nlc - the next linear collider project ir geometries & constraints on forward detectors tom...

25
NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Upload: gregory-cross

Post on 29-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

NLC - The Next Linear Collider Project

IR Geometries & Constraints on Forward

DetectorsTom Markiewicz

SLACALCPG SLAC

08 January 2004

Page 2: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Motivation

• Despite MIB comments from yesterday ECFA BDIR group is still studying physics impact of hole in forward acceptance due to crossing angle and any possible loss of physics sensitivity due to pile-up in any sub-detector as relevant input to the ITRP– e- ID in LUMON hadrons backgrounds in the central

calorimeters

• This session designed to give audience a chance to (re)learn what is fundamental from what is a design choice

• You have heard it all before

Page 3: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

LD IR Layout

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8

LowZ

BeamPipe

SD0

QD1

M2

M1

QD2

QF1

LUMOM

Q0

PacMan

EndCap_Muon

Support Tube

ECAL

HCAL

Page 4: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Crossing Angle

• Warm LC requires non-zero crossing angle• Cold LC can choose zero or non-zero angle• Minimum angle set by:

– Need to avoid parasitic collisions and beam-beam induced jitter (20 mrad)

– Need enough transverse space for QD0 magnet, given

• L* (a semi-free parameter) (3.51m)• Exit aperture at LUM (2.0 cm)• QD0 bore size (1.0 cm)• Design choice that exit beam goes outside of QD0

• Maximum angle set by– Estimated performance () of Crab Cavities on

either side of IP that rotate bunches (~40 mrad)– Beam optics effects:

growth due to SR in QD0 goes as (BsL*)5/2

Page 5: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Multi-bunch interaction increases static beam offsets if c

too smallOffset Amplification Factor for L=3m vs. Crossing Angle

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 50 100 150 200

Bunch #

y/y0

5 mrad

10 mrad

15 mrad

20 mrad

25 mrad

30 mrad

Approx. becomes invalid

K.Yokoya,P.Chen SLAC-PUB-4653,

1988

Page 6: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

NLC Final Doublet Quad Specs

Magnet

Aperture Gradient

Rmax if REC

Radial Space

Z_ip Length

QD0 1.0 cm 141.6 T/m

5.3cm 5.0cm 3.51 m 2.2m

QF1 1.0 cm 80.2 T/m

2.7cm >7.81cm

7.81 m 2.0 m

TRC (2002) 500 GeV Lattice

Magnet

Aperture Gradient

Rmax if REC

Radial Space

Z_ip Length

QD0 1.0 cm 144 T/m

5.5cm 5.8cm 3.81 m 2.0m

QF1 1.0 cm 36.4 T/m

2.2cm >7.81cm

7.76 m 4.0 m

Snowmass 2001 500 GeV Lattice

Increased LUM aperture decreasing available

space

Page 7: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

SC MagnetIf rin=10mm, rout=57mm seemed

easy

Page 8: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

L*=Distance from IP to QD0

• A parameter that can be varied within a range for either design– r_vxd, z, length, aperture, gradient of QD0, QF1 all enter

• Motivations for larger L*– Move QD0 outside the detector to stable ground– Move LUMON further back if pair backsplash a problem

• Note: L* of EXTRACTION LINE now 6m– Its z position variable as well– Especially valuable as it receives biggest hit from 4 GeV

pairs

L* Optimization P.Raimondi

~2001

Page 9: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Exit Aperture at LUMBeam Pipe Radius at IP

• Same issues for warm vs. cold choice• Set by (arbitrary?) design requirement that

ALL Synchrotron Radiation Leaves IP– Collimation system design & performance– Magnitude and distribution of non-gaussian beam

halo– Level of aggression in setting collimators and

resultant• beam jitter amplification due to collimator wakefields• muon production

– Level of conservatism• Worst beam conditions system must safely handle

– Advantage in reducing albido from splattered e+e- pairs in having the high Z LUM at a larger radius than the low Z albido absorber

Page 10: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Synchrotron Radiation

bends

quads Photons from quads

Photons from bends

Page 11: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

At SLD/SLC SR WAS THE PROBLEM

SR Fans from Halo in Final Focus

VXD

M4

MASiC

M3

LUMON

M2

MASiC

M3

LUMON

M2

M4

CDC

CDC

Beam pipe

Synchrotron Swath

X=450 rad

Y=270 rad

Photons need a minimum of TWO bounces to hit a detector

Page 12: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

SR at Warm/Cold LC

(IP) x’ < 570 rad = 19 x 30.3 rad y’ < 1420 rad = 52 x 27.3 rad

(LUM) x’ < 520 rad = 17 x 30.3 rad Y’ < 1120 rad = 41 x 27.3 rad

x y

X=30.3 rad

Y=27.3 rad

Design Criteria: NO Photons hit beampipe at IP or LUM

Page 13: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

NLC Collimation System Designed to Make Detector Free of Machine

Backgrounds

E=250 GeV

N=1.4E12

0.1% Halo distributed as 1/X and 1/Y for 6<Ax<16x and 24<Ay<73y with p/p=0.01 gaussian distributed

Last Lost e- 1000m from IP

Page 14: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

SR at IP due to Halo

X (cm)

Y

X (cm)

Log10(E) (GeV)

Quad

Bend

.3 Ne-

<E>=4.8 MeVQuad

Bend

1cm Beampipe

Page 15: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Quad SR at z=-3.15m

X (cm)

Y

1cm Beampipe

1.2cm

Set Low Z Mask aperture at 1.2cm

Page 16: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

If LUM Aperture 1cm2cmHit Density r>3cm improves

L1 & L2 of VXD UnchangedImprovements for outer detectors

Albido from pairs making hits in VXD

Page 17: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Study Non-Optimal Running Conditions

Open Collimators x2 & Broaden Halo x2 so that 10-5 of beam is lost on SR Dump at IP

30m x 25m

6x<Ax<16x

24y<Ay<73y

60m x 50m

12x<Ax<32x

48y<Ay<146y

Design

X-Y Halo at Spoiler #3

+25m

-25m

-30m +30m

+50m

-50m

-60m +60m

Page 18: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

SR at IP in “1000x worst case” Study

SR distribution ~2x wider in y at IP with direct hits unless BP >1.25cm

Page 19: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

2cm radius

14.4cm radius

1cm radius

SiDLum-PairMon @

z=3.15m

(to scale)

Page 20: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Junctions between ECAL & Instrumented Mask &

Pair/Lumon• Not fundamental to warm/cold choice• LD & SiD pictures have not had proper review for either

engineering or physics• SiD Design Points

– Vibration sensitive QD0 magnets supported in ~20cm radius cantilevered tube with 3cm wall

– Tube carries weight of Instrumented mask, Pair/Lumon and any non-cylindrical W masking WHEN DETECTOR OPEN

– WHEN DETECTOR CLOSED, non-QD0 weight transferred to cylindrical W mask permanently inside detector

– 35cm thick Instrum.Mask & SiD z_Ecal=1.85m define z_mask=1.5m– Add conic W masking to maintain ~6-10cm shielding LUM to

Detector

• LD: – keep z_mask=1.5m so distance to Lum is same as for SiD– 10cm cylindrical W mask & appropriate conic W shielding up to

LUM

Page 21: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

SiD Forward Masking, Calorimetry & Tracking 2003-06-01

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

QD0

Inst. Mask

HCAL

ECAL

YOKE

W

W

46mrad

113mrad

Support Tube

Pair-LuMon

BeamPipe LowZ MaskExit radius

2cm @ 3.5m

W

W

Page 22: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

LD Forward Masking, Calorimetry & Tracking 2003-06-01

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

HCAL

ECAL

W

W

W

W

Support Tube

Pair-LuMonQD0

Inst. Mask

BeamPipeLowZ Mask

Exit radius 2cm @ 3.5m

48mrad

101mrad

Page 23: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

LUMON Hammered with Pairs to r~6-7cm

NLC 500 e+e- Pair R_max

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.000 1.000 2.000 3.000 4.000 5.000

z (m)

r (m

)

6 Tesla

5 Tesla

4 Tesla

3 Tesla

+5cm

+7cm

-5cm-7cm

+17cm

-17cm

Page 24: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Dimensions defining Forward Calorimeters

Large Detector-3 T Silicon Detector-5 T

Ecal I-Mask

Clean Lumon

Pair Lumon

Ecal I-Mask

Clean Lumon

Pair Lumon

z (m) 2.975

3.500

3.150

3.150

1.850

3.500

3.150 3.150

r (m) 0.300

0.170

0.075

0.020

0.210

0.160

0.055 0.020

min (mrad)

100.5

48.5 23.8 6.35 113.0

45.7 17.5 6.35

max (mrad)

100.5

48.5 23.8 113.0

45.7 17.5

Page 25: NLC - The Next Linear Collider Project IR Geometries & Constraints on Forward Detectors Tom Markiewicz SLAC ALCPG SLAC 08 January 2004

Tom Markiewicz

NLC - The Next Linear Collider Project

Personal Views

• If advertised luminosity is delivered, physics inside of ~25 mrad will be a real bitch for any machine

• I can’t believe that either a hole in that region or that pileup in that region should drive technology choice

• I am happy to hear real physics analyses which show otherwise and that are crucial enough to demand a zero crossing angle