.0 = 740 F

70.0 = 885 F

76.0 = 969 F

80.0=1015F

85.0 = 1059 F

Unit Operation Summary

Crude HeaterDeltaP = 10 psi

Out T = 650 F

Ethane = 0.0225

IsoButane = 0.24

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 92: Introduction to VMG Sim

.", Virtual MaterialsGroup, Inc. Simulating with VMGSim

Crude Tower (RefluxedAbsorber)30 Stages

Add water draw to Stage 1

Connect Crude_Feed_1 as Feed to Stage 29

Connect Crude_Steam as Feed to Stage 30

15t Stage Pressure - 19.7 psia

2nd Stage Pressure - 28.7 psia

30th Stage Pressue - 32.7 psla

Pump Around1 from Stage 3 to Stage 2

Pump Around2 from Stage 18 to Stage 17

Pump Around3 from Stage 23 to Stage 22

3 Stage Side Stripper1 from Stage 10 to Stage 9 with Energy Input

3 Stage Side Stripper2 from Stage 18 to Stage 17 with Steam Input

3 Stage Side Stripper3 from Stage 23 to Stage 22 with Steam Input

Connect DieselSS-Steam as feed to Side Stripper2

Connect AGOSS-Steam as feed to Side Stripper3

Add Trim Energy In to Stage 29

Add Overflash internal liquid stream on stage 28

Tower Specifications: Condenser liquid standard liquid flow rate =23000 bbl/day

Condenser vapor flow rate = 0 Ibmole/hr

Side Stripper1 standard liquid flow rate =9300 bbl/day

Side Stripper1 energy = 7.5 E+6 Btu/hr

Side Stripper2 standard liquid flow rate = 19250 bbl/day

Side Stripper3 standard liquid flow rate = 4500 bbl/day

Pump Around1 standard liquid flow rate = 50000 bbl/day

Pump Around2 standard liquid flow rate =30000 bbl/day

Pump Around3 standard liquid flow rate =30000 bbl/day

Pump Around1 energy = 5.5 E+7 Btu/hr

Pump Around2 energy =3.5 E+7 Btu/hr

Pump Around3 energy = 3.5 E+7 Btu/hr

Overflash standard liquid flow rate = 3500 bbl/day

Tower Estimates: Stage 1 Temperature =100 F

Stage 2 Temperature = 250 F

Stage 30 Temperature = 600 F

© 2008, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 93: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

){L1

52

Excel Unit OperationExample

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by Virtual Materials Group.

Page 94: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Summary

Property PackageNRTL

ComponentsEthanol, Water

Stream InformationStream Name 81 82

VF 1 aT (F) - -P (psia) 15 -

Mole Flow 76.8 -(Ibmol/hr)

Ethanol 0.5 -Water 0.5 -

© 2009, Virtual Materials Group, Inc. 00 not copy unless authorized in writing by VirtualMaterials Group.

Page 95: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Unit Operation Summary

C1DeltaP - 20 kPa

XL1Import

Mass density 81 (Mass Density)

Export

Mass Flow 81

Specify

Pitot Coefficient - 0.95

Pipe Diameter - 0.3m

Pitot Delta p.:... 0.05 kPa

Calculate

Velocity

Volumetric Flow

Mass Flow

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 96: Introduction to VMG Sim

.,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

ExcelUnitOp ExampleIn this example we will create an ExcelUnitOp to calculate the mass flowmeasurement provided by a Pitot tube. This unit operation will determine the flowof a vapor stream feeding a condenser using the pressure difference measuredby a Pitot tUbe and the inner diameter of the pipe feeding the condenser. Thebasic working equation for a Pitot tube is shown below.

Vo =C~2~Va is the velocity of the fluid at the tip of the Pitot Tube, C is a calibrationconstant, in this case assumed to be 0.95, M is the pressure differential read bya manometer connected to the Pitot tube, and p is the density of the fluid at thetip of the Pitot tube. In this case, we know the composition of the fluid as well asthe fact that it is a saturated vapor coming from the first tray of an industrialethanol production tower, as well as the M read at the plant. Our task is tocalculate the necessary amount of cooling water to cool this vapor from the dewpoint to the bubble point. We also know that the internal diameter of the vaporpipe is 0.3 m.

Start a new VMGSim Case and use the recommended property package with theNRTL property package selected and add Ethanol and Water as components.Define a material stream as described below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 97: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

~ecFrom

Detail View

Exclude From Summ,:lt'y'

[~~.~~~~.~~.iJl Line Sizing IEquilibrium Resultsj

Material --~._-..-_ _- : -..--.----.- -...----- ------- ---------..-'---~c_.---- .---...............-.------c_--.,

Connected to [In lOut]VapFracT[C]P [f'-Pa][\'loleFlow [kgmole/h]fYlassFlow [kg/h]VolumeFlow [m3jhr]StdLiqVolumeFlow [m3jhr]stdGasVolumeFlow [SCMD]i£ F'ropertiesI::::: rYlole

ETHANOLWATER.

If! ~~ass

FE StdLiqVolume

1.00

79.3105.00

[Fraction][Fraction]

Print Create Port Delete Port Ignored

Note that the thermodynamic state of the material stream is defined, but the flowrate is not known. Add an ExcelUnitOp to the flowsheet, click the enable macrobutton on any dialog boxes that popup. The ExcelUnitOp will appear as follows.

Click the Show Spreadsheet button to show the Excel spreadsheet. It will appearsimilar to the worksheet below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

2

Page 98: Introduction to VMG Sim

-A

,$ Virtual MaterialsGroup, Inc.

I~ ~

Ready

The Instructi.ons worksheet contains instructions for working with theExcelUnitOp. The Connections worksheet contains the necessary connectionsbetween Excel and other VMGSim unit operations. This worksheet is protectedand you should not modify its contents manually. Finally, the UnitOp worksheetis your work area for the definition of your unit operation.

Your work area can be multiple worksheets and you can create new worksheetsas your work area.

Let's start by defining our work area as suggested below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

3

Page 99: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

There are two ways of connecting the Excel unit operation with VMGSim. Firstwe will connect the Molecular Weight of S1 to the cell 83 using Copy/PasteConnection.

Click on the Properties node in S1, select the MolecularWeight cell and right clickon it. You will see the following pop up menu.

r' Detail View

Exclude From Summary

Summary ILine Sizing I Equilibrium Results 1

Copy Whole Table

Copy Columns with Heading

Copy

Print Portrait

Print Landscape

Properties

Energ~'[W]

H [kJ/kmol]S [kJ/hnol-K]MolecularWeightrJ1assDensit~1 [kg/m3]Cp· [kJ/kmol-K]ThermaIConductivit~' [WIm-K]Viscosit~' [Pa-s]molarV [m3/hnol]ZFactor

~;;;;;;;.;~;;;;;;;.;=~=~ __ .Spec 'In' As ,.,

Select Copy Connection.

Now select the Excel unit operation and go to the 83 cell. Right click on the 83cell and the following pop up dialog will appear.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 100: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. with VMGSim

db cut~ ~opy

~ Easte

Paste 2Pecial ...

Insert. ..

Qelete•..

Clear Contents

Import/Export Obiect; •.

Set IJnit...

Show Object Data ."

Update All Object Data

Select Paste Connection by clicking it or by pressing Ctrl+Shift+V.

Note that the molecular weight of material stream S1 is now connected to Excel's83 cell. This is a live connection and any changes happening in the VMGSimproject will be automatically reflected on cell 83.

A useful feature of VMGSim's Excel unit operation is the use of tool tips toidentify the connection between VMGSim and Excel. Just place the mousepointer over the 83 cell and the following tool tip will appear.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

5

Page 101: Introduction to VMG Sim

UnitType: r"l'Jlecular\',VeightUnit:Imported from: /S1,r'lolecular"Neight, f'.'lolecular',Neight

Virtual Materials

Group, Inc. Simulatin\/MG Values

We will now connect the 84 cell to 81's mass density in a different way using theObject Inspector.

Right click on the cell 84 and select Import I Export object.

Insert",

Q.elete•••

Clear Contents

Ed Insert Comment

Eormat Cells".

Pich From List .. ,

Set Unit...

CQP'i Connection Ctd+shift+C

Paste Connection Ctrl+Shift+V

Show Object Data .•..

UpdC\te All Object Data

The Object inspection form will appear as shown below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

6

Page 102: Introduction to VMG Sim

79,307600169" ,105 * kPaNoneNoneNoneNoneNoneNone17055,004286" .212,81213537",41.8604661.4998785213" .68.261673028" ,2.1939996367, "1.0639379320" ,27,909237583, ,,

1

0,85 *0,15 *

'Data

, 51.In

Variable

TPMoleFlowfvlassFlow

·VolumeFlow

IIStduqvolumeFJow

•StdGasVolumeFlow,EnergyiH -isIMolecularWeighti ~1assDensjty

CpThermalConductivityViscositymolarV

IZFactor,Fraction.ETHANOL,

IFraction.WATER· MassFraction.ETHANOL

Material5treams

Virtual MaterialsGroup, Inc.

I--=..mport 'I Export

Select Mass Density and press the Import button

179,307600169" ,

105 *' kPa

NoneNoneNoneNone~,one

None17055,004286. "212,81213537...

41.860466

68.261673028., ,

2.1939996367...1.0639379320" ,

27.909237583. "10.85*0.15 *

0,9354452480" ,

,cancell

VapFracTPMoleFlowMassFlowVolumeFlowStdUqVolumeFlowStdGasVolumeFlowEnergyH5MolecularWeight

cpThermaJConductivityViscositymolarVZFactorFradion.ETHANOLFraction, WATERMassFraction.ETHANOL

IS1.In

ExportImport

i::-j /

:::::: Material5treamsI±: 51

The mass density is now connected to cell 84.

© 2009, Virtual Materials Group, Inc. 00 not copy unless authorized in writing by VirtualMaterials Group.

7

Page 103: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulatingvvith VMGSim

Now specify the constant values as below.

The velocity of the fluid can be calculated using the Pitot tube formula,

l';, ~ C~2 ~ . Note the 1000 factor to convert the pressure from kPa to N/m2.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

8

Page 104: Introduction to VMG Sim

Simulatin with VMGSim=BEi*SGlRT(2*·1 000*B8/B4)B11

J Virtual MaterialsGroup, Inc.

Next we assume that the flow is completely developed and the volumetric flowcan be calculated by.multiplying the veloc:ity by the pipe area.·············Bi2··;J·····---~~I~~IQ:(@f(2j.~?*B1 -1.. .

ABC..................................._--_....... , --.- - _ .

:VMG \!'allll:1s

The mass flow in kg/s can now be calculated by multiplying the volumetric flowby the mass density.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

9

Page 105: Introduction to VMG Sim

813 ....

VMG \!alll€!§A C

Virtual MaterialsGroup, Inc.

And finally the mole flow in kmol/h can be calculated using the mass flow and themolecular weight.

814

AVMG Vailles

I~--·· -, .

c

Now the mole flow is going to be exported back to S1. Right click on the cell 814.Select copy connection.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

10

Page 106: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

db cut............. - ..

~ kOP~l.......................................... ..' _ -.-

; _ _ et E:aste

Paste 2iJecial."

Insert" •

Q.eJete."

Clear Contents

'til Insert Comment

Eormat Cells".

Pief:; From List. i •

Show Object Data.,.

Update All

Now go to material stream 81 and right click on the MoleFlow cell. Finally selectPaste Connection.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

11

Page 107: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

1.499941.86

NameMassDensit~l [kglm3]rvlolecularWeight

Detail View

Exclude From Summar~1

Summary 'I Line Sizing IEquilibrium Results 1Signal Ports -,- »,-- --,,,,,,,,,,.,,,,•• ,,,,,,,,,,,,.,, ""."""",,.,,---.,

. - ...-.~._~ ..._._...-..-Connected to [InI0ut]VapFracT[C]P[kPa]MoleFlow [kgmole/h]MassFlow [I<,glh]VolumeFlow [m3lhr]StdLiqVolumeFlow [m3lhr]StdGasVolumeFlow [SCMD]±, Properties::, rvlole

ETHANOLWATER

Create Port

1.0079.3

105.00

Print Portrait

Print Landscape

Copy INhole Table

Copy Columns with Heading

Copy

Paste

Cop';!' Connection

Note that the stream is now completely specified.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

12

Page 108: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Detail View

r Exclude From Summary

Summary ILine Sizing IEquilibrium Results

Signal Ports . ..._..~ .._-_...._.

1.499970.7341.86

60.12

r !gnored

79,31.00

[kgmole/h]0.850.15

[kg/h][m3/hr]

105.0070.73

2960.641973.922

3.6714.0213E+4

:[Fraction]

Delete Port I•• :%

lD=raction]I[Fraction]

Create PortJ

....~ _-- + _ , ············_······1

Connected to [InIOut]VapFracT[C]P [I1'a]MoleFlol-'.1 [kgmole/h]~~assFlo\", [kg/h]VolumeFlow [m3/hr]StdLiqVolumeFlow [mS/hr]StdGasVolumeFlow [SCMD]

Properties

"'loleETHANOLWATER

'f,ll'1ass

Now we have created an Excel unit operation with some connections. Click onthe Connections page we can inspect the information all the import/exportconnections.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

13

Page 109: Introduction to VMG Sim

Ready

Virtual MaterialsGroup, Inc.

The worksheet correctly shows two imports and one export. In the case that thispage doesn't show the correct information, you can press "Refresh Connections"button to refresh this page.

Create a material stream (82) and specify it's vapor fraction to be O. Nowcomplete the problem by creating a cooler with a pressure drop of 20 kPa andconnect it's In material port to 81 and it's Out material port to 82 as shownbelow. The solved cooler and condenser duty are shown below in the figurebelow.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

14

Page 110: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

SolvedB

IJ Mc,leF!c)w [kgmole/h], j ~lalssFlcJW [kg/h],I Vc,lumeFlclW [m3/hr]

qStdUQIVoILJrnel=low [m3/hr]IStdGasVollumeFlow [SCMD]

Properties (Alt+R)Fraction [Fraction]ETHANOLWATERMassFl-action [Fraction]

1.0079.3

105.0070.73

2960.651973.924

3.6714,0213E+4

0.0073.8

85.0070.73

2960.653.9433.671

4.0213E+4

Note that if the pressure of stream S1 changes the flow of S1 will now change asshown below.

© 2009, Virtual Materials Group, Inc, Do not copy unless authorized in writing by VirtualMaterials Group.

15

Page 111: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

ID>ec From

r' Detail Viewr- Exclude From Summary

A'

Ignored

3,946E+517584.8

4.5934E+4

..........................._ _- -Connected to [InjOut]VapFracT [C]P [!<Pa]MoleFlow [kgrnolelh]fvl.~ssFlow [kglh]VolumeFlow [m3lhr]StdLiqVolurneFlow [m3Ihr]StdGasVolumeFlow [SCMD];':'; Properties

Energ\' [W]H [kJll:mol]

Summary' 'j Line Sizing !Equilibrium Results

Ports .' -.- -... ························---·0 -...•..,

Naturally, if values on the Excel unit operation are changed, a new flow will alsobe calculated. Assume that the calibration factor was recalculated to be 0.98.The flow will be immediately recalculated as shown below.

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

16

Page 112: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

r !gnDred

68.6712.12

r' Detail View

r Exclude From Summary

1.0087.0

140.0080,79

3381.861728.068

4,1934.5934E+4,

'[Fraction]

Print

VapFracT[Clp [YPa]MoleFlow [kgmole/h]MassFlow [kg/h]VolumeFlow [m3/hr1StdLiqVolumeFlow[m3jhr]StdGasVolumeFlow [SCMD]

Properties~'ole

ETHANOLWATER

it} r~ass

if] StdLiqVolume

5ummary IEquilibrium Results 1Line 5izing IMain Data

The flow rate can also have been specified as a mass flow rate. To change this,the molar flow rate must be disconnected. Go to the spreadsheet and right clickon the connected molar flow rate cell. Press Disconnect Import/Export Object.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

17

Page 113: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

~ Eot'mat Cells .. ,

Pic!!, Fmm List ...

Show Object Data.. ,

Update All Object Data

Returning to VMGSim, it can be seen that the flow rate is no longer connected to81, and the stream is no longer solved.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

18

Page 114: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Detail View

Exclude From Summary

summaryl Equilibrium Results! Line Sizing IMain Data

CUn

1.957041.86

17584,8211.907

41.861.957069,1400,0228

1.0848E-521.3901.0000

I[Fraction] [kgmolelh]0.850.15

II' [Fraction] [kglh],[Fraction] [m3/ht·]

ValueNameMassDel1sity [kglm3]lvlolecularWelght

Print

Connected to [InIOut]VapFracT[C]P [l<I'a]IvJoleFlo\'i [kgmolelh]IvJassFlow [kglh]VolumeFlow [m3Ihr]StdLiqVolumeFlow [m3/hr]StdGasVolumeFlow [SCIvlD]',,! Properties

Energy [W]H [kJlhnol]S IkJ/kmol-K]~1oletularWelght

MassDenslty [kglm3]Cp [kJlhnol-K]ThermalConductivity [Wlm-K]Viscosity [Pa-s]molarV [m3/hnol]ZFactorMoleETHANOLWATERMassStdLiqvolume

The formula for molar flow rate can now be removed from the spreadsheet. Also,the molecular weight can be disconnected, as it is no longer needed. Notice howwhen disconnected imported cells return a value of '#NULL!'.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

19

Page 115: Introduction to VMG Sim

,ll Virtual MaterialsGroup, Inc.

Simulatil"lg... ""i!I~YJVlGSim

Now connect the mass flow value to 81 by right clicking on the mass flow celland selecting 'Copy Connection'.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

20

Page 116: Introduction to VMG Sim

with VMGSimVirtual Materials

Group, Inc.

jb Cut" , , ,.. - ' ~ kOPy

~ e.aste

Paste 2,pecial ...

Insert .

Qelete .

Clear Contents

d.(.r:::a Insert Com.ment

Import/Export Obiect, ..

Set Unit",

P§.ste Connection ctrl+Shift+v

Show Object Data, ..

Update Object Data

Then chose to paste the connection in the mass flow cell in 81.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

21

Page 117: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

r' Detail View

r- Exclude From Summary

T[C]P(I'Pa]MoleFlow [kgmolelh]

iiVolumeFlow [m3Ihr]StdLiqlJolumeFlow [m3Ihr]5tdGasVolumeFI,)w rSC~1D]

J: Properties"': Ivlole

ETHANOLWATERI'lass

t: StdLiq\lolume

Print PortraitPrint Landscape

Connection

rXgnored

Notice that the value of the flow rate is much less than the previous value whenthe molar flow rate yvas used.

© 2009, Virtual Materials Group, Inc, Do not copy unless authorized in writing by VirtualMaterials Group.

22

Page 118: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

r Detail View

r·o

Exclude From Summary

Summary IEquilibrium Results I· Line Sizing IMain 0"1·,, ,.,...........................•.,

Connected to [InIOut]VapFracTIC]P [!<Pa]MoleFlow [kgmole/h]MassFJow [kglh]VolumeFlow [m3/hr]StdLiqVoJumeFJow [m3!hr]StdGasVolumeFlow [SCMD]if: PropertiesE:! r10le

ETHANOLWATER

l±.l Massif) StdLiq"'olume

{[LIn

1.0087.0

140.000.020,94

0,4800.001

1.2759E+1

[Fraction] [kgmoJe!h]0.85 0.020.15 0.00

i[Fraction] [kg/h]I[Fraction] [m3/hr]

r· Ignored

This is because the mass flow is in kgIs in Excel, but in kg/h in S1. Therefore,the units must be converted. This can be changed by editing the formula formass rate, or by specifying the units of the flow rate. To do this, right click on813 and select 'Set Units'.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

23

Page 119: Introduction to VMG Sim

J Virtual MaterialsGroup, Inc.

O.H3H4f1hr:;RI-;'M,CU!;

........................................ -- - .

I§l§l ~.oP~·

~ E:aste

Paste ;2pecial" ,

CQP~' Connection Ctrl+Shift+C

Pgste Connection Ctrl+Shift+V

Show Object Data."

Update All Object Data

Set the unit type as 'MassFlow' and the unit as 'kg/s'.

© 2009, Virtual Materials Group, Inc. 00 not copy unless authorized in writing by VirtualMaterials Group.

24

Page 120: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc.

Unit Type:

Unit:

Simulating with VMGSim

OKIbl'hkgl'h

L.....""::"':"'''''::''':'''''''::''':'''''''::''':'''"'''1 Ibl's....... kgidIbidton(metric)/d

. . ················Ie-=ton""{s=h=ort::E.:::...d ---,-- ---,-- "..J -...........

By moving over the mass flow cell you can see that the unit has been changed tokg/so

VMG Values

UnitT~'pe: MassFlowUnit: kg/sExported to: 151. r'1assFlow.r""assFlow

Returning to 81, the mass flow rate has now been adjusted to be in kg/h, givingthe same results as when the molar flow was used.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

25

Page 121: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Spec From

r Detail I'iewr" Exclude From Summary

Summary '1 Equilibrium Results/line Sizing IEI Main Data _ ~.., _.... ...~_ _ .

JName

II ~:::~1::~~~~~1~;3],"'Material

[Fraction],. [Fraction]

• 1

68.67

12.12

[kgmolejh]0.850.15

[kg/h][m3/hr]

1.0087,0

140.0080,79

3381.86

1728.0684.193

4.5934E+4!:[Fraction]

.........-.----l-..-.---Connected to [In/Out]l'apFrac

1T [C]JP [~Pa]

, 'I.' MoleFlow [kgmolelh]!•rvlassFlow [kg/h]; j l'olumeF!ow [m3/hr]'I Stdliql'olumeFlow [m3/hr]!,. ~tdGaSl'olumeFlow [SCMD]~ ttl Properties

'Ii=] Mole! ETHANOl

.1 WATER

'I' it: Mass,:FE StdliqVolume

__~rint ~I Create Port

Another way to obtain information in Excel is by using 'Show Object Data'. If itwas desired to create a phase envelope for S2 that can be used in Excel, 'ShowObject Data' can be used to do this.

First, create a phase envelope and attach it to S2. Since only water and ethanolare present, the dry basis must be turned off.

xu

Now, to important the phase envelope profile, go to the Excel spreadsheet andright click on an empty cell. Select 'Show Object Data'.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

26

Page 122: Introduction to VMG Sim

Virtual Materials

Group, Inc. Simulating with VMGSinlC=C"~r"~F~-]~G···•.•.·••.••••• !~~

dI:, Cui;

~ C;;OPY

mE'.aste

Paste ;apecial",

!nsert" ,

Q.elete".

Cleat Contents

til Insert Comment

~EotmatCells".

Piel From List".

Impott!EXpottObiect" .

Set lJ.nit".

CQPY Connection Cttl+Shift+C

Pgste Connection Ctt'i+Shift+V

This will bring up the following form in VMGSim.

I

QK .1 Cancel

To get the phase envelope profile, select 'Env1', then 'Profile' and select 'OK'.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

27

Page 123: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSinl

IC::::::::i1r::::::::J1 Cancel I

This will import the phase envelope's data profile into Excel. This informationcan be gathered into a plot.

l... series1 I

200150100

T

50

500

2000

·1000 +---

·1500

This plot can be edited as desired.

'Show Object Data' does not update until the case is fully solved. However, oncethe case is solved, it will be updated.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

28

Page 124: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

To see this, change the composition in 81 to be equimolar. The change can beseen in the plot in Excel.

7000

6000

5000

4000Q.

3000

2000

1000

00 50 100 150 200 250 300

T

I. Series'1 1

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

29

Page 125: Introduction to VMG Sim

Virtua~ MaterialsGroup, ~nc. Simulating with VMGSim

t II!! DSs~c,'"CPI

8p2

V1

Feed

Cavett Recycle Loop ExampleGunther, US Patent 3,575,077, April 13th , 1971

a

815

8111__ ~ c>,,,J[) .1

87

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by Virtual Materials Group.

Page 126: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Gunther Summary

Property PackageAdvanced Peng-Robinson

ComponentsNitrogen, carbon dioxide, hydrogen sulfide, methane, ethane, propane,isobutene, n-butane, isopentane, n-pentane, n-hexane, n-heptane, n-octane, n­nonane, n-decane, n-dodecane

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 127: Introduction to VMG Sim

,j Virtual MateriaJsGroup, Inc. Simulating with VMGSim

Streanl InformationStream Feed 82 83 810 813Name

T (F) 120 -60 -60 -60 -60

P (psia) 287.7 -287.7 -287.7 -63.7 -27.7

Mole Flow - -0 -0 -0 -0(Ibmol/hr)

Nitrogen 358.2 1 1 1 1(Ibmole/h)

Carbon 4965.6 0 0 0 0Dioxide

Hydrogen 339.4 0 0 0 0Sulfide

Methane 2995.5 0 0 0 0

Ethane 2395.5 0 0 0 0

Propane 2291.0 0 0 0 0

Isobutane 604.1 0 0 0 0

n-Butane 1539.9 0 0 0 0

Isopentane 790.4 0 0 0 0

n-Pentane 1129.9 0 0 0 0

n-Hexane 1764.7 0 0 0 0

n-Heptane 2606.7 0 0 0 0

n-Octane 1844.5 0 0 0 0

n-Nonane 1869.0 0 0 0 0

n-Decane 831.7 0 0 0 0

n-Dodecane 1214.5 0 0 0 0

Unit Operation Summary

CP1Adiabatic Efficiency - 75%

OutP - 814.7

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 128: Introduction to VMG Sim

.~ Virtual MaterialsGroup, Inc.

C1GutT - 100 F

DeltaP - 0 psia

V2GutP - 63.7

V3GutP - 27.7

CP2

Simulating with VMGSim

Adiabatic Efficiency - 75%

GutP - 63.7

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 129: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Recycles in VMGSimVMGSim handles recycles in a rather intuitive, but quite different way whencompared to other process simulators. In this section we will simulate anisothermal distillation arrangement and examine how recycles can be used indetail.

Problem statementHenley and Seader (1998) present a delightful problem that was formulated byCavett and extensively used to test tearing, sequencing and convergenceprocedures for steady state process simulators. The flowsheet is equivalent to a4 stage, near isothermal distillation tower instead of the common near isobarictype. It is desired to determine the flowrates.

Problem SetupStart up VMGSim, choose Advanced Peng-Robinson as the property package ofchoice and add N2, C02, H2S, C1, C2, C3, iC4, nC4, iC5, nC5, C6, Cl, C8, C9,C10, C12.

Create a material stream called feed and specify it as shown below.

CA1=tE()N DIOXIDEHyDROGEN SUlFIDEf>lETliANEEntANEPROPANElSOBUTAHEn-BUTANErSOPENTft.HEh-PENTAhEn-HEXANEn-HEPTAf".E

n-GerANEn-NONAl'iE

n-DECANEn-DPOECANE

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 130: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Creating the Tower Feed StageIn a separation stage we have as feeds the liquid from the stage above and thevapor from the tray below. In a feed stage we will also have the feed we want toprocess. Therefore we can model a feed stage as a mixer with the In ports and aseparator.

1. Create a Mixer unit operation

2. Open the Mixer form. You will have the following:

'I Mc)leFI(lW Dbmole;h],I r'lclSsFI(JW DbirQ" Voluf1le,Flow [ft3/s]: j 5tdLiql/olurneFI,ow [ft3/s]'l Sl1JGasVolurneFlllw [MMSCFD]

Properbes (Alt+R)HoleFractionf'1assFracbonStdvolFractionHoleFlow Dbmole/h]r,jassFlow Db/h]

±StdLiqVolumeFlow [ft3/s]

peletePort J Ignored

3. Press the Create Port button to add a new port.

4. Connect the material stream Feed to the mixer M1 middle port.

5. Now connect a two phase separator to the Out port of M1 using a materialconnector

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

2

Page 131: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

~~~~...........~.:;;.: ~.Feed

M1

Simulating with VMGSim

81

8ep1

6. Note that for the time being we have no additional information. To proceedwe have to estimate the values that are fed to M1. This is done by addingtwo new streams to the In ports of M1.

7. Estimate values for S2 and S3 In ports. Since we have nothing better we willestimate the flows as zero and set an arbitrary composition.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

3

Page 132: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Spec From

I'm Detail View

r Exclude From Summary

Summary Equilibrium Results I Line Sizing I

[Ibmole/h]il ~1a;ssFIc)w [lb/h]q VolumeFlow [Ft3/s]ijStIJLiqllolwrneFI,)w [ft3/s]:IStdGclsVo,lum,eFlow [r,IMSCFD]

Propertiesf'loleNITROGENCARBON DIOXIDEHYDROGEN SULFIDEfvlETHANEETHANEPROPANE

1.00liO.O

287.700.000.00

0.0000.000

2.0079E-42

[Ibmole/h]1.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.00nnn

r Detail View

j~ Exclude From Summary

1.00liO.O

287.700.000.00

0.0000.000

2.0079E-42

r Ignored

[Ibmole/h]1.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.00"nil

\!"pFracT[F]P[psia]fvloleFlow [Ibmole/h]MassFlow [Ib/h]VolumeFlow [ft3/s]StdLiqVolumeFlow [ft3/s]StdG"sVolumeFloV'.' If~M5CFD]

Properties[':'Mole

NITROGENCARBON DIOXIDEHYDROGEN SULFIDEMETHANEETHANEPROPANE

Summar!( Equilibrium Results I Line Sizing I

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 133: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Partial Condenser SetupThe top stage is comprised of a compressor and a condenser. The compressorwill raise the pressure to 814.7 psia and the condenser will drop the temperatureto 100 F. For the sake of simplicity we will assume that the adiabatic efficiency ofthe compressor is 75 % and that the condenser has no pressure drop.

1.00

272.5

814.70

9079.28

314931.82

21. 714

2.630

56.lnL.J

1.00120.0

287.70

9079.28

314931.82

49.514

2.630

8.269E+1

Summary ICurves 'I Plot IB Main Dal:a --"'-c---"c...------ ...·--.,.-.-:-..• .. ·-·. !tl Adllanlced ::::::::::::::::,':::C::::::',C::::C::::;::-:::::·::.:C:::::::

: ~'Ja;"'e . 1>1 ValueIli~Q iH~;~~Po,~;~;j-"----j-56i2: 3-6II Delta P [psi]. 527,00

IIPre55ure Ratio • 2,83i Adiabatic Efficiency [%] I 15.00

I!Polytropic Efficiency [%] 77,23

11 Speed [rpm]

iI Adiabatic Head eft] 26511.14

.1 Polytropic Head eft] 27298,71

:- Material _..._._._-_._---_._.._--_.__ ... _-_._,-..... --------._.._... ,_.,"_.-._..,-.-._---......._.,'_.. ,',." ..,-,..,-._----,

'! PortName :In .... . .._.i~:~.t.. .__: iI5R~cy~I~Po;i: ..... ..... .....--------.C-;IConnected Stream/Unit Op

~ IVapFrac!'T[F]lip [p5ia]

II ~1oleFlow [Ibmole/h]

II ~lassFlow [Ib/h]

.IVolumeFlow [ft3/5]

: i'StdLiQVOIUmeFlow [ft3/5]SldGasVollJmeFlo~~[MMSCFD]±: Properties (AlttR)

!,,~: fraction [Fraction] .

" NITROGENII CARBON DIOXIDE• ! HYDROGEN SULFIDE

II r~ETHANEH

© 2009, Vittual Materials Group, Inc. Do not copy unless authorized in writing by VittualMaterials Group.

5

Page 134: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

EJ

*:onrlected Stream/Unit Op

nrvlolei=low [Ibmole/h]!i. f'la,ssFJc)W [Ib/h]

n5tdLiclVohJme'FJow [ft3/s]HStdGasVol'umeiFlow [MM5CFD]

Properties (Alt+R)Fraction [Fraction]NITROGENCARBON DIOXIDEHYDROGEN SULFIDEMETHANEETHANE

Print

1.00272.5

814.709079.28

314931.8221.7142.630

8.269E+1

0.96037100.0

814.709079.28

314931.8212.7762.630

8.269E+1

The arrangement is show in the picture below.

© 2009, Vit1ual Materials Group, Inc. Do not copy unless authorized in writing by Vit1ualMaterials Group.

6

Page 135: Introduction to VMG Sim

,4 Virtual MaterialsGroup, Inc. Simulating with VMGSim

64 fJCP-1

85

Sep2

V1

Let's now create our first recycle, Attach the stream S2 to the LiqO Out port ofSep2. Note that VMGSim immediately starts to solve, and converges in 3iterations. This step is shown below.

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

7

Page 136: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Lower StageWe can now create the lower stage just below Sep1. Recall that it will receivetwo feeds, one a saturated liquid from Sep1 and the other will be a saturatedvapor from the reboiler. Therefore we will need to set a mixer with the saturatedvapor estimated. As before we will set it to have a zero flow and an arbitrary molefraction. Note that this stage operates at 63.7 psia, thus we will have to add avalve between Sep 1 and Sep3.

5ummarvj Equilibrium Results I

0,00

Linear100.000

Dal.a·······_················ !tl Advanced •••••..............................

CvCftaracteristic% Opening [»/0]

B

0,00

78.363.70

15373,511485686,38

9,7649,738

1.4001E+2

/58.ln0,0078,3

63.7015373,51

1485686,389,7649,738

1.4001E+2

:~~I~~===========J1I~n======= lOutIs Recycle Port Er- []Connected Stream/Unit Op '57.0utlJapFrac

[f][psia]

MoleFlow [Ibmole/ft]MassFlow [Ib/ft]VolumeFlow [ft3/s]StdLiqlJolumeflow [ft3/s]StdGaslJolumeFlow [MMSCFD]

Properties (Alt+R)Fraction [Fraction]

ft) MassFraction [Fraction]Stdl.ialJ,JIFri3cti(Jn [Fraction]MoleFlow [Ibmole/ft]

This is illustrated below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

8

Page 137: Introduction to VMG Sim

85

Virtual MaterialsGroup, Inc. Simulating with VMGSim

.f.~~:lI;--!r-56--i>:.'Ir"~:"]···01 """10''''

_,--.,.----'- ~P2

Vi

Note that we can now connect the vapor outlet from 8ep3 to the Mixer M1. Justconnect the ports using the stream 83. The entire system converges in 11iterations.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

9

Page 138: Introduction to VMG Sim

'" Virtual MaterialsGroup, Inc. Simulating with VMGSim

Feed

Partial Reboiler

84

C"Akt.·/.J..~""'~"".-'.•.~"•."'-.""-"'.-' d'.>......•.•• '.•....•..........•. " . .,.'.,0-'-..W " .... ·S8V*----Sg--"f'tV211DM2

*...-Sep3

We can now develop the partial reboiler, which operates at 27.7 psia. Note thatwe will need another valve between the liquid outlet from Sep3 and the mixer thatwill feed the reboiler. This is shown in the figure below.

© 2009, Virtual Materials Group, Inc, Do not copy unless authorized in writing by VirtualMaterials Group.

10

Page 139: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Summary Equilibrium Results 1

Characteristic% Opening [%]

36.00601.27Linear

100.000

0,05555

71.827.70

15373,511485686.38

57,1539,738

1.4001E+2

lOuti:JSI2.In

0.0078,3

63.7015373.51

1485686,389,764

9.7381.4001E+2

"Sl1.0ut

Print

PortNameIs Recycle PortConnected Stream/Unit OpVapFracT[F]P[psia]fvloleFlow [ibmole/h]MassFlow [Ib/h]VolumeFlow [ft3/s]StdLiqVolumeFlow [ft3/s]StdGasVolumeFlow [~1r~SCFD]

Properties (Alt+R)::fJ Fraction [Fraction]':F MassFraction [Fraction]+ StdLiqVolFraction [Fraction]£ r'loleFlow [Ibmole/h]'±1 fvlassFlow [ib/h]

5tdLiqVolumeFIow [ft3/s]

© 2009, Virlual Materials Group, Inc. 00 not copy unless authorized in writing by VirlualMaterials Group.

11

Page 140: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

V1

5554 9: so '0

.__~ ~-"",e=-'"f':c'P"P'1._---'-_~----=Sep2

We are almost done. Now we need to add a compressor to compress the topvapor from Sep4 and finally we can connect it to the mixer M2. Make sure thatthe output pressure of CP2 is the same pressure as that of S8.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

12

Page 141: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

EI

r Ignored

Summary ICurves 1Plot

Main Data

NameInQ [HorsePower]Delta P[psi] .Pressure RatioAdiabatic Efficiency ["!o]Polytropic Efficiency I"!oJSpeed [rpm]Adiabatic Head [ft]Polytropic Head [ft]

Vaiue543,23

36.002,30

75.0076.22

15753.4016010,29

1.0074,5

27.701152,34

51207,62

64.5440,419

1.0495E+l

1.00150,0

63.701152.34

51207,62

31.5330.419

1.0495E+1

The final system is shown below. Note that it converges in 11 iterations.

© 2009, Virtual Materials Group, Inc, Do not copy unless authorized in writing by VirtualMaterials Group.

13

Page 142: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

~~F~aa~~~l~~>. 51

M1

V1

Cavell Recycle Loop ExampleGunther, US Patent 3,575,077, April 1311

', 1971

This recycle loop could also have been accomplished by placing the recycles inthe mixer as well.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

14

Page 143: Introduction to VMG Sim

.Jt Virtual MaterialsGroup, Inc. Simulating with VMGSim

Hydrate Inhibition withMethanol Injection

8aturatfd

~=t:.'''''''''~,

M-e-th-a-n.......o.......I .......F"'--ett1

P1

81

HY1~*'t1

:.:",',f'iJ"',:'",/'

HY2

© 2009, Virtual Materials Group, Inc. 00 not copy unless authorized in writing by Virtual Materials Group.

Page 144: Introduction to VMG Sim

~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Hydrate Inhibition 1 Summary

Property PackageAdvanced Peng-Robinson for Natural Gas

ComponentsMethane, ethane, propane, isobutane, water, methanol

Stream InformationStream Name Total Wells Saturation Methanol

Water Feed

T (F) 60 - 77

P (psia) 614.7 - 14.7

Mass Flow (Ib/hr) - - 41.67

StdGasVolumeFlow 6.78 - -(MMSCFD)

Methane 0.9800 0 0

Ethane 0.0100 0 0

Propane 0.0008 0 0

Isobutane 0.0092 0 0

Water 0.0000 1 0

Methanol 0.0000 0 1

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 145: Introduction to VMG Sim

~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

Unit Operation Summary

M1AIiPEqual

P1Efficiency - 75%

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

Page 146: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Saturatidn·········Wat·e.r

*"'

HY2H1

Hydrate Inhibition with LineHeating

r····~···.···..•... -."J

Totl:il..;.wellS\.J ....~....

Sat1

© 2009, Virtual Materials Group, Inc. Do not copy unless author' 'n writing by Virtual Materials Group.

Page 147: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Hydrate Inhibition 2 Summary

Property PackageAdvanced Peng-Robinson for I\latural Gas

ComponentsMethane, ethane, propane, isobutane, water, methanol

Stream InformationStream Name Total Wells Saturation

Water

T (F) 60 -P (psia) 614.7 -Mass Flow (Ib/hr) - -

StdGasVolumeFlow 6.78 -(MMSCFD)

Methane 0.9800 0

Ethane 0.0100 0

Propane 0.0008 0

Isobutane 0.0092 0

Water 0.0000 1

Methanol 0.0000 0

Unit Operation Summary

H1DeltaP - 5 psi

OutT -140 F

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 148: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

:~::

Sf 1

l;Ij-lmSRi

Hydrate Inhibition withTEG Dehydration

© 2009, Virlual Materials Group, Inc. Do not copy unless author' 'n writing by Virlua( Materials Group.

Page 149: Introduction to VMG Sim

. .1 Virtual MaterialsGroup, Inc. Simulating with VMGSim

Hydrate Inhibition 3 Summary

Property PackageAdvanced Peng-Robinson for Natural Gas

ComponentsMethane, ethane, propane, isobutane, water, triethylene glycol

Stream InformationStream Name Total Wells Saturation Lean TEG TEG

Water Makeup

T (F) 60 - 70 77

P (psia) 614.7 - 810 14.7

Mass Flow (Ib/hr) - - - -

Volume flow (fe/s) - - 0.002 -StdGasVolumeFlow 6.78 - - -(MMSCFD)

Methane 0.9800 a 0.0 aEthane 0.0100 a 0.0 aPropane 0.0008 a 0.0 aIsobutane 0.0092 a 0.0 aWater 0.0000 1 0.1 aTriethylene Glycol 0.0000 a 0.9 1

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterialS Group.

Page 150: Introduction to VMG Sim

# Virtual MaterialsGroup, Inc. Simulating with VMGSim

Unit Operation Summary

T1 (Absorber)3 Stages

Connect Lean TEG as Feed to Stage 1

Connect S1 as Feed to Stage 3

Top Stage Pressure - 587 psia

Bottom Stage Pressure - 590 psia

Hx1Tube DP - 2 psi

Shell DP - 2 psi

OutTubeT - 300 F

OutTubeP - 60 psia

T2 (Distillation Column)3 Stages

Connect S1 0 as Feed to Stage 2

Top Stage Pressure - 15 psia

Bottom Stage Pressure - 21 psia

Specification: Reboiler duty of 14,4675,333 BTU/hr

Stage 3 temperature of 404.6 F

Condenser liquid volume flow of 0 Ibmollh

P1Efficiency - 75%

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 151: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc.

Hx2Tube DP - 5 psi

Shell DP - 5 psi

OutTubeT -70 F

OutTubeP - 810 psia

SEL1

Simulating with VMGSim

Input

S11 Moleflow Triethylene glycol

Sales Gas Moleflow Triethylene glycol

Flash Gas Moleflow Triethylene glycol

Output

TEG Makeup mole flow

Selector Mode

Sum

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 152: Introduction to VMG Sim

Virtua~ MaterialsGroup, Inc. Simulating with VMGSim

-MeACU:~:ecYJ1:le

},--~*...

© 2009, Virtual Materials Group, Inc, Do not copy unless author' ;n writing by Virtual Materials Group,

Page 153: Introduction to VMG Sim

4 Virtual MaterialsGroup, Inc. Simulating with VMGSim

Butyl Acetate Production Summary

Property PackageUNIQUAC

Componentsn-Butanol, n-Butyl Acetate, Methyl Acetate, Methanol

Stream InformationStream Name BuOH Feed MeAC MeOH Butanol MeAC

Feed Recycle Recycle

T (F) 77 77 - 316.5 - 130

P (psia) 15 15 - 50 - 15

Mole Flow 76.8 128.3 - 215 - 593(Ibmol/hr)

n-Butanol 1 a 0.83 an-Butyl a 10 0.17 aAcetate

Methyl a 0.6 a 0.65Acetate

Methanol a 0.4 a 0.35

Unit Operation Summary

M2LowestPlnOutlet

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 154: Introduction to VMG Sim

.~ Virtual MaterialsGroup, Inc.

CSTR

Simulating with VMGSim

OutT - 200 F

OutP - 100 psia

Volume - 200 fe

Reaction: n-butanol + methyl acetate -7 n-butyl acetate + methanol

~. ard .... e

A 7,000,000 9,467,000

E [kJ/kmolJ 71,960 72,670

Reaction Order

In-Butanol 1 0

n-Butyl Acetate 0 I 1 IMethyl Acetate 1 10 I

Methanol 0 1

T1 (Distillation Column)32 Stages

Connect S1 as Feed to Stage 17

Top Stage Pressure - 15 psia

Bottom Stage Pressure - 18 psia

Specification: Mole fraction of n-butyl acetate in top product of 0.000002

Mole fraction of methanol in bottom product of 0.0001

T2 (Distillation Column)32 Stages

Connect S2 as Feed to Stage 17

Top Stage Pressure - 15 psia

Bottom Stage Pressure - 21 psia

Specification: Reflux ratio of 1.00

lVIole fraction of methyl acetate in bottom product of 0.01

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 155: Introduction to VMG Sim

'" Virtual MaterialsGroup, Inc. Simulating with VMGSim

T3 (Distillation Column)52 Stages

Connect S3 as Feed to Stage 27

Top Stage Pressure - 50 psia

Bottom Stage Pressure - 55 psia

Specification: Reflux ratio of 2.00

Reboiler duty of 11,100,000 BTU/hr

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 156: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Butyl Acetate Production ExampleIn the following tutorial, a model for a butyl acetate production process will becreated. To start, a property package needs to be created. For this example theUNIQUAC Thermodynamic Model will be used.

Property Pat:kag~5e:lf'.CtlooAdvanced 5efecUon r

L: Add SoUd Support

e;yGi'lS Treating Chem~:a) sot·;entG~sTreating F'hY5'cal501ventif b·eati:lgochem,c..'ll£Pressure Non Associating Cb.::mica!s/Me&.Jm F'reSSt;re Associatlllg S'r':;te~

Pressure c:hEmkalsalty Pa:kages

Next, add the components necessary to the property package. The componentsthat need to be added are: n-butanol; n-butyl acetate; methyl acetate; methanol.

2.jj:e Cornpo:Jrd Sear&! I tlvpothetJ.ca1 Compound1Compoynd

family fmc;;';;;;;;;;-~~::':"':':'~=~3r DetafFamaj.i Groups

DeleteAU

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 157: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Press "OK" to add these components to the property package and start buildingthe case. Make sure that the "Field" unit set has been selected. There are twofeed streams for this process. The will be specified as below.

76.800.00

0.000.00

r Ignored

77.0

15.0076.80

5692.540,031

0,031

6,9946E-1

[Fraction] Dbmcoleih]1.000.000.000.00

ObfhlIft3/s]

r Detail View

r" Exclude From Summary

£quinbrium Results Iune Sizing i Notes j

5pecfrom

MoleFlo'!>! DbmolefhIf'<1assFlo'i\' Dbjh]VolumeFJow [ft3{sIStdLiqVolumeFlow [ft3{s]StdGas'llolumeFIQw I:r~r~SCFDJ

[f) Propertiesl:::! Iclole

n-llUTANOLn-llUTYL ACETATEr'IETHYL ACETATEI'·'IETHANOL

ICo!nne,:ted to [IniOut]

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

2

Page 158: Introduction to VMG Sim

Description:

Virtual MaterialsGroup, Inc.

Spec from

r~ Detail View

r Exclude From Summary

0.00{).OO

76.9851.32

r Ignored

Dbmoleih]0.00

0.00

0.60·0.4{l

Dbihl[ft3/s]

0.0077.0

15.00128.3073%.95

0.0370.036

1.1685E+O

![Fraction]

iI[Fraction]I[Fraction]

VapFracT[F]P [psia]MoleFlow Dbmoleih]MassFlow Db/h]VolumeFlo'N [fiJ/s]StdUqVolumeFlow [ft3/s]StdGasVolumeFlow [MMSCFD]±' Properties:3 Hole

n-BUTANOLn-BUWL ACETATEr",ETHYL ACEr.oI.TEr",ETHANOL

Summary Equilibrium Results I line Sizing

These will now be sent to a mixer, with a stream named "Combined Feed" exitingit.

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

3

Page 159: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGsim

The total feed will then be sent to another mixer which will allow the total recyclestream to be combined with the feed. The recycle stream will be combined bytwo specified recycle streams.

Note that you will need to use have a - presiding at least one of the valuesentered to turn the stream into a recycle stream. For example you would type-316.5 in the temperature value in the Butanol Recycle stream.

These streams are below.

__print] Create ._Dele~e ?()rt_J ,r Ignored

Dbmoleih)IO;S3 179.28iO;D 36.7210.00 D.Oill0.00 0.00;

lfbfrtJIft3~~L,-:-_-,

0.00316.550.00

216.0017553,35

0.1130,094

1.9672E+D

I[Fraction)

lITFractionI. --'-'1[O-Fraction]

r Detaill/iewr Exdude From Summary

Summary ~ Equilibrium Results I Line SIZing 1Notesl

[Naterial --------~-- - .------ ..

l..... ii. Con~~cted to [IniOL;tr~--" ·jr- -'"/f~.i3;:,:;.I:;::·~~i_··--_··.--.-i...,

j VapFracj TTFIi P IPsiaIi ~1oleFlow Dbmole~-uj, ~1assFlow Db/h]•• VolumeFlow [ft3islI' StdLiq'....c,'umeFlow [ft3ls]• StdGasVolumeFlow U"llvlSCFD];·"F Properties;'i'" Hole

n-BUTANOLn-BUTYL ACETATEf.1ETH'il ACETATE~1ETHANOL

[: l.fi f·1ass-Iv. StdLiqVolume

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 160: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

El flame: rr~J;;AC";>R~~i~*T Description:

Solved

Spec From

with VMGSim

Detail View

f" Exclude From Summary

Summary "I Equilibrium Results I line Sizing I flotes l

Hr~c)leFklW DbmoleJhl:I Mc,ssF!ll'N [Ibih]: JVolumeFlo\',! [ft3ts]:IStdLiqlVolLlmeF'low [ft3/5]

•: ~ SLdGa,sVol'umei=low [r"r'lSCFD]PropertiesMoleh-BUTANOLn-BUTiL ACETATEr~ETHYL ACETATEr<1ETHANOLf'lass5tdUqVolume

0.96437130.{j

15.DfJfi9S.0fJ

35322..5967.233

0.1735A19E+0

I[Fraction]

,[Fraction]I[Fraction]

H3.InO

O.OIJO.DfJ

386.75

2fJ8.25

r Ignored

These streams will then be combined and sent to the reactor.

ReactQCFeed

The reactor which will be used is a CSTR. Add a CSTR to the flowsheet andconnect it to the reactor feed stream.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

5

Page 161: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

M2

Simulating with VMGSim

CSTR1

The reaction must now be specified within the CSTR. To add the reaction to thereactor, go to the "Reactions" tab and press the "Add/Edit" button.

The reaction that will be added is:

MeAc + SuOH -7 MeOH + SuAc

!OOI!CSTPJ (eSTR)Name:kr-.sQ- R""';l-"""":"- Description:

Summary &EadiOnsl Kinetics KineticVariables! Notes I n SCbematic

xn NamE

n-BUTANOL..._ _-,._.,_ _ _.._..-n-BUTl'L ACETATE.-._ __ ._ _ _ __._._ __ .

METHYL ACETATE........_..__...._._-_....._.-_ ...._.

r·1ETHANOLBalanCE.__._.._.._._.__.__.._.....I:i.Rx'n(15.."(;)lfltu11brnoU.

Print n Ignored

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

6

Page 162: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

This will bring up the following form.

To add a new reaction, type "Rxn1" into the "<New>" cell. Then specify thereaction stoichiometry as below.

, -- selection reaction: RxnO

J8alance-- iHi1~';:'(2S;c)fs;;;i1bmol} ,

I__..•.I~?;~~=== __-..-._.-...-+~C"":' "··J-<:ttew>

O,n-BUTANOL i__~I D:Jl',n:i~A;:~~~ :_:_:2rJV1ETHYL ACETATE .. _.. ;31NETHANOL

Now press "OK" to add the reaction to the reactor. To specify the reactionkinetics, go to the "Kinetics" tab and press "Edit".

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

7

Page 163: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Summary IReactions L::0.:;;:~~p'::jl Kinetic Variables I Notes I r- Schematic

Parameters

Cust:'}IIlE91l11l:it>lllJllitset , sim4ll)illllpil1!Jf'llct~r ,1FreijJacobianl-'S!! :10,.taxError . !I}.OOOOl

l-taxNumlterations .. :,' 12011inimizeError

HonitorConverge:n<:e 10ReactionPbase !OVerall

r IgnoredUser VariablesPrint

Kinetics Reaction Unit5et = sim42

17

Notes

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

8

Page 164: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

The kinetics should be specified as below.

~-;;~;;tfrom reactor (sim42) 3Advanced Kinetics

7.0000e+06 9.4670e+067.1960e+04 7.2670e+04

RxnOrder1.00 0.000.00 1.001.00 0.00

0.00 C:::::::::::::::::::::::i:Qq)

1-- --..--..--- -.- +.c c: c..:.cc c... _... :..:R.:.e::I/.:.e:.:r..sc:.e.c .......... .._ '1

!:ancel

The units for these values are in the 81 unit set, so change the unit setaccordingly.

Notes

1.000.001.000.00

~ancel ••1

Pressing "OK" adds the reaction kinetics. The last set of specifications is theoutlet pressure and temperature, as well as the volume. Once these are addedas below, the reactor will solve.

© 2009, Virtual Materials Group, Inc. 00 not copy unless authorized in writing by VirtualMaterials Group.

9

Page 165: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. with VMGSim

Solved

, ~~iQ;!~i:;::Jj Reactions I Kinetics I Kinetic Variable" I Note" I r-- Schematic

Nain Data -...". - - - - -

Namei,,' Energy Out

OutQ [Btulhr]i=:.i Signal

Deita P [psi}Volume [ft3]

7.022E+6

--85,00200.000

0.178060.1101

0.382420.32942

0.00200.0

100.00

1016.1065915.94

0.3720.335

9.2542E+0

0.252020.036140.456380.25546

0.58653168.615,00

1016.1065915.94

74,5310.334

9.2542E+0

Reactor Fee•••

Pori:l'lameIs Recyde PortConnected Stream/Unit OpVapFracT [F]P [psia]MoleFlo'N Dbmoleih]r'lassFlow DbJh]VolumeFlow [ft3Is]StdLiqVolumeFlow [fU/sJStdGasV"lumeFlow [~'I~SCFD]

[+i Properties (AIHR)Ie Fraction [Fraction]

n-BUTANOLn-BlJTYL ACETATEMETHYL .4CErATEr'IETHANOL

if: r'lassFractioll [Fraction]'+ StdUqVolFractiol1 [FractiorJd" HoleFlow Dbme-Ielh]

1.,' ...... ,......1::1..... "., nhtt... l

__Erint J User Variables n Ignored

This stream will now be sent to a distillation column to help separate themethanol and methyl acetate from the butanol and butyl acetate.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

10

Page 166: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Add a distillation column to the flowsheet, and we will now modify the tower tosuite our needs. The first step is to change the condenser from the default partialcondenser to a total condenser, thus removing the vapor product from the top.

r 5fmpleTowe.r Form

<New>

<New><New>

, IS1.0ut

i condenserl condenserV reboilerL <New>1 3

: UquidDra~.\' VapourDra'N UquidDraw

icondenserQ reooilerq <New>1 3

;EnergyOut Energyln

Configuration I Spec/Estimates ~ Efficiencies I Profile :1 Convergence 1 Notes

Condenser. Degree. Subcool [f}: ~

~~~ing.~ I_~~~zW---_·_---_·__·__··_----,---,----·---1

'feed <flew>

Next, by pressing the "Add/Remove Stages" button, 29 stages will be addedbelow the condenser.

Add I Remoy,e 1291-- stage{:s}

below stage 11{~~fld~Ils~~j

R~lnoYel

The feed stage must then be changed to enter at stage 17.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

11

Page 167: Introduction to VMG Sim

Add/Removestages ... I Schematic .... !~._~,·_, ·_~~,_·~.· __,.•_._~_.c_._••~._~ ~__:,: ·_·__'~~·~CC·_·,_ _'_'_~_""_"""_'."._ ..'_.'_'_'.' '_""'_'.'_', .•_,_.~..

t W

SimpleTower Form

<New>

,12 ';"'-=-:"""-'<"'"lIe"'w":"">"""'

32ergyln

2223

i<Hew>

I~i1

272329

Virtual MaterialsGroup, Inc.

EHERGYStageType

Connected ObjValue [Btu{hr]

3 INTERllAl VAP/LIQSt3ge

Type

Connected Obj'.~+j Deta,fs

Configuration I 5pec/btilUate:sl EfficiendlS 1 Profile Convergence 'I Uotes 1

Cond-enser. Degree SUbcool [f]~

±j SIDE STRIPPER

,,' PUNP AROUND

<New>i<New>

The last step is to enter the pressure and other specifications on the"Spec/Estimates" tab. The top pressure will be set to be 15 psia, with the bottompressure being 18 psia. The specifications made will be a top and bottom molefraction. The top fraction of butyl acetate will be set to 0.000002. To enter this,press "<!\Jew>" and complete the specification form as below.

ComponentUse the <shift> and <Control> keys for multiple selections

r[)r~';;c~~;;~~tS;~ ..ISt~~~~i~~~d~~~rl

2.00E-06

3 .1~1~I~f;~~ti~;5;~

g

Repeat this for a bottom mole fraction of 0.0001 in methanol. This will notautomatically solve the tower. By pressing the "Solve" button, it can be seen thatthe column will not solve.

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

12

Page 168: Introduction to VMG Sim

CQn\j~rgence. I.NQtes I

101

0.000150

0.00012.00

0.0001oooo1o

Description:

Virtual Materials

Group, Inc. Simulati

Print I j;i Alway. Solve

Solve f.RestartJ last Cony I

Configuration I Spe.c/Estimates! Efficiencies 1 Profile

Inftiarrzation fo1.ethod

~OroU5 ~I <Run>...~-. Cakulaong Jccobian fOl IT1

In Iteration 1 Outer ErrQr 0,389283

~pa~r~a~n~,e~te~r:'~;~-===:::T~:~~:;::!! Calculating J.acobian for ,tn111 Inner Error 3,365042(.._.......•.......•,,' /Tl Inner Error 3.861964

ITl Inner Error 3,860684.In Inner Error 3,360137/r1 Iten~tion 2 Outer Error 0,211601Calculating Jambian for In{TIInnef Error 3.764294/TllnnEr Error 3.763922,rn Iteration 3 Outer Error 0,053552CalOJJating Jacoblan for ,iT1

~9::J~~~~_~_!:~~p..

!~i.~~.e.~~!_~~..f'~a_>Qn_rl~~~~~~r

r-1_a~r1~er~£?p_~ _f·1axOuterError.........".,,, .NaxouterLoopsI· .. ... .. __.._ .....---~:1mlnn~~5~~p .ThreeP'ha-seHodelTriggerSolveT;'l.~sti:;;;,ve"!led...TryToRestartTryToSolve

ifapf~~~t;;!i~~ve_

In order to help the column solve, change the "DampingFactor" to 0.7 in the lefthand column. After changing this, trying to solve the column will allow thecolumn to converge.

, IIllotes IConvergence

.3 lrrlInner Error 0.0'10656VT11nnerError 0,004108~;~1 Inner Error 0,000122~lTl1nnerError 0,000006

":::,::::r::·:·::-::,,'::..:::·-:,,::::::::..'!' Yrl1t€.ration 10 Outer ErrQr 0.010623..j ll-7 !/r1lnner Error 0.008422

. 10:~11nnerErroro.002233

1. Ilf1lnner Error 0.000016O.OOtU: 1/Tl1teration 11 Outer Error 0.005052

50 )/f11nne.1" Error 0,001524v.!:11nner Error 0,000161

-0.0001, *!T11nner Error 0.000002200: j{r11teration 12 Outer Error 0.. 001822

-U-.OO01: Y111nner Error 0,000165f/fl1nner Error 0.000015

0; 'rrf! Iteraoon 13 Outer Error O.ODQ4700; ~:rf11nner Error 0,0002080: ~rrllnnerError 0.DOOOD80.:. llteration 14Outer Error 0,0003571 1 Inner Error 0.000105

lfrllnner Error 0.000008o Ifrllteration 15 Oi..lter Error 0.000341

Un Inner Error 0.000059ifrt Iteration 16 Outer Error 0.000254

r.~i i~~r~b~~O{700°.J~~~~rorO,~J015~1~~i i~~~ti~~o;8°o~~;~~~or0,000076~'Tl ]nner Error 0.000051

I'

Conftgl.uation I Spec/Estimates I £ffkiencies J -Profile:

Initialization r·lethad

[Ri!;rous

Print - r-W',' Always Restart from Last Cony

Solve ·1 :,w.>:~~~.~.~J Last Cony

Parameters

1

·,····'·'·····:·,,'··"·"'·············'··.··:··-.........•:•..:.'.:..'.._:.'..:DanlpingFador·FreqJ~~obian!<t~_~InitKPower.....---,_ __ ..•.__._.._ __.~ .

.~,.~~'=.~E~?r.~~~~rl~~~~p~NaxOuterErrorM"axOute

r'1inInner5"JT

!!X~~~~~~~~~~_...~Try"JaRe.tartT,:vl";;S;;~""-~-

.Y.~E~~~~!~!~~!~~~e_.

Now connect streams to the two outlets of this column. Then connect a secondcolumn to each of these streams.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

13

Page 169: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Column T2 will have 32 stages, with the feed entering at stage 17. This columnwill also have a total condenser.

I

j condenserQ rebol(erQ <flew>j 1 32]EnergyOut Energyln

icondenserL reboilerL <Hew>

jUquidDraw 1 LiqUjdDra,!~2

i

1feed <New>

I/S2.0ut 17

!<Uew>

ISpec/Estimates J Efficiencies i Profile: 1Convergence:] Notes

DegreeSubcool[F]: ro.o~

Tower Sizing .... I

TypeConnected ObjValue [Btu,ihr]INTI'RfIAL YAP/LIQStage

Type

Connec.ted Obj~+F: Det.a!lsIt SIDE STRIPPER "<New>',i PUHP AROUND '<Hew>fi VAPOUR SLIP i<New:>

Priut Ir Always Restart

__Solve '" I Restart I _last Cony j

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

14

Page 170: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

This column will have a condenser pressure of 15 psia and a reboiler pressure of21 psia. Also, it will have a reflux ratio of 1. Reflux ratio is already added as aviewed specification in the "Viewed Specifications" panel. This allows thespecification to be added directly into its value cell.

Description~

I 1 Add/RemoveStages .....1 Schematic ..Spec!Estimatesl [tt....de-ndes "I Profile t Convergence I fiOt5

Specification Requtred :; 2 (0 supplied). Delete ·Name~ to remove. Delete 'Value' to tum mto viewed spec.

Name-- IStage - jType TA~odstecfDra';;_··T~_~if- [~~f!i~~t~~.qJ~t:·j~~~-t ---fvai~e~'" --~~-~.<New><Uew>

Viewed Specificatklns. Dclete 'Name' to remove. Enter a value to turn into an active spectfication

1'~~~>:Rati~····~ .~_~~~~.~~9_!?!.~~',; ....:.p~~!1 l.S~!].~~~~~ ..9.'?}. iUfit -·-'-3r~--···

1 EnergyOut condenserQ Energy Btulhr32 EnergyIn rebollerQ Energy Btu,lhr

r Ignored

The other specification that will be made a reboiler is a product fraction of methylacetate of 0.01. This will be made in a similar way as the other draw componentspec.

-~hematic .~.Jspec/Estimate, Iffflciem:"" Profile I. Convergence I flote. I

Specmcation Required:;:; 2 {2supptted}. Delete 'tlame' to remove. Delete 'Value' to tum into Viewed spec.

Viewed 5pedfications~ Delete 'name' to -remove. Enter a value to turn into an active specification

" j~~g~._. jTIP~_.. AssodatedDra!i;J JDetail !CQ~m:LU!dObj \Unjt Value1 EnergyOut ~onden$erQ···"········"~E;;"~~gY-··-'-·······-·---·--B·tulhr

32. Energ1rn reboHerQ Energ"'1' BhJ/hr

Always Restart

~tart "f "l~st ConY" I r!!lnored

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

15

Page 171: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Pressing solve will allow the tower to converge. Add the product streams asbelow. The MeAC recycle stream will be connected up to this tower as below.

!/Slll .... ¥b'-

l~~:3

"'''' ""The third tower is the last unit operation that needs to be solved. This tower has52 stages with the feed entering at stage 27.

r Ignored

i~" SimpleTower-form

<New><New><New::.

[-condens-ert condenserV reboHerl <New>1 1 52

iUqLlidDrav,' VapourDraw UqujdD~aw

'<New>

condens.erQ reboiterQ <New>1 52

lEnergyOut EnergyIn

Description:

ltnERlIAL VAP/UQstage

..C: £flERGYStageTvpeConnecte.d DbjValue [Bru/hr]

Configuration ISpec/Estimates j Efficiencies "I Profile Convergence Illotes iCondenser: Degree: Suhcoo! fF]~

c'DRAW

I ~tagF.=ypeConnected Obj

Details

Harne;

The condenser pressure will be 50 psia, with a reboiler pressure of 55 psia. Bothspecifications are already created in the viewed specifications panel. A refluxratio of 2 and a reboiler duty of 1,100,000 BTU/hr will be specified. Beforesolving, return to the "Configuration" tab and make sure that the condenser is atotal condenser again. Much like with the first tower, without changing thedamping factor, the tower will not solve. By going to the "Convergence" tab andchanging the damping factor to 0.3 and pressing "Solve", the tower will solve.Add the product streams as below.

© 2009, Virtual Materials Group, Inc. 00 not copy unless authorized in writing by VirtualMaterials Group.

16

Page 172: Introduction to VMG Sim

," Virtual MaterialsGroup, Inc. Simulating with VMGSim

This will now allow the case to solve, as the recycles are continually updated untilthe recycles converge.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

17

Page 173: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

MDEA Reporting/Case Study ExampleThis example will go through the components required to perform reporting andcase studies relating to the MDEA example created previously. For starters,open the MDEA example.

The first step will be to create a "Project Report". To do this, go under"Reporting" and select "Project Report".

Ready

ShapesmUtility

Claus

Project R.eport

Sum ma r:\<' Set:;

~."Taterial Stream Summarj

Energy Stream SummarJ

Report Header

Report Settings

This will open the following form.

,

;

, ,

, --

I

'- ,

I ~aPF'"

: ~'oleF1owI '''''"AowI ,",,"e'~w

Excel·Ind:Jde: P,~'1br,g s::ttings

Reference Flo\.<;sl;eetooooooooooooo

fi:::'"--: ,--- ",'- -""""",'~A"" """'''',,',m,,,:o,,,'-,--V,; Ls2IJfuli';';;:J] loo~ ISaveI::7: ~;:~aton;'~,0:;trea'T'"

, 0r'1aterial Streamsr::~ L'rtitOperaiions

~Abo;orber:.;

o Arnir.e Uelails0Contrcilers~coo!ers

~Djsti§ation Cournns- IilHeatEx01&1!,"Crs

0MixEf5. 0Pumrs

0Sep.arator5. 0V"J"es

I~necgy

5

r"ctecuIa:"Wei!~ht

r.1;,,;sDer:sityI Cp

TherrnalCond'Jctillity"~:;::osity

molarV

ZFactor

1-- -I

i

Clos,

By default, all of the unit operations are selected and will be included in thereport. Also, the vapor fraction, temperature, pressure, molar flow, mass flowand molar composition are the default variables which will be displayed for

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 174: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

material streams. Each unit operation has its own individual report format,showing all pertinent information for the unit operations. If you wish to only addselected unit operations to the report, the check boxes should be checkedappropriately.

These reports can be created in Microsoft Excel or Word. In Excel, the differentunit operations can be seen on separate tabs. These can be linked to on themain report page.

MDEAReportingVirtual Materials Group

August-11-09Field

File Name:Company:Customer:Project:Job No:Prepared By:Report Date:Unit Set:

Main F10wsheet

Flle: C:\Users\Cari Landra\Documenh\B1ock Vieek\MDEARepor1ing.vrnp

Material Stream (161Absorber 11\Amine Detail iT!Controller i1lCooler (1)

Distillation Column (1lHeat Exchanger i11Mixer (1)

.B.!.nllilllSeoarator 12\Valve 11\

VMGSimv5.1l

Below is the report cover created in Word for a project report, with a table ofcontents included.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

2

Page 175: Introduction to VMG Sim

.~ VirtuallV1aterialsGroup, Inc. Simulating with VMGSinl

Main Flowsheet. 1Material Streams 2Absorbers 18Amine Oem ils """ """ 20Controllers 22Coolers 23Distillation COlumns __ _ __ _ _._ _ _ 24Heat Exchangers _ _.._ _ _ _ .27Mixers _ _ __ .._.._.. __ ._ _ _ __.._ 28Pumps _ _ _ _ _ 29Separators _ __ _ _ _ _ _ _ .30Valves _ .32

Next, we will add a summary set to the case. These are found in the same"Reporting" drop down as the "Project Report" form was found. This will open thefollowing form below.

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

3

Page 176: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

To create a summary set, press the "Add" button. Now double-click on thecreated summary set to open up the following form.

As can be seen from the "Unit Op Type" dropdown, a different summary set canbe created for each unit operation within the project.· Also, not all of the streamsor unit operations need to be included in the summary set. For this example, usethe arrow buttons to include only the inlet and outlet streams in the project in thesummary set.

/Acid3as,IFrom_Cross_Exchange

tMab'_Up-',ValerISales_Gas/Sour_Gas

Items

Pressing "OK" will bring up the summary set below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 177: Introduction to VMG Sim

Virtual Materials

Group, Inc. Simulati

To choose which variables are shown press the "Select Variables" button. Thiswill bring up the following form.

0.0

<>.000.000.000.000

GISTor·1

Several material properties can be selected, with information available in both theIn and the Out port. As well, the properties of each phase can be accessed aswell, with the separate liquid phases, the vapour phase, the bulk liquid phase andthe overall bulk phase being accessible. For this case we will add the bulk, vapordensity and the bulk liquid properties for the following variables: mass density,Cpand viscosity. The "Variable Selection" form will now look as below.

MassFracti.:.>l;

StdVofhtctior':

,"'ole'lo',\"s

M"ssflows- StduqVourr.eFlows

-E FiuidBulkVapLiqDUqlUqEl:!k

" :~OutFradian

r"assFraclk·nStdvolFra:t:on

0.00

0.00MO0.000CUSTOH

f",..', ""n>itv Ib/lt:3 0.0000tltu/lbmO"f-F 0.000t:p O.OOOOE+O

'I'''' "",,,,.tv Ib/It:3 0,0000Dtu/lbmol-F 0,000cp 0.0000£+0

f ....,l),,,""'" 1b/ft3 0,0000

© 2009, Virtual Materials Group, Inc, 00 not copy unless authorized in writing by VirtualMaterials Group.

5

Page 178: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Pressing "OK" will now create the summary set as below.

Add Sum""v

';'i' ..•....... 't ; .;...,..... ...... ... ;,tS'_il3 !I~I

Summaty·-·····

I i1

i 'n"'"arne !Add Go; 'FI,,,, Tank Ven' Mate Lb W8tec

I:,pFrac 1.0000 1.00 0,00 0,9984 0.9668120,0 135,8 77.0 lOLO 90,0

Ip [ps~l 19,50 65,00 19,50 995.00 1000.flO

r<1ole Flo:,\; [bmole;hJ 543,71 25,36 SO,H 3727,26 4391.97

fAa!;,; Row Ub/h] 20615,90 534.69 905,04 72090,.33 102203.68Volume Flo',,' [ft3!:;] 47.825 0,635 0,004 5,356 5.792-+: hFracli::on

r·\ass Density Pb/ft3] 0.1197 0,2168 62.2420 3,7]91 4.9013

Cp [BtuJl00:c~-FJ 8,772 9,551 16.045 11.792 12,947

¥isCCtsi':y lcp] lA326E-2 1,27041:-2. 3.90()7E·j 1,H20E'2 1.6'J70E-2 ~

r.,i'l~S Density Pbjft3) 1,),1197 0.2.168 0.0623 3.7215 4.4821 ~

Cp L8tu,lbmci-fJ 8.772 9.651 S,131 11.755 12.192 ~

Vlscosit'i [ep] 1.4326E-2 1.270q:-2 9.84S6E·} l.JJ15E·2 1.4Q76E-2

Mass Density DbjftJ] 61.6430 67,2602: 62.2420 39,8257 39.2197"

Cp llltuibmoi-f] 17,852 23.22'(. 18,046 34.537 34,911 ,VIscosity rep] 5.5613E-l 1. 7105E+O 8,9')07E'1 3.2094E-l 2,,31S9E-l i

Conflguratiull - -- ---'- ---,,-----

PrintAJI

This summary set can now be used in one of three ways: 1) Copied to theclipboard, 2) Exported to Excel or 3) Exported to Word.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

6

Page 179: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

When copying to the clipboard, a table similar to below is created.

Name Acid_Gas Flash_Tank Make_Up Sales_Gas I Sour_GasVent Water

VapFrac 1.0000 1.00 0.00 0.9984 0.9668

T [F] 120.0 135.8 77.0 101.0 190.0 IP [psia] 19.50 1165.00 1 19.50 995.00 111000.00 1

Mole Flow [Ibmole/hl 543.71 25.36 50.24 3727.26 114391.97 IMass Flow rib/h) II ".,. t:>n 905.04 172090.33 1 102203.68 .

Volume Flow [ft3/sl 47.8?<; n RR<; 0.004 5.356 5.792

In.Fraction

Fraction NITROGEN [Fraction] 2.42E-05 0.0150 0.00 0.0327 O.O"'7Q

Fraction CARBON DIOXIDE 0.5317 0.0972 0.00 0.0302[Fractiorii

Fraction_HYDROGEN SULFIDE 0.3782 0.0308 0.00 3.63E-07 0.0493[Fraction]

Fraction METHANE [Fraction] 0.0028 0.7596 0.00 0.8625 0.7437

I Fraction ETH ..- ') l';,)l:::_nA 0.0397 0.00 0.0359 0.0318

I Fraction PROPANE [Fractionl ,- 0.0133 0.00 0.0179 0.0167

Fraction ISOBUTANE [Fract ".."., .... n6 0.0011 0.0,~

Fraction n-BUTANE [Fractionl 3.50E-05 0.0058 0.00 0.0

Fraction ISOPENTANE [fraction] 3.82E-06 9.94E-04 O.OOE+OO 0.0027 0.0033

I Fraction n-PENTANE [Fraction] 115.85E-06 0.0012 0.00 0.0026 0.0035

Fraction C6+* [Fraction] 1 2.69E-05 0.0019 0.00 1 0.0028 1 0.0166

Fraction WATER [Fraction] 0.0869 0.0334 1.00 8.76E-04 8.00E-04

Fraction_METHYL 1.78E-17 3.55E-07 O.OOE+OO 3.42E-09 O.OOE+OODIETHANOLAMINE [Fraction]

Mass Density [Ib/ft3] 0.1197 0.2168 62.2420 3.7391 4.9013

Cp [Btullbmol-F] 8.772 1 9.651 1 18.046 11.792 12.947

Viscosity [cp] 1.4826E-2 1.2704E-2 8.9007E-1 1.3420E-2 1.6070E-2

Mass Density [Ib/ft3] II 0.1197 0.2168 0.0623 3.7215 4.4821

Cp [Btullbmol-F] ~ 8.772 9.651 8.181 11.755 12.192

Viscosity [cpl I 1.4826E-2 1.2704E-2 n 1.3315E-2 1.4076E-2

Mass Densitv [lb/ft3] I 61 67.2602 0 39.8257 .,n "'n.."

CP [Btu/lbmol-F] 17.952 23.222 18.046 34.537 34.911

1Viscosity [cp] 115.5613E-1 1.7105E+0 8.9007E-1 3.2094E-1 2.3159E-1

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

7

Page 180: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

If the summary set is exported to Word, it will look as below.

Equipment Summary: Stream Material

rtF]

11... flow Pbihj

Volume-flow [ftYsI

fr"'lio~.PR()PANEtF"",l1on]

"'",lio11. n-BUTANE [fracioll]

U.,.;tion.),.pENlAIIE tFlactiol1]

FrattiDfl C6+' IFr-Ktion}

ft",l!rm3,uJ1fl\ OIETllAIIOl.AMINE [Fratiool

Cp [Bl.1~m,1-f]

Mm o"",;ty [IOifiJ]

Cp [Bt.1@pl-F]

tM,.n""oityIllJftJI

Cp [BM~""I.-FI

Vi.",.i", I'P]

2.421:..1:/5 O,Oi5';} UO ;JG327

053U 0,0872 0.00 i 0.0~02

0..31::2 O.O~~ 0.00 S,63E·C'

0.0018 O.7S-6 0.00 iJ.e'325>

2..5-:ZE-04 0.0317 0.00 0,05'?

e'.E2E·05 O.OB$ UO {',CfT?

2.13::...-:>6 o.o-:n 0.00 0.C(i3~·

3..5tE-O.5 O.C\.~·8 0.00 0.C{>t4

~.f::'J:"(>6 8.94EJ:>4 O.OOE+OO 0.0:'21

5.65E-O& O.0Jt: UO 0.0n~·

2.fSt-0S O.CC~S 0.00 O.W2e

O.t-&09 0,03':4 un O.T5E->,."4

tTaE-t? 3.55E-07 D.OOE~O 3A2E-:':S

(I.tiS7 0.2108 52.242(, 3,nSt

E../fl S55~ 'i&.04S ~~.i82

~.4c2~E~ t2704E·2 &£'\.-(=f;:;_~ U420E·2

O.1t9! O.2EB G.G~·23 3.n~5

t.r!2 B.SS~ s. ~Et 11.755

iAE25E--2 '.Z794E~ S.,~4:.E-E--1 !J~·~5E-2

8tM3C' 57 2~2 c2.242~ 2S.OZ'"'

~7~E2 232.n 't~·.C'4f. 14.537

S.561aE-~ ~.7jC'5E+-O ,!LSO~f:E-t J..20:24E·t0

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

8

Page 181: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Meanwhile, if the summary set is exported to Excel, it will look as follows.

......., .9 fraction_NITROGEN [fraettonI-·1· · · ..10· Fri!:ttlon_CARBON DIOXIDE Ifriu:t1QO]

·tfl:~i~~jii.~;~x~~0.i.~t.i::~y.:~i.!~~:ii.i~~ii~·~i.12 IFrattion_MEIHANE IFriit!ion] NN·;13]:f.i~~jii.~;.E.T.~~~~::[~:~~~!i~~i.::::::::::::::· F

2·.:5:.·2'·E:::.(··..4..· ,:.: :.:.: :.:.:.: ::.:.:.:.: ,.: : :.: (

14 .F.E~c.ti.~~.""P.!':?~:':~.~..IF..r~;;:i.?!!L F6.:-'.3:2.E"..'•.>5:: :.:.:..:.::' :.:.: .

F.:.~;;t!~n..""I~?~~!.~~~JF.:.~;;t!~~.l.......................... 1..273..E.(5 : ..~:.~;;t.i~.n..""n.:~.~.!~~~ ..[.F.:~;;!i.~~J....... r3..50..E-..O..5: : :.:.. :.: : : ..

fratlion_lSOPENTM1E Ifraclinn] 132EoO,"

r.,:~I~ ..F..'.?'~·.. [.I.~'!i.~.I.~!~.I. .~:a.:S...F.I.~:~:.!I.~!~.l... ..Vctlu me Flcw Ilt3le]

.F..r.~;;t!~.~.""n.:p.~~~.~~.!F..r.~tl~.n.J.... ...:.:3..0..::"..':"' :.: :.:.: : : , ( .fraction_Cll+' [fra>Clionj 1..25..>..·E-..(..': : ; , 1 .

L~g f6~~jii.~:>~~~~::i.f.i~~~!i~~i.:::::::::::::::::::::::::::::::::::::::::: ..::1(·· ..O359 : : +I 21 Ifractinn_MEIHYl DlEIHANOlAMlNE [Frattion] l.78E·17r22..J..r,i;;~D~~~itY·iiblft:;j · · ''''''0':.:\··..E:::T..·..: ·..:·:·:·:·:::··:: · · ·· ..:·:·:.:.:i" ::.: ,.::..:.~::: ..:.: ;.::..:.:.::: :.:: ( ......_ ·1 · ··: · · · ·..•..: : , , (

23 IGp [BtuJlbmol-F] 3.77224lvi;~~;i;y[~pi · · · · · · · ·1·:·::..·:·: ·..·:..:·:·:·:..: · · · ·..:.:.::.:..: :.•:.:.:: ::: ::::::.: : (

-25·rr;i~;·~·o~~~iiY·ii~lfi:;i ..· · F0.:..1:..1';::7: ,.:.:.: :..: :.:.:.:.:: ,.:

·2..6TG~[·Bj~:;i·b~;~i:~ ·::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1..';·.7..72 , , I .

,~~~t{~~~::::::·:::::::::::::I ..i.;..i..~:.~:'..~ '..:;.:.:.c.: ,..:.;; :.: :.: ;.:.:.:.: : +

Additional summaries can be added within the summary set, up to 10 summariescan be created. Extra summary sets can be created, without a limit to how manysummary sets can be created.

The next process that we will go through is developing a case study. The casestudy can be used to find the effect that changing a variable will have on a varietyof properties or flowrates being studied. For our case study, we will adjust theinlet gas temperature, as well as the rich amine loading and see the effects on

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

9

Page 182: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

the sales gas and acid gas flow rates, as well as the H2S and CO2 flowrates ineach of these streams and the lean amine flowrate.

To start this, open "Case Study" under the "Tools" dropdown.

Refre5h All \IVind ow's Ctrl+A

Cl05e All, Except Current, Unit Op Forms

Check PFD

Check Unit Op.Hierarchy Tree

Unit Sets .

Options ..

Hardware Key Info

Ctrl+Z

This will open the following case study form.

~dd ...•.·.·.1

Delete]

Add J... Custo~ ....

foUssing Independent Variable

Name:

Set Up '1 Results I Plot I StatusIR' Run All Combinations Number ofPoints:

Independent Variables···········_·.·········j [""Dependent Variables .,......~-,.....-,i!

.~~:.....ljj

I 'I .~ .;[)eete· I I

.' Add 111~H.~...~~_! L.__....

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

10

Page 183: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

There are two different ways to add variables to a case study. Both ways will beshown in this example. First, we will add the inlet temperature as anindependent variable. In order to select something as an independent variable, itmust be a specified value. To do this, press "Add" next to the "IndependentVariable" table. This will bring up the following navigation form.

To change the inlet temperature, go to the "Sour Gas" and select the In port,since this is where the temperature is specified. Now select the temperature asthe independent variable and press "OK".

Haterja(Streams'J.: Add_Gas

-{+.1 Flash~Tar.k~Vent

;:f! From_Cross_Exchange

+±'i Gas_to_Absj±1 Heated_Rich_AmrnE

d-) LeanJ\mine

i±-' Make_Up-'''''Job=rFf,: Reger,erated_An"lneft:i Rich_Amir:e

i:+i Rich_Amine_to_Cross_Excha.. ,'·F Ridl_frOll1_AD

'+1 Sa!eELGasSour_Gas

[n

Out;.+.i To~Cooler

\:t' To_Flash_Tank':j:: To_Pump

'....;-"::: <:ontrollersRlCh_loaclnQ_Controlier

"'l:;:~ £xce:IUnitOps_. V"later_Bdance_Ca!cuIatQf

P Show Short list

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

11

Page 184: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Copy Connection

Simulating with VMGSimThe sour gas temperature is now available as an independent variable. Next, therich amine loading will be entered as an independent variable. Since the loadingis set using the controller, the set point of the controller must be added as anindependent variable. This will be done by opening up the controller form. Byright-clicking on the SP value cell, it can be added to the case study.

~_-_ Lean=~ine.Std Uq v...

Summary INotes IEl Performance·- ....: El SettinQs··

11~!~~:?f~~~,~;l-j~¥;'·~?~~~~···~···.-:~=.~····••···~••~·••~=r;~:::1' J.. . : ,'-•........1 60

E1 OP/f'lan Var Range .._ _....! Print Landscape

. .... !~IV~'u~~~1 Copy Whole Table

Copy

0.2' Pastel---'----~---'---"---'----___,_j

Convert 'Target' to arecyde port

Add to Case Study; CaseStudyl

This will open the following form which allows the variable to be added as anindependent or dependent variable. Select this as an independent variable andpress "OK".

p.dd Variable to Case Stud}.; CaseStudy1IRich_LoadinfLController.SP

Add variable as , _ ,

f+- Independent Variable

(' Dependent Variable

The case study form now looks as below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

12

Page 185: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Selected Case:

tlame:

Set Up IResults] Plot] Status I

with VMGSim

IV' Run All Combinations Number of Points: 121

Independent Variables i~~~~~'a~'''~aa='=-.:'=.········.-.. ·· I

/Sour_Gas.ln.T '--AdIJ Add .1

IRidl Loading contrOJler.T'Delete=! Delete IAdd:1 Add I

Custom I Custom

I-!i.sing Dependent VariableRun

11

Unear

11

linear

close

The dependent variables can be added using either of the two methods shownpreviously. After adding the variables mentioned before, the case study will lookas below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

13

Page 186: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

FrCi':_CARBOfCDIOXIDEl UAad_Gcs,I!'Vo!-=-Fkr.';,CARBOf.,_DIOXIDE)FrCi':--,..,m;tOGBCSUl.FlDEl (iAdd_G~s.I".r"'.oIeAQ\\,.K fDROGE.:'U;utFIDE)ft.ean_Amrfle.In,StdJq'.'o.'lrneF[O'il

.3

11

linear

11

Unear

111!t5iJJg HinValue in /Sour_Gas.ln.T

Frac_CARBOr'CDIOXIDEUSales_Gas.lnJ""oleFlow.CARBON_DIOXIDE)Frac_HYDROGEN_SULFIDE USales_Gas,In. r'1oleFlow. HYDROGEN_SULFIDE)/Sales_Gas.In. fvJoleFlow!A,jd_Gas.In. r·loJeFlo~\'Frac_C.4RBOf'·CDIOXIDE1UAdd_Gas,In.IV'oleFlow.CARBOf\J_DIOXIDE)Frac_HYDROGEN_SULFIDE1UMd_Gas.In.f\'10IeFlo'i\' .HYDROGEt'J_SULFIDE)lLean Amine.In.StdLiqVolumeFlow

Add ·1

. D~letel

Add 1Custom

The case study data must now be specified. For both independent variables, 5data points will be used. The minimum and maximum temperature will be set to50 F and 130 F respectively. The range ofrich amine loading will vary between0.2 mol/mol and 0.8 mol/mol, as suggested by the GPSA. The case study willautomatically calculate the points which will be used for the trails. With the "RunAll Combinations" box checked, each temperature will be run with each richamine loading, resulting in 25 different tests. To perform these tests, press"Run".

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

14

Page 187: Introduction to VMG Sim

Virtual Materials

Group, Inc. Simulatin

N3me~

SetUp IResults I Plot I Status!

f\;i Run All Combinations Number of POints: 25

:/c~~,,=,~~~~12,=-~I::': .::....===......:........................ ,... DependentVariables--

n~:~~~~~~,~~~: ~ !rF;:;'C_CARB6iij)iQXI-[JE-C-isa-les-'_G;;;:i~:MoleFI;-;;;:t~ Iile _. I jlFrac.HYDROGEN.SUlFIDE V$ales.Gas.ln.MoleFlo'li Delete Ii

DeJe!:...J 1 !Sales_Gas,In,r'1oJeFlo'N --- j

. cuA,d.todm I i {Add Gas,In,T'!QleFlow Add I:, I FracSARBON.D10XIDEl (fAdd_G... Ir,,~loleFlow.C~ I

I Frac.HYDROGEN.5UlFIDE 1 (fAdd_Gas,lnJ'1oleFlo,\l'IILean Amine.ln,S!dLiqVolumeFlo',\'

50.0 0.2000130.0 0.800051::::::::....5120.00 0.1500

linear LinearSO,O 0.200070.0 0.350090.0 0.5000

110.0 0.6S00130.0

Ready

The results of these tests are displayed in a number of ways. The first can beseen in the "Results" tab. This tab, by default, shows all of the results in onetable.

By checking the "XYZ Table" box each variable can be seen in its own separatetable that can more easily show the effects of the independent variables on thedependent variables.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

15

Page 188: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Sim ulating with VMGSim

NewI_.:J

CaseStudyl

Run

I

II

Name:

Set Up Results J plot Status I

f';; XYZ Table X: r.lSo~~:G;;'I~ ,T

Selected Case~ !caseStudYl

The results can also be seen in the "Plot" tab. With 2 different independentvariables, one variable will be shown on the X axis, with the other beingdisplayed as the series. Once this has been decided, which variable is desired tobe studied can be looked at by selecting it under "Y". To see the acid gas flowrate with the inlet temperature on the x axis, the plot looks as below.

---.ir-- 0.2 [lbmolJlbfj)ol]0.35 [IbrnolJlbmol]0. 5 {Ibmol/lbmol]0.65 [IbmolJlbmol]0.8 [IbmoJ/lbmoij

!Sou,_GaslnT [Fj

1:1=-- -:-~--:--LL~:O. 4~oo:f'.:: :::::::~:. --. ·~ " ........+.......... .•

~ -----0, ---------~TI'3:00 ~.~-~~

~ ------

By changing the "Plot Type" to "Density" with the radio buttons, this sameinformation can be shown using a color density plot. The lighter that the color is,the lower the value is, as shown by the legend on the right hand side. Leaving

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

16

Page 189: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

the acid gas flowrate as the dependent variable, it can be seen that the sour gastemperature is on the x-axis and amine loading is on the y-axis. Changing theplot color to green, the density plot looks as follows.

The last plot type that should be looked at is the 3D plot, which can be seen bychanging the "Plot Type" radio button again. By switching the "Y Type" between"IVloleFlow" and "StdLiqVoIFlow", the dependent variable which will be looked atcan be selected with the check boxes. By checked the acid gas flow ratecheckbox and changing the radio buttons surrounding "View Angle", the following3D plot can be developed.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

17

Page 190: Introduction to VMG Sim

Virtual Materials

Group, Inc. Simulatin with VMGSim

-SetUp; Results Fiot I status]

P!otlype- I,~;:~~:;f,~~]~~==::~2D sene,,-, Densityi. 3DPlDt

IAnD_Gas.Tn. !-lc~eFlo;NFrac_CARSm-,_DlOXIDEl (jAoo_Gas.Tn.r-loleflu\:I.CARBOr-CDIO\1DE)

/Acid_Gas.ln.MoleFlow 3D BAR PLOT [Ibmole/h]

130,00 50.00

{" Black

" Blue(. Red

/". Orange

,-' YeUow

c", purple-

50.00

f;BC~CARBOfCDIOXIDEl (i;'.dd_Gas~Tn,t>1o;e90w.CARBorCDlOXIDE)

,"c__ ....,.......,...,.,,.-1=,., "'" ""rY:;' U~.>,.l r __ ._ ~>_I~_l;l_ .. , ~,,,,,,.,r::->.' "'. ";'r'.l;'

130.00

/Acid_Gas,In.MoleFlow 3D BAR PLOT [Ibmole/h]

set Up t Results Plot Istatusl

r' DenSIty

[t' 3DP!ot

By changing the variables displayed for each of these three different plotmethods mentioned, the information obtained by the case study can be seenvisually.

One other type of case study that can be run is a case study based on thefraction of H2S in the inlet sour gas. When adjusting the mole fraction of a

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

18

Page 191: Introduction to VMG Sim

Virtual Materials

Group, Inc. . Simulating with VMGSimcomponent, the other components will be normalized to allow for a constant ratioof those components. To create another case study press the "New" button atthe top of the case study form. This will create a "CaseStudy2".

'u ••uu.~.

Add ! Add IDelete I Delete I

~Add!

_Custom. Custom

Selected Case: rc~~~sh;d'j~i-'­I··m~~__.:.__

Name: CaseStudy2

Set UP! Results ~ Plot I StatusIj;;l Run All Combinations Number c,f Points:

'·tissing Independent Variable Close

To add the mole fraction of H2S, press "Add" next to the independent variablesection. It will bring up the same form as previously. By opening "Sour Gas" andselection the In port and then opening the "Fraction" node, the hydrogen sulfidemole fraction can be accessed.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

19

Page 192: Introduction to VMG Sim

Virtual Materials

.............~r~.~~,I~~:__ . __§J~_~~_~_!!_~9 ....~_i._!I.~_.'!~§~i.~_

i0,9666 i

90,oi

1:~~::~1102203.68 j

~:~~~I4A10E+1 i

-2,ODSE+Sj

lMl279'1.0940

R Show Short List

VapFrac

T[F]P [psla]Mole Flow [bmolejh]1'1M' Flow Dbih]Volume Flo'if [mi']Std liq Volcme Flow [ft3i']Std Gas Vobme Flow u~r,lSCFD]

Energy [lltuthr]J:i Propernes(:-.' Fraction

NITROGEN [Fraction]CARBON DIOXIDE [Fraction]HYDROC,fN SULFIDE [Fraction]r'lETHANE [Fraction]ETH.o,NE [Fraction]PROPANE [Fraction]I£.QBLrTANE [Fraction]r.-llUTAhE [Fraction]

In

':E Flash_Tonk_VentT.: From_Crass_Exchange

+ Gas_to_Abs

±! Heated_Rlch_Amnef! Lean_Amine

''If) Make_Up_~;r;;ater

!t' Rege.nerated_.o.\mine

i+ Rich....;Arnine'+: Rich_4.mine_to_Cross_Excha. ,.

."..: Rich_fron1_AD

±: Sales_Gas

Out

f:E To_Coolerltj TO_f13sh_Tank

Of: Toyump

Controller.sRjch_Loading_CantrQlh~f

(j fxce:IUnitOpsWater_Balance_CafQJlatQf

By clicking on "Hydrogen Sulfide [Fraction]" and then pressing "OK" the molefraction of H2S will be added as an independent variable. It should vary between0.0 and 0.2 with 21 points in between this range. For dependent variables, selectthe molar flowrate of the lean amine, sales gas and sour gas, as well as thehydrogen sulfide mole fraction in the last two streams. Once added, press "Run"to perform the case study.

flame:

Set u? ) Reiults I Nat! 5b:lh.l'i!

j;t- RllfI AJt CQnminab:)f;S t"umQer .ofPoints-:, 11

r~~~:;fit~~~~~is;:;3;;J~·:·F~~~~~~~QOG~0!1S.L~.CFll:~E'~):.- 'A;9;:';.-....,ii iil!~~~~."~'~"f:,.h~''"'~";::::;~::::~~:::::::·. ~~~~Jj,llDO'''' J "*'" I

_~~~~J Cslom

Going to the "Plot" tab, it can be seen that the plotted results are displayeddifferently with one independent variable than they were for two independentvariables. With one independent variable, the Y axis is defined by the type ofvariable that will be shown (mole fraction, flowrate, etc.). Once the variable typehas been selected, the check boxes can be chosen to show whichever variables

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

20

Page 193: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

of that type are desired to be shown. With "MoleFlow" as the Y variable type andall 3 stream options selected, the plot will look as follows.

2400(;

22f.l011

Oeletl!

ft'Qhldi:ktomowP'otme,-;

..-------&----- lle::..,jl.rnine,ln Mol-=F1ow,,~ !JaI",~_Gas.In.Mo!enow

....•.. IAcj·:tGadn.Hol.:Fkrw

,,-~'OOl;'-------------------:i

~.JK'l,1:\_'4.'

.<:tOOG

~lBO(lD

~ H~!}OC

g HOOG

~ 12001}IT:(I) toDOl)-0:2. IWOC,

600C

400C

200C

:i.1O 020

cO-C.1""'-C'."""C-"'·'--"'<---".--'.'--....'O-.'--._'--.i--_.-.-._._.~---._.. -.-.•-'--.-._.E),DB

ac_HYDROGEN_SULRDE qSou,_Gas.ln.Fraciion HYDROGEN SULFiDE)

Meanwhile, the plot looks as below with air of the mole fractions shown.

',7,------------------,.".' ....-..u.s

Frae_HYDRO GErc5ULFlDEFrac_HYDROGHCSULFIDEl

....•--.. Frac_HYDROGHUULFlDE2 Rlghtd:cktoSY.l'NpiotlIlenJ

1)2 .•

_HYDROGEN_SULFIDE (ISou,_Gas in Frachon HYDROGEN SULFiDE)

Also, the dependent variables can be displayed on the x-axis. For example, ifthe sales gas flowrate is chosen as the x-axis variable, with the mole fractions set

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

21

Page 194: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

to be on the y-axis, the plot will look as below. This provides for many possibledisplay options.

~Iected(a$e';

II<lme:

SetUp! Results ;>:ot l Status I

0.7,-:------------,.'...'. "...

ISaies_Gas.hMoleFlow [lbmole,'h]

------.------. FI5CHYDAOGEtCSULFlDEFrac_HYDROGHUUlFlDEl

- • Ftac~H'TDROGEtCSULFlDE2R"J'lt dr:k 1D sh'JY,' p'olrr.ef:U

As well as the plots displayed, the results tab will also display the gatheredinformation, as was the case with two independent variables.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

22

Page 195: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

;}.....~~~.....,>i<,l\

Hydrodealkylation Reactors

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by Virtual Materials Group.

Page 196: Introduction to VMG Sim

J Virtual MaterialsGroup, Inc. Simulating with VMGSim

Summary

Property PackageAdvanced Peng-Robinson

ComponentsHydrogen, Methane, Benzene, Toluene, Biphenyl

Stream Information

Stream Name Feed

T (K) 894.3

P (psia) 503

Mole Flow 4382.5(Ibmole/hr)

Hydrogen 0.4291

Methane 0.4800

Benzene 0.0053

Toluene 0.0856

Biphenyl 0.0000

Unit Operation Summary

PFR1Diameter - 9.57 feet

Length - 57 feet

OutT - 957.2 K

OutP - 486 psia

© 2009, Virtual Materials Group, Inc. Do not copy unless authorize'd in writing by VirtualMaterials Group.

Page 197: Introduction to VMG Sim

~ Virtual MaterialsGroup, Inc.

Reactions

Simulating with VMGSim

Reaction Name r1 r2

HydroQen -1 1

Methane 1

Benzene 1 -2

Toluene -1

Biphenyl 1

Reaction Kinetics

r1

X1 =rxnCmp['HYDROGEN'].Fraction

X2 = rxnCmp['METHAI\IE'].Fraction

X3 = rxnCmp['BENZENE'].Fraction

X4 =rxnCmp['TOLUENE'].Fraction

X5 =rxnCmp['BIPHENYL'].Fraction

r = 61430*exp(-25616/T)*(X4*P)*(X1*P)**O.5 # Ibmol/s-ft3

r2

X1 = rxnCmp['HYDROGEN'].Fraction

X2 = rxnCmp['METHAI\IE'].Fraction

X3 =rxnCmp['BENZENE'].Fraction

X4 = rxnCmp['TOLUENE'].Fraction

X5 = rxnCmp['BIPHENYL'].Fraction

r =998*exp(-25616/T)*(X3*P)**2-4255*exp(-25616/T)*(X5*P)*(X1*P)

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 198: Introduction to VMG Sim

~ Virtual MaterialsGroup, Inc. Simulating with VMGSim

CSTR1Volume - 4065.842 feee

OutT - 957.2 K

OutP - 486 psia

Reactions

Reaction Name r1 r2

Hydrogen -1 1

Methane 1

Benzene 1 -2

Toluene -1

Biphenyl 1

Reaction Kinetics

r1

X1 = rxnCmp['HYDROGEN'].Fraction

X2 = rxnCmp['METHANE'].Fraction

X3 =rxnCmp['BENZENE'].Fraction

X4 = rxnCmp[TOLUENE'].Fraction

X5 =rxnCmp['BIPHENYL'].Fraction

r = 61430*exp(-25616/T)*(X4*P)*(X1*P)**0.5 # Ibmol/s-ft3

r2

X1 = rxnCmp['HYDROGEN'].Fraction

X2 = rxnCmp['METHANE'].Fraction

X3 =rxnCmp['BENZENE'].Fraction

X4 =rxnCmp['TOLUENE'].Fraction

X5 = rxnCmp['BIPHENYL'].Fraction

r = 998*exp(-25616/T)*(X3*P)**2-4255*exp(-25616/T)*(X5*P)*(X1 *P)

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

Page 199: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Hydrodealkylation ExampleIn the following tutorial, two reactors will be created which will performhydrodealkylation of toluene. One reactor will be a PFR, with the other being aCSTR. For this case, Advanced Peng Robinson (APR) will be used as theproperty package.

Show Sekxtioll helper

~hetnlodyn~~~~~~ .•!Ad-"O!1::ed PengAwbinson

eryGas Treating Chem~a! SolvE:ntGa~Tfeatin9 Physocc! Solventcr treatingoche.m'calsPressure no:') Associating ChemiC5istT'lediuT: Pfes~lire: Assodatina SystemsPressure C!:em;:<ils -

Cancel

Hydrogen, methane, benzene, toluene and biphenyl will be the componentsadded to the property package.

~Ute (om;:>ound Secrch IHypothetical Compound 1

<:ompoynd ffamify rmo;;.;;;;;;~= - __~ i~- DetatFamuy Groups

Delete

Delete AU

Apply

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

1

Page 200: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

Once these have been added to the case, the reactor feed stream should becreated. This stream is shown below.

r Detail View

r Exdude From Summary

Summary IEquilibrium Results I tine Sizing I

connected to (In lOut]VapFracT[F]P [psialfYlc,leFlow Obmc,le;h]MassFlow Ob;h]VolumeFlm'l [ft3,1s]StdUqVolumeFlow Ift3,1s]StdGasVolumeFlow UYlfYlSCFDJ+, PropertiesH·j Hole

··f StdUqVolume

1.001150,0

503.004382.5073917.16

42.1661.2D9

3,9914E+1

PFR1Jn

[rbmolefriJUb/q,][ftS/s]

Print I Creatie Port I.' Deletie Port I r Ignored

The first reactor that will be created is the PFR. Create the reactor and connect itto the feed stream.

PFR1

There are two reactions that take place within the PFR. They are as below.

Tolune + H 2 ~ Benzene + CH4

2Benzene ~ Biphenyl + H 2

The kinetics for each of these reactions are expressed based on the partialpressures of the components. These are shown below.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

2

Page 201: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. Simulating with VMGSim

If?1'1 =61430exp(-25616/T)PTPH -

1'2 =998exp(-25616/T)PB 2 -4255exp(-25616/T)PDPH

The units for rate of reaction for these equations is Ibmol/(ft3s), with thetemperature in Kelvin and the pressure in psia.

The first step in solving the reactor is to specify the reactions. To do this, openthe PFR form and go to the "Reactions" tab. Press the "Add/Edit" button to bringup the form below. Fill it out with the required reactions, as shown below.

Enter data 011 the <New> column' to add a reactioJl, <Delete> key to delete a reaction

0.00 0.00tu~bn101] 1-17973.8562 3568.9714

r~~~~re~a~ct~ion: Rxn1 _ - - _ ,

lr2:HyDR.6GEf~+BlpHE~jyL~2~lBEr'JZEi;JE

IF..: : :..:..:.::.:.:.:..: ! r1 <New>HYDROGEN BENZENE

Since the reaction rate uses a combination of imperial and metric units, a newunit set should be created. Since all of the units used are Field units, except forthe temperature, this will be used as the basis for the new unit set. To do this,select "Unit Sets" under the "Tools" menu.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

3

Page 202: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

R.efresh All W'indows

Close All, Except Current,. Unit Op Forms

Frle Viewftoo!s} Assist.~~~t.~,_.?{~at::I::__R.eporting

R.e-solve the case

Check PFD

Check Unit Op. Hierarchy Tree

Unit Sets...

Options".

Hardware Key Info

Case Study."

r 100 PFD2

Now press the "Clone Unit Set" button and select "Field" as the unit set to becloned. Name this new unit set "FieldHDA".

Clone Unit Set

as

By scrolling to the right the created unit set can be seen.

cpbbljday

Bt"Brurib-P(BbJ{ft3)1{2psta-ft311bmQI-R,Btu,furBbJ•.1bBtJi'1bmol-FfI.':!Ah.........1

···················--····l~

}r' Unlt Sets __._ -._..... . _-_..__ - _.- __.- _._ -

<~<~~A~cti~ve~u~r;~~~e=·~:=_·~·~~"ildHD~_-iAI·_· ~..-m·-m..~··1..I-i:;Ji·~'[~;=>'::tro:din"'··i··:'"'oirm""·i'··;;;'~=:;CCt~·~:u=-i··CCl·~~'!i~<i""~iJ·i~·~~c=lJn~:J;!'~et~.....=..=I=~••iU~••~~~~~~f===;~j!L ......._.._..._...._..._....J4iftg...5..hs dd9, (i ME SImgscm _..__J94 E4 "kI,4 HetdHDA ...~~~_~ .....

j Pa pSla kPa kPc ip;;·_·--· kPa f:".Pa psia ~I:··.~·.<...<... ·l,.,: :,:.

';K F eKe K K F :

J~9~'3 :;ft3 ;~~m3 :~1n3 ~:m3 :~m3 ~g~m3:fD L ":! 1,1

..............................!m2 acre m2 m2 m2 m2 m2 acre............ . j N Ib-force kg-fon::e kg·fufl::e kg:4orce kg~furce kg-force Ib-furce

ft m m m m ftIb kg kg kg kg '.g Ibday s s day

Pa-s Pa-s Pa~.s Pa-s cpm3jhr m3/hr m3jbr m3/l-! ft3fsJ J J J BtuIUlkg-K 1U/kg,K kJ/kg·K kJft:g-K Btu/lb·f(J{m3)ljZ (J/m3)1{2 {J/m3)1/2 (Jjm3)lj2 (Btu/ft3••JikmoJ-K, lUikmoHC J/kmt>H<. kJ;,kmoJ-K. psia·ft3_Vi W JeW IN Btujhrr~!~J rJAg kJ{kg kJ,~41 Btu/lbkJ/krnol-K kJ,Ikrnol-K kJllcmQ]-K Btu/Ibm....

The temperature of this unit set should be changed from F to K. To do this,select the temperature unit set drop down and change the unit set.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

4

Page 203: Introduction to VMG Sim

,~ Virtual MaterialsGroup, Inc.

• Fi'eldHDA <~psia

~-~

RCf

'"TU

ft

Simulating with VMGSim

Now press "OK" and then select "Yes" in both of the following pop-ups to use thenewly created unit set.

Do you want to install/Modify the unit set FieldHDA?Empty units ....vill use VfvlGSim defaults:

Yes

Change active unit sette FieldHDA7

No

Yes

Returning to the PFR form and going to the "Kinetic Variables" tab and switch thereaction to "r1".

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

5

Page 204: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Summary1Reactions Kinetics I Kinetic Variables I Profile IC:lIst().I1l~I:III.a.t:i_()111!l1i'?lO~; sim42

[)iJml'in!l:FiJcl:J>.f. i 1parametersl'r.~I:IJac()bia_l1t:f~ :10

NaxError i0.00001

"laxtlum~t~r<l.ti()I1~_~~::::!20NinimizeError i 1

" , -~_._.~-_..;

HonitorConve!!l:ell'<:~___ :0Number5ections 110

Kinetics

=0

Print User Variables· .,

To enter the reaction kinetics, now press the "Edit". When the kinetics formopens, check the "Using Advanced Kinetics" box. Replace the

X1 = rxnCmp['HYDROGEN'].Fraction

X2 = rxnCmp['METHANE'].Fraction

X3 = rxnCmp['BENZENE'].Fraction

X4 = rxnCmp['TOLUENE'].Fraction

X5 = rxnCmp['BIPHENYL'].Fraction

r = 61430*exp(-25616/T)*(X4*P)*(X1*P)**O.5 # Ibmol/s-ft3

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

6

Page 205: Introduction to VMG Sim

0,00

0,00

0,00

0,00

# Ibmol/s-ft3

Virtual Materials

Group, Inc. Simulatin

/"rll"~i'J~E:~;:,a~"~~i'~~~'~t"t"_"""""'T"""'" _. :~i~:~:E~:i~~R~ii.:~j:.F.;~cti.~.~ .X2 = f)(nCmp['f>1ITHAflE'].fractionX3 :::: rxnCrnp['BEtllEliE'].FractKmX4 := rxnCmp['TOlUENE'}.FractionX5 :::: rxnCmp['BIPHEJ'Nl'].fractionr ~ 61430*""p(-25616/TJ*{X4*P)'(Xl·Pj'·O.S

Make sure to change the reaction unit set to the created FieldHDA.

Unlt5etofKinetics Reaction

; Kinetics

Notes

QK !;;ancel

Pressing "OK" will allow this to be added to the reaction kinetics. Repeat thesesteps for the other reaction by selecting it and then pressing "Edit" again. Enterthe kinetics below for this reaction.

X1 = rxnCmp['HYDROGEN'].Fraction

X2 =rxnCmp['I\/IETHANE'].Fraction

X3 = rxnCmp['BENZENE'].Fraction

X4 = rxnCmp['TOLUENE'].Fraction

X5 = rxnCmp['BIPHENYL'].Fraction

r = 998*exp(-25616/T)*(X3*P)**2-4255*exp(-25616/T)*(X5*P)*(X1 *P) #Ibmol/s-ft3

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

7

Page 206: Introduction to VMG Sim

Virtual Materials

Group, Inc. Simulatin

[;7 Using Advanced Kinetics'"""~'"~"""'""••'.':'.:~.".~'"~"'~.~"••""""~T"~."~."'""".~.ix:i·;··~c;:;~;'6iYDROGEWr.r;;ct;;;:;"·_-···~·~~~"·~~

\

'X2 = rxnCmp['f-lITHAliE'].FractionX3 = rxnCmp['BENZHlE'].FractionX4 = rXTlCmp['TOLUEtIE'].FradionX5 = rxnCmp['BIPHEllYl'].Fractionr, 0 "-'_="m'(""')'W""~ # .""".",

QK

Pressing "OK" allows both of these reaction kinetics to now be specified. Returnto the "Summary" tab to finish specifying the reactor. The outlet temperature andpressure will be 957.2K and 486 psia. Lastly, the reactor diameter will be 9.53feet and the length will be 57 feet. Entering these specifications will allow thereactor to solve.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

8

Page 207: Introduction to VMG Sim

Virtual MaterialsGroup, Inc. with VMGSim

Summary)

j Reactions

solved

Kinetics'j Kinetic Variables 1 Profile Notes I

3.9914E+1

0.42910.48

0.00530.0856

0.00

1.00894.3

503.004382.50

73917.1642.166

1.2093.9914E+l

17,009.53

298.257.00-1,03

4D65.842

-1.987E+6

User Variables

Delta P [psi]Diameter [ft]External T [k.1Length [ft]U [Btujhr-ft2-f]Volume

Is Recycle PortConnected Stream/Unit OpVapFracT [K]

JP [psia] ••r-1oleFlo'N Dbmole/h]fvlassFlow Db/h]VolumeFlo'N [ft3/s]StdLiqVolumeFlow [ft3/s]StdGasVolumeFIc,w [MMSCFD]EH Properties (.C\lt+R);::i Fraction [Fraction]

IfVDROGEN

rVJETHANEBENZENETOLUENEBIPHENYL

Naterial ·..· ·..· ·..·· ··· · , "I

The CSTR can now be created. So that the same feed is sent to both reactors,the Out port of the "Feed" stream will be cloned and connected to the CSTR. Todo this, open the "Feed" material stream form. Press the "Create Port" button.

© 2009, Virlual Materials Group, Inc. Do not copy unless authorized in writing by VirlualMaterials Group.

9

Page 208: Introduction to VMG Sim

... 'Feed (SifeamJAaterial)

EJ flame: Description:

Simulating with VMGSimVirtual Materials

Group, Inc.

Spe<:from

r- Detail View'r Exdude From Summary

Summary 'I Equilibrium ResultEi tine Sizing I

Print 1[creat.ePortl ... DeleiePort I r Ignored

PFRl.ln1.00

894.3503.00

4382.5073917.16

42.1661.209

3.9914E+1

![l'raction]![l'ractionli [Fraction]

toVapFracT[K]P [psia]MoleFlow Obmoletru~lassFlow ObthlVolumeFlo'/'l [ft3/s]StdLiqVolumeFlow [ft3/s]StdGasVolumeFlow [Mr"SCFD]it: PropertiesFE Hole'f' f4assif: StdLiqVolume

This opens the following form.

Change the port type to "Out" and press "Clone". This will clone the port,although it cannot be seen on the PFD. Now create a CSTR and connect thecloned "Feed.Out" port, which will be named "Feed.Out_1 ", to the CSTR.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

10

Page 209: Introduction to VMG Sim

f' Schematic

r Ignored

Virtual MaterialsGroup, Inc.

Print

Nain Data

Summary 1Reactions I Kinetics 'I Kinetic Variables I

Portl'iameIis-R~~y~i~~p~~t .. -- -----~- ..-...-~--.-j Connected Stream/Unit OpIVapFracIT [K}

IP [psia}

:. r'IoleFlow Qbmoleih}r'1assFlow Qbih]Volumeflo'N [ft3js]StdLiqVolumeFlow [ft3is]StdGasVolumeFIDw U'Ir'ISCFD}

Properties (,"Ilt+R)Fraction [Fraction]HYDROGEN~1E11-J,4NE

BB~ZENE

TOLUENEBIPHENYL

if) l"lassFraction [Fraction][±; SroLiqVolFraction [Fraction]

This will now send the same feed stream information to both created reactors, incase changes are made to the inlet feed.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

11

Page 210: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Summary "j Reactions I Kinetics Kinetic Variables:1 r Schematic

l'lain Data

0.42910.48

0.00530.0856

0.00

1.00894.3

503.004382.50

73917.16 73917.1642..166

1,2.093.9914E+1

Feed.Out 1

User VariablesPrint

Dbmole.lh]Dblh]

I VoliumeFlow [ft3/s]I StdLiqVolun1eFI(lW [ft3/s]iStclGasVolLlmeF:low {I'lr'lSCFD]

Properties (Alt+R)Fraction [Fraetie'n]HYDROGENI;JETIiANEBENZENETOLUENEBIPHB~YL

MassFraction [Fracbon]StdUqVolFraction [Fraction]r.1l ....1....c:I""", nh ............L.., ,l-.T

The reactions and reaction kinetics should now be specified in the CSTR usingthe same methods used to specify the information in the PFR.

Once this is done, the same outlet temperature will be specified for the CSTR aswell. The same volume, 4065.842 feet3, will be used as well. It can be seen thatquite similar results are obtained with the CSTR as are with the PFR. There arehowever slight differences, which are due to the fundam~ntal differencesbetween a CSTR and a PFR.

© 2009, Virtual Materials Group, Inc. Do not copy unless authorized in writing by VirtualMaterials Group.

12

Page 211: Introduction to VMG Sim

Virtual MaterialsGroup, Inc.

Solved

r:::§~i~i~~~;,:::J] .!!,eactionsl Kinetics I Kinetic Varia bles I rM

Schematic

f-1ain Data

0,3661

0.54509

0.06620.02051

0.00209

0.42910.48

0.0053

0.08560.00

17,00

4065.842

User variables!

r:------~:-r:--;-----,_------------

r'lateria!-

~;;:':::--I..'~.:..};::.eed=.o=ut::-::9'-\_~I_;_-t_r_.---9-5-,,-~..,r:1 P [psia] 503.00 486.00lr"loleFJo\\' Dbmole/h] 4382.50 '1382.50IMassFlo'N Dblh] 73917.16 73917.16

IVolumeFlow [ft3/s] 42.166 46.692"StdUqVolumeFlow [ft3/!>] 1.209 1.178

.StdGasVolumeFlow D-1r'lSCFD] 3.9914E+1 3.9914E+1

'I' fE Pro~perties (.l\lt+R). i=::J Fraction [Fraction]

j ~:::J

IBENZENETOLUENEBIPHENYL

1

','" IVlassFraction [FI'action]:Ef' StdLiqVolFraction [Fraction],',-, '"i.-.l ....cl .....,.,, nh ...... ,.,J"..., ,\-.1

CSTR1

© 2009, Virtual Materials Group, Inc, Do not copy unless authorized in writing by VirtualMaterials Group.

13

Page 212: Introduction to VMG Sim