matlab programming i joy. outline examples what is matlab? history characteristics organization of...

43
MATLAB Programming I Joy

Upload: daniel-charles

Post on 26-Dec-2015

271 views

Category:

Documents


3 download

TRANSCRIPT

MATLAB Programming I

Joy

Outline

• Examples

• What is Matlab?

• History

• Characteristics

• Organization of Matlab – Toolboxes

• Basic Applications

• Programming

Example I

• Obtain the result of matrix multiply

• Matlab Code >>A=[4,6; 9,15; 8,7]; >>B=[3,24,5; 7,19,2]; >>C=A*B C = 54 210 32 132 501 75 73 325 54

4 63 24 5

9 157 19 2

8 7

C Code

#include <cstdlib>#include <iostream>#include <fstream>#include <sstream>#include <iomanip>#include <vector>

using namespace std;typedef vector<vector<int> > Mat;void input(istream& in, Mat& a);Mat matrix_product(const Mat& a, const Mat& b);void print(const Mat& a);

C Codes

int main(int argc, char *argv[]){ ifstream in1 ( "Matrix A.txt" ); ifstream in2 ( "Matrix B.txt" ); int row, row1, col, col1; in1>>row>>col; in2>>row1>>col1;

Mat a(row, vector<int>(col)); input(in1, a); Mat b(row1, vector<int>(col1)); input(in2, b); print(matrix_product(a,b)); system("PAUSE"); return EXIT_SUCCESS;}

C Code Cond.void input(istream& in, Mat& a){ for(int i = 0; i < a.size(); ++i) for(int j = 0; j < a[0].size(); ++j) in>>a[i][j];}

void print(const Mat& a){ for(int i = 0; i < a.size(); ++i) { cout<<endl; for(int j = 0; j < a[0].size(); ++j) cout<<setw(5)<<a[i][j]; } cout<<endl; }

C Code Cond.

Mat matrix_product(const Mat& a, const Mat& b){ Mat c(a.size(), vector<int>(b[0].size())); for(int i = 0; i < c.size(); ++i) for(int j = 0; j < c[0].size(); ++j) { c[i][j] = 0; for(int k = 0; k < b.size() ; ++k) c[i][j] = c[i][j] + a[i][k] * b[k][j]; } return c;}

Example II

• Calculate the transpose of the matrix:

• Matlab Code >>A=[3,17,2;5,19,7;6,4,54] >>A^(-1)

ans = -0.9327 0.8505 -0.0757 0.2131 -0.1402 0.0103 0.0879 -0.0841 0.0262

3 17 2

5 19 7

6 4 54

What is MATLAB?

• Abbreviation of MATrix LABoratory

• Is a high-performance language for technical computing

• It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation.

Usage of MATLAB

• Math and computation • Algorithm development • Data acquisition • Modeling, simulation, and prototyping • Data analysis, exploration, and visualization • Scientific and engineering graphics • Application development

including graphical user interface building

History

• In 1970s – Dr.Cleve Moler Based on Fortran on EISPACK and LINPACK Only solve basic matrix calculation and graphic• 1984 – MathWorks Company by Cleve Moler and

Jack Little Matlab 1.0 based on C Included image manipulations, multimedia etc.

toolboxes• In 1990 – run on Windows Simulink, Notebook, Symbol Operation, etc.• 21 Century

Main Features

• Powerful tool for matrix calculationsBasic data type is double complex matrix with subscript is 1

High efficient/reliable algorithms

• Multi-paradigm - interactive environment (no compiler)

- programming

• Most input/output parameters in Matlab functions are variable

• User friendly with extensively help system

MATLAB SYSTEM

Develop Tools

Toolboxes

Data-Accessing Tools

Stateflow

Generating-Codes Tools

Module Libraries

Third parties modules

Applications

DATA

C

Simulink

MATLAB

Buildup of MATLAB

• Development Environment MATLAB desktop and Command Window, a command history, an editor

and debugger, and browsers for viewing help, the workspace, files, and the search path.

• The MATLAB Mathematical Function Library A vast collection of computational algorithms ranging from elementary

functions to more sophisticated functions

• The MATLAB Language A high-level matrix/array language with control flow statements,

functions, data structures, input/output, and object-oriented programming features

• Graphics Display vectors and matrices as graphs two-dimensional and three-dimensional data visualization image processing animation and presentation graphics

• The MATLAB Application Program Interface (API) Interchange the C/Fortran codes with Matlab codes

Basic Applications I

• Matrices and Arrays Generating Arrays/Matrices Elementary Matrices: sum, transpose, diagonal, subscripts Variables: does not require any type

declarations or dimension statements Operators: +,-,*,/, ^, etc. Examples of Expressions

Generating Matrices

• Directly enter

A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

• Use Functions

Example: B = zeros(1,5) – row vector/array

C = ones(7,1) –column vector/array

D = rand(5,8,3) – multiple dimension matrix

• Load/Import from files

zeros All 0’s

ones All 1’s

rand Uniformly distributed random elements

randn Normally distributed random elements

Elementary Matrices>>D=rand(3,2,3)D(:,:,1) = D(:,:,2) = D(:,:,3) = 0.9501 0.4860 0.4565 0.4447 0.9218 0.4057 0.2311 0.8913 0.0185 0.6154 0.7382 0.9355 0.6068 0.7621 0.8214 0.7919 0.1763 0.9169>> sum(D(:,1,1))ans = 1.7881>> E=D(:,:,2)'E = 0.4565 0.0185 0.8214 0.4447 0.6154 0.7919>> a=diag(D(:,:,3))a = 0.9218 0.9355>> F=[D(1,:,1),D(2,:,3); D(1,:,1)+1, D(2,:,3)-1]F = 0.9501 0.4860 0.7382 0.9355 1.9501 1.4860 -0.2618 -0.0645>>F(:,2)=[]F = 0.9501 0.7382 0.9355 1.9501 -0.2618 -0.0645>> F(2:1:4)=[]F = 0.9501 0.9355 -0.0645

Examples of Expression

>>rho = (1+sqrt(5))/2rho = 1.6180

>>a = abs(3+4i)a = 5

>>huge = exp(log(realmax))huge = 1.7977e+308 =1.8X10308

Basic Application II

• Graphic

Programming

• Flow Control

Selector: if, switch & case

Loop: for, while, continue, break, try & catch

Other: return• Other Data Structures

Multidimensional arrays, Cell arrays, Structures, etc.

• Scripts and Functions

Flow Control Examples I

• Selector:2-way:if rand < 0.3 %Condition flag = 0; %then_expression_1else flag = 1; %then_expression_2end %endif Multiple-ways:

if A > B | switch (grade) 'greater‘ | case 0elseif A < B | ‘Excellent’ 'less‘ | case 1elseif A == B | ‘Good’ 'equal‘ | case 2else | ‘Average’ error('Unexpected situation') | otherwiseend | ‘Failed’ | end

Flow Control Examples II

• Loop>>Generate a matrix

for i = 1:2

for j = 1:6

H(i,j) = 1/(i+j);

end

end

>>HH =

0.5000 0.3333 0.2500 0.2000 0.1667 0.1429

0.3333 0.2500 0.2000 0.1667 0.1429 0.1250

• Loop Cond.>>%Obtain the result is a root of the polynomial x3 - 2x – 5a = 0; fa = -Inf; b = 3; fb = Inf;while b-a > eps*b x = (a+b)/2; fx = x^3-2*x-5; if sign(fx) == sign(fa) a = x; fa = fx; else b = x; fb = fx; endend>>x

x = 2.09455148154233

Scripts

• MATLAB simply executes the commands found in the file

• Example % Investigate the rank of magic squares r = zeros(1,32); %generation a row array 1X 32 % “;” tell the system does not display % the result on the screen for n = 3:32 r(n) = rank(magic(n)); end r bar(r) %display r in bar figure

Scripts Cond.

• Note:

No input/output parameters

(Different from functions! )

Write the script in editor, which can be

activated by command “edit” in command

window, save it with its specific name

Next time you want to execute the script just

call the name in the command window

Functions

• Functions are M-files that can accept input arguments and return output arguments. The names of the M-file and of the function should be the same.

Function Example I

• Background of AIC

AIC is used to compare the quality of nested models

AIC requires a bias-adjustment in small sample sizes

1

2 ln( ) 2

2 ( 1)2 ln( ) 2

1min( )

exp( 0.5 )

exp( 0.5 )

i i

ii R

rr

AIC likelihood K

K KAICad likelihood K

n Kdelta AIC AIC

deltaw

delta

Function Head (Comments)

%AICad Function%Date:Dec.29th, 2008 %Purpose: Calculate the adjusted % Akaike’s Information Criteria (AIC)%InPut: AIC % n (the sample size)% K (the number of parameters in the model)%OutPut: AICad% delta% weight%Functions Called: None%Called by: None

IN Command Window

>>AIC=[-123; -241.7; -92.4; -256.9]; >>n=12;>>K=[4;8;2;6];>>[AICad, delta, w] = CalAIC(AIC, n, K)AICad = delta = w =

-83.0000 89.9000 0.0000 -97.7000 75.2000 0.0000 -80.4000 92.5000 0.0000 -172.9000 0 1.0000

M file

function[AICad,delta,w]=CalAIC(AIC,n,K)

AICad = AIC+2.*K.*(K+1);

a = min(AICad);

delta = AICad - a;

b = exp(-0.5.*delta);

c = sum(b);

w = b./c;

Function Example II

• Background of PCA

Comparing more than two communities or samples

Sample Post Oak Red Oak Water Oak

1 66 25 24

2 48 30 31

3 26 55 42

4 15 20 49

5 11 50 58

combine post post red red water waterY w x w x w x

Background of PCA Cond.

• Principal Components Analysis (PCA) • It finds weighted sums of samples or

observations (linear combinations) that are highly correlated with the values of the response

variables (e.g., species’ abundances)

PCA objectively “chooses” these weights in such a way as to maximize the variance in the weighted sums

Based on correlations between response variables

.

Function Head

%Principle Component Analysis Function%Date:Dec.29th, 2008 %Purpose: Obtain the axis scores of PCA%InPut: the abundance of 3 species % in 5 different samples %OutPut: sample scores of PCA axis%Functions Called: None%Called by: None

IN Command Window

>>a=[66;48;26;15;11];>>b=[25;30;55;20;50];>>c=[24;31;42;49;58];>>[score1, score2]=PCA(a,b,c)score1 = score2 = -2.2233 -0.1963 -1.1519 -0.0743 0.8734 -1.0888 0.4871 1.5120 2.0147 -0.1526

M file

function[x11,x12,x13,x21,x22,x23]=PCA(a,b,c)

%Calculate the mean and population standard deviation of 3 speciesfor i=1:5 d(i)=(a(i)-mean(a))^2; stda=sqrt(sum(d)/5); e(i)=(b(i)-mean(b))^2; stdb=sqrt(sum(e)/5); f(i)=(c(i)-mean(c))^2; stdc=sqrt(sum(f)/5);end%Obtain the z-scores of 3 speciesfor i=1:5 za(i)=(a(i)-mean(a))/stda; zb(i)=(b(i)-mean(b))/stdb; zc(i)=(c(i)-mean(c))/stdc;endN=[za',zb',zc'];

M file Cond.

%Obtain the original correlation matrixM=[1,corr(a,b),corr(a,c);corr(a,b),1,corr(b,c);corr(a,c),corr(b,c),1];[V1,D1]= eig(M); %Calculate the eigenvector and eigenvaluesweight1=V1(:,3); %Get the maximum eigenvectorscore1=N*weight1;

%We use the exact same procedure that we used for axis 1, %except that we use a partial correlation matrix %The partial correlation matrix is made up of all pairwise correlations%among the 3 species, independent of their correlation with the axis 1%sample scores. Hence, axis 2 sample scores will be uncorrelated %with (or orthogonal to) axis 1 scores.

M file Cond.

new=[a,b,c,score1];M2=[1,corr(a,b),corr(a,c),corr(a,score1);… corr(a,b),1,corr(b,c),corr(b,score1);… corr(a,c), corr(b, c), 1, corr(c,score1);… corr(a,score1),corr(b,score1),corr(c,score1),1];for i=1:3 for j=1:3 corrnew(i,j)=M2(i,j); endendg=[M2(4,1)*M2(4,1),M2(4,1)*M2(4,2),M2(4,1)*M2(4,3);… M2(4,2)*M2(4,1),M2(4,2)*M2(4,2),M2(4,2)*M2(4,3);… M2(4,3)*M2(4,1),M2(4,3)*M2(4,2),M2(4,3)*M2(4,3)];corrmatrix=corrnew-g;[V2,D2]=eig(corrmatrix);weight2=V2(:,3); %signs needs to be checked with JMPscore2=N*weight2;

MATLAB in MCSR

• Matlab is available on willow and sweetgum

• www.mcsr.olemiss.edu

[email protected]

• Enter matlab can activate Matlab in willow or sweetgum

• Use ver to obtain the version of Matlab, which can tell you which toolboxes of Matlab in that machine

• Price of personal purchase is 500$ include update releases (only include MATLAB & Simulink)

You need pay separate fee for each toolbox such as statistical, bioinformatics, etc

Take Home Message