microscopy through the centuries: an exploration of...

64
Microscopy Through the Centuries: An Exploration of Microscopic Imaging Without Lenses M. S. Isaacson Baskin School of Engineering University of California at Santa Cruz [email protected] IMC 17 Pre-Congress IFSM Advanced School, September 19, 2010 Rio de Janeiro, Brazil

Upload: others

Post on 13-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Microscopy Through the Centuries:An Exploration of Microscopic Imaging

    Without Lenses

    M. S. IsaacsonBaskin School of Engineering

    University of California at Santa [email protected]

    IMC 17Pre-Congress IFSM Advanced School,

    September 19, 2010Rio de Janeiro, Brazil

  • HOW WE VIEW THE WORLD?

  • HOW DO WE IMAGE THE SMALLEST OBJECTS?

    •Reduce the imperfections (ie, aberrations) in the imaging system.

    THEN

    What are we left with for a “perfect” imaging system?

    DIFFRACTION

  • Microscopy Through the Centuries

  • Microscopy Through the Centuries

  • MICROSCOPY WITHOUT LENSES

    Point ProjectionStill diffraction limited

    Scanned TipLimited by physical dimensions not diffraction

  • Ho Hi

    Ho Hi

    u v

    uv

    Hi/Ho = ‐v/u

    Hi/Ho= v/u  = M

    Pinhole camera

    Projection Microscope

    Imaging Without Lenses    

    Blurring /  penumbral, dp = sv/u    /   diffraction,  dd = (λ(v‐u))1/2s = pinhole size or source size

    pinhole

    Source

  • Ibn Al-Haytham, “Kitab al-Manazir” (Book of Optics, abt. 1010). Translated into Latin (1572) as “Opticae Thesaurus”

    Expanded drawing from Al-HaythamFrom: www.islamic-study.org/optics.htm

    Principles of the Camera Obscura

  • Ho Hi

    Ho Hi

    u v

    uv

    Hi/Ho = ‐v/u

    Hi/Ho= v/u  = M

    Pinhole camera

    Projection Microscope

    Imaging Without Lenses    

    Blurring /  penumbral, dp = sv/u    /   diffraction,  dd = (λ(v‐u))1/2s = pinhole size or source size

    pinhole

    Source

  • from, G.A. Morton and E.G. Ramberg, Phys. Rev. 56(7).1939. p.705

    Earliest Point Projection Transmission Electron Micrographs

    50 nm

  • Point Projection Microscopy: The Field Ion Microscope

  • Field Ion Micrograph: Platinum TipE. W. Mueller, Science. 149,591 (1965)

  • From Fink et.al., Phys.Rev.Let. 67(12)1991.

    a) in-line holography b) projection microscopymagnification = D/d

    Holograms of

  • Low voltage,point projection

    200 keV transmissionElectron micrograph

    Point Projection Microscopy:Carbon Filaments

    All conventional transmission electron micrographs on the right are taken at 200KeV

    Point Projection micrographs on the left

    89 eV, 5000nm

    65 eV, 1000nm

    16 eV, 1700nm

    From: Morin and Gargani,Phy. Rev.B. 48(9).1993. 6643-6645.

    The distance is from the tip to the sample

  • From: J.Spence, Micron, 28(2), 1997. 101-116.

    Electron Energy = 80eV,Carbon fiber

    Electron energy =100eVPurple membrane

    10 nm

    Point Projection Imaging of Biomolecules

    30 nm

  • MICROSCOPY WITHOUT LENSES

    Scanned Tip (physical dimensions)Not diffraction limited

    Point ProjectionDiffraction limited

  • Scanned Tip Microscopies

    From: Wikipedia

  • First Demonstration of Tunneling with 0.1nm Gap ControlApplied Physics Letters.40 (1982).178-180.

  • From: G. Binnig and H. Roher. Surf. Sci.126 (1983).pp.236-244

    The IBM Scanning Tunneling Microscope

  • STM Images of Silicon 7x7 Reconstructionon (111) Surface

    http://www.fkp.uni-erlangen.de/methoden/stmtutor/stmpage.html

    From: G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel. Phys. Rev. Lett. 50(2).1983.pp.120-123.

  • G. Binnig, C.F.Quate and Ch. Gerber, Phys. Rev. Lett. 56(9).1986. 930-933.

    Atomic Force Microscopy

  • From K. Mitchell: 2010

    Generic AFM Detection Scheme

  • AFM, real-time imaging of spores (Bacillus atrophaeus)Scale bars = 500nm.

    a.3h40min, b.5hr45min, c.7hr5min, d.7hr,30min, e. 7hr45min

    From: M. Plomp et.al. PNAS(USA).104 (2007).9644-9649.

    Atomic Force Microscopy

  • Reviews of Scanned Tip Microscopy(selected)

    P. Hansma and J. Tersoff. Journal Appl. Phys. 61(2). 1987.R1-R23.“Scanning Tunneling Microscopy”

    Y.F. Dufrene. Nature Reviews Microbiology. 6. 2008. 674-680,“Towards Nanomicrobiology Using Atomic Force Microscopy”.

    B. Bhushan, ed. “Scanning probe Microscopy in Nanoscience and Nanotechnology”, (Springer-Verlag, Heidelberg, 2010).

    A. Schulte, M. Nebel and W. Schuhmann. Ann. Rev. of Anal. Chem.3 (2010). 299-318.”Scanning Electrochemical Microscopy in Neuroscience”

  • Edward Hutchinson Synge

    Letter to Albert Einstein, 1928

    NSOM CONCEPTUAL BEGINNINGS

  • The Idea of Near Field Optical Imaging

    From D. McMullan, Proc. RMS. 25(2).1990.p.130

  • E.H.Synge, Phil. Mag.6.(1928).pp.356-362. “A Suggested Method for Extending Microscopic Resolution into the Ultra-microscopic Region”.

    E.H.Synge, Phil. Mag. S7(13).(1932).pp.297-300. “An Application of Piezo- electricity to Microscopy”.

    NSOM CONCEPTUAL BEGINNINGS

    Edward Hutchinson Synge

    Letter to Albert Einstein, 1928

  • INITIAL THEORETICAL FOUNDATIONS OF NEAR-FIELD MICROSCOPY/IMAGING

    H.A. Bethe, Phys. Rev. 66(1944).163,“Theory of Diffraction by Small Holes”

    C.J. Bouwkamp, Philips Res. Rept. 5(1950).321-332,“On Bethe’s theory of Diffraction by Small Holes”.

    C.J. Bouwkamp, Philips Res. Rept. 5(1950).410-422,“On the Diffraction of Electromagnetic Waves by Small Circular Holes and Disks”.

    E. Betzig, A. Harootunian, A.Lewis and M.Isaacson, Appl. Opt.25 (1986).1890-1900,

    “Near Field Diffraction by a Slit: Implications for Super-Resolution Microscopy”.

    A.Roberts, J. Opt. Soc. Am. A4(1987).1970-1983,“Electromagnetic Theory of diffraction by a Circular Aperture

    in a Thick, Perfectly Conducting Screen”.

  • Diffraction at an Aperture

  • Evanescent Waves and Diffraction

  • JOSA.46(5).1956.359 JOSA.46(10).1956.901

    Rediscovery of Near Field Imaging

  • Letter width = λ/20

    from E.A. Ash and G. Nicholls. Nature.237.(1972)510.

  • Rediscovery of Near-Field Imaging

  • Applied Optics.23(5).1984.658-659.

  • Near Field Scanning Optical Microscopy (NSOM)

    50 nm

    50 nm

    Betzig, Isaacson, Lewis and Harootunian, 1986

  • Collection Illumination Collection/Illumination

    Oblique Reflection Oblique Collection

    Some Imaging Modes of NSOM: Pipette/Fiber Illumination

    Adapted from Paessler and Moyer, 1996

  • INITIAL THEORETICAL FOUNDATIONS OF NEAR-FIELD MICROSCOPY/IMAGING

    H.A. Bethe, Phys. Rev. 66(1944).163,“Theory of Diffraction by Small Holes”

    C.J. Bouwkamp, Philips Res. Rept. 5(1950).321-332,“On Bethe’s theory of Diffraction by Small Holes”.

    C.J. Bouwkamp, Philips Res. Rept. 5(1950).410-422,“On the Diffraction of Electromagnetic Waves by Small Circular Holes and Disks”.

    E. Betzig, A. Harootunian, A.Lewis and M.Isaacson, Appl. Opt.25 (1986).1890-1900,

    “Near Field Diffraction by a Slit: Implications for Super-Resolution Microscopy”.

    A.Roberts, J. Opt. Soc. Am. A4(1987).1970-1983,“Electromagnetic Theory of diffraction by a Circular Aperture

    in a Thick, Perfectly Conducting Screen”.

  • Power transmission through a metallic screen

    A. Harootunian, 1987.

  • theoretical, Roberts (1989)

    D = aperture diameterT = aperture thickness

    Transmission Through Apertures Below Cutoffλ = 632.8 nm, T = 56 nm

    M.isaacson, A. Harootunian, 1992

  • NSOM Instrument Constructed at Cornell

    M.Isaacson, 8/3/10

  • NSOM Instrument Constructed at Cornell

    M.Isaacson, 8/3/10

  • 60 nm away

    Effect of Distance on Spatial Resolution

    600 nmM.Isaacson, et.al. 1990

  • 60 nm away

    600 nm away

    Effect of Distance on Spatial Resolution

    600 nmM.Isaacson, et.al. 1990

  • PSF(r) = |F[A(ρ)]F[A(ρ)*|

    Far Field

    From: M. Isaacson, et.al, Ultramicroscopy (1992)

    Point Spread Functions for Microscopy

    ρ

    r

  • PSF(r) = |F[A(ρ)]F[A(ρ)*|

    Far Field

    PSF(r) = |A(ρ)A(ρ)*|

    Near Field

    From: M. Isaacson, et.al, Ultramicroscopy (1992)

    Point Spread Functions for Microscopy

    ρ

    r

  • Far Field Near Field

    Point Spread Functions for Near Field and Far Field Microscopy

    r = radial distance in image plane, R = aperture radius, F=aperture to image plane distance (far field), λ = wavelength

    From M.Isaacson, et.al. Ultramicroscopy. 47 (1992).15-22.

    Far field Near field

  • NEAR FIELD PROBE INTENSITY DISTRIBUTION

    r = radial distanceR =probe diameter

    circles = metalized pipette, squares = metalized fiber

    Data from: M.Isaacson et.al, JVST.B9,1991: E. Betzig, et. al. Science.51.1991

  • Effect of Polarization on NSOM Imaging

    Aluminum letters on Silicon Nitride Substrate1 μm full horizontal scale

    m.isaacson and j. cline, 1995

  • Near Field Scanning Optical Microscopy (Reflection)aluminum on silicon

    Shear force NSOM

    400nm

    J. Cline and M. Isaacson, Ultramicroscopy,57(2/3), 147-152 (1995)

  • Shear Force Reflectiondetector at bottom of field

    NSOM Imaging of Aluminum on Aluminum Patterns

    J. Cline and M. Isaacson, 1995

    1000 nm

  • Polarization Effects in Reflection NSOM

    J. Cline and M. Isaacson, Appl. Opt.34(22).1995.4869-4876.

    polarization

    detector

  • From: J. Wessel, J.Opt.Sci.Am. B.2 (1985).p. 1538-1541.

    NSOM by Light Scattering from a Point

  • From: E.P. Krider, Physics Today.Jan. 2006.p.42-48.

    Enhanced Electric Fields at Pointed Metal Tips

  • NSOM by Light Scattering from a Tip. 2

    From: F.Keilmann and R.Hilenbrand. Phil.Trans.Roy.Soc.A.362(2004).787-805.

    AFM tip

  • Visible, λ = 633nm Infra-Red, λ = 9.7 μm

    From: F.Keilmann and R.Hilenbrand. Phil.Trans.Roy.Soc.A.362(2004).787-805.T. Taubner, R. Hillenbrand and F. Keilmann, J. Microscopy.210(3).2003.311-314..

    NSOM by Light Scattering from a Tip

    AFM images

    NSOM images

  • Various Types of “Sharp” Tips for Field Enhanced NSOM

    From: A. Bouhelier. Micr. Res. & Tech. 69 (2006). 563-579.

  • Reviews of Near-Field Microscopy/ Optics(selected)

    D. Courjon and C. Bainier, Rep. Prog. Phys. 1994.989-1028. Near Field Microscopy and Near Field Optics”.

    M. Isaacson (ed.). Ultramicroscopy.57(2/3). 1995. 113-322,“Near-Field Optics”

    M.A. Paessler and P.J.Moyer, “Near-Field Optics: Theory, Instrumentation and Applications”, (Wiley Interscience, New York, 1996)

    D. Richards and A. Zayate, (eds.). Phil.Trans. Roy. Soc. London.A362 (2004).698-919, “Special issue on Nano Optics and Near-Field Microscopy”.

    L. Novotny and B. Hecht. “Principles of Nano Optics”. (Cambridge University Press, Cambridge, 2006).

    L. Novotny, in Progress In Optics. E. Wolf (ed.).(Elsevier, Amsterdam,2007).137-189,”History of near-Field Optics”.

  • Microscopy Through the Centuries:An Exploration of Microscopic Imaging

    Without Lenses

    IMC 17Pre-Congress IFSM Advanced School,

    September 19, 2010Rio de Janeiro, Brazil

    M. S. IsaacsonBaskin School of Engineering

    University of California at Santa [email protected]

    Isaacson IFSM School.pdf