kriging · 2007. 7. 7. · ordinary kriging where and kriging variance! z(s 0)=! i z(s i) i=1 n...

24
1.2 Kriging

Upload: others

Post on 15-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 1.2 Kriging

  • Research goals inair quality research

    Calculate air pollution fields for healtheffect studiesAssess deterministic air quality modelsagainst dataInterpret and set air quality standardsImproved understanding ofcomplicated systemsPrediction of air quality

  • The geostatistical model

    Gaussian processµ(s)=EZ(s) Var Z(s) < ∞

    Z is strictly stationary if

    Z is weakly stationary if

    Z is isotropic if weakly stationary and

    Z(s),s !D " R2

    (Z(s1),...,Z(sk )) =d

    (Z(s1 +h),...,Z(sk +h))

    µ(s) ! µ Cov(Z(s1),Z(s2 )) = C(s1 " s2)

    C(s1 ! s2) = C0( s1 ! s2 )

  • The problem

    Given observations at n locationsZ(s1),...,Z(sn)estimate

    Z(s0) (the process at an unobserved site)

    (an average of the process)

    In the environmental context often timeseries of observations at the locations.

    Z(s)d!(s)A

    "or

  • Some history

    Regression (Galton, Bartlett)Mining engineers (Krige 1951,Matheron, 60s)Spatial models (Whittle, 1954)Forestry (Matérn, 1960)Objective analysis (Grandin, 1961)More recent work Cressie (1993), Stein(1999)

  • A Gaussian formula

    If

    then

    X

    Y

    !

    " #

    $

    % & ~ N

    µX

    µY

    !

    " #

    $

    % & ,

    'XX 'XY'YX 'YY

    !

    " #

    $

    % &

    !

    " #

    $

    % &

    (Y |X) ~ N(µY + !YX!XX"1(X"µX ),

    !YY " !YX!XX"1

    !XY )

  • Simple krigingLet X = (Z(s1),...,Z(sn))T, Y = Z(s0), so that

    µX=µ1n, µY=µ,ΣXX=[C(si-sj)], ΣYY=C(0), and

    ΣYX=[C(si-s0)].

    Then

    This is the best unbiased linear predictorwhen µ and C are known (simple kriging).

    The prediction variance is

    p(X) ! Ẑ(s0 ) = µ + C(si " s0 )[ ]TC(si " sj )#$ %&

    "1

    X " µ1n( )

    m1 = C(0) ! C(si ! s0 )[ ]TC(si ! sj )"# $%

    !1

    C(si ! s0 )[ ]

  • Some variants

    Ordinary kriging (unknown µ)

    where

    Universal kriging (µ (s)=A(s)β for some spatialvariable A)

    Still optimal for known C.

    p(X) ! Ẑ(s0 ) = µ̂ + C(si " s0 )[ ]TC(si " sj )#$ %&

    "1

    X " µ̂1n( )

    µ̂ = 1nT C(si ! sj )"# $%

    !1

    1n( )!1

    1nT C(si ! sj )"# $%

    !1

    X

    !̂ = ( A(si )[ ]TC(si " sj )#$ %&

    "1A(si )[ ])

    "1

    A(si )[ ]TC(si " sj )#$ %&

    "1X

  • Universal kriging variance

    E Ẑ(s0 ) ! Z(s0 )( )2

    = m1 +

    A(s0 ) ! [A(si )T[C(si ! sj )]

    !1[C(si ! s0 )]( )T

    "( A(si )[ ]TC(si ! sj )#$ %&

    !1

    A(si )[ ])!1

    " A(s0 ) ! [A(si )T[C(si ! sj )]

    !1[C(si ! s0 )]( )

    simple kriging variance

    variability due to estimating β

  • The (semi)variogram

    Intrinsic stationarityWeaker assumption (C(0) needs notexist)Kriging predictions can be expressed interms of the variogram instead of thecovariance.

    ! ( h ) =1

    2Var(Z(s + h) " Z(s)) = C(0) " C( h )

  • Ordinary kriging

    where

    and kriging variance

    !

    Z(s0 ) = ! iZ(si )i=1

    n

    "

    !T = " + 11# 1T$#1"1T$#11

    %

    &'(

    )*

    T

    $#1

    " = (" (s0 # s1),...," (s0 # sn))T

    $ ij = " (si # sj )

    m1(s0 ) = 2 ! i" (s0 # si )i=1

    n

    $ # ! i! j" (si # sj )j=1

    n

    $i=1

    n

    $

  • Parana data

    Built-in geoR data setAverage rainfall over different years forMay-June (dry-season)143 recording stations throughoutParana State, Brazil

  • Parana precipitation

  • Fitted variogram

  • Is it significant?

  • Kriging surface

  • Kriging standard error

  • A better combination

  • Spatial trend

    Indication of spatial trendFit quadratic in coordinates

  • Residual variogram

  • Effect of estimatedcovariance structure

    The usual geostatistical method is toconsider the covariance known. When it isestimated• the predictor is not linear• nor is it optimal• the “plug-in” estimate of thevariability often has too low mean

    Let . Is a goodestimate of m2(θ) ?

    p2 (X) = p(X;!̂(X))

    m1(!̂(X))

    m2(!) = E! (p2 (X) " µ)2

    m1(!̂)

  • Some results

    1. Under Gaussianity, m2(θ) ≥ m1(θ) withequality iff p2(X)=p(X;θ) a.s.2. Under Gaussianity, if is sufficient,and if the covariance is linear in θ, then

    3. An unbiased estimator of m2(θ) is

    where is an unbiased estimator ofm1(θ).

    E!m1(!̂) =m2(!) " 2(m2 (!) "m1(!))

    2m̂ !m1("̂)

  • Better predictionvariance estimator

    (Zimmerman and Cressie, 1992)

    (Taylor expansion; often approx. unbiased)

    A Bayesian prediction analysis takesaccount of all sources of variability (Le andZidek, 1992; 2006)

    Var(Ẑ(s0;!̂)) "m1(!̂)

    +2 tr cov(!̂) #cov($Ẑ(s0;!̂)%&'(

  • Some references

    N. Cressie (1993) Statistics for Spatial Data. Rev. ed.Wiley. Pp. 105-112,119-123, 151-157.Zimmerman, D. L. and Cressie, N (1992): Mean squaredprediction error in the spatial linear model withestimated covariance parameters. Annals of theInstitute of Statistical Mathematics 44: 27-43.Le N. D. and Zidek J. V. (1992) Interpolation WithUncertain Spatial Covariances–A Bayesian AlternativeTo Kriging. 43 (2): 351-374.N. D. Le and J. V. Zidek (2006) Statistical Analysis ofEnvironmental Space-Time Processes. Springer-Verlag.