low power cmos process technology

51
Low Power CMOS Process Technology Scott Crowder IBM, SRDC, East Fishkill, NY

Upload: others

Post on 16-Oct-2021

8 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Low Power CMOS Process Technology

Low Power CMOS Process Technology

Scott Crowder

IBM, SRDC, East Fishkill, NY

Page 2: Low Power CMOS Process Technology

Process Technology/Scott Crowder 2

Outline• What is Low Power?• Process For Low Standby Power• Process For Low Active Power• Other Low Power Requirements• Conclusions

Page 3: Low Power CMOS Process Technology

Process Technology/Scott Crowder 3

Power Components in Digital CMOS• Standby Power

– Power when no function is occurring– Critical for battery driven– Can be reduced through circuit optimization– Temperature dependent leakage current dominates power

• Active Power– Switching power plus passive power– Critical for higher performance applications

• Other Sources of Power Consumption– Analog & I/O Power

• Some circuit configurations have current flow even w/o switching– Dynamic Memory Refresh Power

• eDRAM, 1T SRAM require periodic refresh of data

Page 4: Low Power CMOS Process Technology

Process Technology/Scott Crowder 4

Power Components (simple version)

Power = Switching Power + Passive Power

f * C * V * V

FrequencyCapacitance

Voltage

I (V,T) * V

CurrentVoltage

Page 5: Low Power CMOS Process Technology

Process Technology/Scott Crowder 5

Power Trends

180nm 130nm 90nm 65nm0

20

40

60

80

100

Pow

er fo

r 10

x 10

mm

chi

p (W

atts

)

Gate Sub Vt Active

Base Devices, 10% Activity, 105C

Desktop Processor TechnologyHandheld Technology

180nm 130nm 90nm 65nm 45nm0

50

100

150

200

Pass

ive

Pow

er (p

icoW

atts

/Mic

ron)

Gate Source Well

High Vt Devices, 25C

with

out H

igh-

K

Page 6: Low Power CMOS Process Technology

Process Technology/Scott Crowder 6

What is Low Power in CMOS?• Depends on product application• Examples

#1: Handheld phone chip#2: Server microprocessor chip

Page 7: Low Power CMOS Process Technology

Process Technology/Scott Crowder 7

Example #1: Handheld Application• Key Attributes:

– Battery Powered– In off-state significant portion of time– Standby condition at room temperature– Lawsuit if chip gets too hot– Standby dominates power requirements

• Leakage current at room temperature dominates power

• What is Low Power Optimized Design?– Want highest performance @ given leakage current

Page 8: Low Power CMOS Process Technology

Process Technology/Scott Crowder 8

Example #2: Server Application• Key Attributes:

– Powered by electrical grid– Almost always on– Power condition at operating temperature– Lower power reduces packaging & cooling expense– Switching power dominated power requirements in past

• Want lower capacitance, voltage at maximum frequency– Passive power at operating temperature now a major component

• Want lower high temperature leakage current & lower voltage

• What is Low Power Optimized Design?– Want switching power to dominate– Want to maximize performance & modulate voltage to meet power

requirements

Page 9: Low Power CMOS Process Technology

Process Technology/Scott Crowder 9

One More Major Component: Cost• Critically important to technical solution

• Example #2: Server microprocessor– Higher performance = higher end product price– Will add reasonable cost to enable performance

• Higher cost process: strain engineering, added metal levels• Flip-chip packaging, heat sinks & fans

• Example #1: Handheld application– Market will not allow higher cost solutions– Lower power specifications– Focus on lowest cost process that meets market demand

Page 10: Low Power CMOS Process Technology

Process Technology/Scott Crowder 10

Low Standby Power

Page 11: Low Power CMOS Process Technology

Process Technology/Scott Crowder 11

Components of Passive Power

• Major components– Source leakage current

• Sub threshold off-state current

– Gate current• Tunneling current thru

gate dielectric– Well current

• Band-to-band tunneling current to well

GND

VDD

VDD GND VDD

IG,off

IG,off

IS, off

IS, off

IW

IW

IG,on

IG,on

Page 12: Low Power CMOS Process Technology

Process Technology/Scott Crowder 12

IS: Source Sub threshold Leakage

• Strong Vth dependence• Strong Temperature dependence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Vt (V)

1E-7

1E-5

0.001

0.1

10

1000

100000

10000000

Ioff

(pA

/um

)

25C125C

Sub threshold current

110

1001000

10000100000

100000010000000

0.0010.010.1

1e-4

1e-71e-61e-5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Page 13: Low Power CMOS Process Technology

Process Technology/Scott Crowder 13

Under scaling Supply Voltage

• Higher performance at given leakage power by raising Vdd• Vdd scaling has slowed dramatically for low standby power

0

5

10

15

20

25

30

0.1 1 10 100 1000

Relative Leakage Power

Rin

g D

elay

(pse

c)

500mV350mV250mV

1.0V

1.0V

1.0V

1.1V

1.1V

1.1V

1.2V

1.2V1.2V

Lower leakage power at same performance at higher Vth & Vdd

Page 14: Low Power CMOS Process Technology

Process Technology/Scott Crowder 14

Methods to Modulate IS Leakages

NWellNWellPWellPWell

N+N+P+P+

NN--band for NFET Active Wellband for NFET Active Well

PP--type Substratetype Substrate

SilicideSilicide

PFET

• Reverse Body Bias or Active Well

Added wellimplant toseparate welland substrate

NFET

Page 15: Low Power CMOS Process Technology

Process Technology/Scott Crowder 15

Reverse Body Bias

Body bias dependence limited by IG & IW leakage

Leakage dominated by IS but low body effect

0.40.30.20.10.0-0.4 -0.3 -0.2 -0.1

1e-6

1e-7

1e-8

1e-9

1e-5

Body Bias Voltage0.30.20.10.0-0.4 -0.3 -0.2 -0.1 0.4

1e-6

1e-7

1e-5

1e-4

1e-3Total Leakage

Body Bias Voltage

Total LeakageHIGH VT DEVICES LOW VT DEVICES

Reverse bias

~5x 125C

25C

125C

25C

Reverse bias

Page 16: Low Power CMOS Process Technology

Process Technology/Scott Crowder 16

IG: Gate Leakage

• Function of gate dielectric material and thickness• Low temperature dependence -> dominates at low T

Kraus, et al, IEEE TED Vol 52, No. 6 2005, page 1141

SiOxNy

~10xper

0.2nm

0 25 50 75 100 125 1500.00.10.20.30.40.50.60.70.80.91.0

~12 Angstrom gate oxide+1V

NFE

T G

ate

Leak

age

(µA)

Temperature (C)

Q. Liang, IBM

Page 17: Low Power CMOS Process Technology

Process Technology/Scott Crowder 17

Methods to Reduce Gate Leakage: N

fixed EOT contours

• Increased Nitrogen concentration reduces gate leakageKraus, et al, IEEE TED Vol 52, No. 6 2005, page 1141

Page 18: Low Power CMOS Process Technology

Process Technology/Scott Crowder 18

Methods to Incorporate Nitrogen

SiO2 base oxide

N plasma

plasmanitridation

thermalnitridation

SiO2 base oxide700-1000CNH3, NO

N N N

NN

NN

N

N-implantN N N

N N N

more N at top surface

N throughout

more N at bottomoxidation

Page 19: Low Power CMOS Process Technology

Process Technology/Scott Crowder 19

High-k/Metal Gate Stack: Tinv = 14.5A, ToxGL = 16A

silicon

Bottom interface

High-k Layer

PolySi or Metal Gate

Methods to Reduce Gate Leakage: High-K

• Vth control (WF engineering)• Charge trapping• Mobility degradation• Increased complexity

• >1000x lower IG• Lower Tinv at same IG to enable device scaling

IssuesBenefits

Page 20: Low Power CMOS Process Technology

Process Technology/Scott Crowder 20

Mobility

[[M FrankM Frank et al., VLSiet al., VLSi--TSA05 TSA05 ]]

• Acceptable long channel mobility with Hf-based oxides• Requires optimization of HfSiO(N)/SiO(N) composition

Page 21: Low Power CMOS Process Technology

Process Technology/Scott Crowder 21

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50.00

0.20

0.40

0.60

0.80

1.00

1.20

nFETpFET

High-k / SiONHigh-k / SiO2

ConventionalHfSiO

SiON

Cap

acita

nce

dens

ity [µ

F/cm

2 ]

Gate voltage [V]

Fig. 3 Split C-V curves demonstrating the Vt shift obtained by gate stack optimization on SiO2 and SiONinterface layers

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50.00

0.20

0.40

0.60

0.80

1.00

1.20

nFETpFET

High-k / SiONHigh-k / SiO2

ConventionalHfSiO

SiON

Cap

acita

nce

dens

ity [µ

F/cm

2 ]

Gate voltage [V]

Fig. 3 Split C-V curves demonstrating the Vt shift obtained by gate stack optimization on SiO2 and SiONinterface layers

Gate Workfunction Tuning

Optimized high-k dielectric stack reduces pFET Vt shift by 200~300 mVSelective use of ultra-thin interface/surface modification layers

EXT EXTS/D S/D

STI STIhalos

Contact Contact

Bulk Si

Oxide/Nitride spacer

interfacial layer ('cap')

HfSiOgate stack

Counter doping

Fig.1 schematic to illustrate different components for vt adjustments for HfSIO gate stack

M. M. Frank et al VLSI-TSA 2005

Page 22: Low Power CMOS Process Technology

Process Technology/Scott Crowder 22

IW: Tunneling & Trap-Assisted Current

50100150200Technology Node (nm)

0.01

0.1

1

10

100

1000

Cur

rent

(pA

/um

)

ISIGIW*

*** *****

*

* *

BTB tunneling

Well

S/DGate Field Enhanced BTB

Depletion

Trap Assisted

• Band to band tunneling increases with doping levels & steeper gradients

• Gate field enhanced tunneling increases with thinner gate dielectric

• Reduction of trap assisted current varies with cause

Schematic of IW sources Relative Contribution of IW

Page 23: Low Power CMOS Process Technology

Process Technology/Scott Crowder 23

Methods to Reduce Junction Leakages

25 30 35 40 45Implant Energy (KeV)

0.9

1

1.1

1.2

1.3

1.4

1.5

Cap

acita

nce

(pF/

um2)

3

3.5

4

4.5

5

5.5

6

Cur

rent

(pA

/um

)

25 30 35 40 45 50Halo implant angle (degrees))

0.5

1

1.5

2

2.5

Cur

rent

(pA

/um

)

• Leakage modulated primarily by transistor doping profiles

NFET Junction Leakage vs. Halo Angle PFET Junction Leakage vs. S/D EnergyRef: Hook, ACEED 2005

Page 24: Low Power CMOS Process Technology

Process Technology/Scott Crowder 24

Low Active Power

Page 25: Low Power CMOS Process Technology

Process Technology/Scott Crowder 25

Components of Active Power Power ~ f * C * V * V + I (V,T) * V

Voltage

Higher Transistor Performance at Same Leakage

Same Fmax at Lower Voltage

Lower Active Power

Page 26: Low Power CMOS Process Technology

Process Technology/Scott Crowder 26

Performance Scaling

Traditional performance scaling: Shorter Gate Length Higher Gate Capacitance (IG)Shallower Junctions (IW)Lower Threshold Voltage (IS)Lower Supply Voltage

Higher performance with: Higher Supply VoltageHigher Inversion CapacitanceHigher Mobility

All did not scale in 65nm technology

Page 27: Low Power CMOS Process Technology

Process Technology/Scott Crowder 27

Mobility Innovation: Stress MemoryAmorphous layer

By implant

After anneal & Nit Removal

Si is crystallized and stress is “memorized”

0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014b (M1 FN10 10 0 08 0 07 M1 I )

1e-08

1e-07

1e-06

1e-05

100

1000

10

600 700 800 900 1000 1100 1200 1300 14001

nFET Ion (uA/um)

nFE

TIo

ff(n

A/u

m)

0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014b (M1 FN10 10 0 08 0 07 M1 I )

1e-08

1e-07

1e-06

1e-05

100

1000

10

600 700 800 900 1000 1100 1200 1300 14001

nFET Ion (uA/um)

nFE

TIo

ff(n

A/u

m)

Control

Tensile Nit stressor

[Chan, CICC ’05]

Page 28: Low Power CMOS Process Technology

Process Technology/Scott Crowder 28

Mobility Innovations: Strained Liner

350 450 55010-9

10-8

10-7

10-6

10-5

Un-stress Compressive

Ion (µA/µm)

b) PMOS

Ioff

(A/µ

m)

350 450 55010-9

10-8

10-7

10-6

10-5

10-9

10-8

10-7

10-6

10-5

Un-stress Compressive

Ion (µA/µm)

b) PMOS

Ioff

(A/µ

m)

Un-stress

tensile

a) NMOS

700 900 1100 130010-8

10-7

10-6

10-5

10-4

Ioff

(A/µ

m)

Ion (µA/µm)

Un-stress

tensile

a) NMOS

700 900 1100 130010-8

10-7

10-6

10-5

10-4

10-8

10-7

10-6

10-5

10-4

Ioff

(A/µ

m)

Ion (µA/µm)

N PN PN P

Tensile nit Compr nit

Contact

ST

Tensile Nit + GeCompressive Nitride

[Chan, CICC ’05]

Page 29: Low Power CMOS Process Technology

Process Technology/Scott Crowder 29

eSiGeeSiGe

P+Compressive liner

Mobility Innovations: Embedded SiGe

• Introduces compressive stress • Lowers contact resistance

[Luo, IEDM 2005]0 0.01 0.02 0.03 0.04 0.05 0.06 0.07PFET Lgate (um)

300

500

700

900

1100

1300

1500

1700

Rod

lin (o

hm)

w/o eSiGe

eSiGe

eSiGe + CSL

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07PFET Lgate (um)

300

500

700

900

1100

1300

1500

1700

Rod

lin (o

hm)

w/o eSiGe

eSiGe

eSiGe + CSL

[Luo, IEDM 2005]

PFET Liner Mobility Enhancement Embedded SiGe Cross-section

Page 30: Low Power CMOS Process Technology

Process Technology/Scott Crowder 30

Mobility Innovations: <100> PFET

0o notch

<011> channel

<011> channel

X (100)

Y (010)

Z (001)

X (100)

Y (010)

Z (001)

45o notch

<010> channel

<001> channel

Page 31: Low Power CMOS Process Technology

Process Technology/Scott Crowder 31

Mobility Innovations: <100> PFET

0 002 0 0025 0 003 0 0035 0 004 0 0045 0 005 0 0055 0 006

08

07

06

05

compressive

Neutraltensile

10-7

10-8

10-9

10-6

200 300 400 500 600

pMO

S Io

ff (A

/um

)

pMOS Ion (uA/um)

insensitive

0.0002 0.0003 0.0004 0.0005 0.0006M1 FPRVT1x_08 M1 Io n

p , ,

pFE

TIo

ff(n

A/u

m)

100

10

1000

1200 300 400 500 600 .

pFET Ion (uA/um)

Carrier direction<110>

Carrier direction<100>

0.0002 0.0003 0.0004 0.0005 0.0006M1 FPRVT1x_08 M1 Io n

p , ,

pFE

TIo

ff(n

A/u

m)

100

10

1000

1200 300 400 500 600 .

pFET Ion (uA/um)

Carrier direction<110>

Carrier direction<100>

• Significant boost in PFET current without added process steps• Loss of ability to increase current with compressive stress

[Chan, CICC ’05]

Page 32: Low Power CMOS Process Technology

Process Technology/Scott Crowder 32

Mobility Innovations: Hybrid Orientation

PMOS NMOS

• 110 surface: 2x higher PFET µ >2x lower NFET µ

• Hybrid Orientation• 110 for PFET• 100 for NFET

Process Challenges:- Low defect epitaxy- Planarization- Trench isolation

M. Yang, VLSI 2004

Page 33: Low Power CMOS Process Technology

Process Technology/Scott Crowder 33

Inversion Capacitance: Metal Gates

Binary/ternary alloys: W2N*, Ta2N*, TaN*, TaSiN*, RuO2**, CoSi2, NiSiMetals 3-5 nm thick on 500 nm SiO2, anneal 3 oC/s up to 1000 oC in FG

IIA IIIA IVA VA VIA VIIA

IIIB IVB VB VIB VIIB IB IIBVIII

*

**

Ag

CuCo**

CdPd**

P

Ni**

H

Li

Na

K

Rb

Cs

Fr

Be

Mg

Ca

Sr

Ba

Ra

Sc

Y

La

Ac

Ti*

Zr*

Hf*

V*

Nb*

Ta*

Cr

Mo

W

Mn*

Tc

Re**

Fe

Ru

Os

Rh**

Ir** Pt** Au

Zn

Hg

B

Al*

Ga

In

Tl

C

Si

Ge

Sn

Pb

N

As

Sb

Bi

O

S

Se

Te

Po

F

Cl

Br

I

At

He

Ne

Ar

Kr

Xe

Rn

*

**

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

IA VIIlA

1

3 4 5 6 7 8 9 10 11 12

13 14 15 16 17

18Stability <700CStability >700C* = NFET; **=PFET

• Metal gate incorporation to remove gate depletion

• Holy Grail: Band edge workfunction & thermally stable

Page 34: Low Power CMOS Process Technology

Process Technology/Scott Crowder 34

Metal Gate Integration Options: FuSi

Metal DepositionAnneal, Strip, Anneal

Anneal, Strip, Anneal

“One Step” “Two Steps”

NiSi

PolysiliconMetal (Ni,Co)

Silicide

PolysiliconMetal (Ni,Co)

Silicide

Silicide

[Kedzierski, IEDM ’02]

Page 35: Low Power CMOS Process Technology

Process Technology/Scott Crowder 35

NiAlSi

HfO2

O Al NiHfSi+Hf

Cou

nts

Al spikeAl pile up

Challenges for FuSi

• Dual Workfunction creation– Alloys– Doping– Phase change

• Workfunction control & stability• Variation with gate density & size

[ YH Kim IEDM’05]

Page 36: Low Power CMOS Process Technology

Process Technology/Scott Crowder 36

Metal Gate Integration Options: Replacement Gate

Etch Gate Deposit High-kDeposit Gate MetalDeposit Fill Metal

CMP

Build Device

Challenges:• Integration of different workfunction metals: high complexity• High-k deposition on small gate area• ALD probably required for gate metal

Page 37: Low Power CMOS Process Technology

Process Technology/Scott Crowder 37

Metal Gate Workfunction Stability• Workfunction of integrated metal gates has strong

dependence on deposition & annealing conditions

• Potential root causes of workfunction shifts– Metal induced gap states (MIGS) – Oxide charge (O vacancies) in HfO2

– Oxidation of interfacial metal– Hf-diffusion into metal (WF change)– Dipole layers at SiO2/HfO2 interface

Deposition

-1.0 -0.5 0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0

Gate Voltage (V)

Cap

acita

nce

Den

sity

(nor

m.) As deposited

OxidizingAmbient

ReducingAmbient

Annealing

[E. Cartier, VLSI ’05]

-0.5 0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

2.5

3.0

Method1

Method2

Cap

acita

nce

Den

sity

( µF/c

m2 )

Page 38: Low Power CMOS Process Technology

Process Technology/Scott Crowder 38

Memory Limitation to Voltage Scaling • SRAM cell stability limits scaling of array Vdd

– Vth mismatch due to dopant fluctuation in best case is constant with scaling

• Lack of gate dielectric scaling has caused it to increase– Reduction of all other components of mismatch critical

• Design Options– Larger cells– Separate array Vdd– Alternative cells/memory

• 8T SRAM• eDRAM

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

V rig

ht [V

]

Vleft [V]

6T

Cell area =

0.197µm2

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

V rig

ht [V

]

Vleft [V]

8T

Cell area =

0.262µm2

Butterfly curve comparison for scaled cells

[VLSI 2005]

Page 39: Low Power CMOS Process Technology

Process Technology/Scott Crowder 39

Components of Switching Power Power ~ f * C * V * V

Capacitance

CmgCcg Cg Cov

Cd, area

Cd, per

Cd, per

Transistor

Cvert

Chor

Metallization

Page 40: Low Power CMOS Process Technology

Process Technology/Scott Crowder 40

Capacitance Reduction: SOI

Cd, area

Cd, per Cd, per

Bulk TransistorCd, area

Cd, per Cd, per

SOI Transistor

• Reduction of area diffusion capacitance to negligible level• Reduction of perimeter capacitance with film scaling

• Additional AC drive current benefit from gate coupling

Page 41: Low Power CMOS Process Technology

Process Technology/Scott Crowder 41

Options to Gate Capacitance Scaling• Need better electrostatic control to scale LG

– Higher gate inversion capacitance• High-K gate dielectric material to reduce EOT• Metal gate material to eliminate gate depletion

– Fully depleted double gate structures• Better channel control through structural change

• LG must decrease more than Cinv increases

Page 42: Low Power CMOS Process Technology

Process Technology/Scott Crowder 42

Capacitance Scaling with Metal Gate• LG must decrease to prevent capacitance increase

• Short channel effect degradation when metal gate workfunction deviates too far from band edge– Lose portion of performance benefit and most of power benefit

Gate Workfunction

DIBL at constant LG

Si Band edge

Towards mid-gap

Page 43: Low Power CMOS Process Technology

Process Technology/Scott Crowder 43

One Double Gate Structure: FinFET

[D. Fried][D. Fried]

NiSi Gate

SiFin

BOX

Tox = 1.6nm

NiSi

SiTsi = 25nm

Kedzierski, Kedzierski, IEDM 03IEDM 03

Process Challenges:• Fin creation and control• Source/drain resistance engineering• Contact formation and control

Page 44: Low Power CMOS Process Technology

Process Technology/Scott Crowder 44

BEOL Capacitance Scaling

Cvert

Chor

Performance ~ R * C

Capacitance ~ keff * h / space

Resistance ~ ρ / (h * w)

h

Reduce inter-level dielectric constant => lower capacitance

Reduce resistance => lower height => lower capacitance

Page 45: Low Power CMOS Process Technology

Process Technology/Scott Crowder 45

Capacitance Scaling: Reducing BEOL k

• Multiple porous dielectric options with k < 2.4– Spin-on and CVD deposition options

• All materials have lower material strength as k decreases– Optimization of BEOL stack & packaging required

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0Nominal Dielectric Constant, k

0.0

4.0

8.0

12.0

Coh

esiv

e St

reng

th, Γ

(J/m

2 ) X-H. Liu et al., Adv. Metal. Conf. (2004);

A. Grill et al., Adv. Metalliz. Conf. 2001

Page 46: Low Power CMOS Process Technology

Process Technology/Scott Crowder 46

Capacitance Scaling: Scaling hCu

Ag

Au

45 nm

0.01 0.1 1Linewidth (µm)

0

2

4

6

8

10

12

14

Line

Res

istiv

ity (µ

Ω-c

m)

Al (pure) Note: Pure Al has poor E-M; Al(Cu) alloy has poor R.

AssumptionsGrain size = 2x line widthSmooth surfaces

Mean free paths: Al=15 nm; Cu=39 nm; Au =40 nm; Ag=45 nm

S. Rossnagel, Semicon West (2004).

• Copper will continue to be material for low ρ metallization

Page 47: Low Power CMOS Process Technology

Process Technology/Scott Crowder 47

Capacitance Scaling: Scaling h

• Scaling requires thinner liner & seed films– 45nm dimensions demonstrated– Porous dielectrics must be compatible with thin liner to have benefit

• ALD liner & Cu seed reduction provide opportunity for additional scaling

CuTa/TaNLiner

ITRS 45nm PVD liners demonstrated Cu BEOL using Ru liner

[Edelstein, 2005]

Page 48: Low Power CMOS Process Technology

Process Technology/Scott Crowder 48

Passives Scaling: BEOL Capacitors

Min. pitchwires

2X pitchwires

Native BEOL capacitor

0

0.5

1

1.5

2

2.5

3

0 50 100 150

Technology (nm)C

apac

itanc

e/A

rea

(fF/u

m2)

Native BEOL

• Benefit of scaling: better “free” BEOL capacitors

• Good tolerance due to averaging over many levels

Page 49: Low Power CMOS Process Technology

Process Technology/Scott Crowder 49

Passives Scaling: Decoupling Capacitors

Trench Capacitors

0

50

100

150

200

0 0.5 1 1.5 2 2.5

Leakage (nA/um2)

Cap

acita

nce

(fF/u

m2)

Gate Oxide Caps

Trench Capacitor

• Gate capacitor scaling not possible with low passive power• >10x reduction in area & >100x reduction in leakage with trench capacitors

Page 50: Low Power CMOS Process Technology

Process Technology/Scott Crowder 50

Conclusions: Handheld Low Power

• Standby power dominated

• Choices:– Add strain engineering without gate scaling– Add high-K dielectrics to enable gate scaling– Add design complexity to modulate leakage

• Decision will be driven by lowest cost solution

Page 51: Low Power CMOS Process Technology

Process Technology/Scott Crowder 51

Conclusions: Plugged In Low Power• Active Power Dominated• Performance elements added as developed

• Choices:– Lower supply voltage

• May require new memory choice– Add design complexity to reduce both switching and

passive power• Voltage islands, clock gating, etc…