organometallic catalysis for controlled olefin polymerization and...

292
ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF CHEMISTRY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Kyung-sun Son May 2010

Upload: others

Post on 03-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF CHEMISTRY

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Kyung-sun Son

May 2010

Page 2: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/bc712ws2157

© 2010 by Kyung-sun Son. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 United States License.

ii

Page 3: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

I certify that I have read this dissertation and that, in my opinion, it is fully adequatein scope and quality as a dissertation for the degree of Doctor of Philosophy.

Robert Waymouth, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequatein scope and quality as a dissertation for the degree of Doctor of Philosophy.

Justin Du Bois

I certify that I have read this dissertation and that, in my opinion, it is fully adequatein scope and quality as a dissertation for the degree of Doctor of Philosophy.

Curtis Frank

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file inUniversity Archives.

iii

Page 4: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

iv

ABSTRACT

My Ph.D. work primarily involves the synthesis of ethylene-based oligomers and

ethylene-styrene copolymers using organometallic catalysis.

Chapter 1 reviews selective ethylene oligomerization that produces 1-hexene and 1-

octene, with particular emphasis on the chromium-based catalytic systems and the

mechanism by which they operate. Its application to the preparation of value-added

chemicals is also covered.

Chapter 2 and Chapter 3 present investigations on selective ethylene oligomerization

with a Cr(PNP)Cl3/MAO catalyst system (PNP = Ph2PN(iPr)PPh2) in the presence of

dialkyl zinc as an effective strategy for the co-generation of 1-octene and functionalized

ethylene oligomers. Transmetallation with ZnMe2 during Cr-catalyzed ethylene

tetramerization generated end-labeled 1-alkenes in Cn>10 along with 1-octene, while that

with ZnEt2 or ZnBu2 produced a mixture of end-labeled linear alkanes and 1-alkenes in

Cn>10 as well as 1-octene. Labeling studies with D2O provided a mechanistic test for

metallacycle intermediates. Mechanistic proposals are presented to explain the formation

of end-labeled products in the presence of various types of zinc alkyls.

Chapter 4 and Chapter 5 examine a series of titanocenes [CpTiCl3, CpTiCl2TEMPO,

CpNTiCl3, CpNTiCl2TEMPO, where Cp = C5H5, CpN = C5H4CH2CH2N(CH3)2, and

TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl] for styrene homopolymerization and

ethylene-styrene (ES) copolymerization at 70 °C and 120 °C to determine the influence

of the pendant amine group and the hydroxylaminato ligand on comonomer incorporation

and distribution. Titanocenes bearing the pendant amine ligand were active for ES

copolymerization, whereas complexes lacking the pendant group afforded only mixtures

of homopolymers, revealing the critical role of the pendant amine donor on the

copolymerization behavior. At 120 °C, the titanocene complexes with the amine group

generated high molecular weight ES copolymers along with an atactic polystyrene (aPS)

Page 5: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

v

byproduct. The molecular weight of the ES copolymers produced by a coordination

mechanism was found to coincide with that of the aPS produced by a radical

polymerization mechanism. A method to separate these two components was developed

by the addition of a catalytic chain-transfer agent, cobalt tetraphenylporphyrin,

successfully decreasing the molecular weight of the radically-produced aPS and offering

expedient separation of the ES copolymer from the aPS.

Chapter 6 describes a series of new mono-, bi-, and trimetallic complexes based on

the dinucleating ligand, N,N’-bis[2-(diphenylphosphino)phenyl] formamidine (PNNP),

which provides two binding sites suitable for accommodating Pd, Ni, Co, Fe, and Cu.

Definitive evidence for the structures of all complexes were given by X-ray crystal

structures. The synthesis, characterization and crystal structure of each complex are

discussed.

Page 6: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

vi

PREFACE

Chapter 1 is a comprehensive review on selective ethylene trimerization and

tetramerization. This chapter is intended to give a thorough background on the previous

studies on chromium-catalyzed selective ethylene oligomerization and to introduce the

metallacycle mechanism which will be used to explain the formation of end-labeled

ethylene oligomers reported in this thesis. Chapter 2 details my research on Cr-catalyzed

selective ethylene oligomerization in the presence of dimethyl zinc and provides a

strategy to generate telechelic functionalized ethylene oligomers. Chapter 3 examines

influence of various types of dialkyl zinc on the product type and distribution of ethylene

tetramerization. The work described in Chapter 2 and Chapter 3 will be submitted to

Organometallics for publication. Chapter 4 describes titanocenes containing a pendant

amine donor active for ethylene-styrene copolymerization at 120 °C and provides a

protocol that facilitates the separation of product mixtures. This work has been published

in Macromolecules, 2008, 41, 9663-9668. Styrene homopolymerization and ethylene-

styrene copolymerization studies with titanocenes with the pendant amine group at 70 °C

and extensive analyses of product mixtures are reported in Chapter 5. This work has been

published in the Journal of Polymer Science, Part A: Polymer Chemistry, 2010, 48,

1579-1585. Chapter 6 presents the synthesis and structural characterization of a series of

mono-, bi-, trimetallic complexes based on the dinucleating ligand, N,N’-bis[2-

(diphenylphosphino)phenyl] formamidine (PNNP). David Pearson started this work by

synthesizing the PNNP ligand, and Dr. Sang-Jin Jeon prepared some of the metal

complexes. X-ray crystal structure data in this chapter were collected by Dr. Allen Oliver.

This work will be submitted to Inorganic Chemistry for publication. All of the work in

this thesis is mine, except where noted.

Page 7: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

vii

ACKNOWLEDGMENTS

The work described in this thesis would not have been possible without the help and

encouragement of many people. First of all, I sincerely thank my principal advisor,

Professor Robert M. Waymouth, for his intellectual guidance, support, patience,

understanding and encouragement throughout my graduate career. He has been very

enthusiastic and has kept me motivated throughout my graduate research. I feel very

fortunate that I was able to study under the supervision of a person who I could respect

throughout my life as a role model.

I would like to thank Professor Justin Du Bois and Dean Curtis W. Frank for serving

on my committee throughout the years. It is really my honor to have them in my

committee and to have their insightful comments and suggestions they provided early in

my graduate career and my research proposals. I also thank Professor Annelise Barron

and Professor Wray H. Huestis for serving on my thesis defense committee. I am

indebted to all of them for taking time out of busy schedules. Several people had a large

impact early in my chemistry career. I thank my undergraduate advisors at POSTECH,

Professors Moonhor Ree and Jaiwook Park, for the many great opportunities they have

given me to pursue my interests in chemistry. The lab experience I learned from them and

their groups greatly smoothed my graduate studies. Much encouragement from

Professors Su-Moon Park and Jong Hoon Han is gratefully acknowledged.

The Waymouth group has been a great place to work over the years. I feel extremely

fortunate to have been able to work with such a talented, well-rounded and supportive lab

mates. I would like to mention former group members first who have been influential

during my time at Stanford; I am grateful to Nahrain Kamber, Marc Scholten, Darcy

Culkin, and Frank Joege for their help as I was starting out in the Waymouth group.

Elizabeth Kiesewetter and I joined the lab at the same time in 2004, and she has been a

great friend and a colleague - I look forward to keeping up our friendship as we both

Page 8: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

viii

move East. I cannot thank David Pearson and Matt Kiesewetter enough for their

friendship, scientific suggestions, and their senses of humor. I have really benefitted from

their scientific knowledge of chemistry. In particular, I thank David for his idea and

contributions in the Chapter 6 herein. I thank Eun Ji Shin for being my best friend and

listener during the time that we overlapped. I don’t think I could have survived in

graduate school without Wonhee Jeong and Eunsung Lee. I thank them for their advice,

scientific expertise and invaluable moral support. It was my pleasure to share the “Lab 2”

with amazing post-docs during my years. I thank Dr. Sang-Jin Jeon and Dr. Sören

Randoll, who have been very knowledgeable, friendly, and supportive. I thank them both

for their encouragement and scientific advice. I am grateful to Hayley Brown who has

been a bench neighbor since she joined our lab. Thanks as well to past and current group

members. All my colleagues and friends have made my time at Stanford a wonderful

experience. Roger Kuhn, Dr. Stephen Lynch, Dr. Todd Eberspacher, and Dewi Fernandez

deserve special thanks for assisting me in various capacities.

Outside the Waymouth group, I thank an amazing group of friends, especially Yin

Nah Teo and Steve Silverman. Away from the department, I thank my close network of

friends who have enjoyed my time here, especially Squash Club friends. All of them have

provided encouragement, career and work/life advice. Without their friendship, my time

at Stanford would not have been as enjoyable or productive.

Finally, and most importantly, I thank my parents. They have been a constant source

of love and encouragement and have always been willing to help in any way possible. I

feel incredibly lucky to have such a great family. I dedicate this thesis to Mom, H.K. Lee,

and Dad, J.H. Son, with love and deepest gratitude.

Page 9: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

ix

TABLE OF CONTENTS

List of tables...................................................................................................................... xii

List of figures................................................................................................................... xiii

List of schemes ............................................................................................................... xvii

Chapter 1: Chromium-catalyzed selective ethylene oligomerization and its

application to the preparation of value-added chemicals...............................................1

1.1 Introduction..............................................................................................................2

1.2 Metallacycle mechanism .........................................................................................6

1.3 Factors affecting ethylene oligomerization selectivity ...........................................9

1.4 Density functional theory studies ..........................................................................13

1.5 New opportunities for value-added chemicals ......................................................16

1.6 Concluding remarks ..............................................................................................22

1.7 References and notes .............................................................................................23

Chapter 2: Selective ethylene oligomerization in the presence of dimethylzinc:

synthesis of functionalized ethylene oligomers ...........................................................29

2.1 Introduction............................................................................................................30

2.2 Results and discussion ..........................................................................................31

2.3 Concluding remarks ..............................................................................................36

2.4 Experimental section .............................................................................................37

2.5 References and notes .............................................................................................42

Chapter 3: Synthesis of end-functionalized ethylene oligomers in the presence of

dialkyl zinc...................................................................................................................45

3.1 Introduction............................................................................................................46

3.2 Results and discussion ..........................................................................................48

Page 10: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

x

3.3 Concluding remarks ..............................................................................................55

3.4 Experimental section .............................................................................................56

3.5 References and notes .............................................................................................57

Chapter 4: Copolymerization of styrene and ethylene at high temperature with

titanocenes containing a pendant amine donor ............................................................61

4.1 Introduction............................................................................................................62

4.2 Copolymerization of ethylene and styrene ............................................................63

4.3 Fractionation and analysis of ethylene-styrene copolymers derived from 4.3

and 4.4....................................................................................................................66

4.4 Role of styrene radical polymerization on the copolymerization behavior ...........69

4.5 Conclusions............................................................................................................74

4.6 Experimental section..............................................................................................75

4.7 References and notes..............................................................................................85

Chapter 5: Stereospecific styrene polymerization and ethylene-styrene

copolymerization with titanocenes containing a pendant amine donor ......................89

5.1 Introduction............................................................................................................90

5.2 Results and discussion ...........................................................................................91

5.3 Conclusions .........................................................................................................107

5.4 Experimental section ...........................................................................................108

5.5 References and nots ............................................................................................111

Chapter 6: Synthesis and structure of mono-, bi-, and trimetallic N,N-Bis[2-

diphenylphosphino)phenyl-formidine complexes .....................................................115

6.1 Introduction..........................................................................................................116

6.2 Results and discussion: synthesis and description of crystal structures ..............116

6.3 Conclusions .........................................................................................................130

6.4 Experimental section ...........................................................................................131

Page 11: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

xi

6.5 References and notes ...........................................................................................137

APPENDIX A: X-ray crystallographic data for 6.3 .......................................................141

APPENDIX B: X-ray crystallographic data for 6.4........................................................161

APPENDIX C: X-ray crystallographic data for 6.5 .......................................................181

APPENDIX D: X-ray crystallographic data for 6.6 .......................................................201

APPENDIX E: X-ray crystallographic data for 6.7........................................................223

APPENDIX F: X-ray crystallographic data for 6.8 ........................................................245

Page 12: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

xii

LIST OF TABLES

Number Page

Table 2.1: Effects of [ZnMe2]/[Cr] ratio on the product distribution ................................32

Table 3.1: Effects of alkyl groups of ZnR2 on the product distribution.............................49

Table 4.1: Ethylene-styrene copolymerization at 120 °C in toluene .................................64

Table 4.2: Influence of AIBN on ES copolymerization with CpNTiCl3 (4.3) ...................70

Table 4.3: Crude product of ES copolymerization in the presence of Co(tpp)..................73

Table 4.4: Fractionated polymer properties .......................................................................73

Table 5.1: Styrene homopolymerization with titanium complexes A-C at 70 °C.............92

Table 5.2: Ethylene-styrene copolymerization catalyzed by complexes A-C at 70 °C.....93

Table 6.1: Selected bond length and bond angles for three bimetallic complexes,

6.2−6.4 ...........................................................................................................120

Table 6.2: Selected bond length and bond angles for monometallic complexes, 6.6

and 6.7............................................................................................................127

Table 6.3: Crystallographic data ............................................................................. 128−129

Page 13: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

xiii

LIST OF FIGURES

Number Page

Figure 1.1: Representative Cr-based catalysts for trimerization or copolymerization

of α-olefins ......................................................................................................18

Figure 2.1: Product distribution upon the addition of ZnMe2 (entry 2, Table 2.1) ...........33

Figure 2.2: Product composition depending upon [ZnMe2]/[Cr] ratio (entries 3-6,

Table 2.1) .........................................................................................................34

Figure 2.3: Proposed mechanism of transmetallation between Cr catalyst and ZnMe2

during selective ethylene oligomerization .......................................................35

Figure 2.4: DSC curve of the polymeric product of entry 1, Table 2.1 ............................39

Figure 2.5: DSC curve of the polymeric product of entry 2, Table 2.1 ............................39

Figure 2.6: 2H NMR spectra of oligomeric and polymeric products of entry 2, Table

2.1.....................................................................................................................40

Figure 2.7: Product distribution in the absence of ZnMe2 at 25 °C (entry 1, Table 2.1) ..41

Figure 2.8: Product distribution in the absence of ZnMe2 at 45 °C (entry 3, Table 2.1) ..41

Figure 2.9: Product distribution in the presence of ZnMe2 at 45 °C (entry 6, Table 2.1) ..42

Figure 3.1: Metallacycle mechanism for Cr-catalyzed ethylene trimerization and

tetramerization .................................................................................................46

Figure 3.2: Proposed mechanism of transmetallation between Cr catalyst and ZnMe2

during selective ethylene oligomerization .......................................................49

Figure 3.3: Product distribution upon addition of ZnEt2 (top: entry 3, bottom: entry 7) ..51

Figure 3.4: Product distribution upon addition of ZnBu2 (top: entry 4, bottom: entry 8) ..52

Figure 3.5: 2H NMR spectrum of oligomeric products in entry 8, Table 3.1 ...................53

Figure 3.6: Proposed mechanism of transmetallation between Cr catalyst and ZnBu2

during selective ethylene oligomerization .......................................................55

Figure 4.1: Mono-Cp titanium complexes used for ethylene-styrene copolymerization

..........................................................................................................................63

Page 14: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

xiv

Figure 4.2: Aliphatic regions of 13C NMR spectra (1,2-dichlorobenzene/benzene-d6)

and peak assignments of ethylene-styrene copolymers (THF-soluble

fractions) prepared by CpNTiCl2(TEMPO) (4.4) under different ethylene

pressure (entries 8 and 12, Table 4.1) ..............................................................67

Figure 4.3: Plots of [Tββ]/[Ttotal] ratio determined by 13C NMR spectra as a function of

styrene content in copolymers produced by 4.3 (triangles), 4.4 (squares),

and Nomura et al.’s catalyst (circles) vs. styrene content in copolymers

determined by 13C NMR spectra ......................................................................68

Figure 4.4: Gel permeation chromatograms (GPC) of (a) raw polymer, (b) THF-soluble

fraction, and (c) acetone-soluble fraction of entry 19, Tables 4.3 and 4.4 ......72

Figure 4.5: Aliphatic regions of 13C NMR spectra (1,2-dichlorobenzene/benzene-d6)

of (a) raw polymer, (b) acetone-soluble fraction, and (c) THF-soluble

fraction of entry 19, Tables 4.3 and 4.4 ...........................................................74

Figure 4.6: Representative GPC chromatogram of THF-soluble fraction of ethylene-

styrene copolymer (entry 7, Table 4.1)............................................................78

Figure 4.7: Representative DSC thermogram of THF-soluble fraction of ethylene-

styrene copolymer (entry 12, Table 4.1)..........................................................78

Figure 4.8: 13C NMR spectrum of the blend of sPS and PE prepared by CpTiCl3

(4.1)/ MAO (entry 9, Table 4.1) ......................................................................79

Figure 4.9: 13C NMR spectrum of the blend of sPS and PE prepared by

CpTiCl2(TEMPO) (4.2)/MAO (entry 10, Table 4.1) .......................................80

Figure 4.10: 13C NMR spectrum of ethylene-styrene copolymer (THF-soluble

fraction) prepared by CpNTiCl3 (4.3)/ MAO (entry 11, Table 4.1)..................81

Figure 4.11: 13C NMR spectrum of ethylene-styrene copolymer (THF-soluble

fraction) prepared by CpNTiCl3 (4.4)/ MAO (entry 12, Table 4.1)..................82

Figure 4.12: Gel permeation chromatograms (GPC) of (a) raw polymer, (b) THF-

soluble fraction, and (c) acetone-soluble fraction of entry 20 in Tables 4.3

and 4.4..............................................................................................................83

Page 15: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

xv

Figure 4.13: GPC/UV spectra of entry 20 in Tables 4.3 and 4.4: (a) RI signal of raw

polymer, (b) UV signal of raw polymer, (c) RI signal of THF-soluble

fraction, (d) UV signal of THF-soluble fraction, (e) RI signal of acetone-

soluble fraction, and (f) UV signal of acetone-soluble fraction (UV at 275

nm) ...................................................................................................................84

Figure 5.1: Mono-Cp titanium complexes used in this study ...........................................91

Figure 5.2: 13C NMR spectrum of entry 3 in Table 5.1 (sPS produced with B/MAO)....94

Figure 5.3: DSC of entry 3 in Table 5.1 (sPS produced with B/MAO)............................95

Figure 5.4: DSC thermograms of resultant polymer of entry 5 in Table 5.1: (a) crude

product before fractionation (Mn = 15K, Mw = 100K, PDI = 6.4), (b) THF-

soluble fraction (Mn = 82K, Mw = 156K, PDI = 1.9, fraction yield: 63%),

and (c) THF-insoluble fraction (Mn = 44K, Mw = 92K, PDI = 2.1, fraction

yield: 5%).........................................................................................................96

Figure 5.5: Aliphatic regions of 13C NMR spectra and peak assignments of ethylene-

styrene copolymers (THF-soluble fractions) prepared by B or C/MAO

under different monomer feed ratios (entries 9, 13, 16, and 18 in Table

5.2) ...................................................................................................................98

Figure 5.6: 13C NMR and DSC of entry 13 in Table 5.2: (a) crude, (b) THF-soluble

fraction, (c) THF-insoluble fraction (ES copolymer produced with

B/MAO) ................................................................................................ 100−102

Figure 5.7: 13C NMR and DSC of entry 18 in Table 5.2: (a) crude and (b) THF-

soluble fraction (ES copolymer produced with C/MAO)..............................104

Figure 5.8: High-temperature GPC/FT-IR spectra for THF-soluble fractions of

ethylene-styrene copolymers prepared by B/MAO (a: entry 13, b: entry 14

in Table 5.2) ...................................................................................................106

Figure 6.1: Molecular structure of 6.3 represented by thermal ellipsoids at 50%

probability ......................................................................................................118

Figure 6.2: Molecular structure of 6.4 represented by thermal ellipsoids at 50%

probability ......................................................................................................121

Page 16: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

xvi

Figure 6.3: Molecular structure of 6.5 represented by thermal ellipsoids at 50%

probability ......................................................................................................122

Figure 6.4: Molecular structure of 6.8 represented by thermal ellipsoids at 50%

probability ......................................................................................................124

Figure 6.5: Molecular structure of 6.6 represented by thermal ellipsoids at 50%

probability ......................................................................................................126

Figure 6.6: Molecular structure of 6.7 represented by thermal ellipsoids at 50%

probability ......................................................................................................126

Figure 6.7: 1H NMR (CD2Cl2, 500 MHz) of (PNNP)PdMe(μ-Cl)NiCl (6.3) .................134

Figure 6.8: 1H NMR (CD2Cl2, 600 MHz) and 31P NMR (CD2Cl2, 162 MHz) of

(PNNP)NiCl(μ-X)NiCl (X = Cl or OH in 1:1 ratio) (6.4) .............................134

Figure 6.9: 1H NMR (CD2Cl2, 500 MHz) and 31P NMR (CDCl3, 162 MHz) of

[(PNNP)NiCl(μ-Cl)]2 (6.5) ............................................................................135

Figure 6.10: 1H NMR (CD2Cl2, 600 MHz) and 31P NMR (CD2Cl2, 162 MHz) of

(PNNP)CoCl2 (6.6) ........................................................................................136

Figure 6.11: 1H NMR (CD2Cl2, 500 MHz) and 31P NMR (CD2Cl2, 162 MHz) of

(PNNP)Pd(Me)CuPd(Me)(PNNP) . PF6 (6.8) ...............................................136

Page 17: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

xvii

LIST OF SCHEMES Number Page

Scheme 1.1: SHOP catalyst capable of ethylene oligomerization......................................3

Scheme 1.2: Mechanism of ethylene trimerization with the Cr-pyrrolyl complex.............4

Scheme 1.3: Cossee-Arlman coordination-insertion mechanism .......................................6

Scheme 1.4: Metallacycle mechanism for Cr-catalyzed selective ethylene

oligomerization ..................................................................................................7

Scheme 1.5: Cyclic byproduct formation ...........................................................................8

Scheme 1.6: Secondary (branched) product formation ......................................................8

Scheme 1.7: Possible pathways for linear α-olefin chain growth via: (A) large

metallacycle rings or (B) incorporation of higher α-olefin into smaller

rings....................................................................................................................9

Scheme 1.8: Gibbs free-energy profile (ΔG in kcal/mol) for the selective oligomerization

of ethylene to 1-hexene....................................................................................14

Scheme 1.9: Gibbs free-energy profile (ΔG in kcal/mol) for the generation of α-

olefins through degradation of titana(IV)cycle intermediates .........................15

Scheme 1.10: Cotrimerization of ethylene and styrene with bis(diarylphosphino)-

amine Cr complex ............................................................................................19

Scheme 1.11: Isoprene trimerization with bis(diarylphosphino)amine Cr complex ........20

Scheme 1.12: Tetramerization of diarylalkynes using the Zr/Cr system..........................20

Scheme 1.13: Telechelic diol formation via catalytic diene cyclization followed by

transmetallation................................................................................................21

Scheme 1.14: End-labeled ethylene oligomer formation in the presence of dialkylzinc..22

Scheme 2.1: Value-added coproduct formation by addition of ZnMe2 ............................33

Scheme 3.1: Value-added coproduct formation by addition of ZnBu2 (entry 8, Table

3.1) ...................................................................................................................53

Scheme 6.1.......................................................................................................................117

Scheme 6.2.......................................................................................................................118

Page 18: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

xviii

Scheme 6.3.......................................................................................................................122

Scheme 6.4.......................................................................................................................125

Scheme 6.5: All Related Complexes 6.1-6.8 Based on the PNNP Ligand......................130

Page 19: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

CHAPTER 1

CHROMIUM-CATALYZED SELECTIVE ETHYLENE OLIGOMERIZATION AND

ITS APPLICATION TO THE PREPARATION OF VALUE-ADDED CHEMICALS

Page 20: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

2

1.1 INTRODUCTION

1.1.1 Ethylene Homopolymerization and Ethylene/α-Olefin Copolymerization

Polyethylene and copolymers of ethylene and α-olefins such as propylene, 1-butene,

1-hexene, and 1-octene are the most widely used plastics. Approximately 80 million

metric tons of polyethylene is produced annually.1 With the exception of low density

polyethylene (LDPE), which is produced by a high temperature/high pressure radical

copolymerization process, these materials are the products of metal-catalyzed reactions

conducted on an enormous scale. Ethylene/α-olefin copolymer products find applications

in films (plastic bags, packaging), injection molding (houseware containers, flexible parts

for small appliances), blow-molding (toys and large tanks), and cable insulation.

Catalytic homopolymerization of ethylene and copolymerization of ethylene with α-

olefins are typically carried out using two different kinds of catalysts. One group utilizes

group IV metals, and can be classified into the heterogeneous Ziegler-Natta system2-4 and

homogeneous metallocene-based systems.5 Compared to the heterogeneous systems,

metallocene-based homogeneous systems produce copolymers with narrow molecular

weight distributions, high comonomer incorporation, and narrow composition

distributions.5 Control over the incorporation and distribution of α-olefins in ethylene/α-

olefin copolymers is industrially important for the control of polymer properties such as

the melting point, glass transition temperature, tensile strength, flexibility and

processibility.6 In general, the short chain branching introduced into polyethylene by the

insertion of α-olefin comonomers results in lower melting points, lower crystallinity and

lower density, making these materials more flexible and processible.

The second family of catalysts are based on chromium. Roughly one third of all

polyethylene is currently produced with silica-supported chromium oxide discovered by

Phillips Petroleum Co. The Phillips catalyst is prepared by treatment of silica with an

inorganic chromium compound (e.g. CrO3) followed by calcination in oxygen.7 Another

chromium-based catalytic system discovered at Union Carbide in the early 60’s is

Page 21: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

3

prepared by treating dehydroxylated silica with chromocene (Cp2Cr, Cp =

cyclopentadiene) and features high activity and selectivity between ethylene and

propylene (no copolymerization). There has been a vigorous ongoing debate over the

propagation mechanism in the heterogeneous polymerization systems.8

1.1.2 Ethylene Oligomerization

Higher (C4-C20) linear α-olefins are versatile materials for the chemical industry.

They are used in the production of plasticizers (C6-C10), surfactants (C10-C20), synthetic

lubricants (C16-C18), monomers for the production of polyolefins (C10), and comonomers

(C4-C8) for the synthesis of linear low density polyethylene. These olefins are generally

obtained by oligomerization of ethylene, which is available inexpensively. Ziegler

discovered the first process for industrial oligomerization of ethylene based on aluminum

alkyls in the early 1950’s.9, 10 A relatively recent process known as the Shell Higher

Olefin Process (SHOP) is the predominant industrial process which effectively converts

ethylene to a Schulz-Flory distribution of linear even-numbered α-olefins (98% terminal

olefins) using a homogeneous nickel-phosphine catalyst (Scheme 1.1). The ethylene

oligomerizations resulting from a variety of process, including SHOP, typically give a

broad Schulz-Flory distribution of olefins having different chain lengths, which need to

be separated via fractional distillation.

H2C CH2

ONiL2

P

O

Ph Ph

n = 0 - 36(n+2)

Scheme 1.1 SHOP catalyst capable of ethylene oligomerization

Page 22: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

4

1.1.3 Ethylene Trimerization and Tetramerization

The selective oligomerization of ethylene to 1-hexene and 1-octene is one of the

most exciting developments in olefin catalysis in the past few decades.11 Traditionally,

the oligomerization of ethylene by alkyl aluminum or transition metal catalysts follows

the Cossee-Arlman coordination-insertion mechanism,12, 13 yielding a Schulz-Flory

distribution of olefins, which must be separated by distillation. However, trimerization to

1-hexene or tetramerization to 1-octene provides a selective route to these valuable

reagents, which are comonomers in high demand for linear low-density polyethylene

(LLDPE) production. In the 1970s, researchers at Union Carbide demonstrated that Cr

complexes can selectively trimerize ethylene to 1-hexene.14 Since this discovery, intense

industrial and academic effort has been devoted to the search for more efficient catalysts

for selective trimerization and tetramerization of ethylene. Chevron Phillips has recently

commercialized the selective production of 1-hexene in Qatar.

NCr Cl AlEt3

NCr Cl AlEt3

NCr

Cl AlEt3

NCr Cl AlEt3

A

Scheme 1.2 Mechanism of ethylene trimerization with the Cr-pyrrolyl complex

The most important breakthrough in early catalysts for selective trimerization is the

one developed by Phillips.15 This system is composed of a Cr source, a substituted

pyrrole ligand and an alkyl aluminum activator (Scheme 1.2), and shows selectivity for 1-

hexene in excess of 90 wt%. Since this discovery, a wide variety of Cr systems have

emerged, including Sasol heteroatomic systems16, 17 and diphosphine systems.18, 19

Page 23: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

5

While a number of selective ethylene trimerization catalysts based on Cr and other

transition metals have been developed, the selective formation of higher olefins such as

1-octene has only recently been discovered. The unprecedented performance for ethylene

tetramerization to 1-octene was reported by Sasol using a (Ph2P)2NiPr ligand that gives up

to 70 % 1-octene along with some 1-hexene and polyethylene.20 Following this discovery,

a considerable amount of effort has been dedicated to investigate the nature of the active

species. The steric bulk of the substituent on the ligand has emerged as a key factor in

determining the relative selectivity for 1-octene vs. 1-hexene products.21-23 In general,

more sterically encumbered ligands favor trimerization over tetamerization.21

1.1.4 Scope of This Chapter

Selectivity for ethylene oligomerization is highly dependent upon the structure of

catalysts. This chapter will attempt to correlate trends from the increasing body of

literature on the influence of chromium-based catalyst structures and reaction parameters

on the product selectivity. To understand the influence of these factors, Section 1.2 will

discuss the newly developed mechanism that explains the exclusive formation of a

specific type of oligomer product. Section 1.3 will examine and correlate reported

selectivity as a function of different metals, ligand structural features, and reaction

conditions. Section 1.4 will review the computational, theoretical methods used to

provide further insight into the mechanism of selective ethylene oligomerization. Finally,

Section 1.5 will cover the extension of this unique feature of Cr-catalyzed selective

oligomerization to a broader range of substrates as well as a new strategy of converting

byproducts to value-added chemicals during ethylene tetramerization using

transmetallation reagents such as ZnR2 (R = -Me, -Et, -Bu).

Page 24: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

6

1.2 METALLACYCLE MECHANISM

Ethylene can be polymerized by a wide variety of catalysts, and many of them are

based on early transition metals. During polymerization, propagation operates by the

standard Cossee-Arlman coordination-insertion mechanism, and chain transfer occurs

through β-hydrogen transfer to monomer (Scheme 1.3).12, 13 However, the Cossee-Arlman

mechanism cannot selectively target a particular product. Instead, a wide variety of

oligomers are formed. The distribution of products is governed by the relative

favorability of insertion versus chain transfer.

LnM R LnM R

LnM R

HR LnM H+

Scheme 1.3 Cossee-Arlman coordination-insertion mechanism

The currently accepted mechanism for selective trimerization of ethylene was

proposed by Manyik14 and Briggs.24 This mechanism is fundamentally different from the

Cosse-Arlman mechanism in that it involves the formation of a metallacyclopentane

intermediate, which is formed by the coordination of two ethylene monomers to the metal

center followed by oxidative coupling.14, 24 Further coordination of ethylene monomer

followed by a migratory insertion generates a metallacycloheptane. From this point, two

mechanisms have been proposed for the production of 1-hexene: a stepwise mechanism

involving a β-hydrogen elimination/reductive elimination sequence, or a concerted 3,7-

hydrogen shift (Scheme 1.4).25-30 The crucial aspect of this mechanism is the difference in

relative stability of the 5- and 7-membered rings with regard to elimination, allowing

high selectivity to the C6 alkene over other carbon numbers.

Page 25: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

7

Cr H

Crn+2 Crn+2

[Crn] +

Crn

oxidativecoupling

coord'n Crn+2

migratoryinsertion

β-Helimination

coord'n

coord'n

reductiveelimination

H-shift

Crncoord'ninsertion

Crn+2

reductive elimination

Cr H

[Crn] +

β-Helimination

Crn+2H

Crn+2H

Crn+2

Scheme 1.4 Metallacycle mechanism for Cr-catalyzed selective ethylene oligomerization

Deuterium-labeling studies by Bercaw (trimerization)19, 31 and Overett

(tetramerization)32 have provided convincing evidence for a metallacycle mechanism for

Cr complexes; ethylene oligomerization of a 1:1 mixture of C2H4 and C2D4 leads to only

1-hexene with d0, d4, d8 or d12 labeling pattern, consistent with a metallacycle mechanism

involving no H/D scrambling. This mechanism has been further supported by

crystallographic evidence of the cyclic intermediates,33 computational studies,25-30, 34, 35 and

variable temperature NMR spectroscopy.36 Work by Schrock with tantalacyclopentanes

also provides a firm mechanistic basis for the hypothesis.37 This mechanism was initially

regarded as a highly unlikely route to the formation of long-chain olefins due to the

relatively high energy barrier for the insertion of further ethylene molecules in the

metallacycloheptane intermediates. However, deuterium-labeling studies by Gibson have

provided convincing evidence for a larger ring metallacycle mechanism for Cr complexes

that yield polyethylene and linear α-olefins.38, 39

The mechanism of tetramerization involves a metallacycloheptane intermediate that

is stable relative to 1-hexene elimination, and the larger metallacyclononane is accessible.

A further consequence of this more stable metallacycloheptane species is the formation of

cyclic C6 byproducts, methyl- and methylenecyclopentane, via rearrangement of the 7-

membered ring (Scheme 1.5).32 The formation of the cyclic side products is independent

of the ethylene concentration,40 which is in good accordance with the proposed

Page 26: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

8

mechanism since it indicates that the formation of the products occurs via rearrangement

of the metallacycle intermediate. In addition, a mixture of C12 and C14 branched products

are produced from co-oligomerization of ethylene with 1-hexene and 1-octene (Scheme

1.6).32 The amount of these branched products is proportional to the productivity of the

reaction (ratio of available ethylene vs. 1-hexene/1-octene).41 This side reaction, or co-

oligomerization, is usually considered problematic, but with other substrates it could have

a potential utility. This opportunity will be further discussed in Section 1.5.

Cr Crn+2

reductiveelim.

β-H elim.Crn+2H

H dissociation Crn+2H

H

+ [Crn]

+

HCrn+2H

1,2-alkylinsertion

Scheme 1.5 Cyclic byproduct formation

Cr1-octene

CrCr Cr

Cr

(C12)

(C14)

β-H transfer

β-H transfer

Scheme 1.6 Secondary (branched) product formation

Gibson has observed a wider distribution of products from the metallacycle

mechanism,38 where relative stabilities of increasingly large cyclic intermediates are

presumably so similar that discrimination to specific carbon numbers cannot be achieved.

Page 27: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

9

In addition, when adding 1-nonene in the Cr-catalyzed polymerization reaction, he

observed no odd-numbered α-olefins in the product mixture, indicating that the chain

growth process does not proceed by incorporation of higher α-olefins into small

metallacycle intermediates but via large ring metallacycles.38

LCrCl3 LCr LCr

LCr

n

nβ-H trans.

n

LCr

R

R

β-H trans.

R

(A)

(B)

MAO

Scheme 1.7 Possible pathways for linear α-olefin chain growth via: (A) large

metallacycle rings, or (B) incorporation of higher α-olefin into smaller rings

1.3 FACTORS AFFECTING ETHYLENE OLIGOMERIZATION SELECTIVITY

Since the new mechanism was proposed, a large number of patents and academic

research has been performed on catalysts that result in selective ethylene oligomerization.

Most of them are based on Cr, Ti, Ta, and V, among which Cr catalysts have been shown

to be the most selective, active, and stable catalysts for ethylene trimerization.11 The

activity and selectivity of Cr catalysts have been demonstrated to depend sensitively on

the ligand environment at Cr21, 23, 41-47 as well as the reaction conditions (temperature,40

pressure,40, 41 cocatalyst,48-50 solvent41, 51, 52). Depending on the conditions, the Cr catalyst

produces PE,45, 46, 53 ethylene oligomers,47 or 1-hexene/1-octene20, 22, 54, 55 as a major

product.

Page 28: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

10

1.3.1 Influence of Type of Metal

The selective oligomerization of ethylene occurs with a variety of catalyst systems

involving chromium, titanium, tantalum, and vanadium. The most successful of these

catalysts in activity, selectivity, and stability are the Cr catalysts.19 Vanadium-based

catalysts exhibit very low activity.11 Compared to the Cr catalysts, the Ta catalysts show a

similar high selectivity for 1-hexene but lower activity,56 whereas Ti catalysts show lower

selectivity but similar activity.57 In the case of both the titanium and chromium systems, a

cationic active catalyst has been proposed.26, 42 For those systems, the abstraction of a

halide group or the protonation of the complex creates the cation necessary for selective

catalysis. The creation of a cationic metal complex is attributed to the cocatalysts in these

systems.58

The different selectivity between different metal systems accounts for the amount of

side products. Titanium catalysts appear to incorporate ethylene and other α-olefins at

similar rates producing a variety of trimers depending on the available monomers. Thus,

incorporation of 1-hexene into trimers with ethylene to produce C10 side products

explains more than 90 % of the lowered selectivity of titanium.57 For example, with the

most active Ti catalysts examined by Deckers et al., 84 wt% of the products were C6, 15

wt % of the products were C10, and only 1 wt% was not a trimer.57 In contrast, chromium

and tantalum systems have been shown to be more selective for ethylene.11 In the case of

the tantalum systems, this selectivity may be due to the high concentration difference

between available ethylene and 1-hexene. Whereas the high activity of the Ti catalyst

produces a large amount of 1-hexene that can be incorporated into the trimers, the low

activity of the Ta catalyst probably keeps the ratio of ethylene to available 1-hexene high

enough that 1-hexene is rarely incorporated. In the case of Cr systems, the insertion rate

of ethylene was about twenty times higher than the rate for 1-butene.31 1-Hexene is likely

to have an even lower insertion rate because it is larger than 1-butene. Therefore, even

with the large amount of 1-hexene produced by the Cr catalyst, it is less likely that a

trimerization involving the incorporation of 1-hexene could be a competitive side

Page 29: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

11

reaction. Although there is no explanation for increased selectivity of the chromium

catalysts over titanium, the geometry of the catalysts (octahederal for chromium

complexes31 vs. tetrahedral geometry for titanium35) may be a significant factor. The

octahedral complex, simply by nature of having a greater number of ligands, likely has a

greater steric hindrance against the insertion of larger monomers, thus lowering the

probability of insertion of 1-hexene rather than ethylene.

Another important aspect of the mechanism is the oxidation state of the metal during

the various stage of the catalytic cycle.59 Oxidative addition of the first two ethylene

molecules to form a metallocyclopentane species involves an increase in the formal

oxidation state from Mn to Mn+2, while 1-hexene liberation via reductive elimination

involves a decrease from Mn+2 to Mn. The oxidation states of the catalysts throughout

different parts of the catalytic cycle were determined to be Cr(I)/Cr(III), Ti(II)/Ti(IV) and

Ta(III)/Ta(V).11 In each case the higher oxidation state is the most stable oxidation state

of the metal (i.e. Cr3+, Ti4+ and Ta5+ are the most stable forms of Cr, Ti and Ta).60

1.3.2 Influence of Type of Ligand

In many catalytic systems, ligand structures have decisive influence on the product

composition, selectivity and productivity during ethylene chain growth. Many of the

chromium systems for the trimerization or tetramerization are based on multidentate

supporting ligands with phosphine, amine, ether, and thioether donors. Such ligands are

quite prone to steric and electronic modifications, allowing investigation on the ligand

structure-selectivity relationship.11

As mentioned briefly in Section 1.1.4, steric bulk of the substituent on the ligand has

a great influence in determining the relative selectivity for 1-octene vs. 1-hexene

products.21-23 In general, more sterically encumbered ligands favor trimerization over

tetramerization.21 In bisphosphine-based ligand structure, for example, the selectivity was

Page 30: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

12

found to be highly dependent upon the steric bulk of the substituents on the phosphine

moiety.61 Methoxy substituents in bisphosphinamine (PNP) ligands also have a

significant effect so that only one methoxy substituent is required to strongly favor

trimerization.21 A more subtle effect is observed by altering the nitrogen substituent in the

PNP ligands.20, 22

Titanium-based systems also exhibit ligand-dependent selectivity. For example, in

the mono(cyclopentadienylarene)titanium/MAO system with a hemilabile ancillary arene

ligand that is able to coordinated to the Ti atom, 1-hexene is almost exclusively formed.57

However, in the absence of the arene ligand, the catalyst switches from oligomerization

to polymerization activity.62

1.3.3 Influence of Reaction Conditions

1.3.3.1 Ethylene Pressure and Reaction Temperature

Kuhlman et al. carefully investigated the pressure and temperature dependency of

the ethylene tetramerization reaction over an extended pressure and temperature range.40

This study was exclusively conducted on the Cr(acac3)/1,2,3,4-tetrahydronaphthylamine-

bis(diphenylphosphine)/MMAO catalyst system. They correlated the ethylene

concentration at specific reaction conditions with the respective catalytic results at these

conditions. The determination of the ethylene concentration in binary

ethylene/cyclohexane mixtures was conducted by extending literature vapor-liquid

equilibrium (VLE) curves into the relevant temperature and pressure range. From this

study, the insertion of ethylene into the metallacycloheptane species was found to be

slightly pressure-dependent. The reaction temperature, in contrast, seems to be the

primary factor that determines whether 1-hexene is eliminated from the

metallacycloheptane intermediate or if further ethylene is incorporated to form a larger

Page 31: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

13

metallacycle (and ultimately 1-octene). The 1-octene selectivity, which reaches a

maximum of 72–74 mass%, thus seems to be primarily dependent on the temperature.

Elowe et al. have also investigated pressure dependence on activity, selectivity, and

product distribution using a bisphosphino amine Cr complex.41 Within the range of

pressures tested, the ratio of [1-octene] to [1-hexene] increases linearly with higher

concentrations of ethylene, with little or no effect on 1-hexene and 1-octene selectivity

within C6 and C8 fractions, respectively. Higher ethylene pressures are thus expected to

further favor 1-octene production.

1.3.3.2 Reaction Solvent

Sasol Technology has evaluated a number of different aromatic and aromatic ether

solvents with a catalyst system consisting of a chromium source/2,6-disubstituted

phenol/triethylaluminum.51 Anisole proved to be the best solvent for the trimerization

reaction in comparison with xylene or ethoxybenzene, as the use of anisole as a solvent

improves the activity under comparable conditions dramatically (approx. 3 times). A

similar study by Elowe et al. has shown that the use of chlorobenzene solvent rather than

toluene significantly improves productivity, stability, and selectivity to 1-hexene and 1-

octene, with little polyethylene production, although it is not clear whether the beneficial

effects of chlorobenzenes are due to weak solvation via the chlorine atom or, more

generally, higher solvent polarity.41

1.4 DENSITY FUNCTIONAL THEORY (DFT) STUDIES

Computational and theoretical aspects of ethylene trimerization have extensively

been studied by Tobisch and Ziegler26-28 with group IV complexes (mostly Cp-arene Ti

complex),57 employing DFT calculation. The metallacycle mechanism has been supported

Page 32: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

14

in detail by (i) examining the ability of titanacycle intermediates to grow or to decompose

to afford α-olefins as a function of their sizes, (ii) predicting the pathway of alkene

elimination (concerted vs. stepwise), and (iii) exploring the possibility of cycloalkane

production via reductive elimination from the metallacycles. On the basis of the careful

exploration of elementary steps, the free-energy profile of the catalytic reaction course

was provided (Scheme 1.8).26

Ti

0.0

5.2

-7.6

8.1

6.5

11.9

3.7

0.5

6.5

-15.0

18.3

-17.2-14.0

-3.8

-26.3

ΔG (kcal/mol)

Ti

Ti

TiTi

Ti H

Ti

Ti H

Ti

Ti

13.5

15.1

TiH

-10.7

Scheme 1.8 Gibbs free-energy profile (ΔG in kcal/mol) for the selective oligomerization

of ethylene to 1-hexene26

1.4.1 Metallacycle Growth vs. Alkene Elimination

Titanacyclopentane is readily accessible through the facile oxidative coupling. 1-

Butene elimination from metallacyclopentane is a kinetically unfavorable step that

requires a very high barrier (ΔG‡ = 22.7 kcal/mol).26 Accordingly, further ethylene

insertion, in spite of additional entropy costs, is predicted to be kinetically preferred by

3.2 kcal/mol (ΔΔG‡) over the 1-butene elimination (Schemes 1.8 and 1.9). Therefore, 1-

butene generation is almost precluded, which agrees with experimental findings. In

contrast, 1-hexene elimination becomes highly accelerated along the concerted β-H

Page 33: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

15

transfer mechanism (ΔG‡ = 10.2 kcal/mol), while the expansion of the titanacycle

requires higher barrier of ΔG‡ = 20.5 kcal/mol. This indicates that further titanacycle

growth is unlikely. The competition between the alkene elimination and the metallacycle

growth is clearly seen as the discriminating factor for the selectivity of the ethylene

oligomerization.

Ti

-7.6

18.3

-17.2-14.0

-3.8

-26.3

ΔG (kcal/mol)

TiTi

Ti H

Ti

Ti H

13.5

15.1

TiH

-10.7

TiH

8.5

6.8

8.2

-16.8 Ti+

Ti

+

Scheme 1.9 Gibbs free-energy profile (ΔG in kcal/mol) for the generation of α-olefins

through degradation of titana(IV)cycle intermediates, occurring via a concerted (solid

line) and a stepwise (dashed line) pathway26

Further growth would result in a nine-membered ring, which is the least favorable

medium-sized ring. Houk found that in the simpler TaCl3(CH3)2 system insertion in the

seven-membered ring is also more difficult than in the five-membered ring.34 This

indicates that if a nine-membered ring were formed, it would be likely to grow to a larger

ring.

Page 34: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

16

1.4.2 Alkene Elimination Pathways: Concerted (direct hydrogen transfer) vs.

Stepwise (β-H elimination/ reductive elimination)

Based on the Gibbs free energy profile in Scheme 1.9, the concerted β-H transfer is

predicted to be the operative mechanism for seven-membered and larger titanacycle

intermediates, and connected with a free-energy barrier of 10.2-11.0 kcal/mol. The

stepwise mechanism, which requires significantly higher barriers (ΔΔG‡ > 10 kcal/mol),

is clearly seen to be kinetically unfavorable.26 Whereas the titanacycloheptane undergoes

direct Cβ Cα’ hydrogen transfer through a transition state with a near-linear C…H…C

arrangement, the titanacyclopentane eliminates 1-butene via a two-step pathway due to

the geometrical constraints of the five-membered ring.25

1.4.3 Cycloalkane Formation via Reductive Elimination From Metallacycles

Formation of cycloalkanes via reductive elimination from the metallacycles forming

a C-C bond between terminal Cα and Cα’ carbons is a possible side process that competes

with α-olefin generation. However, the reductive C-C elimination is seen to be a

kinetically difficult process that requires an activation free energy of 29.6-24.9 kcal/mol

for five- to nine-membered titanacycloalkanes.26 This finding is consistent with the

experimental observation that the product mixture does not contain any detectable

amount of cycloalkanes.

1.5 NEW OPPORTUNITIES FOR VALUE-ADDED CHEMICALS

1.5.1 Various Substrates Beyond Ethylene

The focus of the majority of studies in selective oligomerization to date has been

with ethylene monomers. In contrast, the scope of chromium trimerization catalysts with

substrates beyond ethylene has not been explored extensively. The extension of the

Page 35: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

17

metallacycle strategy to a broader range of substrates would be a potentially simple

catalytic route to ω-substituted alkenes, which can be used as functionalized comonomers

for polyolefinic materials.63

1.5.1.1 1-Alkene

Köhn and Wasserscheid reported that triazacyclohexane-based Cr catalysts (I, Figure

1)/MAO, which exhibit high activities for ethylene polymerization,64 are capable of

trimerization of 1-alkenes, such as propene and 1-hexene.65 Their observations in 1-

hexene trimerization are in agreement with the mechanism involving metallacycle

intermediates. They employed the same catalytic system for trimerization of 1-decene

and 1-dodecene, producing highly branched C30-C40 oligomers that can be used as

lubricants.66 Synthetic lubricants are industrially produced by cationic polymerization

(with BF3/methanol as catalyst) using 1-decene as feedstock followed by hydrogenation

of the product oligomers, but a drawback of this process is that the product contains

significant amount of dimers and pentamers that comprise the fraction besides C30-C40.

However, the high trimer selectivity of catalyst I afforded isomeric C36 products that

display better viscosity than commercial lubricants prepared with the BF3 system. In most

cases, trimerization systems only incorporate one 1-alkene with two ethylene monomers.

For example, the C10 byproducts often observed in trimerization reactions are cotrimers of

1-hexene in the product and ethylene. However, incorporation more than one α-olefin is

rare – this triazacyclohexane system is the only known system capable of homo-

oligomerization of higher olefins via the metallacycle mechanism.

More recently, McGuinness reported that bis(carbene)pyridine complexes of Cr (II,

Figure 1) with ethylene produce longer ethylene oligomers and some polymers when

activated by MAO, following an extended metallacycle mechanism.67 The change to α-

olefins, however, leads to a dramatic shift in selectivity to dimers (and trace trimers less

than 10 wt%), the major product being the head-to-tail vinylidene dimer, 2-hexyl-1-

decene.68 Also, this catalytic system was shown to cotrimerize ethylene with α-olefins,

Page 36: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

18

the main product being 2-ethyl-1-octene that results from coupling of ethylene and 1-

octene.

Agapie et al. calculated competitive olefin insertion rates of various α-olefins into

chroma-biphenyldiyl species (III, Figure 1.1), revealing that the relative insertion rates

increase with decreasing size of the olefin likely due to steric reasons.31 Particularly,

ethylene was found to insert more than 20 times faster than linear α-olefins, consistent

with the observed good selectivity for homotrimerization of ethylene over cotrimerization

in the presence of α-olefins. When cotrimerization of propylene and ethylene was

performed with III upon halide abstraction, cotrimers incorporating one propylene were

obtained but 1-hexene was the major product.31 All major cotrimer products come from

1,2-insertions of propylene into chromacyclopentane.

N NN

R

RR

CrCl

ClCl

N

N

NN

N CrCl

Cl

ClR R

CrPArN

Ar2PBr

O

I II III

(R = alkyl or benzyl) (R = Me, iPr, or 2,6-iPr2C6H3)

Figure 1.1 Representative Cr-based catalysts for trimerization or cotrimerization of α-

olefins

1.5.1.2 Styrene

Cotrimerization of styrene and ethylene was studied using

bis(diarylphosphino)amine Cr catalysts by Wass and coworkers (Scheme 1.10).69 This is

a good example that exploits co-oligomerization resulting from the metallacyclic

intermediates that can incorporate 1-hexene/1-octene to produce branched C12 and C14

side products. High yields of cotrimers (up to 100 wt%) with one styrene unit

incorporated were exclusively obtained. All major products arise from the 2,1-

Page 37: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

19

regiochemistry of styrene insertion, and selectivity to branched or linear products

depends on the ligand structures (Scheme 1.10); the symmetric o-methoxy PNP ligand

exhibited the best selectivity towards linear trimers. Interestingly, ligands that favor

tetramerization with ethylene alone still produce cotrimer products, clearly showing the

interplay of a ligand and a substrate determines the relative stability of metallacycle

intermediates in these systems.

+CrCl3(THF)3 + MAO

NP P

R1

2 2

R3R2

2 + isomers

R1 = Me, R2 = R3 = OMeR1 = Me, R2 = OMe, R3 =H

linear vs. branched----------------------------85 wt% 15 wt% 4 wt% 90 wt%

Scheme 1.10 Cotrimerization of ethylene and styrene with bis(diarylphosphino)amine Cr

complex69

1.5.1.3 Diene

The same catalytic system (Scheme 1.11) was recently investigated for diene

trimerization.70, 71 Reports of catalytic isoprene trimerization are very rare. The few

systems reported are exclusively based on group 10 metal complexes and often dimerize

or give a distribution of oligomeric products.72 Chromium-dimethylphosphinoethane

species have been investigated with 1,3-diene substrates but lead exclusively to

polymerization with both 1,3-butadiene and isoprene.73, 74 When isoprene was treated with

the Cr complexes of bis(diarylphosphino)amine, selectivity to trimeric products is

observed; good selectivity to C15 products is observed up to 80 wt% with the remaining

products consisting of higher isoprene oligomers (Scheme 1.11). The C15 fraction is

composed of three linear isomers (major) and one cyclic (minor). Asymmetric PNP

ligands (R2 ≠ R3) showed very high selectivity towards linear trimers compared to

Page 38: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

20

symmetric PNP analogues (R2 = R3). The best performance was observed with the PNNP

ligand with pendant OMe groups; this combines excellent productivity (two-fold higher

than PNP ligands) with outstanding selectivity to trimeric products. With 1,3-butadiene,

polymerization is observed, with no oligomers being detected by GC.

CrCl3(THF)3 + MAO

NP P

R1

2 2

R3R2

+

R1 = Me, R2 = R3 = OMeR1 = iPr, R2 = R3 = MeR1 = Me, R2 = OMe, R3 = H

56 wt%70 wt%97 wt%

87 wt%

24 wt%25 wt% 1 wt%

13 wt%NP P

2 2

N

MeOOMe

3

(79 wt% total trimer)(95 wt% total trimer)(98 wt% total trimer)

(100 wt% total trimer)

Scheme 1.11 Isoprene trimerization with bis(diarylphosphino)amine Cr complex71

1.5.1.4 Alkyne

Although dimerization and cyclic trimerization of alkynes are well-known,75

selective formation of higher linear oligomers of alkynes is rare. Takahashi reported a

novel Zr/Cr system for linear tetramer formation of diarylalkynes (Scheme 1.12), while

alkyl-substituted alkynes were converted into cyclized products in the Zr/Cr system.76

i) Cp2ZrBu2

ii) 1-2 eq CrCl3 3-5 days

Ar Ar

Ar Ar Ar

Ar Ar ArAr = Ph m-Tol 2-thienyl 3-thienyl

Cp2Zr

ArAr

ArAr

ClCr

ArAr

ArAr

i) Cp2ZrBu2

ii) CrCl3

4 ArAr

Scheme 1.12 Tetramerization of diarylalkynes using the Zr/Cr system76

Page 39: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

21

1.5.2 Transmetallation Strategy

Previous work by our group on the catalytic carbometallation of ethylene by

zirconocenes and dialkylmagnesium reagents demonstrated that transmetallation of

metallacycles generated by olefin dimerization can provide a selective synthesis of

telechelic diols (Scheme 1.13).77, 78 Mechanistic studies were consistent with a

metallacycle mechanism where a Zr(II) intermediate couples two olefins to generate a

metallacycle which could be transmetallated by BuMgX (X = Br, Bu). Subsequent

oxidation of the organomagnesium products generated the diols.

+ 2 BuMgXCp2ZrCl2 XMg

XMgHOHO

Cp2Zr

Cp2Zr

XMgXMg

2 BuMgX

Cp2Zr

O2

Scheme 1.13 Telechelic diol formation via catalytic diene cyclization followed by

transmetallation77

Most recently, we have shown that the selective oligomerization of ethylene with the

Cr(PNP)Cl3/MAO catalyst system [PNP = (Ph2P)2NiPr] in the presence of ZnR2 (R = -

Me, -Et, -Bu) provides an effective strategy for the co-generation of 1-octene and end-

functionalized C10-22 ethylene oligomers. Transmetallation with ZnMe2 during ethylene

tetramerization generated end-labeled α-olefins in Cn>10, while that with ZnBu2 under

certain conditions produced end-labeled linear alkanes along with 1-octene (Scheme

1.14). Deuteriolysis of the resulting mixture indicates that transmetallation of

metallacycles with ZnR2 competes with ethylene insertion and alkene elimination for

higher metallacycles (Cn>10). This study will be further discussed in detail in Chapters 2

Page 40: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

22

and 3. The formation of deuterium-labeled oligomers indicates that end-functionalized

linear oligomers can be prepared using this transmetallation strategy, and the use of

transmetallation reagents leads to the formation of value-added chemicals; this oligomer

with a reactive chain end can function as a macroinitiator for the synthesis of a block

copolymer. For instance, our group has previously reported the formation of hydroxy-

terminated poly(methylene-1,3-cyclopentane) (PMCP-OH) via chain transfer to

aluminium in the cyclopolymerization of 1,5-hexadiene,79 and the aluminium alkoxide of

PMCP-OH was used as a macroinitiator for the ring-opening polymerization of ε-

caprolactone to afford diblock olefin-ester copolymers.80

[Fn] Fnn

+

NP

CrCl3P

Ph Ph

Ph Ph

+

MAOZnMe2

Toluenen

+D2O D

[Fn] Fnn

+

NP

CrCl3P

Ph Ph

Ph Ph

+

MAOZnBu2

Toluenen

+D2O D

Fn = functional groups (-OH, -Br, ....)

n = 2-8, 2.55 gPE, 0.20 g

1.40 g

0.52 g n = 2-8, 0.35 gPE, 0 g

Scheme 1.14 End-labeled ethylene oligomer formation in the presence of dialkylzinc

1.6 CONCLUDING REMARKS

Since the initial discovery in which less than 1% 1-hexene was reported, selective

ethylene oligomerization has been investigated extensively and huge improvements in

catalytic activity and selectivity have been made. The basic requirements for developing

a selective oligomerization catalyst are matching the correct metal in the proper oxidation

state with a ligand having the desired electronic, steric properties. Recently there has

been increased fundamental understanding of this unusual chemical transformation

Page 41: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

23

despite difficulties in analyzing paramagnetic chromium species. Computational studies

have contributed to a better understanding of the mechanistic aspects. We would

speculate that the next challenge from a selectivity viewpoint would be the extension of

selective ethylene oligomerization to the production of other target linear olefins or

value-added chemicals having functional groups at the desired position.

1.7 REFERENCES AND NOTES

1. Otto G. Piringer and A. L. Baner, Plastic packaging: interactions with food and pharmaceuticals, Wiley-VCH, 2008.

2. K. Ziegler, E. Holzkamp, H. Breil and H. Martin, Angew. Chem. Int. Edit., 1955, 67, 541-547.

3. G. Natta, Journal of Polymer Science, 1955, 16, 143-154. 4. G. Natta, Angew. Chem. Int. Edit., 1956, 68, 393-403. 5. H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger and R. M. Waymouth,

Angew. Chem. Int. Ed., 1995, 34, 1143-1170. 6. K. L. Walton, Rubber Chem. Technol., 2004, 77, 552-568. 7. M. P. McDaniel, Adv. Catal., 1985, 33, 47-98. 8. E. Groppo, C. Lamberti, S. Bordiga, G. Spoto and A. Zecchina, Chem. Rev., 2005,

105, 115-183. 9. K. Ziegler, Angew. Chem., 1952, 64, 323-329. 10. G. Wilke, Angew. Chem. Int. Edit., 2003, 42, 5000-5008. 11. J. T. Dixon, M. J. Green, F. M. Hess and D. H. Morgan, J. Organomet. Chem.,

2004, 689, 3641-3668. 12. P. Cossee, J. Catal., 1964, 3, 80-88. 13. E. J. Arlman and P. Cossee, J. Catal., 1964, 3, 99-104. 14. R. M. Manyik, W. E. Walker and T. P. Wilson, J. Catal., 1977, 47, 197-209. 15. W. K. Reagen, W. K. Reagem and W. K. Reagan, EP417477-A, Phillips

Petroleum Co, 1991. 16. D. S. McGuinness, P. Wasserscheid, W. Keim, C. H. Hu, U. Englert, J. T. Dixon

and C. Grove, Chem. Commun., 2003, 334-335.

Page 42: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

24

17. D. S. McGuinness, P. Wasserscheid, W. Keim, D. Morgan, J. T. Dixon, A. Bollmann, H. Maumela, F. Hess and U. Englert, J. Am. Chem. Soc., 2003, 125, 5272-5273.

18. A. Carter, S. A. Cohen, N. A. Cooley, A. Murphy, J. Scutt and D. F. Wass, Chem. Commun., 2002, 858-859.

19. T. Agapie, S. J. Schofer, J. A. Labinger and J. E. Bercaw, J. Am. Chem. Soc., 2004, 126, 1304-1305.

20. A. Bollmann, K. Blann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. S. McGuinness, D. H. Morgan, A. Neveling, S. Otto, M. Overett, A. M. Z. Slawin, P. Wasserscheid and S. Kuhlmann, J. Am. Chem. Soc., 2004, 126, 14712-14713.

21. M. J. Overett, K. Blann, A. Bollmann, J. T. Dixon, F. Hess, E. Killian, H. Maumela, D. H. Morgan, A. Neveling and S. Otto, Chem. Commun., 2005, 622-624.

22. T. Jiang, S. Zhang, X. L. Jiang, C. F. Yang, B. Niu and Y. N. Ning, J. Mol. Catal. Chem., 2008, 279, 90-93.

23. K. Blann, A. Bollmann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. H. Morgan, A. Neveling, S. Otto and M. J. Overett, Chem. Commun., 2005, 620-621.

24. J. R. Briggs, J. Chem. Soc., Chem. Commun., 1989, 674-675. 25. A. N. J. Blok, P. H. M. Budzelaar and A. W. Gal, Organometallics, 2003, 22,

2564-2570. 26. S. Tobisch and T. Ziegler, Organometallics, 2003, 22, 5392-5405. 27. S. Tobisch and T. Ziegler, Organometallics, 2004, 23, 4077-4088. 28. S. Tobisch and T. Ziegler, J. Am. Chem. Soc., 2004, 126, 9059-9071. 29. S. Tobisch and T. Ziegler, Organometallics, 2005, 24, 256-265. 30. P. H. M. Budzelaar, Can. J. Chem.-Rev. Can. Chim., 2009, 87, 832-837. 31. T. Agapie, J. A. Labinger and J. E. Bercaw, J. Am. Chem. Soc., 2007, 129, 14281-

14295. 32. M. J. Overett, K. Blann, A. Bollmann, J. T. Dixon, D. Haasbroek, E. Killian, H.

Maumela, D. S. McGuinness and D. H. Morgan, J. Am. Chem. Soc., 2005, 127, 10723-10730.

33. R. Emrich, O. Heinemann, P. W. Jolly, C. Krüger and G. P. J. Verhovnik, Organometallics, 1997, 16, 1511-1513.

34. Z. X. Yu and K. N. Houk, Angew. Chem. Int. Edit., 2003, 42, 808-811.

Page 43: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

25

35. T. J. M. de Bruin, L. Magna, P. Raybaud and H. Toulhoat, Organometallics, 2003, 22, 3404-3413.

36. R. Arteaga-Müller, H. Tsurugi, T. Saito, M. Yanagawa, S. Oda and K. Mashima, J. Am. Chem. Soc., 2009, 131, 5370-5371.

37. J. D. Fellmann, G. A. Rupprecht and R. R. Schrock, J. Am. Chem. Soc., 1979, 101, 5099-5101.

38. A. K. Tomov, J. J. Chirinos, D. J. Jones, R. J. Long and V. C. Gibson, J. Am. Chem. Soc., 2005, 127, 10166-10167.

39. A. K. Tomov, V. C. Gibson, G. J. P. Britovsek, R. J. Long, M. van Meurs, D. J. Jones, K. P. Tellmann and J. J. Chirinos, Organometallics, 2009, 28, 7033-7040.

40. S. Kuhlmann, J. T. Dixon, M. Haumann, D. H. Morgan, J. Ofili, O. Spuhl, N. Taccardi and P. Wasserscheid, Adv. Synth. Catal., 2006, 348, 1200-1206.

41. P. R. Elowe, C. McCann, P. G. Pringle, S. K. Spitzmesser and J. E. Bercaw, Organometallics, 2006, 25, 5255-5260.

42. T. Agapie, M. W. Day, L. M. Henling, J. A. Labinger and J. E. Bercaw, Organometallics, 2006, 25, 2733-2742.

43. D. S. McGuinness, D. B. Brown, R. P. Tooze, F. M. Hess, J. T. Dixon and A. M. Z. Slawin, Organometallics, 2006, 25, 3605-3610.

44. D. S. McGuinness, P. Wasserscheid, D. H. Morgan and J. T. Dixon, Organometallics, 2005, 24, 552-556.

45. D. J. Jones, V. C. Gibson, S. M. Green, P. J. Maddox, A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 2005, 127, 11037-11046.

46. T. Xu, Y. Mu, W. Gao, J. Ni, L. Ye and Y. Tao, J. Am. Chem. Soc., 2007, 129, 2236-2237.

47. F. Junges, M. C. A. Kuhn, A. H. D. dos Santos, C. R. K. Rabello, C. M. Thomas, J.-F. Carpentier and O. L. Casagrande, Organometallics, 2007, 26, 4010-4014.

48. D. S. McGuinness, M. Overett, R. P. Tooze, K. Blann, J. T. Dixon and A. M. Z. Slawin, Organometallics, 2007, 26, 1108-1111.

49. D. S. McGuinness, A. J. Rucklidge, R. P. Tooze and A. M. Z. Slawin, Organometallics, 2007, 26, 2561-2569.

50. P. Crewdson, S. Gambarotta, M.-C. Djoman, I. Korobkov and R. Duchateau, Organometallics, 2005, 24, 5214-5216.

Page 44: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

26

51. D. H. Morgan, S. L. Schwikkard, J. T. Dixon, J. J. Nair and R. Hunter, Adv. Synth. Catal., 2003, 345, 939-942.

52. S. J. Schofer, M. W. Day, L. M. Henling, J. A. Labinger and J. E. Bercaw, Organometallics, 2006, 25, 2743-2749.

53. K. M. Smith, Curr. Org. Chem., 2006, 10, 955-963. 54. J. Zhang, P. Braunstein and T. S. A. Hor, Organometallics, 2008, 27, 4277-4279. 55. K. Albahily, D. Al-Baldawi, S. Gambarotta, R. Duchateau, E. Koc and T. J.

Burchell, Organometallics, 2008, 27, 5708-5711. 56. C. Andes, S. B. Harkins, S. Murtuza, K. Oyler and A. Sen, J. Am. Chem. Soc.,

2001, 123, 7423-7424. 57. P. J. W. Deckers, B. Hessen and J. H. Teuben, Organometallics, 2002, 21, 5122-

5135. 58. W. J. van Rensburg, J. A. van den Berg and P. J. Steynberg, Organometallics,

2007, 26, 1000-1013. 59. C. N. Temple, S. Gambarotta, I. Korobkov and R. Duchateau, Organometallics,

2007, 26, 4598-4603. 60. F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann, Advanced

Inorganic Chemistry, Wiley, New York, 1999. 61. C. Klemps, E. Payet, L. Magna, L. Saussine, X. F. Le Goff and P. Le Floch, Chem.

Eur. J., 2009, 15, 8259-8268. 62. P. J. W. Deckers, B. Hessen and J. H. Teuben, Angew. Chem. Int. Edit., 2001, 40,

2516-2519. 63. L. S. Boffa and B. M. Novak, Chem. Rev., 2000, 100, 1479-1493. 64. R. D. Köhn, M. Haufe, S. Mihan and D. Lilge, Chem. Commun., 2000, 1927-1928. 65. R. D. Köhn, M. Haufe, G. Kociok-Kohn, S. Grimm, P. Wasserscheid and W.

Keim, Angew. Chem. Int. Edit., 2000, 39, 4337-4339. 66. P. Wasserscheid, S. Grimm, R. D. Köhn and M. Haufe, Adv. Synth. Catal., 2001,

343, 814-818. 67. D. S. McGuinness, J. A. Suttil, M. G. Gardiner and N. W. Davies,

Organometallics, 2008, 27, 4238-4247. 68. D. S. McGuinness, Organometallics, 2009, 28, 244-248. 69. L. E. Bowen and D. F. Wass, Organometallics, 2006, 25, 555-557. 70. L. E. Bowen, M. Charernsuk and D. F. Wass, Chem. Commun., 2007, 2835-2837.

Page 45: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

27

71. L. E. Bowen, M. Charernsuk, T. W. Hey, C. L. McMullin, A. G. Orpen and D. F. Wass, Dalton Transactions, 2010, 39, 560-567.

72. P. Denis, J. F. Croizy, A. Mortreux and F. Petit, J. Mol. Catal., 1991, 68, 159-175. 73. G. Ricci, M. Battistella and L. Porri, Macromolecules, 2001, 34, 5766-5769. 74. G. Ricci, A. Forni, A. Boglia and M. Sonzogni, Organometallics, 2004, 23, 3727-

3732. 75. S. Saito and Y. Yamamoto, Chem. Rev., 2000, 100, 2901-2915. 76. T. Takahashi, Y. H. Liu, A. Iesato, S. Chaki, K. Nakajima and K. Kanno, J. Am.

Chem. Soc., 2005, 127, 11928-11929. 77. K. S. Knight and R. M. Waymouth, J. Am. Chem. Soc., 1991, 113, 6268-6270. 78. K. S. Knight, D. Wang, R. M. Waymouth and J. Ziller, J. Am. Chem. Soc., 1994,

116, 1845-1854. 79. A. L. Mogstad and R. M. Waymouth, Macromolecules, 1992, 25, 2282-2284. 80. A. L. Mogstad and R. M. Waymouth, Macromolecules, 1994, 27, 2313-2315.

Page 46: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

28

This page was intentionally left blank.

Page 47: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

CHAPTER 2

SELECTIVE ETHYLENE OLIGOMERIZATION IN THE PRESENCE OF

DIMETHYL ZINC: SYNTHESIS OF FUNCTIONALIZED ETHYLENE OLIGOMERS

Page 48: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

30

2.1 INTRODUCTION

The selective oligomerization of ethylene to 1-hexene and 1-octene is one of the

most exciting developments in olefin catalysis in the past decades.1,2 Traditionally, the

oligomerization of ethylene by aluminum alkyls or with transition metal catalysts follows

the standard Cossee-Arlman coordination-insertion mechanism and yields a Schulz-Flory

distribution of olefins, which must be separated by distillation. However, trimerization to

1-hexene or tetramerization to 1-octene provides a selective route to these valuable

olefins, which are comonomers that are in high demand for linear low-density

polyethylene production.

The currently accepted mechanism for selective trimerization of ethylene was

originally proposed by Manyik3 and Briggs4, and involves the coupling of two ethylenes

at the metal center to form a metallacyclopentane intermediate.3-5 Further insertion of

ethylene generates higher metallacycloalkanes. The formation of 1-hexene or 1-octene is

proposed to occur by either a stepwise mechanism involving β-hydrogen elimination

followed by a reductive elimination, or a concerted hydrogen shift.6-8 Deuterium-labeling

studies by Bercaw9, 10 and Gibson11, 12 have provided convincing evidence for a

metallacycle mechanism for Cr complexes. Crystallographic evidence of the cyclic

intermediates,13 computational studies,6-8,14,15 and variable temperature NMR

spectroscopy16 have provided further support for this hypothesis.

The activity and selectivity of Cr-catalyzed ethylene oligomerization depends

sensitively on the ligand environment at Cr17-23 as well as the reaction conditions

(pressure,24 cocatalyst,25, 26 solvent21, 27). Depending on the conditions, the Cr catalysts

produce polyethylene (PE),20, 22, 28 ethylene oligomers,23 or 1-hexene/1-octene29, 30 as a

major product. The selectivities for 1-octene vs. 1-hexene depend upon the steric bulk of

the substituent on the ligand.17, 18, 31 One of the best examples to give highest selectivity

towards 1-octene was reported by Sasol with a Cr complex of (Ph2P)2NiPr ligand, which

produces up to 70 % 1-octene along with some 1-hexene and PE.30, 32 We envisioned that

Page 49: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

31

the intermediacy of metallacycles could provide an opportunity to generate new classes

of functionalized ethylene oligomers by chain transfer to a transmetallation reagent.

Herein, we investigate the selective oligomerization of ethylene in the presence of ZnMe2

as a strategy to generate new classes of functionalized ethylene oligomers and to test the

intermediacy and reactivity of metallacycles with main-group alkyls.

2.2 RESULTS AND DISCUSSION

Selective oligomerizations of ethylene were performed with the biphosphonamine

catalytic system, Cr(PNP)Cl3 (PNP = Ph2PN(iPr)PPh2)30 at 25 °C and 45 °C in the

presence of ZnMe2 as a transmetallation reagent.33 Reactions were quenched with D2O

and the influence of transmetallation agents on the product distribution and selectivity

was investigated by analysis of the product distributions for every Cn by gas

chromatography/ mass spectrometry (GC/MS) using nonane as an internal standard

(Table 2.1, Scheme 2.1).

In the absence of zinc alkyls (entries 1 and 3, Table 2.1), oligomerization of ethylene

with Cr(PNP)Cl3/ MAO at 25 °C and 14 bar (200 psig) ethylene afforded 1-hexene (1

wt%), 1-octene (42 wt%), C10-C22 alkenes (35 wt%) and solid polyethylene (19 wt%).

Cyclized C6 (methylcyclopentane and methylenecyclopentane, 1 wt%), octane (3 wt%)

and branched C12 and C14 oligomers (7 wt%) were also observed as side products. These

products are similar to those observed previously with this catalyst system, although the

distribution of products is slightly different due to the different oligomerization

conditions.30, 32, 34, 35

Page 50: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

32

Table 2.1 Effects of [ZnMe2]/[Cr] ratio on the product distributiona

Entry Temp

(°C) [Zn]/[Cr]

C6b

(mg)

C8c

(mg)

C10-22d

(mg)

PE

(mg) TONe

1 0 25 1020 810 440 2480

2 25

600 40 1460 2550 200 4600

3 0 25 570 100 200 970

4 100 33 630 190 65 990

5 300 34 660 255 5 1030

6

45

600 30 580 270 0 960 a Conditions: Cr 0.033 mmol, PNP ligand 0.066 mmol (2 eq), MAO 10 mmol (300 eq),

ethylene 200 psig, in toluene (total volume of solution = 50 mL), nonane (internal

standard) 5.6 mmol. Reaction time: 30 minutes. Fractions of cyclic C6 products and

branched C12, C14 oligomers were excluded for better comparison between entries. b C6 =

[1-hexene] + [hexane-d1]. c C8 = [1-octene] + [octane-d1]. d Oligomer fraction detectable

by GC/MS. e TON in (ethylene consumption in mmol)/(Cr catalyst in mmol).

The addition of 19.8 mmol ZnMe2 under otherwise identical conditions led to an

increase in activity, an increase in the C6-C22 oligomers and a corresponding decrease in

the amount of PE formed. While the selectivity for 1-octene decreases slightly (42 to 33

wt%) upon addition of ZnMe2, the amount of C10-C22 oligomers increased significantly

(35 to 60 wt%) indicating that ZnMe2 mediates chain transfer to decrease the average

molecular weight of the higher oligomers, as observed previously for Cr ethylene

polymerization catalysts.33

Further evidence for transmetallation was provided by analysis of the oligomers

following termination by D2O. Analysis of the resulting GC/MS trace of entry 2 after

deuterolytic workup revealed that 1-hexene and 1-octene were unlabeled, but all higher

Page 51: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

33

oligomers observed (C10-C22) contained a single deuterium label at the terminal position

(Figures 2.1 and 2.2), implying that the higher oligomers such as 1-decene, 1-dodecene,

1-tetradecene, etc. were produced after transmetallation, whereas 1-hexene/1-octene were

generated by fast alkene elimination from the metallacycloheptane/ metallacyclononane,

respectively. Significantly, under these conditions, the catalytic oligomerization of

ethylene affords 1.4 g of 1-octene and 2.55 g of higher oligomers composed of

deuterium-labeled 1-alkenes (entry 2, Table 1, Scheme 1). These results indicate that the

selective oligomerization of ethylene in the presence of ZnMe2 can provide both a useful

synthesis of 1-octene as well as value-added, ω-substituted alkenes which can be used as

functionalized comonomers for polyolefinic materials.

NP

CrCl3P

Ph Ph

Ph Ph

+MAO

Toluene30 minutes

n+

D2O

n = 2-8, 0.81 gPE, 0.44 g

0.96 g

NP

CrCl3P

Ph Ph

Ph Ph

+

MAOZnMe2

Toluene30 minutes

n+

D2O

n = 2-8, 2.55 gPE, 0.20 g

1.40 g

D

Scheme 2.1 Value-added coproduct formation by addition of ZnMe2

Figure 2.1 Product distribution upon the addition of ZnMe2 (entry 2, Table 2.1)

Page 52: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

34

Figure 2.2 Product composition depending upon [ZnMe2]/[Cr] ratio (entries 3-6, Table

2.1)

Ethylene oligomerization reactions at 45 °C employing different ratios of

[ZnMe2]/[Cr] were carried out to investigate the influence of temperature and

concentration of ZnMe2 on the product distribution (Table 2.1, Figure 2.2). An increase in

temperature to 45 °C leads to a decrease in activity, and an increase in the selectivity for

1-hexene and 1-octene (entry 2 vs. 6, Table 1). When the [ZnMe2]/[Cr] ratio was varied

under ethylene oligomerization conditions at 45 °C holding other variables constant, the

selectivity for 1-hexene (2.8-3.6 wt %) and 1-octene (58.1-63.9 wt%) remained largely

unaffected, but the the amount of deuterium-labeled C10-C22 oligomers relative to that of

PE increased significantly (Figure 2.2).

A mechanistic proposal for ethylene oligomerization with the Cr(PNP)Cl3/ MAO

system in the presence of ZnMe2 is presented in Fig 2.3. Previous studies with this

catalyst system30, 32 have provided strong support for a metallacycle mechanism involving

an initial formation of a metallacyclopentane followed by ethylene insertion to a

metallacycloheptane, metallacyclononane and higher metallacyloalkanes. In the absence

of ZnMe2, the selective formation of 1-octene was attributed to subtle influences of the

Page 53: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

35

PNP ligands that favor insertion of ethylene into a metallacycloheptane and elimination

of 1-octene from the metallacyclononane intermediate (path b). The terminally-deuterated

alkenes observed in the presence of ZnMe2 are most readily explained by competitive

transmetallation of metallacycloalkanes with ZnMe2 to generate a dialkyl chromium

intermediate (intermediate A, path e). β-H elimination from this intermediate would

generate the alkenyl Zn, which upon deuterolytic work-up yields the labeled alkenes

(path f). That all of the linear C10-C22 oligomers are labeled suggests that transmetallation

of metallacycles of Cn>10 is faster than alkene elimination. The observation that addition

of up to 600 eq. of ZnMe2 has only a modest influence on the selectivity for 1-hexene and

1-octene and that these alkenes are unlabeled upon termination with D2O imply that

transmetallation cannot compete with extrusion of the alkenes from metallacycloheptanes

or metallacyclononanes under these conditions. This is further supported by the

observation of unlabeled branched C12 and C14 oligomers, which are proposed to arise

from metallacycloheptanes and metallacyclononanes incorporating one α-olefin (1-

octene).

LCr LCr

LCr

ZnMe2e

LCr

ZnMe

ZnMe

+LCrH

f

D2O

D

methane

MeZn

ZnMe

PE

c daD2O

LCr

CrL

b

LCr

A g

ZnMe2

D

D

Figure 2.3 Proposed mechanism of transmetallation between Cr catalyst and ZnMe2

during selective ethylene oligomerization

Page 54: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

36

At the outset of these investigations, we had anticipated that the addition of main-

group transmetallation agents such as ZnMe2 might intercept the metallacycloalkane

intermediates to generate dimetallated alkanes (path g), in analogy to previous studies on

the catalytic cyclization of dienes with Cp2ZrR2/MgR2 systems.36-38 The fact that we

observe no dideuterated alkanes under these conditions implies that transmetallation of

the dialkyl chromium intermediate A with ZnMe2 (path g) cannot compete with β-H

elimination at these temperatures and concentrations of ZnMe2. Furthermore, the fact that

we observe only even-numbered oligomers in the presence of ZnMe2 suggests that olefin

insertion into Cr-Me bonds by a Cossee-type insertion mechanism is not a competitive

pathway and provides further, albeit indirect, evidence for a metallacycle mechanism for

ethylene oligomerization with the Cr(PNP)Cl3/ MAO catalyst system.

2.3 CONCLUDING REMARKS

In conclusion, we have shown that the oligomerization of ethylene with the

Cr(PNP)Cl3/ MAO catalyst system in the presence of ZnMe2 provides an effective

strategy for the co-generation of 1-octene and functionalized C10-C22 ethylene oligomers.

Labeling studies with D2O indicate that transmetallation of metallacycles with ZnMe2 can

compete with ethylene insertion and alkene extrusion for higher metallacycles (Cn>10).

The formation of deuterium-labeled C10-C22 alkenes indicates that functionalized α-

olefins can be prepared using this transmetallation strategy, and the use of

transmetallation reagents is thus of more than just mechanistic interest. Further studies to

probe the influence of ZnR2 alkyl groups, other transmetallating agents, and the nature of

the Cr catalyst precursors are in progress.

Page 55: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

37

2.4 EXPERIMENTAL SECTION

2.4.1 Experimental details

All reactions were carried out in a dry box or using standard Schlenk-line techniques

under nitrogen atmosphere. Solvents were dried and degassed by conventional methods

prior to use. All catalytic runs were carried out on a 300 mL Parr reactor. The chromium

source used was CrCl3(THF)3. The Ph2PN(iPr)PPh2 ligand was synthesized according to

literature procedures.1 Ethylene (Matheson, polymerization grade) was purified by

passage through columns of Alltech Oxy-trap and Alltech gas drier. MAO (PMAO-IP in

a toluene solution by Akzo Nobel) was dried under vacuum to remove solvent prior to

use. ZnMe2 (2M in toluene) and nonane were purchased from Sigma-Aldrich. D2O was

purchased from Acros.

Gas chromatography/ mass spectrometry (GC/MS) spectra were obtained using HP

6890/5973 GC/MS, single quadrupole MS with electron impact ionization source.

Differential scanning calorimetry (DSC) was performed using TA Instruments Q100

differential scanning calorimeter. Melting temperatures were determined at a heating and

cooling rate of 3 °C/min. The instrument was calibrated by measurement of the melting

point of indium. Thermal history in the polymer was eliminated by recording the second

DSC scan.

2.4.2 General Procedure

A reactor was loaded with MAO and toluene and pressurized with ethylene after the

reactor temperature was maintained at the required temperature. The reaction was

initiated by injecting a toluene solution of the Cr source and the ligand in toluene to the

reactor, followed by the addition of ZnMe2 solution immediately (total volume of

reaction solvent = 50 mL). After a period of 30 minutes, the reaction was terminated by

the addition of D2O. Nonane (1 mL) was added as an internal standard for the analysis of

Page 56: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

38

the liquid phase by GC/MS. After the reactor was cooled in a cooling bath below 0 °C,

the excess ethylene from the reactor was released. The organic layer was isolated from

the solid polymeric products, and a small sample of the organic layer was analyzed by

GC/MS. Solid products were dried overnight in a vacuum oven at 60 °C and weighed to

yield the mass of PE.

2.4.3 Physical Properties of Polymeric Products

Polymer samples from entries 1 and 2 in Table 2.1 were analyzed using DSC to

compare their thermal properties. Polyethylene produced in the absence of

transmetallation reagent (entry 1) exhibited high melting temperature of 131 °C, heat of

melting of 121 J/g, and Mn of 80500 (Figure 2.4), whereas one produced in the presence

of 600 eq. of ZnMe2 (entry 2) showed a melting point at 122 °C, heat of melting of 74

J/g, and Mn of 320 (Figure 2.5). This difference indicates that the chain transfer between

Cr and Zn decreased the average molecular weight of resulting polyethylene.

Page 57: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

39

Figure 2.4 DSC curve of the polymeric product of entry 1, Table 2.1 (Mn = 80500; PDI =

10.5)

Figure 2.5 DSC curve of the polymeric product of entry 2, Table 2.1 (Mn = 320; PDI =

14.0)

Page 58: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

40

Figure 2.6 2H NMR spectra of oligomeric and polymeric products of entry 2, Table 2.1

(in o-dichlorobenzene-d4, 600 MHz)

Page 59: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

41

Figure 2.7 Product distribution in the absence of ZnMe2 at 25 °C (entry 1, Table 2.1)

Figure 2.8 Product distribution in the absence of ZnMe2 at 45 °C (entry 3, Table 2.1)

Page 60: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

42

Figure 2.9 Product distribution in the presence of ZnMe2 at 45 °C (entry 6, Table 2.1)

2.5 REFERENCES AND NOTES

1. J. T. Dixon, M. J. Green, F. M. Hess and D. H. Morgan, J. Organomet. Chem.,

2004, 689, 3641-3668. 2. D. F. Wass, Dalton Trans., 2007, 816-819. 3. R. M. Manyik, W. E. Walker and T. P. Wilson, J. Catal., 1977, 47, 197-209. 4. J. R. Briggs, J. Chem. Soc., Chem. Commun., 1989, 674-675. 5. J. D. Fellmann, G. A. Rupprecht and R. R. Schrock, J. Am. Chem. Soc., 1979, 101,

5099-5101. 6. A. N. J. Blok, P. H. M. Budzelaar and A. W. Gal, Organometallics, 2003, 22,

2564-2570. 7. S. Tobisch and T. Ziegler, Organometallics, 2003, 22, 5392-5405. 8. S. Tobisch and T. Ziegler, J. Am. Chem. Soc., 2004, 126, 9059-9071. 9. T. Agapie, S. J. Schofer, J. A. Labinger and J. E. Bercaw, J. Am. Chem. Soc.,

2004, 126, 1304-1305.

Page 61: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

43

10. T. Agapie, J. A. Labinger and J. E. Bercaw, J. Am. Chem. Soc., 2007, 129, 14281-14295.

11. A. K. Tomov, J. J. Chirinos, D. J. Jones, R. J. Long and V. C. Gibson, J. Am. Chem. Soc., 2005, 127, 10166-10167.

12. A. K. Tomov, V. C. Gibson, G. J. P. Britovsek, R. J. Long, M. van Meurs, D. J. Jones, K. P. Tellmann and J. J. Chirinos, Organometallics, 2009, 28, 7033-7040.

13. R. Emrich, O. Heinemann, P. W. Jolly, C. Krüger and G. P. J. Verhovnik, Organometallics, 1997, 16, 1511-1513.

14. T. J. M. de Bruin, L. Magna, P. Raybaud and H. Toulhoat, Organometallics, 2003, 22, 3404-3413.

15. Z. X. Yu and K. N. Houk, Angew. Chem. Int. Edit., 2003, 42, 808-811. 16. R. Arteaga-Müller, H. Tsurugi, T. Saito, M. Yanagawa, S. Oda and K. Mashima,

J. Am. Chem. Soc., 2009, 131, 5370-5371. 17. K. Blann, A. Bollmann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. H.

Morgan, A. Neveling, S. Otto and M. J. Overett, Chem. Commun., 2005, 620-621. 18. M. J. Overett, K. Blann, A. Bollmann, J. T. Dixon, F. Hess, E. Killian, H.

Maumela, D. H. Morgan, A. Neveling and S. Otto, Chem. Commun., 2005, 622-624.

19. D. S. McGuinness, P. Wasserscheid, D. H. Morgan and J. T. Dixon, Organometallics, 2005, 24, 552-556.

20. D. J. Jones, V. C. Gibson, S. M. Green, P. J. Maddox, A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 2005, 127, 11037-11046.

21. P. R. Elowe, C. McCann, P. G. Pringle, S. K. Spitzmesser and J. E. Bercaw, Organometallics, 2006, 25, 5255-5260.

22. T. Xu, Y. Mu, W. Gao, J. Ni, L. Ye and Y. Tao, J. Am. Chem. Soc., 2007, 129, 2236-2237.

23. F. Junges, M. C. A. Kuhn, A. H. D. dos Santos, C. R. K. Rabello, C. M. Thomas, J.-F. Carpentier and O. L. Casagrande, Organometallics, 2007, 26, 4010-4014.

24. S. Kuhlmann, J. T. Dixon, M. Haumann, D. H. Morgan, J. Ofili, O. Spuhl, N. Taccardi and P. Wasserscheid, Adv. Synth. Catal., 2006, 348, 1200-1206.

25. D. S. McGuinness, A. J. Rucklidge, R. P. Tooze and A. M. Z. Slawin, Organometallics, 2007, 26, 2561-2569.

Page 62: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

44

26. K. Albahily, D. Al-Baldawi, S. Gambarotta, E. Koc and R. Duchateau, Organometallics, 2008, 27, 5943-5947.

27. D. H. Morgan, S. L. Schwikkard, J. T. Dixon, J. J. Nair and R. Hunter, Adv. Synth. Catal., 2003, 345, 939-942.

28. K. M. Smith, Curr. Org. Chem., 2006, 10, 955-963. 29. J. Zhang, P. Braunstein and T. S. A. Hor, Organometallics, 2008, 27, 4277-4279. 30. A. Bollmann, K. Blann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. S.

McGuinness, D. H. Morgan, A. Neveling, S. Otto, M. Overett, A. M. Z. Slawin, P. Wasserscheid and S. Kuhlmann, J. Am. Chem. Soc., 2004, 126, 14712-14713.

31. C. Klemps, E. Payet, L. Magna, L. Saussine, X. F. Le Goff and P. Le Floch, Chem. Eur. J., 2009, 15, 8259-8268.

32. M. J. Overett, K. Blann, A. Bollmann, J. T. Dixon, D. Haasbroek, E. Killian, H. Maumela, D. S. McGuinness and D. H. Morgan, J. Am. Chem. Soc., 2005, 127, 10723-10730.

33. M. van Meurs, G. J. P. Britovsek, V. C. Gibson and S. A. Cohen, J. Am. Chem. Soc., 2005, 127, 9913-9923.

34. Two major isomers in C14 products are 7-methylene tridecane and 7-methyl-1-tridecene. Formation of branched products was previously reported and attributable to co-oligomerization of ethylene with 1-octene.

35. Even though no Zn is present, there are some deuterio alkanes in the product mixture, which are likely generated by transmetallation by trace trimethyl aluminum in MAO.

36. K. S. Knight, D. Wang, R. M. Waymouth and J. Ziller, J. Am. Chem. Soc., 1994, 116, 1845-1854.

37. K. S. Knight and R. M. Waymouth, J. Am. Chem. Soc., 1991, 113, 6268-6270. 38. U. Wischmeyer, K. S. Knight and R. M. Waymouth, Tetrahedron Lett., 1992, 33,

7735-7738.

Page 63: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

CHAPTER 3

SYNTHESIS OF END-FUNCTIONALIZED ETHYLENE OLIGOMERS IN THE

PRESENCE OF DIALKYL ZINC

Page 64: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

46

3.1 INTRODUCTION

The transition-metal-catalyzed oligomerization of ethylene was traditionally used to

synthesize α-olefins, which are important for applications in the production of linear low-

density polyethylene, plasticizers, detergent alcohols, and synthetic lubricants. The

selective trimerization/tetramerization of ethylene to produce 1-hexene/1-octene1,2 is

highly desirable because it would avoid the production of unwanted olefins that

conventional transition-metal oligomerization processes produce.

Cr H

Crn+2 Crn+2

[Crn] +

Crn

oxidativecoupling

coord'n Crn+2

migratoryinsertion

β-Helimination

coord'n

coord'n

reductiveelimination

H-shift

Crncoord'ninsertion

Crn+2

reductive elimination

Cr H

[Crn] +

β-Helimination

Crn+2H

Crn+2H

Crn+2

Figure 3.1 Metallacycle mechanism for Cr-catalyzed ethylene trimerization and

tetramerization

The currently accepted mechanism for selective trimerization of ethylene was

originally proposed by Manyik3 and Briggs4, and involves the coupling of two ethylenes

at the metal center to form a metallacyclopentane intermediate.3-5 Further insertion of

ethylene generates higher metallacycloalkanes. The formation of 1-hexene or 1-octene is

proposed to occur by either a stepwise mechanism involving β-hydrogen elimination

followed by a reductive elimination, or a concerted hydrogen shift (Figure 3.1).6-8 There

has been increased fundamental understanding of this unusual chemical transformation

despite difficulties in analyzing paramagnetic chromium species. Deuterium-labeling

studies by Bercaw9,10 and Gibson11,12 have provided convincing evidence for a

metallacycle mechanism for Cr complexes. Crystallographic evidence of the cyclic

intermediates,13 variable temperature NMR spectroscopy,14 and computational studies6-

Page 65: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

47

8,15,16 have provided further support for this hypothesis and contributed to a better

understanding of the mechanism.

The basic requirement for developing a selective oligomerization catalyst is

matching the correct metal in the proper oxidation state with a ligand having the desired

electronic and steric properties. Coordination complexes of Cr are among the most active

and selective catalysts for trimerization and tetramerization. The activity and selectivity

of Cr-catalyzed ethylene oligomerization depends sensitively on the ligand environment

at Cr17-23 as well as the reaction conditions (pressure,24 cocatalyst,25-27 solvent21,28,29).

Depending on the conditions, the Cr catalysts afford polyethylene (PE),20,22,30 ethylene

oligomers,23 or 1-hexene/1-octene31-33 as the major product. The selectivities for 1-octene

vs. 1-hexene depend upon the steric bulk of the substituent on the ligand.17,18,34 One

example that exhibited the highest selectivity towards 1-octene to date was reported by

Sasol with a Cr complex of (Ph2P)2NiPr (= PNP) ligand, which produces up to 70 % 1-

octene along with some 1-hexene and PE.32,35

We envisioned that metallacycle intermediates could provide an opportunity to

generate value-added chemicals such as functionalized ethylene oligomers by chain

transfer to a transmetallation reagent. Previous work by our group on the ethylene

oligomerization by the Cr(PNP)Cl3 catalyst and ZnMe2 demonstrated that

transmetallation of metallacycles can provide an effective strategy for the co-generation

of 1-octene and end-labeled linear olefins in Cn>10 (Chapter 2).36 This discovery prompted

us to carry out an extended study over various transmetallation reagents in order to to

examine whether other types of products could be generated. Herein, we investigate the

selective oligomerization of ethylene in the presence of various ZnR2 (R = -Me, -Et, -Bu)

to probe the influence of different alkyl groups in ZnR2 on the product types and

compositions. Since temperature is known to be an important factor for tri- and

tetramerization,24 a temperature variation was included to provide further insight into the

reaction mechanism and parameters.

Page 66: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

48

3.2 RESULTS AND DISCUSSION

Selective oligomerizations of ethylene were performed with the biphosphonamine

catalytic system, Cr(PNP)Cl3 (PNP = Ph2PN(iPr)PPh2)32 at 25 °C and 45 °C in the

presence of ZnR2 (R = -Me, -Et, -Bu) as a transmetallation reagent.37 Reactions were

quenched with D2O and the influence of transmetallation agents on the product

distribution and selectivity was investigated by analysis of the product distributions for

every Cn by gas chromatography/ mass spectrometry (GC/MS) using nonane as an

internal standard (Table 3.1). Under these conditions, this catalyst system generates a

maximum of 70 % 1-octene but also yields more than 30 % byproducts including

oligomers and insoluble PE.

In the absence of zinc alkyls, oligomerization of ethylene (200 psig) with

Cr(PNP)Cl3/ MAO at 25 °C in toluene afforded 1-octene (42 wt%) and 1-hexene (1 wt%)

along with C10-22 alkenes (37 wt%) and PE (19 wt%) (entry 1, Table 1). Branched

products of C12 and C14 via secondary oligomerization, cyclized C6 (methylcyclopentane

and methylenecyclopentane in a 1:1 ratio), and octane were also observed as side

products.35,38,39 Upon addition of 19.8 mmol ZnMe2 under otherwise identical conditions,

PE formation was reduced and the amount of C6-C22 1-alkenes increased (entry 2, Table

1). This result indicates that the selectivity for ethylene oligomers is affected by the

addition of ZnMe2, which mediates chain transfer to decrease the average molecular

weight of the higher oligomers.37 Also, the resulting GC/MS trace of entry 2 after

termination with D2O revealed that the product mixture was composed of deuterio 1-

alkenes, originating from the transmetalated species (paths e and f, Figure 3.2), and protio

1-hexene and 1-octene (paths a and b, Figure 2). No deuterio alkanes were obtained in the

case of ZnMe2. Alkenyl species functionalized specifically at the terminal position can be

used as macromonomers for the synthesis of polyolefins possessing functional groups at

the end of chain branches.40

Page 67: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

49

LCr LCr

LCr

ZnMe2e

LCr

ZnMe

ZnMe

+LCrH

f

D2O

D

methane

MeZn

ZnMe

PE

c daD2O

LCr

CrL

b

LCr

A g

ZnMe2

D

D

Figure 3.2 Proposed mechanism of transmetallation between Cr catalyst and ZnMe2

during selective ethylene oligomerization

Table 3.1 Effects of alkyl groups of ZnR2 on the product distribution[a]

Entry

Temp

(°C)

[ZnR2]

/[Cr]

C6[b]

(mg)

hexene

(mg)

hexene

wt%

C8[c]

(mg)

octene

(mg)

octene

wt%

C10-22[d]

(mg)

C10-22

wt%

PE

(mg)

Total

(mg) TON[e]

1 - 25 25 1.1 1020 960 41.8 810 35.3 440 2295 2480

2 Me,600 40 40 0.9 1460 1400 32.9 2550 60.0 200 4250 4600

3 Et, 600 95 80 1.1 2710 2330 32.1 4450 62.7 Trace 7255 7840

4

25

Bu,600 105 80 1.6 2460 2060 41.1 2450 48.9 Trace 5015 5430

5 - 25 25 2.8 570 520 58.1 100 11.2 200 895 970

6 Me,600 30 30 3.4 580 525 59.7 270 30.7 Trace 880 960

7 Et, 600 60 50 2.3 1380 1170 54.9 690 32.4 Trace 2130 2310

8

45

Bu,600 30 20 1.9 660 520 50.0 350 33.7 Trace 1040 1130

[a] Conditions: Cr 0.033 mmol, PNP ligand 0.066 mmol (2 eq), MAO 10 mmol (300 eq),

ethylene 200 psig (14 bar), in toluene (total volume of solution = 50 mL), nonane

(internal standard) 5.6 mmol. Reaction time: 30 minutes. Fractions of cyclic C6 products

and branched C12, C14 oligomers were excluded for direct comparison between entries. [b]

C6 = [1-hexene] + [hexane-d1]. [c] C8 = [1-octene] + [octane-d1]. [d] Oligomer fraction

detectable by GC/MS. [e] TON in (ethylene consumption in mmol)/(Cr catalyst in mmol).

Page 68: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

50

The influence of nature of the alkyl zinc, ZnR2 (R = Me, Et, Bu) on the selectivity

and productivity were evaluated during the ethylene oligomerization (Table 3.1). In all

three cases, 600 eq of ZnR2 under otherwise identical conditions led to an increase in

activity, an increase in the C6-C22 oligomers and a corresponding decrease in the amount

of PE in the product mixtures. The average molecular weight of polymeric products also

decreased in the presence of ZnMe2 (Mn = 80500, entry 1 vs. Mn = 320, entry 2). These

results indicate that ZnR2 mediates chain transfer to decrease the average molecular

weight of the higher oligomers, as observed previously for Cr ethylene polymerization

catalysts.37

In the presence of ZnEt2 or ZnBu2, the C10-22 fraction was obtained as a mixture of

alkanes and 1-alkenes, both of which were labeled with a deuterium (Figures 3.3 and

3.4). In, contrast, C10-22 was composed of end-labeled 1-alkenes only in the case of

ZnMe2. Notably, under the condition of entry 8, where 600 eq of ZnBu2 was employed at

45 °C, the catalytic oligomerization of ethylene afforded 0.52 g of 1-octene and 0.35 g of

higher oligomers composed of mostly end-labeled linear alkanes in Cn>10 (Figures 3.4 and

3.5). These results indicate that the selective oligomerization of ethylene in the presence

of ZnBu2 can provide both a useful synthesis of 1-octene as well as value-added end-

functionalized linear oligomers (Scheme 3.1).

Page 69: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

51

Figure 3.3 Product distribution upon addition of ZnEt2 (top: entry 3, bottom: entry 7)

Page 70: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

52

Figure 3.4 Product distribution upon addition of ZnBu2 (top: entry 4, bottom: entry 8)

Page 71: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

53

Figure 3.5 2H NMR spectrum of oligomeric products in entry 8, Table 3.1

NP

CrCl3P

Ph Ph

Ph Ph

+

MAOZnBu2

Toluene

nD

0.52 g

n = 2-8, 0.35 gPE, 0 g

n+ ZnBu

D2O

Scheme 3.1 Value-added coproduct formation by addition of ZnBu2 (entry 8, Table 3.1)

The selectivity depends on the reaction temperature as summarized in Table 3.1. At

reaction temperatures of 25 °C vs. 45 °C, the TON increases substantially at lower

temperature and the selectivity towards higher oligomer improves as well, suggesting that

the selection of a proper temperature is important in controlling the product composition.

The results of previous temperature study revealed considerable changes in the product

distribution with temperature. It should be noted that the reaction temperature is the

predominant parameter that determines 1-hexene elimination vs. further ethylene

insertion into the metallacycloheptane,24 and the stability of larger metallacycle

intermediates seems predominantly controlled by reaction temperature.

Page 72: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

54

A mechanistic proposal for ethylene oligomerization in the presence of ZnR2 (R= -

Et, -Bu) species is presented in Figure 3.6. This proposed scheme describes the various

competitive reactions that can occur from a metallacycle intermediate. Previous studies

with this catalyst system32,35 have provided strong support for a metallacycle mechanism

involving an initial formation of a metallacyclopentane followed by ethylene insertion to

a metallacycloheptane, metallacyclononane and higher metallacyloalkanes. In the

absence of ZnR2, the selective formation of 1-octene was attributed to subtle influences

of the PNP ligands that favor insertion of ethylene into a metallacycloheptane and

elimination of 1-octene from the metallacyclononane intermediate (path b). Terminally-

deuterated alkenes and alkanes observed in the presence of ZnEt2 and ZnBu2 are most

readily explained by competitive transmetallation of metallacycloalkanes with Zn alkyls

to generate a dialkyl chromium intermediate (intermediate B, path e). β-H elimination

from this intermediate would generate (i) the alkenyl Zn, which upon deuterolytic work-

up yields the labeled alkenes (path f) and (ii) β-H elimination of ethene or butene

followed by reductive elimination to form the alkylzinc, resulting in the end-labeled

alkanes (path g). Our observation of mixtures of alkanes/1-alkenes both labeled with a

deuterium at the terminal position in entries 3-4 and 7-8 is consistent with this proposed

mechanism. The fact that we did not observe protio 1-alkenes higher than 1-hexene/1-

octene suggests that transmetallation (path e) occurs faster than extrusion of protio

alkenes from the extended metallacycles (paths c and d). The unlabeled branched C12 and

C14 oligomers are proposed to arise from metallacycloheptanes and metallacyclononanes

incorporating one α-olefin (1-octene).35 The formation of deuterium-labeled oligomers

implies that functionalized oligomers can be prepared using this transmetallation strategy,

and the use of transmetallation reagents is thus of more than just mechanistic interest.

Page 73: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

55

LCr LCr

LCr

ZnBu2

eLCr

ZnBu

ZnBu

+LCrH

f

g

D2O

D

butane

LCrH

ZnBu ZnBu

PE

c da D2OD

LCr

CrL

b

LCr

butene

+ LCr

B

Figure 3.6 Proposed mechanism of transmetallation between Cr catalyst and ZnBu2

during selective ethylene oligomerization

3.3 CONCLUDING REMARKS

The oligomerization of ethylene with the Cr(PNP)Cl3/ MAO catalyst system in the

presence of ZnR2 (R = -Me, -Et, -Bu) provides an effective strategy for the co-generation

of 1-octene and end-functionalized C10-22 ethylene oligomers. Transmetallation with

ZnMe2 during Cr-catalyzed ethylene tetramerization generated end-labeled 1-alkenes in

Cn>10, while that with ZnEt2 or ZnBu2 produced a mixture of end-labeled linear alkanes

and 1-alkenes in C10-22 along with 1-octene. Under a certain set of conditions,

oligomerization in the presence of ZnBu2 produced mostly alkanes labeled with

deuterium at the terminal position upon deuteriolytic work-up. Labeling studies with D2O

indicate that transmetallation of metallacycles with ZnR2 competes with ethylene

insertion and alkene elimination for higher metallacycles (Cn>10). The formation of

deuterium-labeled oligomers indicates that end-functionalized linear oligomers can be

prepared using this transmetallation strategy, and the use of transmetallation reagents

leads to the formation of value-added coproducts during selective ethylene

oligomerization. Extended studies using other transmetallating agents and various

substrates beyond ethylene are to be continued.

Page 74: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

56

3.4 EXPERIMETAL SECTION

3.4.1. Experimental Details

All reactions were carried out in a dry box or using standard Schlenk-line techniques

under nitrogen atmosphere. Solvents were dried and degassed by conventional methods

prior to use. All catalytic runs were carried out on a 300 mL Parr reactor. The chromium

source used was CrCl3(THF)3. The Ph2PN(iPr)PPh2 ligand was synthesized according to

literature procedures.32 Ethylene (Matheson, polymerization grade) was purified by

passage through columns of Alltech Oxy-trap and Alltech gas drier. MAO (PMAO-IP in

a toluene solution by Akzo Nobel) was dried under vacuum to remove solvent prior to

use. ZnMe2 (2M in toluene) and nonane were purchased from Sigma-Aldrich. ZnEt2 was

purchased from Strem Chemicals, ZnBu2 (1M in heptane) from Fluka, and D2O from

Acros. Gas chromatography/ mass spectrometry (GC/MS) spectra were obtained using

HP 6890/5973 GC/MS, single quadrupole MS with electron impact ionization source.

3.4.2 General Procedure

A reactor was loaded with MAO and toluene and pressurized with ethylene after the

reactor temperature was maintained at the required temperature. The reaction started by

injecting a toluene solution of the Cr source and the ligand in toluene to the reactor,

followed by the addition of ZnR2 solution immediately (total volume of reaction solvent

= 50 mL). After a period of 30 minutes, the reaction was terminated by the addition of

D2O. Nonane (1 mL) was added as an internal standard for the analysis of the liquid

phase by GC/MS. After the reactor was cooled in a cooling bath below 0 °C, the excess

ethylene from the reactor was released. The organic layer was isolated from the solid

polymeric products, and a small sample of the organic layer was analyzed by GC/MS.

Solid products were dried overnight in a vacuum oven at 60 °C and weighed to yield the

mass of PE.

Page 75: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

57

3.5 REFERENCES AND NOTES

(1) Dixon, J. T.; Green, M. J.; Hess, F. M.; Morgan, D. H. J. Organomet. Chem. 2004, 689, 3641-3668.

(2) Wass, D. F. Dalton Transactions 2007, 816-819. (3) Manyik, R. M.; Walker, W. E.; Wilson, T. P. J. Catal. 1977, 47, 197-209. (4) Briggs, J. R. J. Chem. Soc., Chem. Commun. 1989, 674-675. (5) Fellmann, J. D.; Rupprecht, G. A.; Schrock, R. R. J. Am. Chem. Soc. 1979,

101, 5099-5101. (6) Blok, A. N. J.; Budzelaar, P. H. M.; Gal, A. W. Organometallics 2003, 22,

2564-2570. (7) Tobisch, S.; Ziegler, T. Organometallics 2003, 22, 5392-5405. (8) Tobisch, S.; Ziegler, T. J. Am. Chem. Soc. 2004, 126, 9059-9071. (9) Agapie, T.; Schofer, S. J.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.

2004, 126, 1304-1305. (10) Agapie, T.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2007, 129,

14281-14295. (11) Tomov, A. K.; Chirinos, J. J.; Jones, D. J.; Long, R. J.; Gibson, V. C. J.

Am. Chem. Soc. 2005, 127, 10166-10167. (12) Tomov, A. K.; Gibson, V. C.; Britovsek, G. J. P.; Long, R. J.; van Meurs,

M.; Jones, D. J.; Tellmann, K. P.; Chirinos, J. J. Organometallics 2009, 28, 7033-7040.

(13) Emrich, R.; Heinemann, O.; Jolly, P. W.; Krüger, C.; Verhovnik, G. P. J. Organometallics 1997, 16, 1511-1513.

(14) Arteaga-Müller, R.; Tsurugi, H.; Saito, T.; Yanagawa, M.; Oda, S.; Mashima, K. J. Am. Chem. Soc. 2009, 131, 5370-5371.

(15) de Bruin, T. J. M.; Magna, L.; Raybaud, P.; Toulhoat, H. Organometallics 2003, 22, 3404-3413.

(16) Yu, Z. X.; Houk, K. N. Angew. Chem. Int. Edit. 2003, 42, 808-811. (17) Blann, K.; Bollmann, A.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela,

H.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M. J. Chem. Commun. 2005, 620-621.

Page 76: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

58

(18) Overett, M. J.; Blann, K.; Bollmann, A.; Dixon, J. T.; Hess, F.; Killian, E.; Maumela, H.; Morgan, D. H.; Neveling, A.; Otto, S. Chem. Commun. 2005, 622-624.

(19) McGuinness, D. S.; Wasserscheid, P.; Morgan, D. H.; Dixon, J. T. Organometallics 2005, 24, 552-556.

(20) Jones, D. J.; Gibson, V. C.; Green, S. M.; Maddox, P. J.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 2005, 127, 11037-11046.

(21) Elowe, P. R.; McCann, C.; Pringle, P. G.; Spitzmesser, S. K.; Bercaw, J. E. Organometallics 2006, 25, 5255-5260.

(22) Xu, T.; Mu, Y.; Gao, W.; Ni, J.; Ye, L.; Tao, Y. J. Am. Chem. Soc. 2007, 129, 2236-2237.

(23) Junges, F.; Kuhn, M. C. A.; dos Santos, A. H. D.; Rabello, C. R. K.; Thomas, C. M.; Carpentier, J.-F.; Casagrande, O. L. Organometallics 2007, 26, 4010-4014.

(24) Kuhlmann, S.; Dixon, J. T.; Haumann, M.; Morgan, D. H.; Ofili, J.; Spuhl, O.; Taccardi, N.; Wasserscheid, P. Adv. Synth. Catal. 2006, 348, 1200-1206.

(25) McGuinness, D. S.; Overett, M.; Tooze, R. P.; Blann, K.; Dixon, J. T.; Slawin, A. M. Z. Organometallics 2007, 26, 1108-1111.

(26) McGuinness, D. S.; Rucklidge, A. J.; Tooze, R. P.; Slawin, A. M. Z. Organometallics 2007, 26, 2561-2569.

(27) Crewdson, P.; Gambarotta, S.; Djoman, M.-C.; Korobkov, I.; Duchateau, R. Organometallics 2005, 24, 5214-5216.

(28) Morgan, D. H.; Schwikkard, S. L.; Dixon, J. T.; Nair, J. J.; Hunter, R. Adv. Synth. Catal. 2003, 345, 939-942.

(29) Schofer, S. J.; Day, M. W.; Henling, L. M.; Labinger, J. A.; Bercaw, J. E. Organometallics 2006, 25, 2743-2749.

(30) Smith, K. M. Curr. Org. Chem. 2006, 10, 955-963. (31) Zhang, J.; Braunstein, P.; Hor, T. S. A. Organometallics 2008, 27, 4277-

4279. (32) Bollmann, A.; Blann, K.; Dixon, J. T.; Hess, F. M.; Killian, E.; Maumela,

H.; McGuinness, D. S.; Morgan, D. H.; Neveling, A.; Otto, S.; Overett, M.; Slawin, A. M. Z.; Wasserscheid, P.; Kuhlmann, S. J. Am. Chem. Soc. 2004, 126, 14712-14713.

Page 77: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

59

(33) Albahily, K.; Al-Baldawi, D.; Gambarotta, S.; Duchateau, R.; Koc, E.; Burchell, T. J. Organometallics 2008, 27, 5708-5711.

(34) Klemps, C.; Payet, E.; Magna, L.; Saussine, L.; Le Goff, X. F.; Le Floch, P. Chem. Eur. J. 2009, 15, 8259-8268.

(35) Overett, M. J.; Blann, K.; Bollmann, A.; Dixon, J. T.; Haasbroek, D.; Killian, E.; Maumela, H.; McGuinness, D. S.; Morgan, D. H. J. Am. Chem. Soc. 2005, 127, 10723-10730.

(36) Son, K.-s.; Waymouth, R. M. Chem. Commun. 2010. (37) van Meurs, M.; Britovsek, G. J. P.; Gibson, V. C.; Cohen, S. A. J. Am.

Chem. Soc. 2005, 127, 9913-9923. (38) Two major isomers in C14 products are 7-methylene tridecane and 7-

methyl-1-tridecene. Formation of branched products was previously reported and attributable to co-oligomerization of ethylene with 1-octene.

(39) Even though no Zn is present, there are some deuterio alkanes in the product mixture, which are likely generated by transmetallation by trace trimethyl aluminum in MAO.

(40) Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479-1493.

Page 78: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

60

This page was intentionally left blank.

Page 79: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

CHAPTER 4

COPOLYMERIZATION OF STYRENE AND ETHYLENE AT HIGH

TEMPERATURE WITH TITANOCENES CONTAINING A PENDANT AMINE

DONOR

Parts of this work have been previously published:

Son, K.-s.; Jöge, F.; Waymouth, R. M. Macromolecules 2008, 41, 9663.

Copyright 2008 by the American Chemical Society

Page 80: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

62

4.1 INTRODUCTION

Coordination catalysis by well-defined organometallic complexes has opened up new

opportunities for the generation of polyolefin materials with tailored structures and

properties.1-13 Syndiotactic polystyrene (sPS)14, 15 and random ethylene-styrene (ES)

copolymers12, 16-20 are two examples of polymers with unique properties that are

inaccessible with traditional Ziegler-Natta catalysts. Historically, styrene and ethylene

were viewed as incompatible monomers, as attempts to copolymerize these two

monomers with many coordination catalysts yielded mixtures of homopolymers.21-34 New

families of coordination complexes of Ti13,22,35 and the lanthanides25,36-38 have been shown

to copolymerize ethylene and styrene to generate ES copolymers with a range of

compositions and sequence distributions.22 In particular, monocyclopentadienyl-amido

"Constrained Geometry Catalysts" exhibit high activity for ES copolymerization at

90−100 °C to generate pseudo-random ES copolymers of high molecular weight.17

Reports in the patent literature indicated that monocyclopentadienyl titanium complexes

with pendant neutral amine donors39-44 were active for ES copolymerization at elevated

temperatures,39 whereas monocyclopentadienyl titanium complexes (active for

syndiospecific styrene polymerization)14, 45 typically give mixtures of polystyrene (PS)

and polyethylene (PE) in ES copolymerization.22-34

The requirements for a successful ES copolymerization catalyst are severe and

include high activity, high comonomer incorporation, the ability to generate high

molecular weights, and the ability to operate at the high temperatures (80−120 °C)

compatible with most commercial polymerization processes.17 For ES copolymerization,

one of the additional challenges is the suppression of styrene autopolymerization at these

elevated temperatures. Herein, we report the copolymerization of ethylene and styrene at

120 °C with a variety of monocyclopentadienyl Ti complexes 4.1−4.441, 46, 47 (Figure 4.1)

containing pendant amine donors39-44 and hydroxylaminato46-51 ancillary ligands.

Comparative investigations of complexes 4.1−4.4 were carried out to explore the role of

both the pendant amine as well as the hydroxylaminato ligand on the ES

Page 81: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

63

copolymerization behavior. We have demonstrated that Ti complexes bearing a

hydroxylaminato ligand have weak and tunable Ti−O bond strengths that can undergo

Ti−O bond homolysis to generate Ti(III) and the nitroxyl radical.46,49,50 Titanium

complexes containing both hydroxylaminato ligands as well as pendant amines have

particularly low Ti−O bond energies.46 One of the objectives of our comparative study of

complexes 4.1−4.4 in ES copolymerization at 120 °C was to assess whether the liberation

of the hydroxyl radical from such systems might mitigate the autopolymerization of

styrene52 via facile trapping of polystyryl radicals growing by radical autopolymerization

of styrene.53

TiCl Cl

O NN

TiCl

ClNClTi

ClCl

Cl

4.1 4.2 4.3

TiCl Cl

O N

4.4

Figure 4.1 Mono-Cp titanium complexes used for ethylene-styrene copolymerization

4.2 COPOLYMERIZATION OF ETHYLENE AND STYRENE

To investigate the role of both the TEMPO ligand (TEMPO = 2,2,6,6-

tetramethylpiperidine-N-oxyl) and the pendant amine on the polymerization behavior,

copolymerizations of ethylene and styrene were conducted with complexes

4.1−4.4/methylaluminoxane (MAO) at 120 °C. A constant overpressure of ethylene was

applied from 20–80 psig to generate a range of compositions (Table 4.1). Fractionation of

the resultant polymer was carried out26, 31, 32, 54 to assess the amount of ES copolymer

relative to atactic polystyrene (aPS) or polyethylene (PE) homopolymer. The crude

polymer products were first extracted with boiling acetone to remove aPS, and the

acetone-insoluble fraction was extracted with boiling THF to separate the THF-soluble

ES copolymer from ethylene homopolymer.26,31,32,54 The composition, thermal properties,

and molecular weights of the THF-soluble fractions are summarized in Table 4.1.

Page 82: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

64

Table 4.1 Ethylene-Styrene Copolymerization at 120 °C in Toluene

Entry Ti

catalyst

PE

(psig)

Yield

(g)b

Prodb,c

Weight

%

Styrene

mol %d

Tg

(°C)e

Tm

(°C)e

Mng

PDIg

1 4.1 20 1.11 35 80h 93 100 224 bm j bm j

2 4.2 20 3.74 117 28h 92 100 228 bm j bm j

3 4.3 20 1.25 39 82i 82 97 n.o.f 57 K 1.7

4 4.4 20 0.78 24 40i 97 103 n.o.f 60 K 1.8

5 4.1 50 3.37 105 63h 76 90 224 bm j bm j

6 4.2 50 6.28 196 40h 79 90 225 bm j bm j

7 4.3 50 1.22 38 78i 40 -15 ; 101 n.o.f 43 K 2.1

8 4.4 50 1.21 38 23i 48 -10 ; 105 n.o.f 38 K 1.9

9 4.1 80 1.54 48 63h 56 100 211 bm j bm j

10 4.2 80 2.00 63 45h 67 96 206 bm j bm j

11 4.3 80 2.15 67 - 22 - 17; 101 n.o.f 47 K 1.9

12 4.4 80 1.48 46 - 29 -18; 107 n.o.f 53 K 2.1 a All polymerizations were performed with 8 μmol catalyst, 10 g of styrene and 232 mg

MAO in a toluene solution (total volume of 50 mL) for 4 hours. Al/Ti = 500. b Yield and

productivity before solvent fractionation. c Productivity in kg P·(mol Ti)-1h-1. d Styrene

content (mol %) in polymer after acetone (and THF) fractionation, estimated by 13C

NMR. e Determined by DSC. Tg: glass transition. Tm: melting point. f Not observed. g

GPC (gel permeation chromatography) data of THF-soluble fraction in THF vs.

polystyrene standards. Mn: number-average molecular weight. PDI: polydispersity index

(molecular weight distribution). h Weight percent of acetone-insoluble fraction. i Weight

percent of acetone-insoluble, THF-soluble fraction. j Bimodal distribution.

Page 83: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

65

The copolymerization of ethylene and styrene with catalysts 4.1 and 4.2 in the

presence of MAO at 120 °C afforded mixtures of syndiotactic polystyrene (sPS) and

polyethylene (PE). These observations are consistent with previous reports on the

attempted ES copolymerization with complex 4.1.21, 22, 30 Differences in polymerization

behavior between 4.1 and 4.2 are modest; nevertheless it is noteworthy that polymers

generated by the hydroxylaminato complex 4.2 contain more aPS than those by complex

4.1, as evidenced by a higher weight fraction of acetone-soluble material from 4.2

relative to 4.1. These trends suggest that the hydroxylaminato ligand is ineffective for

suppressing styrene homopolymerization under the activation conditions (MAO)

employed.

In contrast to the behavior observed with 4.1 and 4.2, complexes 4.3 and 4.4 are

active for ES copolymerization upon activation with MAO at 120 °C and generate high

molecular weight ES copolymers (Mn = 38,000–60,000). These results illustrate the

critical role of the pendant amine on the ES copolymerization behavior. Chien had

reported that 4.3 (P = 270 kg PS·(mol Ti)-1h-1) had significantly lower activity than 4.1

(P = 14,000 kg PS·(mol Ti)-1h-1) for styrene homopolymerization at 20 °C, but higher

activity for ethylene polymerization (P = 4900 vs. 60 kg PE·(mol Ti)-1[E]-1h-1,

respectively).40, 41 At the polymerization temperature of 120 °C, the productivities in ES

copolymerizations (averaged over 4 hours) with 4.3 and 4.4 (P = 25−70 kg PS·(mol Ti)-

1h-1) are lower than that reported for ethylene polymerization at 20 °C; nevertheless, the

ability of 4.3 and 4.4 to efficiently copolymerize ethylene and styrene at 120 °C attests to

the thermal stability of the CpNTi catalysts. The crude products afforded with 4.4 consist

of higher weight percentage of aPS compared to those produced with 4.3, consistent with

the behavior observed for 4.1 and 4.2.

Page 84: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

66

4.3 FRACTIONATION AND ANALYSIS OF ETHYLENE-STYRENE

COPOLYMERS DERIVED FROM 4.3 AND 4.4

The copolymerization of ethylene and styrene with 4.3 and 4.4 at 120 °C generates

mixtures of aPS and ES copolymers. The THF-soluble fractions of polymers derived

from complexes 4.3 and 4.4 exhibited molecular weights of 43,000–60,000, monomodal

molecular weight distributions and polydispersities of 1.7–2.1, indicating that the ES

copolymers generated are reasonably monodisperse.

13C NMR analysis of the THF-soluble fractions derived from 4.3 and 4.4 provides

clear evidence for the formation of ES copolymers. Aliphatic regions of representative 13C NMR spectra (entry 8 and 12) of copolymers derived from 4.4 are shown in Figure

4.2. The spectra of the ES copolymers derived from 4.3 and 4.4 clearly reveal resonances

attributable to head-to-tail styrene-styrene sequences (SSS; Tββ, Sαα), methylene

sequences (EEE; Sδδ), and ES sequences (Tδδ, Sαδ). Signals for tail-to-tail or head-to-head

styrene sequences27, 55 were not observed. Significantly, the intensities of the Tββ and Sαα

resonances, characteristic for SSS sequences, and the Sδδ resonances, characteristic of

EEE sequences, are intense compared to Tδδ or Sαδ, characteristic for the ethylene-styrene

sequences.

Page 85: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

67

Figure 4.2 Aliphatic regions of 13C NMR spectra (1,2-dichlorobenzene/benzene-d6) and

peak assignments of ethylene-styrene copolymers (THF-soluble fractions) prepared by

CpNTiCl2(TEMPO) (4.4)/MAO under different ethylene pressure (entries 8 and 12, Table

4.1)

Compared to previously described ES copolymers with similar or even lower styrene

content,17, 19, 27, 28, 32, 56, 57 the observation of a high intensity of styrene repeat units (Tββ) is

unusual. As depicted in Figure 4.3, the fraction of [Tββ]/[Ttotal] in the ES copolymers

derived from complexes 4.3 and 4.4 is compared to that predicted by Bernoullian

statistics and that observed by Nomura for the complex Cp'Ti(OAr)Cl2 (OAr = O-2,6-iPr2C6H3).27 This plot clearly indicates that the fraction of SSS sequences in the THF-

soluble fraction of copolymers derived from 4.3 and 4.4 are much higher than that

predicted by Bernoullian statistics and are indicative of either a poly[(ethylene-co-

styrene)-b-styrene] or a blend of ES copolymer and PS. The fact that the molecular

Page 86: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

68

weight distributions of the THF-soluble fractions are monomodal and reasonably narrow

(PDI of 1.7−2.1) is consistent with a blocky microstructure, but does not rule out a blend

of ES copolymer and PS if the components of the blend were to have similar molecular

weights and solubility in acetone and THF.

Figure 4.3 Plots of [Tββ]/[Ttotal] ratio determined by 13C NMR spectra as a function of

styrene content in copolymers produced by 4.3 (triangles), 4.4 (squares), and Nomura et

al.’s catalyst27 (circles) vs. styrene content in copolymers determined by 13C NMR spectra.

[Tββ]/[Ttotal] value (%) based on Bernoullian statistics was calculated as [styrene content]3

x 100.

Thermal analysis of the THF-soluble fractions by differential scanning calorimetry

(DSC) showed two glass transition temperatures for samples with styrene contents below

50%. These two Tg's can be reasonably assigned to ES sequences (Tg = -18 – -10 °C) and

styrene homosequences (Tg = 101–107 °C). The lack of melting endotherms attributable

to syndiotactic SSS sequences and the broadening of the 13C NMR resonances from 40–

47 ppm indicate that the SSS sequences in these samples are atactic.

Page 87: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

69

4.4 ROLE OF STYRENE RADICAL POLYMERIZATION ON THE

COPOLYMERIZATION BEHAVIOR

A most likely source of the aPS observed in ES copolymerizations at 120 °C is the

radical autopolymerization of styrene (or the cationic polymerization of styrene initiated

from cationic Ti complexes58 or MAO). Even after extraction of aPS with acetone, the

resulting THF-soluble ES copolymers contained significant amounts of atactic

polystyrene (SSS) sequences. The narrow polydispersities of these THF-soluble fractions

are suggestive of a blocky poly[(ethylene-co-styrene)-b-styrene]. In this case, the origin

of the SSS sequences could be a consequence of a copolymerization mechanism where

the styrene and ethylene reactivity ratios favor the homopropagation over cross-

propagation of the two monomers (rers > 1).59-61 Alternatively, a blocky structure might

derive from a mechanism where polystyryl radicals combine with the Ti centers62 to

mediate a combined coordination/radical polymerization. To evaluate the latter

possibility, we investigated ES copolymerizations in the presence of both AIBN initiator

and catalytic chain-transfer agents (CCT),63-65 and analyzed the compositions of the THF-

soluble fractions to assess the influence of these additives on the ES copolymer

microstructure. If the THF-soluble fractions are ES block copolymers generated by a

single-site copolymerization process with rers > 1, the addition of AIBN or CCT agents

should have no effect on the composition of the resulting ES copolymers. On the other

hand, if the THF-soluble fractions are ES block copolymers generated by a combined

radical/coordination mechanism, the addition of AIBN would be expected to increase the

SSS sequence lengths and a CCT agent would be expected to decrease the SSS sequence

lengths. Finally, if the THF-soluble fractions are blends of ES copolymers and styrene

homopolymers that have similar molecular weights and solubility in acetone and THF,

then addition of a CCT agent should decrease the molecular weight of the styrene

homopolymer, but have no effect on the molecular weight of the ES copolymer.

Page 88: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

70

To assess the degree to which radical polymerization of styrene is contributing to the

microstructure of the polymers we observe, we carried out ES copolymerizations with

3/MAO in the presence of AIBN (Table 4.2).

Table 4.2 Influence of AIBN on ES copolymerization with CpNTiCl3 (4.3)

Entry AIBN

(µmol)

CpNTiCl3

(µmol)

PE

(psig)

Yield

(g)b

St mol%

rawb,d

St mol%

THF-solc,d Mn

c,e PDIc,e [Tββ]/[Ttotal]

(%)c

11 0 8 80 2.15 26 22 47 K 1.91 47

13 8 8 80 1.47 41 39 55 K 2.08 62

14 16 8 80 1.24 46 50 74 K 2.15 69

7 0 8 50 1.22 48 40 43 K 2.09 64

15 16 8 50 0.87 89 86 73 K 2.09 72

a All polymerizations were performed with 8 μmol catalyst, 10 g of styrene and

232 mg MAO in a toluene solution (total volume of 50 mL) for 4 hours. Al/Ti = 500. b

Before solvent fractionation. c After solvent fractionation. d Styrene content (mol %) in

polymer estimated by 13C NMR. e GPC (gel permeation chromatography) data in THF vs.

polystyrene standards.

The addition of AIBN results in an increase in the amount of acetone-soluble fraction

in the raw polymer, but also increases the amount of styrene in the acetone-insoluble,

THF-soluble fraction. With increasing amounts of AIBN, the styrene content in the

resulting THF-soluble fraction increases. Moreover, the fraction of SSS sequences also

increases (entries 13−15) as evidenced by the higher ratio of [Tββ]/[Ttotal] in the THF-

soluble fractions. The narrow polydispersities of the THF-soluble fractions and the

increase in styrene contents and fraction of SSS sequences are suggestive of a tandem

Page 89: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

71

radical/coordination mechanism to give a blocky poly[(ethylene-co-styrene)-b-styrene],

where the addition of AIBN results in a higher contribution of a radical polymerization

mechanism. However, these results could also be consistent with a parallel

radical/coordination mechanism to give blends of atactic styrene homopolymer and ES

copolymers if the radical polymerization of styrene under these conditions fortuitously

generated similar molecular weights to that of the ES copolymer and both components of

the blend exhibited similar solubility profiles in acetone and THF.

To distinguish between these two possibilities, we investigated the influence of the

CCT agent, cobalt tetraphenylporphyrin [Co(tpp)],63-65 on the ES copolymerization

behavior at 120 °C in the presence of AIBN. Three sets of experiments were carried out:

(1) in the absence of Ti, MAO and Co(tpp) (Table 4.3, entry 16), (2) in the absence of Ti

and the presence of Co(tpp) with and without MAO (Table 4.3, entry 17 and 18), (3) in

the presence Ti, MAO and Co(tpp) (Table 4.3, entry 19).

In the absence of Ti, MAO and Co(tpp), the AIBN-initiated polymerization of

styrene yielded aPS with a molecular weight Mn = 75,000 (PDI = 2.4), very similar to that

observed with AIBN in the presence of 3/MAO (entry 16 vs. 14). The addition of Co(tpp)

resulted in a significant decrease in the molecular weight of the aPS (Mn = 75,000 vs.

6500, entry 16 vs. 17); the addition of MAO led to similar behavior indicating that MAO

has little influence of the behavior of the CCT agent (entry 18). When Co(tpp) is added to

the ES copolymerization initiated by both 4.3/MAO and AIBN (entry 19), the resulting

polymer exhibited a bimodal molecular weight distribution (Figure 4.4a) which was

easily separated by Soxhlet extraction using boiling acetone. Fractionation of this sample

with acetone (entry 19, Table 4.4) yielded 55 wt% of an acetone-soluble fraction of Mn =

6600, which is aPS as determined by 13C NMR (Figure 4.5b). The higher molecular

weight THF-soluble fraction (38 wt%, Mn = 45,000) was shown by 13C NMR to be an ES

copolymer of approximately 20% styrene. These results clearly indicate that the

copolymerization of styrene and ethylene in the presence of both 4.3/MAO and AIBN

Page 90: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

72

generate blends of aPS and ES copolymers which exhibit similar molecular weights and

similar solubility in both THF and acetone. Similar results were obtained for ES

copolymerizations with 4.3/MAO and Co(tpp) in the absence of AIBN (entry 20, Tables

4.3 and 4.4), illustrating that at 120°C competitive radical polymerization generates

atactic polystyrene along with the ES copolymer. We conclude that solvent extraction

alone is not a reliable method for a complete separation of ES copolymer from other

byproducts such as self-initiated polystyrene of Mn > 30,000. In this case, addition of a

proper chain transfer reagent facilitates identification of the atactic polystyrene

homopolymer by decreasing the molecular weight of polystyrene generated by a radical

process.

Figure 4.4 Gel permeation chromatograms (GPC) of (a) raw polymer, (b) THF-soluble

fraction, and (c) acetone-soluble fraction of entry 19, Tables 4.3 and 4.4

Page 91: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

73

Table 4.3 Crude Product of ES Copolymerization in the Presence of Co(tpp)

Entry Ti catalyst

MAO (mmol)

Co(tpp) (μmol)

AIBN (μmol)

Yield (g)

Styrene mol %b Mn

c Mwc PDIc

14 4.3 4 - 16 1.24 46 74 K 159 K 2.15

16 - - - 16 1.35 100 75 K 183 K 2.44

17 - - 8 16 1.32 100 6.5 K 11 K 1.73

18 - 4 8 16 1.11 100 6.0 K 10 K 1.73

19 4.3 4 8 16 1.85 34 bimodal bimodal bimodal

20 4.3 4 8 - 1.43 38 bimodal bimodal bimodal

21 - 4 - - 0.76 100 28 K 104 K 3.76

a All polymerizations were performed with 10 g of styrene, 80 psig ethylene in a toluene

solution (total volume of 50 mL) for 4 hours. Al/Ti = 500. b Styrene content (mol %)

before solvent fractionation. c GPC (gel permeation chromatography) data in THF vs.

polystyrene standards.

Table 4.4 Fractionated Polymer Properties

Entry Fraction Wt

%a

Styrene

mol %b

Polymer

type Mn

c Mwc PDIc

Acetone-soluble 55 100 aPS 6.6 K 13 K 1.92 19

Acetone-insoluble & THF soluble 38 20 E-co-Sd 45 K 107 K 2.36

Acetone-soluble 47 100 aPS 5 K 8.2 K 1.63 20

Acetone-insoluble & THF soluble 45 20 E-co-Sd 57 K 116 K 2.03

a Weight percent of each fraction. b Styrene content (mol %) in each fraction estimated by 13C NMR. c GPC (gel permeation chromatography) data of THF-soluble fraction in THF

vs. polystyrene standards. Mw: weight-average molecular weight. d E-co-S: ES copolymer.

Page 92: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

74

Figure 4.5 Aliphatic regions of 13C NMR spectra (1,2-dichlorobenzene/benzene-d6) of (a)

raw polymer, (b) acetone-soluble fraction, and (c) THF-soluble fraction of entry 19,

Tables 4.3 and 4.4

4.5 CONCLUSIONS

We have prepared a series of monocyclopentadienyl titanium complexes containing

pendant donor ligands in an effort to assess the role of the pendant donor group on the

Ti−O bond energy and the role of the potentially labile TEMPO ligand on the ES

copolymerization behavior. At elevated temperatures (120 °C) the titanocene complexes

with a pendant amine group are active for ES copolymerization to generate mixtures of

high molecular weight ES copolymers along with aPS. Under these conditions, the

molecular weight of the ES copolymers produced by a coordination mechanism is

coincident with that of the aPS produced by a radical mechanism. The addition of a

catalytic chain-transfer agent, Co(tpp), decreases the molecular weight of the radically-

produced polystyrene, facilitating separation of the aPS from the ES copolymer. These

studies illustrate the liabilities of solvent fractionation as a sole measure of single-site

polymerization behavior, particularly when the components of a polymer sample contain

compatible fractions. We conclude that: (1) the pendant amine group has a significant

Page 93: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

75

effect on incorporation of ethylene into polystyrene chains to afford ES copolymer, (2)

complexes with TEMPO ligand afford more aPS during the ES polymerizations, and (3)

the addition of the catalytic chain-transfer reagent can provide a useful test for

competitive radical polymerization processes in coordination polymerization.

4.6 EXPERIMENTAL SECTION

4.6.1 General considerations

All reactions and polymerizations were performed in a drybox or with standard

Schlenk techniques under nitrogen. The catalyst 4.1 was purchased from Strem

Chemicals, Inc., and the catalysts 4.2−4.4 were prepared according to the literature

procedures.41, 46, 47 Ethylene (Matheson, polymerization grade) and argon (supplied by

Praxair) were purified by passage through columns of Alltech Oxy-trap and Alltech gas

drier. PMAO was supplied as a toluene solution by Akzo Nobel and dried under vacuum

to remove solvent and residual trimethylaluminum prior to use. Toluene and benzene-d6

were dried over metallic sodium/benzophenone solutions and distilled under reduced

pressure before use. Styrene was purified by distillation under reduced pressure over

CaH2 and stored in the freezer.

Polymerizations were carried out in a 300 mL stainless steel reactor equipped with a

mechanical stirrer. Temperature control was maintained using a heating mantle in

combination with an ethylene glycol cooling loop. Prior to the polymerization the Parr

reactor was evacuated on a vacuum line and then filled and flushed three times with

desired overpressure of ethylene.

4.6.2 Representative procedure for preparation of ethylene-styrene copolymer

Page 94: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

76

A total volume of 45 mL toluene suspension containing 232 mg PMAO and 10 g

styrene was loaded into a double-ended injection tube. The suspension was injected into

the reactor and allowed to equilibrate at the appropriate temperature while stirring under

a constant ethylene pressure. The reaction was started by injection of the titanium

complexes (8 μmol in 5 mL toluene) and terminated after 4 hours by addition of 10 mL

methanol. The resulting polymer was precipitated in 300 mL acidified methanol, filtered,

washed with additional methanol, and dried in a vacuum oven at 60 °C for >6 hours.

4.6.3 Polymer Fractionation

Selective solvent fractionation to remove homopolymers was carried out using a

Soxhlet extractor. Crude copolymer was placed in a Whatman® cellulose thimble and

extracted with boiling acetone for at least 12 hours in order to remove atactic polystyrene.

The acetone-insoluble fraction in a Whatman® thimble was placed in a Soxhlet extractor

and treated with boiling THF for at least 12 hours to remove homopolymers. The THF-

soluble extracts were isolated by filtering, dried under vacuum, and analyzed by NMR,

DSC, and GPC. The amount of THF-insoluble fractions was negligible.

4.6.4 Polymer Analysis

13C NMR spectra were recorded at 75 MHz on Varian Inova 300 spectrometer at 95

°C in a 80:20 v/v solution of 1,2-dichlorobenzene/benzene-d6 with in the presence of

chromium(III) acetylacetonate (1 mM) to reduce the relaxation time of the aliphatic

carbons (acquisition time = 1.8 s, pulse width = 3 µs.) By using the areas of the peaks, the

comonomer composition can be evaluated by means of the following equation:

xs = [A(Sαγ+) + A(Sαβ) + 2.A(Sαα)]/[A(Sγ+γ+) + A(Sββ) + A(Sβδ+) + 1.5.A(Sαγ+) +

1.5.A(Sαβ) + 2.A(Sαα)]

Page 95: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

77

This formula is adopted from Oliva et al.66, 67 and modified to be valid for different

copolymer types. The formula is derived from the frequency of secondary carbons related

to tertiary carbons. If Sαα is not taken into consideration the formula is only valid for ES

copolymer containing isolated styrene units. By including Sαα it is valid for all polymer

distributions.

Gel permeation chromatography (GPC) analysis was performed in THF at a flow

rate of 1 mL/min on a Waters chromatograph equipped with four 5 μm Waters columns

connected in series with increasing pore size (10, 100, 1000, 105, 106). This system was

calibrated using monodisperse polystyrene standards. Viscotek refractive index and UV

detectors were used.

Differential scanning calorimetry (DSC) was performed using TA Instruments Q100

differential scanning calorimeter. Melting and glass transition temperatures were

determined at a heating and cooling rate of 5 °C/min. The instrument was calibrated by

measurement of the melting point of indium. Thermal history in the copolymer was

eliminated by recording the second DSC scan.

4.6.5 Peak assignment in 13C NMR

The tacticity and distribution of the polymer as well as the styrene content were

calculated from the 13C NMR spectra. The peak assignments of the 13C NMR spectra of

the copolymers were made by comparing the spectra of ES copolymers in the literature.17,

19, 27, 31, 36 S represents a secondary carbon, whereas T represents a tertiary carbon. The

Greek letters (α; β; γ; δ) show the distance to the next tertiary carbon atom to each side,

where α equals one, β equals two, γ equals three and δ equals four or more carbon atom

distance.

Page 96: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

78

Figure 4.6 Representative GPC chromatogram of THF-soluble fraction of ethylene-

styrene copolymer (entry 7, Table 4.1)

Figure 4.7 Representative DSC thermogram of THF-soluble fraction of ethylene-styrene

copolymer (entry 12, Table 4.1)

Page 97: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

Figure 4.8 13C NMR spectrum of the blend of sPS and PE prepared by CpTiCl3 (4.1)/ MAO (entry 9, Table 4.1)

Page 98: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

80

Figure 4.9 13C NMR spectrum of the blend of sPS and PE prepared by CpTiCl2(TEMPO) (4.2)/ MAO (entry 10, Table 4.1)

Page 99: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

81

Figure 4.10 13C NMR spectrum of ethylene-styrene copolymer (THF-soluble fraction) prepared by CpNTiCl3 (4.3)/ MAO

(entry 11, Table 4.1)

Page 100: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

82

Figure 4.11 13C NMR spectrum of ethylene-styrene copolymer (THF-soluble fraction) prepared by CpNTiCl2(TEMPO) (4.4)/

MAO (entry 12, Table 4.1)

Page 101: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

83

Figure 4.12 Gel permeation chromatograms (GPC) of (a) raw polymer, (b) THF-soluble fraction, and (c) acetone-soluble

fraction of entry 20 in Tables 4.3 and 4.4

Page 102: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

84

Figure 4.13 GPC/UV spectra of entry 20 in Tables 4.3 and 4.4: (a) RI signal of raw polymer, (b) UV signal of raw polymer,

(c) RI signal of THF-soluble fraction, (d) UV signal of THF-soluble fraction, (e) RI signal of acetone-soluble fraction, and (f)

UV signal of acetone-soluble fraction (UV at 275 nm)

Page 103: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

4.7 REFERENCES AND NOTES

(1) Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325-387.

(2) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M.

Angew. Chem. Int. Ed. 1995, 34, 1143-1170.

(3) Stevens, J. C., Constrained geometry and other single site metallocene polyolefin

catalysts: A revolution in olefin polymerization. In Stud. Surf. Sci. Catal.,

Hightower, J. W.; Delglass, W. N.; Iglesia, E.; Bell, A. T., Eds. Elsevier:

Amsterdam, 1996; Vol. 101, pp 11-20.

(4) McKnight, A. L.; Waymouth, R. M. Chem. Rev. 1998, 98, 2587-2598.

(5) Scheirs, J.; Kaminsky, W., Metallocene-based Polyolefins: Preparation,

Properties, and Technology. John Wiley & Sons Ltd.: Cheichester, 2000; Vol. 1,2.

(6) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100, 1253-

1345.

(7) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169-1203.

(8) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283-315.

(9) Stephan, D. W.; Stewart, J. C.; Guérin, F.; Courtenay, S.; Kickham, J.; Hollink,

E.; Beddie, C.; Hoskin, A.; Graham, T.; Wei, P.; Spence, R. E. v. H.; Xu, W.;

Koch, L.; Gao, X.; Harrison, D. G. Organometallics 2003, 22, 1937-1947.

(10) Kaminsky, W. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3911-3921.

(11) Arriola, D. J.; Carnahan, E. M.; Hustad, P. D.; Kuhlman, R. L.; Wenzel, T. T.

Science 2006, 312, 714-719.

(12) Nomura, K.; Liu, J.; Padmanabhan, S.; Kitiyanan, B. J. Mol. Catal. A: Chem.

2007, 267, 1-29.

(13) Nomura, K.; Zhang, H.; Byun, D.-J. J. Polym. Sci., Part A: Polym. Chem. 2008,

46, 4162-4174.

(14) Schellenberg, J.; Tomotsu, N. Prog. Polym. Sci. 2002, 27, 1925-1982.

(15) Ishihara, N. Macromol. Symp. 1995, 89, 553-562.

Page 104: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

86

(16) Guest, M. J.; Cheung, Y. W.; Diehl, C. F.; Hoenig, S. M., Structure, Properties

and Applications of Ethylene-Styrene Interpolymers. In Metallocene-Based

Polyolefins, Scheirs, J.; Kaminsky, W., Eds. Wiley: Chichester, 2000; Vol. 2, pp

271-292.

(17) Arriola, D. J.; Bokota, M.; Campbell, R. E., Jr.; Klosin, J.; LaPointe, R. E.;

Redwine, O. D.; Shankar, R. B.; Timmers, F. J.; Abboud, K. A. J. Am. Chem. Soc.

2007, 129, 7065-7076.

(18) Chen, H. Y.; Chum, S. P.; Hiltner, A.; Baer, E. J. Polym. Sci., Part B: Polym.

Phys. 2001, 39, 1578-1593.

(19) Capacchione, C.; Proto, A.; Ebeling, H.; Mülhaupt, R.; Okuda, J. J. Polym. Sci.,

Part A: Polym. Chem. 2006, 44, 1908-1913.

(20) Chum, P. S.; Kruper, W. J.; Guest, M. J. Adv. Mater. 2000, 12, 1759-1767.

(21) Aaltonen, P.; Seppälä, J. Eur. Polym. J. 1995, 31, 79-83.

(22) Pellecchia, C.; Oliva, L. Rubber Chem. Technol. 1999, 72, 553-558.

(23) Oliva, L.; Mazza, S.; Longo, P. Macromol. Chem. Phys. 1996, 197, 3115-3122.

(24) Hou, Z.; Tezuka, H.; Zhang, Y.; Yamazaki, H.; Wakatsuki, Y. Macromolecules

1998, 31, 8650-8652.

(25) Hou, Z.; Zhang, Y.; Tezuka, H.; Xie, P.; Tardif, O.; Koizumi, T.-a.; Yamazaki,

H.; Wakatsuki, Y. J. Am. Chem. Soc. 2000, 122, 10533-10543.

(26) Nomura, K.; Komatsu, T.; Imanishi, Y. Macromolecules 2000, 33, 8122-8124.

(27) Nomura, K.; Okumura, H.; Komatsu, T.; Naga, N. Macromolecules 2002, 35,

5388-5395.

(28) Longo, P.; Grassi, A.; Oliva, L. Makromol. Chem. 1990, 191, 2387-2396.

(29) Venditto, V.; De Tullio, G.; Izzo, L.; Oliva, L. Macromolecules 1998, 31, 4027-

4029.

(30) Yokota, K.; Kohsaka, T.; Ito, K.; Ishihara, N. J. Polym. Sci., Part A: Polym. Chem.

2005, 43, 5041-5048.

(31) Zhang, H.; Nomura, K. J. Am. Chem. Soc. 2005, 127, 9364-9365.

(32) Zhang, H.; Nomura, K. Macromolecules 2006, 39, 5266-5274.

Page 105: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

87

(33) Sernetz, F. G.; Mülhaupt, R.; Amor, F.; Eberle, T.; Okuda, J. J. Polym. Sci., Part

A: Polym. Chem. 1997, 35, 1571-1578.

(34) Sernetz, F. G.; Mülhaupt, R.; Waymouth, R. M. Macromol. Chem. Phys. 1996,

197, 1071-1083.

(35) Li, H.; Marks, T. J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15295-15302.

(36) Rodrigues, A.-S.; Kirillov, E.; Lehmann, C. W.; Roisnel, T.; Vuillemin, B.;

Razavi, A.; Carpentier, J.-F. Chem. Eur. J. 2007, 13, 5548-5565.

(37) Li, X.; Hou, Z. Macromolecules 2005, 38, 6767-6769.

(38) Luo, Y.; Baldamus, J.; Hou, Z. J. Am. Chem. Soc. 2004, 126, 13910-13911.

(39) Van Tol, M. F. H.; Van Beek, J. A. M.; Pieters, P. J. J. Int. Pat. Appl. PCT WO

9742240, 1997.

(40) Flores, J. C.; Chien, J. C. W.; Rausch, M. D. Organometallics 1994, 13, 4140-

4142.

(41) Flores, J. C.; Chien, J. C. W.; Rausch, M. D. Macromolecules 1996, 29, 8030-

8035.

(42) Chien, J. C. W.; Yu, Z.; Marques, M. M.; Flores, J. C.; Rausch, M. D. J. Polym.

Sci., Part A: Polym. Chem. 1998, 36, 319-328.

(43) Müller, C.; Vos, D.; Jutzi, P. J. Organomet. Chem. 2000, 600, 127-143.

(44) Herrmann, W. A.; Morawietz, M. J. A.; Priermeier, T.; Mashima, K. J.

Organomet. Chem. 1995, 486, 291-295.

(45) Ishihara, N.; Kuramoto, M.; Uoi, M. Macromolecules 1988, 21, 3356-3360.

(46) Huang, K.-W.; Han, J. H.; Musgrave, C. B.; Waymouth, R. M. Organometallics

2006, 25, 3317-3323.

(47) Mahanthappa, M. K.; Cole, A. P.; Waymouth, R. M. Organometallics 2004, 23,

836-845.

(48) Mahanthappa, M. K.; Huang, K.-W.; Cole, A. P.; Waymouth, R. M. Chem.

Commun. 2002, 502-503.

(49) Huang, K.-W.; Waymouth, R. M. J. Am. Chem. Soc. 2002, 124, 8200-8201.

Page 106: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

88

(50) Huang, K.-W.; Han, J. H.; Cole, A. P.; Musgrave, C. B.; Waymouth, R. M. J. Am.

Chem. Soc. 2005, 127, 3807-3816.

(51) Dove, A. P.; Xie, X.; Waymouth, R. M. Chem. Commun. 2005, 2152-2154.

(52) Mayo, F. R. J. Am. Chem. Soc. 1968, 90, 1289-1295.

(53) Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661-3688.

(54) Noh, S. K.; Lee, M.; Kum, D. H.; Kim, K.; Lyoo, W. S.; Lee, D.-H. J. Polym. Sci.,

Part A: Polym. Chem. 2004, 42, 1712-1723.

(55) Xu, G. Macromolecules 1998, 31, 2395-2402.

(56) Pellecchia, C.; Pappalardo, D.; D'Arco, M.; Zambelli, A. Macromolecules 1996,

29, 1158-1162.

(57) Guo, N.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 2246-2261.

(58) Ewart, S. W.; Sarsfield, M. J.; Jeremic, D.; Tremblay, T. L.; Williams, E. F.;

Baird, M. C. Organometallics 1998, 17, 1502-1510.

(59) Fan, W.; Leclerc, M. K.; Waymouth, R. M. J. Am. Chem. Soc. 2001, 123, 9555-

9563.

(60) Galimberti, M.; Piemontesi, F.; Fusco, O.; Camurati, I.; Destro, M.

Macromolecules 1998, 31, 3409-3416.

(61) Galimberti, M.; Piemontesi, F.; Mascellani, N.; Camurati, I.; Fusco, O.; Destro, M.

Macromolecules 1999, 32, 7968-7976.

(62) Asandei, A. D.; Moran, I. W. J. Polym. Sci., Part A: Polym. Chem. 2006, 44,

1060-1070.

(63) Gridnev, A. A.; Ittel, S. D. Chem. Rev. 2001, 101, 3611-3659.

(64) Heuts, J. P. A.; Roberts, G. E.; Biasutti, J. D. Aust. J. Chem. 2002, 55, 381-398.

(65) Wayland, B. B.; Peng, C.-H.; Fu, X.; Lu, Z.; Fryd, M. Macromolecules 2006, 39,

8219-8222.

(66) Oliva, L.; Caporaso, L.; Pellecchia, C.; Zambelli, A. Macromolecules 1995, 28,

4665-4667.

(67) Grassi, A.; Pellecchia, C.; Oliva, L.; Laschi, F. Macromol. Chem. Phys. 1995, 196,

1093-1100.

Page 107: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

Chapter 5

STEREOSPECIFIC STYRENE POLYMERIZATION AND ETHYLENE-STYRENE

COPOLYMERIZATION WITH TITANOCENES CONTAINING A PENDANT

AMINE DONOR

Parts of this work have been previously published:

Son, K.-s. and Waymouth, R. M. Journal of Polymer Science Part A: Polymer

Chemistry 2010, 48, 1579.

Copyright 2010 by John Wiley & Sons

Page 108: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

90

5.1 INTRODUCTION

Syndiotactic polystyrene (sPS)1,2 and ethylene-styrene (ES) copolymers3,4 are

examples of new classes of polyolefins with unique properties that can only be made with

homogeneous olefin polymerization catalysts.5,6 sPS was first synthesized with half-

metallocenes based on Ti in the presence of methylaluminumoxane (MAO).7,8 ES

copolymers with a wide range of compositions, structures and properties can be

generated with homogeneous catalysts;3,4,9-17 among the most active are the "constrained

geometry" class of metallocenes, which afford pseudo-random ES copolymers with

styrene contents typically less than 50 mol %.9,10,18

The synthesis of ES copolymers having syndiotactic styrene-styrene sequences is

particularly challenging. Notable recent advances have been obtained with scandium19

and neodymium20,21 complexes.3 In contrast, the half-titanocenes active for syndiospecific

styrene polymerization exhibit low catalytic activities for ethylene polymerization and ES

copolymerization; the resulting polymers are typically reactor blends of polystyrene,

polyethylene (PE) and ES copolymer,4,11,14,15,22-24 although selected aryloxide complexes

were reported to be selective for ES copolymerization.25,26 In the patent literature,

monocyclopentadienyl titanium complexes with pendant neutral donors27-30 were reported

as active catalysts for syndiospecific styrene polymerization31 and ES copolymerization at

80−150 °C,32 suggesting that these complexes might be promising candidates for

generating ES copolymers of syndiotactic polystyrene.23

In our previous report,33 we investigated the ES copolymerization behavior of a

series of titanocene complexes bearing a pendant amine group on a cyclopentadiene (Cp)

and a TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) ligand at high temperature (Figure

5.1). At the polymerization temperature of 120 °C, the half-titanocene complexes

CpNTiCl3 (B; CpN = C5H4CH2CH2N(CH3)2)) and CpNTiCl2TEMPO (C), in combination

with methylaluminoxane (MAO), yielded reactor blends of high molecular weight ES

copolymer and atactic polystyrene (aPS), which could not be completely separated unless

Page 109: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

91

a chain-transfer agent was added.33 In this contribution, we report our comparative

investigation on styrene homopolymerization and copolymerization of ethylene and

styrene with complexes A−C at 70 °C under various monomer feed ratios. We discuss the

product tacticity, composition and properties based on the collective results obtained by

various characterization methods.

Figure 5.1 Mono-Cp titanium complexes used in this study

5.2 RESULTS AND DISCUSSION

Three titanium complexes A−C were prepared to assess the potential of these Ti

complexes as a catalyst for syndiotactic styrene polymerization and ethylene-styrene

copolymerization at 70 °C (Tables 5.1 and 5.2). Styrene homopolymerizations were

carried out under argon pressure, whereas the ES copolymerizations were conducted

under given ethylene pressure. The reactor products were washed with boiling acetone to

remove atactic polystyrene (aPS) and the acetone-insoluble fraction was extracted with

boiling THF to separate ES copolymer from crystalline homopolymers (PE, sPS).11,13,35,36

Finally, the THF-soluble fractions were characterized by a variety of techniques

including NMR, DSC, and high temperature GPC/FT-IR.

Page 110: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

92

Table 5.1 Styrene Homopolymerization with titanium Complexes A−C at 70 °C

Entry Cat Sty

(g)

PAr

(psig)

MAO

(mg)

Time

(hr)

Yield

(g) b

Prod.

b, c

Tg

(°C )d

Tm

(°C )d

ΔHm

(J/g)d

Mnf

Mwf PDIf

1e A 5 20 116 1.5 0.26 43 96 257 9.7

2 A 10 5 116 4 1.50 47 89 254 26.1

3e B 5 20 116 1.5 0.06 10 99 257 10.7

4 B 10 5 116 4 0.13 4 102 261 5.7 18K 97K 5.5

5 B 10 5 232 4 0.38 12 101 262 3.2 15K 100K 6.4

6e C 5 15 116 1.5 0.08 13 99 254 4.0 9K 36K 3.9 a All polymerizations were performed with 8 μmol catalyst in a toluene solution (total

volume of 30 mL). b Yield and productivity before solvent fractionation. c Productivity in

kg P·(mol Ti)-1h-1. d Determined by DSC. Tg: glass transition temperature. Tm: melting

temperature. ΔHm: heat of melting. e 4 μmol catalyst was applied. f Determined by GPC.

Page 111: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

93

Table 5.2 Ethylene-Styrene Copolymerization Catalyzed by Complexes A−C at 70 °C

Entry Cat Sty

(g)

PE

(psig)

MAO

(mg)

Time

(hr)

Yield

(g) b

Acetone-

sol (wt%)

Acetone-

insol

(wt%)

THF-sol

(wt%)

Styrene

mol% c

Tg

(°C )d

Tm

(°C )d

ΔHm

(J/g) d Mn

f Mwf PDIf

7 A 5 20 116 1.5 2.15 17 83 17 124,

251

2.82,

2.34

8 A 10 5 116 4 4.78 15 85 100 99 247 20.3 10K 19K 2.0

9e B 5 20 116 1.5 0.23 10 90 80 39 17 120 0.42

10 B 10 20 116 2 2.43 12 88 76 46 28 129 2.19

11 B 10 5 116 2 0.70 21 79 72 52 41 260 2.66 46K 112K 2.4

12 B 10 5 116 4 0.62 32 68 64 62 40 261 4.06 38K 118K 3.1

13 B 10 5 232 4 1.44 33 67 52 66 40, 99 260 8.28 28K 94K 3.4

14 B 20 5 116 2 1.19 26 74 40 63 43 262 2.79 47K 96K 2.0

15 C 5 15 116 1.5 0.22 10 90 81 19 n.o.g n.o.g

16 C 5 10 116 2 0.28 18 82 76 48 31 n.o.g n.o.g

17 C 10 10 116 4 0.40 16 84 75 51 31, 95 260 2.88 28K 71K 2.6

18 C 10 5 116 4 0.58 47 53 35 71 33, 99 253 4.66 136K 189K 1.4 a All polymerizations were performed with 8 μmol catalyst in a toluene solution (total volume of 30 mL). b Yield before

solvent fractionation. c Styrene content (mol%) in polymer after acetone (and THF) fractionation, estimated by 13C NMR. d

Determined by DSC after solvent fractionation. Tg: glass transition temperature. Tm: melting temperature. ΔHm: heat of

melting. e 4 μmol catalyst was applied. f Determined by GPC after solvent fractionation. g Not observed.

Page 112: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

94

When activated by MAO, complexes B and C are active for styrene

homopolymerization and afford syndiotactic polystyrene, as evidenced by sharp signals

at 41 (Tββ) and 44.5 ppm (Sαα) in the 13C NMR spectra and melting temperature of 260 °C

(Table 5.1 and Figures 5.2 and 5.3). This result is in contrast to the styrene

homopolymerization at 120 °C where aPS was produced, indicating that the tacticity of

the polymer is strongly influenced by the reaction temperature. At 70 °C, the CpN

complexes are a factor of 4 less active for styrene polymerization28,29 than the

monocyclopentadienyl complex A, and the activity increases with an increase in the

Al/Ti ratio from 250 to 500. The introduction of pendant oxygen- or nitrogen-containing

functional groups40 on the Cp ligand was proposed to inhibit the activity for styrene

polymerization, due to the competitive coordination of the donor atom to the metal and

attendant inhibition of styrene insertion.23,28,29,41-43

Figure 5.2 13C NMR spectrum of entry 3 in Table 5.1 (sPS produced with B/MAO)

Page 113: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

95

Figure 5.3 DSC of entry 3 in Table 5.1 (sPS produced with B/MAO)

We noted that the molecular weight distributions of the sPS homopolymers obtained

from B and C were slightly broader than Mw/Mn = 2 (entries 4−6). Thermal analysis of

the crude polymer of entry 5 revealed two melting endotherms centered at 251 °C and

262 °C for sPS (Figure 5.4).44-48 Fractionation of the resultant polystyrenes with acetone

and THF yielded 63 wt% of a THF-soluble fraction (Mn = 82K, Mw = 156K, PDI = 1.9)

and 5 wt% of a THF-insoluble fraction (Mn = 44K, Mw = 92K, PDI = 2.1). Thermal

analysis of the resulting fractions revealed that the THF-soluble and -insoluble fractions

exhibited melting points of 250 °C and 266 °C, respectively, implicating that under these

conditions catalyst B generates two syndiotactic polystyrenes; a higher-melting sPS

insoluble in boiling THF and a lower-melting fraction soluble in THF.

Page 114: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

96

Figure 5.4 DSC thermograms of resultant polymer of entry 5 in Table 5.1: (a) crude

product before fractionation (Mn = 15K, Mw = 100K, PDI = 6.4), (b) THF-soluble

fraction (Mn = 82K, Mw = 156K, PDI = 1.9, fraction yield: 63%), and (c) THF-insoluble

fraction (Mn = 44K, Mw = 92K, PDI = 2.1, fraction yield: 5%)

A series of ES copolymerizations were carried out at 70 °C with complexes A−C

activated by MAO under various ethylene pressures and styrene concentrations (Table

5.2). While the copolymerization with catalyst A yielded a mixture of sPS and PE (entries

7 and 8), complexes B and C generated high molecular weight ES copolymers. As

described in our previous report,33 the pendant amine donor has a significant effect on

incorporation of styrene into ethylene sequences.23 The styrene content increased with

increasing styrene concentration and decreased with increasing ethylene pressure (entries

9−11, 16−18), producing ES copolymers containing various styrene contents (39−71

mol%). The catalytic activities were also affected by the Al/Ti ratios, and the polymer

yield for resultant copolymer increased with higher Al/Ti ratio (entries 12 vs. 13).

Page 115: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

97

Fractionation of the crude polymers with acetone and THF yielded varying amounts

of acetone-soluble aPS, THF-soluble ES copolymers and THF-insoluble sPS (Table 5.2).

The THF-soluble fractions of the resultant ES copolymers showed monomodal molecular

weight distributions with molecular weights of Mn = 28,000−136,000 and polydispersities

of Mw/Mn = 1.4−3.4. The THF-soluble ES copolymer derived from complex C (Mn =

136,000, entry 18) exhibited a higher molecular weight than that derived from complex B

(Mn = 38,000, entry 12).

The THF-soluble fractions derived from B and C were analyzed by 13C NMR

spectroscopy, which provided clear evidence for the formation of ES copolymers (Figure

5.5). 13C NMR analyses of the THF-soluble products revealed that the copolymers

consisted of styrene repeating units (Tββ and Sαα) and ethylene repeating units (Sδδ)

connected by ES hetero-sequences (Sαδ) (Figure 5.5). Notably, the 13C NMR spectra of

entries 11−14, 17 and 18 showed a resonance at 43.5 ppm, indicative of the Tβδ sequence

that is characteristic of SSE sequences in the copolymers. Resonances centered at

34.5−35.1 ppm associated with regioirregular insertions of styrene are also observed.9,13,24

Page 116: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

98

Figure 5.5 Aliphatic regions of 13C NMR spectra and peak assignments of ethylene-

styrene copolymers (THF-soluble fractions) prepared by B or C/MAO under different

monomer feed ratios (entries 9, 13, 16, and 18 in Table 5.2)

Page 117: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

99

Thermal analyses of the resulting THF-soluble ES copolymers revealed that

copolymers exhibited two glass transition temperatures; one centered between Tg =

15−45 °C and the other between Tg = 95−100 °C (Table 5.2 and Figures 5.6 and 5.7). The

lower Tg’s are consistent with an ES phase, while the higher are indicative of a

polystyrene phase. The increase in the lower Tg values with increasing styrene content is

further evidence that the ES copolymers are generated by a competitive insertion of

ethylene and styrene. The THF-soluble fractions of copolymers obtained at high

[styrene]/[ethylene] feed ratios exhibited melting points of approx. 260 °C (entries

11−14, 17−18), whereas those obtained at low [styrene]/[ethylene] feed ratios exhibited

melting points of approx. 120−130 °C (entries 9 and 10). This thermal behavior is

indicative of the formation of blocky or tapered ES copolymer, although the possibility

that trace amount of sPS or PE was not completely removed by the fractionation method

cannot be ruled out.

Page 118: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

100

Entry 13 (a) crude polymer

Page 119: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

101

Entry 13 (b) THF-soluble fraction

Page 120: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

102

Entry 13 (c) THF-insoluble fraction

Figure 5.6 13C NMR and DSC of entry 13 in Table 5.2: (a) crude, (b) THF-soluble

fraction, (c) THF-insoluble fraction (ES copolymer produced with B/MAO)

Page 121: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

103

Entry 18 (a) crude polymer

Page 122: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

104

Entry 18 (b) THF-soluble fraction

Figure 5.7 13C NMR and DSC of entry 18 in Table 5.2: (a) crude and (b) THF-soluble

fraction (ES copolymer produced with C/MAO)

Page 123: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

105

Representative ES copolymers were examined by GPC/FT-IR spectra to analyze

comonomer distributions along the whole molecular weight range.37 For the THF-soluble

fraction of entry 14 (63 mol% styrene), a uniform distribution of styrene is observed for

the entire molecular weight distribution (Figure 5.8(b), Mw/Mn = 2.0). However, for a

compositionally similar ES copolymer obtained under slightly different conditions (entry

13, 66 mol% styrene, Mw/Mn = 3.4) for which the polydispersity is broader, the fractional

amount of styrene is higher at lower molecular weights as seen in Figure 5.8(a).

The results of the fractionation, 13C NMR, GPC and thermal analysis of the THF-

soluble fractions suggest that the ES copolymers generated by B and C are either (i)

tapered or blocky sPS/ES copolymers or (ii) reactor blends of ES copolymers with

varying amounts of sPS homopolymers that were incompletely removed by THF

fractionation. The two glass transition temperatures observed suggest that the ES and

polystyrene phases are phase separated, consistent with either a blocky microstructure or

a blend. The Tβδ resonances (characteristic of SSE sequences) observed in the 13C NMR

spectra of the THF-soluble fractions of samples 11−14, 17 and 18 could be interpreted as

representative of the sPS/ES block junction or could be associated with SS sequences in

the ES phase.24 The observation that the THF-soluble fraction of entry 14 exhibits a

uniform styrene distribution as well as a high melting temperature is indicative of block

copolymer of ES sequences and sPS sequences. Yokota had observed similar behavior

with the tetramethyl analogue of complex B (Cp*N = C5Me4CH2CH2NMe2) and on the

basis of TREF analysis concluded that the Cp*N complex generates blocky sPS/ES

copolymers.23

Page 124: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

106

(a)

(b)

Figure 5.8 High-temperature GPC/FT-IR spectra for THF-soluble fractions of ethylene-

styrene copolymers prepared by B/MAO (a: entry 13, b: entry 14 in Table 5.2)

Page 125: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

107

On the other hand, we cannot rule out that the ES polymers derived from complexes

B and C are blends of ES copolymers and low-tacticity sPS of similar molecular weight

and solubility in THF. Our observations that the syndiotactic polystyrenes obtained with

B yield THF-soluble crystalline sPS fractions (Mn = 82,000) indicate that under

appropriate conditions sPS can exhibit reasonable solubility in THF, which implies that

the solvent fractionation procedures typically employed11,13,35,36 are ineffective for

separating lower-tacticity sPS from ES copolymers of similar molecular weight. The

number average molecular weights of the THF-soluble fractions (ES) and THF-insoluble

fractions (sPS) are similar by GPC. In addition, the high melting points observed (260–

262 °C) for the THF-soluble fractions of entries 11−14 and 17 are higher than might be

expected49,50 for a random,20 tapered or blocky sPS/ES copolymer, unless the sPS blocks

were unusually long and devoid of ethylene. For example, Hou et al. reported ethylene-

styrene block copolymer having 56–87 mol% of styrene with melting points of 214−245

°C19 and Grassi and coworkers reported melting temperatures of 200–242 °C for sPS-

block-PE copolymers (43–93 mol% styrene) prepared by hydrogenation of syndiotactic

styrene-butadiene block copolymers.51 Thus, while the data from this work and that of

Yokota23 are consistent with blocky sPS/ES copolymers derived from B (or its

tetramethyl analogue), the similar solubility of ES copolymers and low-melting sPS in

THF and the well-known ability of sPS to form clathrates and gels52 illustrate the

challenges of distinguishing sPS/ES block copolymers from their blends.

5.3 CONCLUSIONS

Monocyclopentadienyl complexes containing a pendant neutral amine donor,

CpNTiCl2X (X = Cl, or TEMPO) are active for syndiospecific styrene

homopolymerization at 70 °C and also effective for ES copolymerization. The complex C

having a TEMPO ligand produces higher molecular weight ES copolymer with narrower

polydispersity compared to B under the identical conditions. The styrene content in the

Page 126: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

108

ES copolymers is adjustable by controlling the monomer feed ratios. The

copolymerization behavior with B and C is strongly influenced by the reaction

temperature; at 120 °C complexes B and C generate blends of ES copolymers and aPS,33

whereas at 70 °C these complexes afford ES copolymers and syndiotactic polystyrene,

either as blocky sequences in the ES copolymers or as reactor blends.

5.4 EXPERIMENTAL SECTION

5.4.1 General considerations

All reactions and polymerizations were performed in a drybox or with standard

Schlenk techniques under nitrogen atmosphere. Catalyst A was purchased from Strem

Chemicals, Inc., and catalysts B and C were prepared according to the literature

procedures.28,29,34 Ethylene (Matheson, polymerization grade) and argon (supplied by

Praxair) were purified by passage through columns of Alltech Oxy-trap and Alltech gas

drier. MAO (PMAO-IP in a toluene solution by Akzo Nobel) was dried under vacuum to

remove solvent prior to use. Toluene was dried over metallic sodium/benzophenone

solutions and distilled under reduced pressure before use. Styrene was purified by

distillation under reduced pressure over CaH2 and stored in the freezer. Polymerizations

were carried out in a Lab-Crest® glass pressure reaction vessel (Andrews Glass). Prior to

the polymerization the reactor was filled and flushed three times with desired

overpressure of ethylene or argon.

5.4.2 Representative procedure for preparation of ethylene-styrene copolymer

A total volume of toluene (25 mL) suspension containing MAO and styrene was

loaded into a glass pressure bottle. The suspension was placed in an oil bath at 70 °C

while stirring under a constant ethylene pressure. The reaction was initiated immediately

Page 127: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

109

by injection of the catalyst solution in 5 mL toluene and terminated by addition of

methanol. The resulting polymer was precipitated in acidified methanol (300 mL),

filtered, washed with additional methanol, and dried in a vacuum oven at 60 °C for at

least 6 hours.

5.4.3 Polymer Fractionation

Selective solvent fractionation to remove homopolymers was carried out using a

Soxhlet extractor according to the literature procedure.11,13,35,36 Crude copolymer was

placed in a Whatman® cellulose thimble and washed with boiling acetone for at least 12

hours in order to remove atactic polystyrene. The acetone-insoluble fraction in a

Whatman® thimble was placed in a Soxhlet extractor and extracted with boiling THF for

at least 12 hours to remove crystalline homopolymers. The THF-soluble extracts were

isolated, dried in a vacuum oven, and analyzed by NMR, DSC, and GPC.

5.4.4 Polymer Analysis

13C NMR spectra were recorded at 75 MHz on Varian Inova 300 spectrometer at 95

°C in a 80:20 v/v solution of 1,2-dichlorobenzene/benzene-d6 in the presence of

chromium(III) acetylacetonate to reduce the relaxation time of the aliphatic carbons. The

peak assignments of the 13C NMR spectra of the copolymers were made by comparing

the spectra of ES copolymers in the literature.9,37 S represents a secondary carbon,

whereas T represents a tertiary carbon. The Greek letters (α, β, γ, δ) show the distance to

the next tertiary carbon atom to each side, where α equals one, β equals two, γ equals

three and δ equals four or more carbon atom distance. By using the areas of the peaks,

the comonomer composition can be evaluated by means of the following equation:

Page 128: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

110

xs = [A(Sαγ+) + A(Sαβ) + 2.A(Sαα)]/[A(Sγ+γ+) + A(Sββ) + A(Sβδ) + 1.5.A(Sαγ+) +

1.5.A(Sαβ) + 2.A(Sαα)]

This formula is adopted from Oliva et al.38,39 and modified to be valid for different

copolymer types. The formula is derived from the frequency of secondary carbons related

to tertiary carbons. If Sαα is not taken into consideration the formula is only valid for ES

copolymer containing isolated styrene units. By including Sαα it is valid for all polymer

distributions.

Differential scanning calorimetry (DSC) was performed using a TA Instruments

Q100 differential scanning calorimeter. Melting and glass transition temperatures were

determined at a heating and cooling rate of 5 °C/min. The instrument was calibrated by

measurement of the melting point of indium. Thermal history in the copolymer was

eliminated by recording the second DSC scan.

For gel permeation chromatography (GPC) measurements, the chromatographic

system consisted of a Polymer Laboratories Model PL-220. The column and carousel

compartments were operated at 140 °C. Three Polymer Laboratories 10 μm Mixed-B

columns were used with a solvent of 1,2,4-trichlorobenzene. The samples were prepared

at a concentration of 0.1 g of polymer in 50 mL of solvent. The solvent used to prepare

the samples contained 200 ppm of the antioxidant butylated hydroxytoluene (BHT).

Samples were prepared by agitating lightly for 4 hours at 160 oC. The injection volume

used was 100 microliters and the flow rate was 1.0 mL/min. Calibration of the GPC

column set was performed with narrow molecular weight distribution polystyrene

standards purchased from Polymer Laboratories. Polyethylene equivalent molecular

weight calculations were performed using Viscotek TriSEC software Version 3.0.

Page 129: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

111

5.5 REFERENCES AND NOTES

1. Malanga, M. Adv Mater 2000, 12, 1869-1872.

2. Schellenberg, J. Prog Polym Sci 2009, 34, 688-718.

3. Rodrigues, A.-S.; Carpentier, J.-F. Coord Chem Rev 2008, 252, 2137-2154.

4. Pellecchia, C.; Oliva, L. Rubber Chem Technol 1999, 72, 553-558.

5. Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew

Chem Int Ed 1995, 34, 1143-1170.

6. Scheirs, J.; Priddy, D. B., Eds. Modern Styrenic Polymers: Polystyrenes and Styrenic

Copolymers; Wiley: Chichester, 2003.

7. Ishihara, N.; Seimiya, T.; Kuramoto, M.; Uoi, M. Macromolecules 1986, 19, 2464-

2465.

8. Ishihara, N.; Kuramoto, M.; Uoi, M. Macromolecules 1988, 21, 3356-3360.

9. Arriola, D. J.; Bokota, M.; Campbell, R. E.; Klosin, J.; LaPointe, R. E.; Redwine, O.

D.; Shankar, R. B.; Timmers, F. J.; Abboud, K. A. J Am Chem Soc 2007, 129,

7065-7076.

10. Guo, N.; Stern, C. L.; Marks, T. J. J Am Chem Soc 2008, 130, 2246-2261.

11. Nomura, K.; Komatsu, T.; Imanishi, Y. Macromolecules 2000, 33, 8122-8124.

12. Nomura, K.; Zhang, H.; Byun, D.-J. J Polym Sci Part A: Polym Chem 2008, 46,

4162-4174.

13. Zhang, H.; Nomura, K. Macromolecules 2006, 39, 5266-5274.

14. Hou, Z.; Tezuka, H.; Zhang, Y.; Yamazaki, H.; Wakatsuki, Y. Macromolecules 1998,

31, 8650-8652.

15. Hou, Z.; Zhang, Y.; Tezuka, H.; Xie, P.; Tardif, O.; Koizumi, T.-a.; Yamazaki, H.;

Wakatsuki, Y. J Am Chem Soc 2000, 122, 10533-10543.

16. Capacchione, C.; Proto, A.; Ebeling, H.; Mülhaupt, R.; Okuda, J. J Polym Sci Part A:

Polym Chem 2006, 44, 1908-1913.

17. Capacchione, C.; D'Acunzi, M.; Motta, O.; Oliva, L.; Proto, A.; Okuda, J. Macromol

Chem Phys 2004, 205, 370-373.

Page 130: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

112

18. Sernetz, F. G.; Mülhaupt, R.; Waymouth, R. M. Macromol Chem Phys 1996, 197,

1071-1083.

19. Luo, Y.; Baldamus, J.; Hou, Z. J Am Chem Soc 2004, 126, 13910-13911.

20. Rodrigues, A.-S.; Kirillov, E.; Lehmann, C. W.; Roisnel, T.; Vuillemin, B.; Razavi,

A.; Carpentier, J.-F. Chem Eur J 2007, 13, 5548-5565.

21. Perrin, L.; Sarazin, Y.; Kirillov, E.; Carpentier, J.-F.; Maron, L. Chem Eur J 2009, 15,

3773-3783.

22. Oliva, L.; Mazza, S.; Longo, P. Macromol Chem Phys 1996, 197, 3115-3122.

23. Yokota, K.; Kohsaka, T.; Ito, K.; Ishihara, N. J Polym Sci Part A: Polym Chem 2005,

43, 5041-5048.

24. Xu, G.; Lin, S. Macromolecules 1997, 30, 685-693.

25. Zhang, H.; Byun, D.-J.; Nomura, K. Dalton Transactions 2007, 1802-1806.

26. Nomura, K.; Liu, J.; Padmanabhan, S.; Kitiyanan, B. J Mol Cat A: Chem 2007, 267,

1-29.

27. Chien, J. C. W.; Yu, Z.; Marques, M. M.; Flores, J. C.; Rausch, M. D. J Polym Sci

Part A: Polym Chem 1998, 36, 319-328.

28. Flores, J. C.; Chien, J. C. W.; Rausch, M. D. Macromolecules 1996, 29, 8030-8035.

29. Flores, J. C.; Chien, J. C. W.; Rausch, M. D. Organometallics 1994, 13, 4140-4142.

30. Müller, C.; Vos, D.; Jutzi, P. J Organomet Chem 2000, 600, 127-143.

31. Van Tol, M. F. H.; Van Beek, J. A. M.; Pieters, P. J. J. In Int Pat Appl PCT WO

9742233, 1997.

32. Van Tol, M. F. H.; Van Beek, J. A. M.; Pieters, P. J. J. In Int Pat Appl PCT WO

9742240, 1997.

33. Son, K.-s.; Jöge, F.; Waymouth, R. M. Macromolecules 2008, 41, 9663-9668.

34. Huang, K.-W.; Han, J. H.; Musgrave, C. B.; Waymouth, R. M. Organometallics 2006,

25, 3317-3323.

35. Zhang, H.; Nomura, K. J Am Chem Soc 2005, 127, 9364-9365.

36. Noh, S. K.; Lee, M.; Kum, D. H.; Kim, K.; Lyoo, W. S.; Lee, D.-H. J Polym Sci Part

A: Polym Chem 2004, 42, 1712-1723.

Page 131: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

113

37. Nomura, K.; Okumura, H.; Komatsu, T.; Naga, N. Macromolecules 2002, 35, 5388-

5395.

38. Oliva, L.; Caporaso, L.; Pellecchia, C.; Zambelli, A. Macromolecules 1995, 28, 4665-

4667.

39. Oliva, L.; Izzo, L.; Longo, P. Macromol Rapid Commun 1996, 17, 745-748.

40. Stelzig, S. H.; Tamm, M.; Waymouth, R. M. J Polym Sci Part A: Polym Chem 2008,

46, 6064-6070.

41. Blais, M. S.; Chien, J. C. W.; Rausch, M. D. Organometallics 1998, 17, 3775-3783.

42. Liu, J.; Ma, H.; Huang, J.; Qian, Y.; Chan, A. S. C. Eur Polym J 1999, 35, 543-545.

43. Tian, G.; Xu, S.; Zhang, Y.; Wang, B.; Zhou, X. J Organomet Chem 1998, 558, 231-

233.

44. Lin, R. H.; Woo, E. M. Polymer 2000, 41, 121-131.

45. Woo, E. M.; Wu, F. S. Macromol Chem Phys 1998, 199, 2041-2049.

46. Sun, Y. S.; Woo, E. M. J Polym Sci Part B: Polym Phys 2000, 38, 3210-3221.

47. Sun, Y. S.; Woo, E. M. Macromolecules 1999, 32, 7836-7844.

48. Yuan, Z.; Song, R.; Shen, D. Polym Int 2000, 49, 1377-1382.

49. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press, 1953.

50. Allegra, G.; Marchessault, R. H.; Bloembergen, S. J Polym Sci Part B: Polym Phys

1992, 30, 809-815.

51. Grassi, A.; Caprio, M.; Zambelli, A.; Bowen, D. E. Macromolecules 2000, 33, 8130-

8135.

52. Daniel, C.; Avallone, A.; Guerra, G. Macromolecules 2006, 39, 7578-7582.

Page 132: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

114

This page was intentionally left blank.

Page 133: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

CHAPTER 6

SYNTHESIS AND STRUCTURE OF MONO-, BI-, AND TRIMETALLIC

N,N-BIS[2-DIPHENYLPHOSPHINO)PHENYL-FORMIDINE COMPLEXES

Page 134: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

116

6.1 INTRODUCTION

The placement of two metal centers in close proximity can allow for cooperative

effects, both improving the efficiency and selectivity in catalysis and promoting reactions

that are not possible using a single metal center.1-5 Hence, the formation of bimetallic

complexes is of considerable interest to many fields. One effective way to obtain such

complexes is through the use of a dinucleating ligand.6-10 Among these, the chemistry of

bimetallic complexes containing bridged ligands, such as

bis(diphenylphosphino)methane, (diphenylphosphino)pyridine, and various P2N2-type

ligands has developed extensively over the past decades.11-16 Our group has explored a

class of dinucleating N-heterocyclic carbene ligands spanned by pyrazoles (CNNC) and

corresponding new bimetallic complexes.17 As an extension of these efforts, we initiated

investigations on amidine-bridged ligands N,N'-bis[2-diphenylphosphino)phenyl]-

formamidines (PNNP) recently disclosed by Tsukada for binuclear Pt2, Pd2 and hetero-

bimetallic PtPd complexes.1 Tsukada has investigated these complexes for a variety of

organic transformations including arylation of alkynes and alkyne/alkene coupling

reactions.18-22 An appealing feature of these ligands is the ability to introduce metal

complexes in a step-wise fashion, enabling the synthesis of heterobimetallic complexes.

Thus, we initiated studies of these complexes as potential binuclear olefin polymerization

catalysts and to this end we have expanded the coordination chemistry of this ligand to a

family of metal complexes containing Pd, Ni, Fe, Co and Cu. Herein we report the

synthesis, characterization and crystal structures of hetero-trimetallic, homo-/hetero-

bimetallic, and monometallic complexes. Definitive evidence for the structures of all six

complexes discussed in this chapter is given by X-ray crystal structure analyses.

6.2 RESULTS AND DISCUSSION: SYNTHESES AND DESCRIPTION OF

CRYSTAL STRUCTURES

Page 135: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

117

6.2.1 Bimetallic Complexes

NH

NPPh2PPh2

NN

Ph2PPPh2

Pd

Me6.1 6.3

N NPPh2Ph2P Pd Ni

ClMe Cl

(tmeda)PdMe2 NiCl2(dme)

THF

Scheme 6.1

As shown by Tsukada,1 treatment of the PNNP ligand with one equivalent of

(tmeda)PdMe2 generates a stable square-planar (PNNP)PdMe complex 6.1, a useful

synthon for generating binuclear (PNNP)PdXMY2 complexes using a step-by-step

reaction protocol. (PNNP)PdMe (6.1) was treated with an equimolar quantity of

NiCl2(dme) (dme = 1,2-dimethoxyethane) in tetrahydrofuran to yield the mixed-metal Pd-

Ni compound (6.3) (Scheme 6.1). Upon addition of the reaction solvent to the two solid

compounds, the color instantly turned dark purple. The product 6.3 was isolated as a

purple solid in 99 % yield.

This mixed-metal complex crystallized as purple prismatic crystals by vapor

diffusion of pentane into a dichloromethane solution. The molecular structure is shown in

Figure 6.1. The palladium is coordinated in a square-planar fashion by a phosphorus and

nitrogen atom of the chelating ligand, a methyl group, and a chlorine atom that bridges to

the nickel center. The methyl group is located trans to the nitrogen; the coordinating P

and N are necessarily in a cis-geometry. The nickel is also coordinated in a square-planar

geometry by the other nitrogen and phosphorus atom of the ligand and two chlorides, one

of which is the bridging chloride (see Figure 6.1). The τ4 value (a measure of the

coordination about a four-coordinate atom) for the Pd and the Ni are 0.026 and 0.116,

respectively, indicating a square planar geometry.23 This complex 6.3 adopts an A-frame

structure with the bridging chloride at the apex, where the angles of the two square planes

are almost perpendicular to one another (angle formed by the mean planes is 89.07(10)°,

Page 136: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

118

see Table 6.1). While the Pd and the Ni are in close proximity, the PdNi distance =

2.9655(10) Å lies outside the sum of the covalent radii.24

Figure 6.1 Molecular structure of 6.3 represented by thermal ellipsoids at 50%

probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and

angles (deg): see Table 6.1.

KOBu/NiCl2(dme)

NiCl2(dme)NH

NPPh2Ph2P

NH

NPPh2Ph2P THF

THF

N NPPh2Ph2P Ni Ni

XCl Cl

6.4(X= Cl (6.4a) or OH (6.4b) in 1:1 ratio)

6.5

NH

NPPh2

PPh2Ni

ClHNN

Ph2PPh2PNi

ClCl

Cl

Scheme 6.2

Page 137: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

119

To investigate the influence of the metal radii on the coordination geometry of these

ligands, we investigated the corresponding Ni complexes 6.4 and 6.5 (Scheme 6.2). A

combination of P,N-ligands with Ni(II) has been shown to be very effective for the

catalytic oligomerization of ethylene.25-30

The addition of a THF solution of a 1:1 mixture of the PNNP ligand and KOtBu to

two equivalents of NiCl2(dme) yielded homo-bimetallic NiNi complex (6.4), which

crystallized as red plate-like crystals by vapor diffusion of diethyl ether into a

dichloromethane solution. The 1H NMR spectrum of 6.4 was consistent with a

symmetrical dinuclear Ni complex, however the micro-analytical data and x-ray analysis

revealed that 6.4 was comprised of a 1:1 mixture of the bridging chloride 6.4a and the

bridging hydroxide 6.4b. As the hydroxide co-crystallizes with the chloride, we were

unable to separate the two. We have not yet definitively assigned the source of hydroxide

in the formation of 6.4, but adventitious water in the KOtBu is a likely source. Efforts to

reproduce the synthesis of 6.4 yielded a similar mixture of 6.4a and 6.4b. There are eight

molecules of the complex and a dichloromethane solvate in unit cell of the C-centered,

monoclinic space group C2/c. The nickel centers are each coordinated in a square-planar

geometry by a phosphorus and a nitrogen of the ligand. Completing the coordination

sphere is a terminal chloride and a bridging chloride 6.4a or hydroxide 6.4b (see Figure

2). The structure was refined as a 1:1 mixture; the oxygen was refined isotropically while

the bridging chlorine was modeled with anisotropic thermal motion parameters. The bond

distances from the nickel atoms to the oxygen and the chlorine are in the expected ranges

for such bonds (see Table 6.1). The angle formed by the two Ni-containing square planes

22.88(10)°, considerably less that those of the analogous Pd homodimer 6.2a (78.67°) or

PdNi heterodimer 3 (89.07°) (see Table 6.1). This more planar arrangement is likely a

consequence of the smaller covalent radii of the Ni relative to Pd or Pt.

Page 138: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

120

Table 6.1 Selected Bond Lengths (Å) and Bond Angles (deg) for Three Bimetallic

Complexes, 6.2-6.4

PdPd (6.2a)1 PdNi (6.3) NiNi (6.4)

Pd(1)-N(1) 2.04(1) Pd(1)-N(1) 2.122(5) Ni(1)-N(1) 1.921(3)

Pd(1)-P(1) 2.200(4) Pd(1)-P(1) 2.1750(18) Ni(1)-P(1) 2.1217(11)

Pd(1)-Cl(1) 2.405(4) Pd(1)-Cl(1) 2.3928(18) Ni(1)-Cl(3) 2.142(3)

Pd(1)-Cl(2) 2.285(5) Pd(1)-C(2) 2.055(6) Ni(1)-Cl(1) 2.1647(13)

Pd(2)-N(2) 2.05(1) Ni(1)-N(2) 1.977(5) Ni(2)-N(2) 1.911(3)

Pd(2)-P(2) 2.189(4) Ni(1)-P(2) 2.1318(18) Ni(2)-P(2) 2.1348(12)

Pd(2)-Cl(1) 2.398(4) Ni(1)-Cl(1) 2.3077(17) Ni(2)-Cl(3) 2.102(3)

Pd(2)-Cl(3) 2.276(5) Ni(1)-Cl(2) 2.133(2) Ni(2)-Cl(2) 2.1643(14)

N(1)-C(1) 1.32(2) N(1)-C(1) 1.312(8) N(1)-C(1) 1.328(5)

N(2)-C(1) 1.31(2) N(2)-C(1) 1.327(8) N(2)-C(1) 1.327(5)

Pd(1)…Pd(2) 3.24 Pd(1)…Ni(1) 2.9655(10)

Pd(1)-Cl(1)-Pd(2)

84.8(1) Pd(1)-Cl(1)-Ni(1)

78.21(6) Ni(1)-Cl(3)-Ni(2)

116.0

N(1)-C(1)-N(2) 130(1) N(1)-C(1)-N(2) 124.6(6) N(1)-C(1)-N(2)

130.6

Ni(1)-O(1)-Ni(2)

147.5

Angle formed by two square planes

89.07(10) Angle formed by two square planes

22.88(10)

Page 139: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

121

Figure 6.2 Molecular structure of 6.4 represented by thermal ellipsoids at 50%

probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and

angles (deg): see Table 6.1.

Addition of a THF solution of NiCl2(dme) to an equimolar amount of the PNNP

ligand generated the bridging chloride dimer 6.5 as a dark yellow solid in 94 % yield. The

complex crystallizes as yellow, prismatic crystals from a dichloromethane/ hexane

solution. Structural characterization by X-ray crystallography revealed that complex 6.5

exists as a dimer. The asymmetric unit consists of one nickel center coordinated by one

phosphorus and one imide nitrogen of the ligand and two chlorine atoms. Expansion of

the asymmetric unit through the inversion center at [0, 0, 0] shows that the Ni is

coordinated in a distorted square-pyramidal fashion by two bridging chlorides and one

non-bridging chlorine as well as the previously noted nitrogen and phosphorus. The

phosphorus occupies the apical position of the square pyramid. The τ5 value for the Ni

center is 0.47 [given by τ5 = (β-α)/60], indicating that the geometry is intermediate

between full square pyramidal (τ5 = 0) and trigonal bipyramidal (τ5 = 1).31 The bridging

chlorine, Cl(1), has a slightly asymmetric bonding to the nickel centers, reflected in the

two Cl-Ni distances (2.326 and 2.452 Å). The hydrogen on the amido nitrogen, N(2),

forms an intra-molecular H-bond to the non-bridging chlorine, Cl(2) [N(2)Cl(2)

distance = 2.38(2) Å].

Page 140: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

122

Figure 6.3 Molecular structure of 6.5 represented by thermal ellipsoids at 50%

probability. Hydrogen atoms and solvate molecules have been omitted for clarity.

Selected bond lengths (Å) and angles (deg): Ni(1)-N(1), 2.1161(16); Ni(1)-Cl(1),

2.4524(7); Ni(1)-Cl(2), 2.2450(7); Ni(1)-P(1), 2.2893(6); Ni(1)-Cl(1A), 2.3258(6); N(1)-

C(1), 1.299(2); N(2)-C(1), 1.340(2); Ni(1)-Cl(1)-Ni(1A), 95.641(18); Cl(1)-Ni(1)-

Cl(1A), 84.359(18); N(1)-C(1)-N(2), 125.59(17).

6.2.2 Trimetallic Complex

NH

NPPh2PPh2

NN

Ph2PPPh2

Pd

Me

6.1

(tmeda)PdMe2 Cu(AN)4PF6N N

PPh2PPh2

N NPh2PPh2P

Pd Cu PdMe Me

6.8

PF6

Scheme 6.3

Page 141: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

123

As previous reports using PNNP dealt solely with group 10 coordination,1 our

interest toward activating polar comonomers in olefin polymerization motivated an

expansion of the coordination chemistry of PNNP to metals outside group 10. Compared

to homodinuclear d8-d8 or d10-d10 complexes, studies on the metal-metal interactions or

bonding properties in heterobimetallic d8-d10 complexes are sparse in the literature.32, 33

Introduction of one equivalent of Cu(AN)4PF6 (AN = acetonitrile) to complex 6.1

produced the hetero-trimetallic complex (6.8), which crystallized as yellow block-like

crystals from a dichloromethane/ diethyl ether solution. The solid state structure of 6.8

adopts an unusual butterfly structure, where the two approximately square planar Pd

centers are hinged by Cu(I) coordinated in a linear N-Cu-N arrangement from the

amidine nitrogens derived from two PNNP ligands. The Pd centers are ligated by two

trans-phosphines derived from two PNNP ligands, an amidine nitrogen and a terminal

methyl group, but is distorted from a square planar geometry, as evidenced by P(1)-

Pd(1)-P(3) and P(2)-Pd(2)-P(4) angles of 152.98(4)° and 153.79(4)°, respectively (The τ4

value for the Pd(1) and Pd(2) square planes are 0.29 and 0.26, respectively). This

distortion may be a consequence of a weak d8-d10 interaction between the Pd and Cu

centers. The CuPd(1,2) distances of 2.8291(5) and 2.8016(5) Å, respectively, fall

outside the sum of the covalent radii (approx. 2.71 Å)28 but are comparable to the bond

lengths observed for heterobinuclear Pt(II)Cu(I) (distances = 2.7368(4) Å) and

Pd(II)Au(I) (distances = 2.954(1) Å) complexes of [M′M′′(μ-dcpm)2(CN)2]+ (dcpm =

bis(dicyclohexylphosphino)methane) for which a d8-d10 interaction was proposed.32

Page 142: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

124

Figure 6.4 Molecular structure of 6.8 represented by thermal ellipsoids at 50%

probability. Hydrogen atoms, counter ions, solvent molecules, and phenyl groups

attached to carbons 21, 31, 51, 61, 81, 91, 111, and 121 have been omitted for clarity.

Selected bond lengths (Å) and angles (deg): Pd(1)-Cu(1), 2.8291(5); Pd(2)-Cu(1),

2.8016(5); Pd(1)-C(3), 2.075(4); Pd(1)-N(1), 2.180(3); Pd(1)-P(1), 2.2372(10); Pd(1)-

P(3), 2.3683(10); Pd(2)-C(4), 2.068(4); Pd(2)-N(4), 2.156(3); Pd(2)-P(2), 2.3405(10);

Pd(2)-P(4), 2.2641(10); Cu(1)-N(2), 1.880(3); Cu(1)-N(3), 1.868(3); Cu(1)-P(3),

2.8149(10); Pd(2)-Cu(1)-Pd(1), 111.832(18); N(3)-Cu(1)-N(2), 179.07(14).

Page 143: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

125

6.2.3 Monometallic Complexes

6.6: M = Co, 6.7: M = Fe

NH

NPPh2PPh2

MCl2 NH

NPh2P PPh2M

ClCl

THF

Scheme 6.4

Further exploration into the coordination chemistry outside of group 10 was

extended to Co and Fe complexes. With a focus on iron and cobalt catalysts for use in

olefin polymerization, the most effective example is the N^N^N tridentate

(bis(imino)pyridyl)metal complexes34-39 as well as (mono(imino)pyridyl)metal

complexes.40, 41 It is noteworthy that iron complexes with tridentate α-diimine ligands

containing phosphorus donor atoms exhibits enhanced catalyst activity in ethylene

oligomerization.42 Four-coordinate iron complexes have also been shown as useful

catalysts for the atom-transfer radical polymerization of olefins.43, 44

The monometallic cobalt compound (6.6) was prepared by reacting equimolar

quantity of PNNP with CoCl2 in tetrahydrofuran (Scheme 6.4). The product was obtained

as green solid in 89 % isolated yield. The cobalt complex crystallizes as turquoise rod-

like crystals from a dichloromethane / diethyl ether solution. The cobalt is coordinated in

a distorted tetrahedral fashion by two chlorine atoms and one nitrogen and phosphorus of

the ligand. The τ4 value for this complex (given by τ4 = [360-(β+α)]/141) is 0.86.31 The

non-coordinating nitrogen is protonated and forms an intramolecular H-bond to one of

the chlorines (N(2)Cl(2) distance = 3.241(2) Å, see Table 6.2). The final phosphorus

does not have any interactions with nearby atoms or molecules.

Page 144: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

126

Figure 6.5 Molecular structure of 6.6 represented by thermal ellipsoids at 50%

probability. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and

angles (deg): see Table 6.2.

The monometallic iron compound (6.7) was prepared by reacting equimolar quantity

of PNNP with FeCl2 in tetrahydrofuran (Scheme 6.4). The product was obtained as green

solids in excellent yields (87 %). The iron complex crystallizes as colorless columnar

crystals from a dichloromethane/ diethyl ether solution. The iron is coordinated in a

distorted tetrahedral fashion by one nitrogen and one phosphorus of the ligand and two

chlorine atoms (see Figure 6.6). The τ4 value of this complex is 0.82.31 The bond

distances about the iron reflect its distorted nature (see Table 6.2). The hydrogen on the

amide nitrogen N(2) forms an intramolecular H-bond to one of the chlorine atoms

[N(2)Cl(1) distance = 3.2676(19) Å, see Table 6.2].

Figure 6.6 Molecular structure of 6.7 represented by thermal ellipsoids at 50%

probability. Selected bond lengths (Å) and angles (deg): see Table 6.2.

Page 145: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

127

Table 6.2 Selected Bond Lengths (Å) and Bond Angles (deg) for Co (6.6) and Fe (6.7)

Monometallic Complexes

Co (6.6) Fe (6.7)

Co(1)-N(1) 2.029(2) Fe(1)-N(1) 2.1046(17)

Co(1)-P(1) 2.3587(7) Fe(1)-P(1) 2.4189(7)

Co(1)-Cl(1) 2.2232(7) Fe(1)-Cl(1) 2.2357(7)

Co(1)-Cl(2) 2.2262(7) Fe(1)-Cl(2) 2.2345(8)

N(1)-C(1) 1.306(3) N(1)-C(1) 1.302(2)

N(2)-C(1) 1.333(3) N(2)-C(1) 1.334(3)

N(2)…Cl(2) 3.241(2) N(2)…Cl(1) 3.2676(19)

Cl(1)-Co(1)-Cl(2) 115.00(3) Cl(1)-Fe(1)-Cl(2) 121.30(3)

N(1)-C(1)-N(2) 121.4(2) N(1)-C(1)-N(2) 121.54(18)

Page 146: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

128

Table 6.3 Crystallographic Data

6.3 6.4 6.5

Empirical formula C38H32Cl2N2NiP2Pd C37H29.5Cl2.5N2Ni2O0.5P2 C74H58Cl4N4Ni2P4

Formula weight 814.64 778.11 1386.37

Space group P-1 C2/c C2/c

Temperature/ K 150(2) 150(2) 150(2)

Wavelength/ Å 0.71073 0.71073 0.71073

a/ Å 12.838(3) 15.834(4) 23.651(5)

b/ Å 13.401(3) 9.963(2) 9.4114(19)

c/ Å 14.718(3) 45.658(11) 32.702(7)

α/ deg 95.585(3) 90 90

β/ deg 115.631(3) 94.639 99.660

γ/ deg 108.152(3) 90 90

Volume/ Å3 2088.2(8) 7179(3) 7176(3)

Z 2 8 8

Density (calcd)/ g cm-3 1.566 1.597 1.442

Absorption coefficient

(μ)/ mm-1

1.373 1.507 0.959

R1, wR2 (final) 0.0569, 0.1432 0.0527, 0.0862 0.0332, 0.0847

R1, wR2 (all data) 0.0856, 0.1592 0.0813, 0.0943 0.0431, 0.0910

Page 147: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

129

6.6 6.7 6.8

Empirical formula C37H30Cl2CoN2P2 C37H30Cl2FeN2P2 C76H64CuF6N4P5Pd2

Formula weight 694.43 691.35 1578.59

Space group P-1 P-1 P-1

Temperature/ K 150(2) 150(2) 150(2)

Wavelength/ Å 0.77490 0.71073 0.71073

a/ Å 9.1132(8) 9.1502(18) 13.3474(12)

b/ Å 14.1147(13) 14.158(3) 13.5411(12)

c/ Å 15.0208(14) 15.015(3) 21.2449(19)

α/ deg 109.9980(10) 109.988(2) 83.2750(10)

β/ deg 106.3640(10) 106.472(2) 74.1560(10)

γ/ deg 91.0360(10) 90.733(2) 89.0960(10)

Volume/ Å3 1728.0(3) 1739.9(6) 3668.0(6)

Z 2 2 2

Density (calcd)/ g cm-3 1.401 1.394 1.539

Absorption

coefficient(μ)/ mm-1

0.976 0.712 1.017

R1, wR2 (final) 0.0434, 0.1001 0.0406, 0.0991 0.0447, 0.1225

R1, wR2 (all data) 0.0646, 0.1095 0.0518, 0.1064 0.0638, 0.1352

Page 148: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

130

NH

NPPh2PPh2

NN

Ph2PPPh2

Pd

Me

N NPPh2Ph2P Pd Pd

ClCl L6.2a: R= Cl6.2b: R= Me

6.16.3

N NPPh2Ph2P Ni Ni

XCl Cl

6.4

6.6 6.7

N NPPh2PPh2

N NPh2PPh2P

Pd Cu PdMe Me

6.8

6.5

N NPPh2Ph2P Pd Ni

ClMe Cl

NH

NPPh2PPh2 Co

ClCl

NH

NPh2P PPh2Fe

ClCl

NH

NPPh2

PPh2Ni

ClHNN

Ph2PPh2PNi

ClCl

Cl

PF6

(X= Cl or OH in 1:1 ratio)

Scheme 6.5 All Related Complexes 6.1-6.8 Based on the PNNP Ligand1

6.3 CONCLUSIONS

The amidine ligand N,N'-bis[2-diphenylphosphino)phenyl]-formamidines (PNNP) is

a versatile ligand for the synthesis of a variety of mono-, bi-, and tri-metallic complexes

(Scheme 6.5). The ability of this ligand to stabilize mononuclear metal species enables

the facile synthesis of heterobimetallic structures by the stepwise introduction of different

metal precursors. The homo- and heterobimetallic Pd complexes adopt A-frame

structures, whereas the smaller homobimetallic Ni complexe adopts a more coplanar

arrangement of the two Ni square planes. The hetero-trimetallic complex 6.8 adopt a

butterfly structure, probably as a consequence of a weak d8-d10 interaction between the Pd

and Cu centers.

Page 149: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

131

6.4 EXPERIMENTAL SECTION

6.4.1 General considerations

Unless otherwise stated, all manipulations were carried out in a nitrogen atmosphere

using standard Schlenk-line techniques or in an inert atmospheres glove-box. Solvents

were purchased from Sigma-Aldrich or Fisher Chemical and used as received. All metal

precursors were purchased from Strem Chemicals and used as received. CD2Cl2 was

purchased from Cambridge Isotopes. Methylene chloride was dried over CaH2, vacuum

transferred, and stored under a nitrogen atmosphere. Tetrahydrofuran was dried over

sodium/benzophenone, vacuum transferred, and stored under a nitrogen atmosphere.

Bis[2-(diphenylphosphino)phenyl] formamidine (PNNP) and 1 were prepared as

previously reported.1 All NMR spectra were acquired on Inova 500 MHz or 600 MHz

spectrometers. 1H and 13C NMR spectra are referenced to the solvent residual peaks. 31P

NMR spectra are referenced to phosphoric acid in D2O.

6.4.2 Synthesis of (PNNP)PdMe(μ-Cl)NiCl (6.3)

A mixture of (PNNP)PdMe (6.1, 37 mg, 0.0546 mmol) and NiCl2(dme) (12 mg,

0.0546 mmol) was dissolved in THF (4 mL) and stirred for 15 minutes. A rapid color

change from yellow to dark purple was observed. The reaction mixture was dried in

vacuo to give a dark purple power of 3 (Yield: 44 mg, 99%). 1H NMR (500 MHz, 25 ˚C,

CD2Cl2): δ 1.49 (s, 3H, Pd-CH3), 6.29 (d, 1H, J = 7.5 Hz, Ph), 6.66 (t, 2H, J = 7.5 Hz, Ph),

7.03 (t, 1H, J = 7.5 Hz, Ph), 7.22 (t, 1H, J = 7.5 Hz, Ph), 7.27 (m, 1H, Ph), 7.35-7.59 (m,

13H, Ph), 7.78 (d, 1H, J = 7.5 Hz, amidine CH), 7.97-8.07 (m, 9H, Ph). 31P NMR (162

MHz, 25 ˚C, CD2Cl2): δ 25.74, 40.04. Anal. Calcd for (PNNP)PdMe(μ-Cl)NiCl ⋅ 0.25

CH2Cl2 : C, 54.96; H, 3.92; N, 3.35. Found: C, 55.11; H, 4.15; N, 3.14.

Page 150: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

132

6.4.3 Synthesis of (PNNP)NiCl(μ-X)NiCl (X = Cl or OH in 1:1 ratio) (6.4)

To a vial containing KOtBu (33.7 mg, 0.3 mmol) and the PNNP ligand (169 mg, 0.3

mmol) was added 8 mL THF and stirred. A color change from white to pale yellow was

observed immediately. After 10 minutes, the pale yellow solution was added to

NiCl2(dme) (132 mg, 0.6 mmol). The reaction mixture was stirred for 15 minutes until no

more solids were observed. The solvent was removed in vacuo, the residual solids were

dissolved in CH2Cl2, filtered through celite, and the filtrate was dried in vacuo to give a

deep wine-colored powder (Yield: 216 mg, 92%). 1H NMR (600 MHz, -20 ˚C, CD2Cl2):

δ 6.87-7.98 (m, 29H, Ph and amidine CH). 31P NMR (162 MHz, 25 ˚C, CD2Cl2): δ 26.46.

As discussed in the X-ray crystal structure analysis, this compound was found to be a

50:50 mixture of (PNNP)NiCl(μ-Cl)NiCl and (PNNP)NiCl(μ-OH)NiCl by the elemental

anaysis. Anal. Calcd for a 50:50 mixture of (PNNP)NiCl(μ-Cl)NiCl and (PNNP)NiCl(μ-

OH)NiCl : C, 57.11; H, 3.82; N, 3.60. Found: C, 57.11; H, 3.82; N, 3.60.

6.4.4 Synthesis of [(PNNP)NiCl(μ-Cl)]2 (6.5)

To a THF (5 mL) solution of NiCl2(dme) (22 mg, 0.1 mmol) was added a THF (5

mL) solution of the PNNP ligand (56.5 mg, 0.1 mmol). NiCl2(dme) was consumed

completely in 20 minutes while a rapid color change from green to dark red was observed.

The solvent was removed in vacuo to give a dark yellow powder (Yield: 65 mg, 94 %).

(In solution, its color turns dark red.) 1H NMR (500 MHz, 25 ˚C, CD2Cl2): δ 6.33 (s, 2H,

NH), 7.21-7.72 (m, 56H, Ph), 8.02 (s, 2H, amidine CH). 31P NMR (162 MHz, 25 ˚C,

CDCl3): δ 3.18, 5.44, 20.17, 22.45. Anal. Calcd for [(PNNP)NiCl(μ-Cl)]2⋅CH2Cl2 : C,

61.22; H, 4.11; N, 3.81. Found: C, 60.89; H, 4.39; N, 3.74.

Page 151: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

133

6.4.5 Synthesis of (PNNP)CoCl2 (6.6)

A THF (5 mL) solution of PNNP ligand (56.4 mg, 0.1 mmol) and CoCl2 (13 mg, 0.1

mmol) was stirred for 2 hour. A color change was observed from dark blue to a red wine

color in 10 minutes. After 2 hours, the reaction mixture was dried in vacuo to give a

paramagnetic green powder (Yield: 62 mg, 89%). 31P NMR (162 MHz, 25 ˚C, CD2Cl2): δ

45.29. Anal. Calcd for (PNNP)CoCl2 ⋅ 0.5 CH2Cl2 : C, 61.12; H, 4.24; N, 3.80. Found: C,

60.97; H, 4.37; N, 3.74.

6.4.6 Synthesis of (PNNP)FeCl2 (6.7)

A THF (5 mL) solution of PNNP ligand (56.4 mg, 0.1 mmol) and FeCl2 (12.6 mg,

0.1 mmol) was stirred for 1.5 hour. FeCl2 was completely consumed in 10 minutes. After

2 hours, the resulting yellow solution was dried in vacuo to give a paramagnetic yellow

powder (Yield: 60 mg, 87 %). Anal. Calcd for (PNNP)FeCl2 ⋅ 0.5 CH2Cl2 : C, 61.38; H,

4.26; N, 3.82. Found: C, 61.11; H, 4.12; N, 3.72.

6.4.7 Synthesis of (PNNP)Pd(Me)CuPd(Me)(PNNP) ⋅ PF6 (6.8)

A mixture of (PNNP)PdMe (6.1, 34 mg, 0.050 mmol) and Cu(CH3CHN)4+ PF6

- (19

mg, 0.050 mmol) was dissolved in acetonitrile (10 mL) and stirred for 10 minutes while

the color of the mixture turned yellow. The volatiles were removed in vacuo from the

resulting solution and the residue was washed with diethyl ether. The yellow powder

remaining was dried in vacuo (Yield: 26 mg, 66%). 1H NMR (500 MHz, 25 ˚C, CD2Cl2):

δ 0.50 (t, 6H, J = 6 Hz, Pd-CH3), 6.47-7.64 (m, 56H, Ph), 8.34 (2H, amidine CH). 31P

NMR (162 MHz, 25 ˚C, CD2Cl2): δ -144.44, 4.34, 6.80, 27.47, 29.99. Anal. Calcd for

(PNNP)Pd(Me)CuPd(Me)(PNNP) ⋅ PF6 ⋅ 1.2 CH2Cl2 : C, 55.18; H, 3.98; N, 3.33. Found:

C, 54.98; H, 3.81; N, 3.46.

Page 152: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

134

Figure 6.7 1H NMR (CD2Cl2, 500 MHz) of (PNNP)PdMe(μ-Cl)NiCl (6.3)

Figure 6.8 1H NMR (CD2Cl2, 600 MHz) and 31P NMR (CD2Cl2, 162 MHz) of

(PNNP)NiCl(μ-X)NiCl (X = Cl or OH in 1:1 ratio) (6.4)

Page 153: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

135

Figure 6.9 1H NMR (CD2Cl2, 500 MHz) and 31P NMR (CDCl3, 162 MHz) of

[(PNNP)NiCl(μ-Cl)]2 (6.5)

Page 154: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

136

Figure 6.10 1H NMR (CD2Cl2, 600 MHz) and 31P NMR (CD2Cl2, 162 MHz) of

(PNNP)CoCl2 (6.6)

Figure 6.11 1H NMR (CD2Cl2, 500 MHz) and 31P NMR (CD2Cl2, 162 MHz) of

(PNNP)Pd(Me)CuPd(Me)(PNNP) . PF6 (6.8)

Page 155: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

137

6.5 REFERENCES AND NOTES

1. Tsukada, N.; Tamura, O.; Inoue, Y., Organometallics 2002, 21, 2521-2528.

2. McCollum, D. G.; Bosnich, B., Inorganica Chimica Acta 1998, 270, 13-19.

3. Rosenthal, J.; Luckett, T. D.; Hodgkiss, J. M.; Nocera, D. G., J. Am. Chem. Soc.

2006, 128, 6546-6547.

4. Cook, T. R.; Surendranath, Y.; Nocera, D. G., J. Am. Chem. Soc. 2009, 131, 28-

29.

5. Rodriguez, B. A.; Delferro, M.; Marks, T. J., J. Am. Chem. Soc. 2009, 131, 5902-

5919.

6. Trost, B. M.; Ito, H., J. Am. Chem. Soc. 2000, 122, 12003-12004.

7. Noel, G.; Roder, J. C.; Dechert, S.; Pritzkow, H.; Bolk, L.; Mecking, S.; Meyer, F.,

Adv. Synth. Catal. 2006, 348, 887-897.

8. Zhou, Y. B.; Xi, Z. X.; Chen, W. Z.; Wang, D. Q., Organometallics 2008, 27,

5911-5920.

9. Ohno, K.; Arima, K.; Tanaka, S.; Yamagata, T.; Tsurugi, H.; Mashima, K.,

Organometallics 2009, 28, 3256-3263.

10. Rodriguez, B. A.; Delferro, M.; Marks, T. J., Organometallics 2008, 27, 2166-

2168.

11. Chaudret, B.; Delavaux, B.; Poilblanc, R., Coord. Chem. Rev. 1988, 86, 191-243.

12. Farr, J. P.; Olmstead, M. M.; Balch, A. L., J. Am. Chem. Soc. 1980, 102, 6654-

6656.

13. Jeffery, J. C.; Rauchfuss, T. B.; Tucker, P. A., Inorg. Chem. 1980, 19, 3306-3316.

14. Olmstead, M. M.; Maisonnat, A.; Farr, J. P.; Balch, A. L., Inorg. Chem. 1981, 20,

4060-4064.

15. Maisonnet, A.; Farr, J. P.; Olmstead, M. M.; Hunt, C. T.; Balch, A. L., Inorg.

Chem. 1982, 21, 3961-3967.

16. Trost, B. M.; Crawley, M. L., Chem. Rev. 2003, 103, 2921-2943.

17. Jeon, S.-J.; Waymouth, R. M., Dalton Transactions 2008, 437-439.

Page 156: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

138

18. Tsukada, N.; Mitsuboshi, T.; Setoguchi, H.; Inoue, Y., J. Am. Chem. Soc. 2003,

125, 12102-12103.

19. Tsukada, N.; Ohba, Y.; Inoue, Y., J. Organomet. Chem. 2003, 687, 436-443.

20. Tsukada, N.; Murata, K.; Inoue, Y., Tetrahedron Lett. 2005, 46, 7515-7517.

21. Tsukada, N.; Setoguchi, H.; Mitsuboshi, T.; Inoue, Y., Chem. Lett. 2006, 35,

1164-1165.

22. Tsukada, N.; Ninomiya, S.; Aoyama, Y.; Inoue, Y., Org. Lett. 2007, 9, 2919-2921.

23. τ4 is a metic used to determine the geometry of a four coordinate system. A value

of zero indicates a square-planar geometry and a value of one a tetrahedral

geometry. For additional reference see: Yang, L.; Powell, D. R.; Houser, R. P.,

Dalton Transations 2007, 955-964. In.

24. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades,

E.; Barragán, F.; Alvarez, S., Dalton Transactions 2008, 2832-2838.

25. Speiser, F.; Braunstein, P.; Saussine, W., Acc. Chem. Res. 2005, 38, 784-793.

26. Daugulis, O.; Brookhart, M., Organometallics 2002, 21, 5926-5934.

27. Zhang, C.; Sun, W.-H.; Wang, Z.-X., Eur. J. Inorg. Chem. 2006, 4895-4902.

28. Anderson, C. E.; Batsanov, A. S.; Dyer, P. W.; Fawcett, J.; Howard, J. A. K.,

Dalton Transactions 2006, 5362-5378.

29. Dyer, P. W.; Fawcett, J.; Hanton, M. J., Organometallics 2008, 27, 5082-5087.

30. Kermagoret, A.; Braunstein, P., Organometallics 2008, 27, 88-99.

31. Yang, L.; Powell, D. R.; Houser, R. P., Dalton Transactions 2007, 955-964.

32. Xia, B. H.; Zhang, H. X.; Che, C. M.; Leung, K. H.; Phillips, D. L.; Zhu, N. Y.;

Zhou, Z. Y., J. Am. Chem. Soc. 2003, 125, 10362-10374.

33. Esswein, A. J.; Dempsey, J. L.; Nocera, D. G., Inorg. Chem. 2007, 46, 2362-2364.

34. Gibson, V. C.; Redshaw, C.; Solan, G. A., Chem. Rev. 2007, 107, 1745-1776.

35. Small, B. L.; Brookhart, M.; Bennett, A. M. A., J. Am. Chem. Soc. 1998, 120,

4049-4050.

36. Small, B. L.; Brookhart, M., J. Am. Chem. Soc. 1998, 120, 7143-7144.

Page 157: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

139

37. Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S.

J.; Solan, G. A.; White, A. J. P.; Williams, D. J., Chem. Commun. 1998, 849-850.

38. Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.;

Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Strömberg, S.;

White, A. J. P.; Williams, D. J., J. Am. Chem. Soc. 1999, 121, 8728-8740.

39. Bouwkamp, M. W.; Lobkovsky, E.; Chirik, P. J., J. Am. Chem. Soc. 2005, 127,

9660-9661.

40. Sun, W.-H.; Tang, X.; Gao, T.; Wu, B.; Zhang, W.; Ma, H., Organometallics

2004, 23, 5037-5047.

41. Kaul, F. A. R.; Puchta, G. T.; Frey, G. D.; Herdtweck, E.; Herrmann, W. A.,

Organometallics 2007, 26, 988-999.

42. Small, B. L.; Rios, R.; Fernandez, E. R.; Carney, M. J., Organometallics 2007, 26,

1744-1749.

43. Gibson, V. C.; O'Reilly, R. K.; Wass, D. F.; White, A. J. P.; Williams, D. J.,

Macromolecules 2003, 36, 2591-2593.

44. Ferro, R.; Milione, S.; Bertolasi, V.; Capacchione, C.; Grassi, A.,

Macromolecules 2007, 40, 8544-8546.

Page 158: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

140

This page was intentionally left blank.

Page 159: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

APPENDIX A

X-RAY CRYSTALLOGRAPHIC DATA FOR (PNNP)PdMe(μ-Cl)NiCl (6.3)

Page 160: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

142

Data Collection

A fragment of a purple prism-like crystal having approximate dimensions of 0.13 × 0.07

× 0.04 mm was mounted on a Kapton loop using Paratone N hydrocarbon oil. All

measurements were made on a Bruker APEX-II1 CCD area detector with graphite

monochromated Mo-Kα radiation.

Cell constants and an orientation matrix, obtained from a least-squares refinement using

the measured positions of 3922 centered reflections with I > 10σ(I) in the range 2.60 < θ

< 25.00° corresponded to a triclinic cell with dimensions:

a = 12.838(3) Å α = 95.585(3)°

b = 13.401(3) Å β = 115.631(3)°

c = 14.718(3) Å γ = 108.152(3)°

V = 2088.2(8) Å3

For Z = 2 and F.W. = 984.46, the calculated density is 1.566 g.cm-3.

Analysis of the systematic absences allowed the space group to be uniquely determined

to be:

P-1

The data were collected at a temperature of 150(2) K. Frames corresponding to an

arbitrary sphere of data were collected using ω-scans of 0.3° counted for a total of 30

seconds per frame.

Page 161: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

143

Data Reduction

Data were integrated by the program SAINT2 to a maximum θ-value of 25.35°. The data

were corrected for Lorentz and polarization effects. Data were analyzed for agreement

and possible absorption using XPREP3. An empirical absorption correction based on

comparison of redundant and equivalent reflections was applied using SADABS4. (Tmax

= 0.9471, Tmin = 0.8417). Of the 20935 reflections that were collected, 7630 were

unique (Rint = 0.0528); equivalent reflections were merged. No decay correction was

applied.

Structure Solution and Refinement

The structure was solved by direct methods5 and expanded using Fourier techniques6.

Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in

calculated positions but were not refined. The final cycle of full-matrix least-squares

refinement7 was based on 7630 reflections (all data) and 469 variable parameters and

converged (largest parameter shift was 0.000 times its esd) with conventional unweighted

and weighted agreement factors of:

R1 = Σ||Fo| - |Fc|| / Σ|Fo| = 0.0569 for 5508 data with I > 2σ(I)

wR2 = [(Σw (|Fo|2- |Fc|2)2 / Σw |Fo| 2)] 1/2 = 0.1432

The standard deviation of an observation of unit weight8 was 1.031. The weighting

scheme was based on counting statistics and included a factor to downweight the intense

reflections. The maximum and minimum peaks on the final difference Fourier map

corresponded to 1.896 and -1.642 e–.Å3, respectively.

Page 162: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

144

Neutral atom scattering factors were taken from Cromer and Waber9. Anomalous

dispersion effects were included in Fcalc2; the values for Δf' and Δf" were those of

Creagh and McAuley10. The values for the mass attenuation coefficients are those of

Creagh and Hubbel11. All calculations were performed using the SHELXTL1-6

crystallographic software package of Bruker Analytical X-ray Systems Inc.

References

(1)APEX-II: Area-Detector Software Package v2.1, Bruker Analytical X-ray Systems,

Inc.: Madison, WI, (2006)

(2)SAINT: SAX Area-Dectector Integration Program, 7.34A; Siemens Industrial

Automation, Inc.: Madison, WI, (2006)

(3)XPREP:(v 6.14) Part of the SHELXTL Crystal Structure Determination Package,

Siemens Industrial Automation, Inc.: Madison, WI, (1995)

(4)SADABS: Siemens Area Detector ABSorption correction program v.2.10, George

Sheldrick, (2005).

(5) XS: Program for the Solution of X-ray Crystal Structures, Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

(6) XL: Program for the Refinement of X-ray Crystal Structure Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

Page 163: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

145

(7) Least-Squares:

Function minimized: Σw (|Fo|2- |Fc|2)2

(8) Standard deviation of an observation of unit weight:

[Σw(|Fo|2 -|Fc|2 )2/(No-Nv)]1/2

where: No = number of observations

Nv = number of variables

(9) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol.

IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(10) Creagh, D. C. & McAuley, W. J.; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222

(1992).

(11) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206

(1992).

Page 164: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

146

Table A.1 Crystal data and structure refinement for 6.3

Empirical formula C38H32Cl2N2NiP2Pd

Formula weight 814.64

Temperature 150(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 12.838(3) Å α= 95.585(3)°

b = 13.401(3) Å β=115.631(3)°

c = 14.718(3) Å γ=108.152(3)°

Volume 2088.2(8) Å3

Z 2

Density (calculated) 1.566 g.cm-3

Absorption coefficient (μ) 1.373 mm-1

F(000) 992

Crystal size 0.13 × 0.07 × 0.04 mm3

ω range for data collection 1.91 to 25.35°

Index ranges -15 ≤ h ≤5, -16 ≤ k ≤ 16, -17 ≤ l ≤ 17

Reflections collected 20935

Independent reflections 7630 [Rint = 0.0528]

Completeness to θ = 25.35° 99.7 %

Absorption correction Empirical

Max. and min. transmission 0.9471 and 0.8417

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7630 / 7 / 469

Goodness-of-fit on F2 1.030

Final R indices [I>2σ(I)] R1 = 0.0569, wR2 = 0.1432

R indices (all data) R1 = 0.0856, wR2 = 0.1592

Page 165: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

147

Table A.2 Atomic coordinates and equivalent isotropic displacement parameters (Å2)

for 6.3 x y z U(eq) Pd(1) 0.20486(5) 0.05998(4) 0.36525(4) 0.023(1) Ni(1) -0.06902(7) -0.05744(6) 0.22068(5) 0.011(1) Cl(1) 0.06841(15) -0.12479(13) 0.32966(12) 0.024(1) Cl(2) -0.05463(19) -0.11228(17) 0.08719(15) 0.040(1) P(1) 0.33477(16) 0.22982(14) 0.41906(13) 0.021(1) P(2) -0.23578(15) -0.03760(14) 0.11953(12) 0.019(1) N(1) 0.1254(5) 0.1218(4) 0.4456(4) 0.020(1) N(2) -0.0878(5) 0.0142(4) 0.3333(4) 0.020(1) C(1) 0.0060(6) 0.0922(5) 0.4181(5) 0.019(1) C(2) 0.2980(5) 0.0154(4) 0.2956(4) 0.013(1) C(11) 0.3235(6) 0.2772(5) 0.5327(5) 0.022(1) C(12) 0.2139(6) 0.2137(5) 0.5332(5) 0.020(1) C(13) 0.2010(7) 0.2443(6) 0.6206(5) 0.027(2) C(14) 0.2928(7) 0.3343(6) 0.7015(5) 0.029(2) C(15) 0.3998(7) 0.3962(6) 0.7001(5) 0.029(2) C(16) 0.4168(7) 0.3685(5) 0.6153(5) 0.028(2) C(21) 0.2905(6) 0.3117(5) 0.3297(5) 0.024(2) C(22) 0.2609(8) 0.2753(7) 0.2267(6) 0.039(2) C(23) 0.2321(9) 0.3373(8) 0.1574(6) 0.050(2) C(24) 0.2241(7) 0.4346(7) 0.1886(6) 0.038(2) C(25) 0.2504(7) 0.4700(6) 0.2909(6) 0.036(2) C(26) 0.2835(7) 0.4093(6) 0.3607(6) 0.029(2) C(31) 0.5006(6) 0.2620(5) 0.4657(5) 0.024(2) C(32) 0.5584(7) 0.2109(6) 0.5372(7) 0.039(2) C(33) 0.6834(7) 0.2280(6) 0.5727(6) 0.039(2) C(34) 0.7500(7) 0.2974(6) 0.5351(6) 0.039(2) C(35) 0.6939(7) 0.3505(7) 0.4651(6) 0.037(2) C(36) 0.5691(7) 0.3331(6) 0.4301(5) 0.030(2)

Page 166: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

148

C(41) -0.3026(6) -0.0331(5) 0.2039(5) 0.019(1) C(42) -0.2118(6) 0.0003(5) 0.3108(5) 0.019(1) C(43) -0.2485(6) 0.0148(6) 0.3852(5) 0.024(2) C(44) -0.3735(6) -0.0060(6) 0.3537(5) 0.025(2) C(45) -0.4638(6) -0.0441(6) 0.2487(5) 0.026(2) C(46) -0.4275(6) -0.0567(6) 0.1742(5) 0.025(2) C(51) -0.2165(6) 0.0863(5) 0.0780(5) 0.023(1) C(52) -0.1474(8) 0.1127(7) 0.0268(7) 0.046(2) C(53) -0.1360(9) 0.2058(7) -0.0082(8) 0.054(3) C(54) -0.1919(8) 0.2726(6) 0.0068(7) 0.041(2) C(55) -0.2624(7) 0.2462(6) 0.0572(6) 0.033(2) C(56) -0.2753(7) 0.1534(6) 0.0918(5) 0.030(2) C(61) -0.3557(6) -0.1480(5) 0.0038(5) 0.021(1) C(62) -0.4162(7) -0.1305(6) -0.0927(5) 0.027(2) C(63) -0.5119(7) -0.2172(6) -0.1777(5) 0.035(2) C(64) -0.5461(7) -0.3215(6) -0.1678(6) 0.037(2) C(65) -0.4825(7) -0.3401(6) -0.0715(6) 0.035(2) C(66) -0.3885(7) -0.2547(6) 0.0138(5) 0.031(2) C(71) 0.0922(9) 0.3716(8) 0.8585(8) 0.056(2) Cl(3) 0.2469(2) 0.46649(18) 0.93600(19) 0.052(1) Cl(4) -0.0161(3) 0.4210(2) 0.8635(3) 0.074(1) C(72) 0.0342(11) 0.5857(9) 0.6696(10) 0.077(3) Cl(5) 0.0939(2) 0.4922(2) 0.6478(2) 0.061(1) Cl(6) 0.0949(5) 0.7048(3) 0.6355(3) 0.122(2) H(1A) -0.0147 0.1294 0.4619 0.023 H(2A) 0.3889 0.0533 0.3422 0.019 H(2B) 0.2747 0.0352 0.2293 0.019 H(2C) 0.2749 -0.0636 0.2822 0.019 H(13A) 0.1283 0.2024 0.6237 0.032 H(14A) 0.2823 0.3543 0.7597 0.035 H(15A) 0.4623 0.4579 0.7572 0.035 H(16A) 0.4904 0.4109 0.6138 0.033

Page 167: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

149

H(22A) 0.2605 0.2064 0.2035 0.047 H(23A) 0.2178 0.3136 0.0885 0.060 H(24A) 0.2010 0.4765 0.1405 0.045 H(25A) 0.2456 0.5366 0.3130 0.043 H(26A) 0.3018 0.4346 0.4306 0.035 H(32A) 0.5119 0.1634 0.5625 0.046 H(33A) 0.7226 0.1927 0.6219 0.047 H(34A) 0.8352 0.3086 0.5576 0.047 H(35A) 0.7411 0.3990 0.4409 0.045 H(36A) 0.5304 0.3696 0.3820 0.036 H(43A) -0.1882 0.0391 0.4576 0.029 H(44A) -0.3977 0.0059 0.4049 0.031 H(45A) -0.5498 -0.0613 0.2283 0.031 H(46A) -0.4887 -0.0819 0.1020 0.030 H(52A) -0.1080 0.0671 0.0156 0.055 H(53A) -0.0883 0.2235 -0.0432 0.065 H(54A) -0.1827 0.3366 -0.0170 0.049 H(55A) -0.3018 0.2921 0.0679 0.040 H(56A) -0.3246 0.1351 0.1254 0.035 H(62A) -0.3923 -0.0589 -0.1010 0.033 H(63A) -0.5543 -0.2042 -0.2435 0.042 H(64A) -0.6126 -0.3803 -0.2262 0.044 H(65A) -0.5041 -0.4124 -0.0646 0.042 H(66A) -0.3459 -0.2680 0.0795 0.038 H(71A) 0.0742 0.3523 0.7850 0.067 H(71B) 0.0827 0.3044 0.8823 0.067 H(72A) 0.0572 0.6048 0.7443 0.092 H(72B) -0.0586 0.5531 0.6272 0.092

Page 168: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

150

Table A.3 Anisotropic displacement parameters (Å)2 for 6.3. The anisotropic displacement factor exponent takes the form: -2π2[ h2 a*2 U11 + ... + 2 h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Pd(1) 0.0215(3) 0.0256(3) 0.0247(3) 0.0047(2) 0.0126(2) 0.0105(2) Ni(1) 0.0096(4) 0.0169(4) 0.0074(4) 0.0032(3) 0.0037(3) 0.0081(3) Cl(1) 0.0239(8) 0.0261(9) 0.0215(8) 0.0060(7) 0.0105(7) 0.0116(7) Cl(2) 0.0446(12) 0.0520(12) 0.0353(10) 0.0136(9) 0.0242(9) 0.0277(10) P(1) 0.0199(9) 0.0224(9) 0.0221(9) 0.0045(7) 0.0120(7) 0.0090(7) P(2) 0.0198(9) 0.0249(9) 0.0151(8) 0.0046(7) 0.0092(7) 0.0119(7) N(1) 0.016(3) 0.021(3) 0.017(3) 0.002(2) 0.004(2) 0.007(2) N(2) 0.019(3) 0.028(3) 0.017(3) 0.007(2) 0.009(2) 0.013(2) C(1) 0.019(3) 0.026(4) 0.018(3) 0.009(3) 0.011(3) 0.011(3) C(2) 0.006(3) 0.007(3) 0.015(3) -0.004(2) 0.003(2) -0.005(2) C(11) 0.021(3) 0.020(3) 0.028(4) 0.008(3) 0.013(3) 0.010(3) C(12) 0.022(3) 0.022(3) 0.021(3) 0.006(3) 0.011(3) 0.013(3) C(13) 0.029(4) 0.034(4) 0.027(4) 0.011(3) 0.020(3) 0.014(3) C(14) 0.033(4) 0.033(4) 0.019(3) 0.001(3) 0.011(3) 0.013(3) C(15) 0.028(4) 0.030(4) 0.022(4) -0.003(3) 0.010(3) 0.008(3) C(16) 0.027(4) 0.021(4) 0.031(4) 0.002(3) 0.014(3) 0.007(3) C(21) 0.024(4) 0.025(4) 0.024(4) 0.004(3) 0.013(3) 0.012(3) C(22) 0.060(5) 0.036(4) 0.031(4) 0.013(4) 0.023(4) 0.029(4) C(23) 0.064(6) 0.072(6) 0.025(4) 0.017(4) 0.021(4) 0.040(5) C(24) 0.042(5) 0.044(5) 0.029(4) 0.016(4) 0.013(4) 0.024(4) C(25) 0.038(4) 0.036(4) 0.036(4) 0.011(4) 0.017(4) 0.020(4) C(26) 0.029(4) 0.029(4) 0.025(4) 0.006(3) 0.012(3) 0.009(3) C(31) 0.022(4) 0.022(4) 0.026(4) 0.000(3) 0.012(3) 0.008(3) C(32) 0.027(4) 0.037(5) 0.054(5) 0.018(4) 0.019(4) 0.015(4) C(33) 0.026(4) 0.038(5) 0.048(5) 0.013(4) 0.010(4) 0.017(4) C(34) 0.019(4) 0.042(5) 0.043(5) -0.010(4) 0.010(4) 0.007(3) C(35) 0.027(4) 0.052(5) 0.027(4) 0.004(4) 0.016(3) 0.008(4) C(36) 0.027(4) 0.038(4) 0.021(4) 0.007(3) 0.011(3) 0.010(3)

Page 169: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

151

C(41) 0.017(3) 0.027(4) 0.013(3) 0.004(3) 0.008(3) 0.010(3) C(42) 0.018(3) 0.020(3) 0.024(3) 0.007(3) 0.012(3) 0.012(3) C(43) 0.026(4) 0.031(4) 0.017(3) 0.005(3) 0.011(3) 0.014(3) C(44) 0.031(4) 0.034(4) 0.024(4) 0.009(3) 0.019(3) 0.019(3) C(45) 0.021(4) 0.036(4) 0.030(4) 0.014(3) 0.016(3) 0.017(3) C(46) 0.022(4) 0.035(4) 0.020(3) 0.010(3) 0.009(3) 0.014(3) C(51) 0.023(4) 0.024(4) 0.025(4) 0.006(3) 0.011(3) 0.014(3) C(52) 0.063(6) 0.051(5) 0.072(6) 0.034(5) 0.059(5) 0.038(5) C(53) 0.070(6) 0.050(5) 0.094(7) 0.043(5) 0.070(6) 0.035(5) C(54) 0.050(5) 0.030(4) 0.057(5) 0.019(4) 0.033(5) 0.019(4) C(55) 0.040(4) 0.030(4) 0.043(5) 0.015(4) 0.023(4) 0.025(4) C(56) 0.027(4) 0.035(4) 0.030(4) 0.007(3) 0.016(3) 0.014(3) C(61) 0.022(3) 0.030(4) 0.017(3) 0.005(3) 0.012(3) 0.012(3) C(62) 0.037(4) 0.030(4) 0.019(3) 0.006(3) 0.014(3) 0.018(3) C(63) 0.039(4) 0.047(5) 0.017(4) 0.002(3) 0.007(3) 0.026(4) C(64) 0.025(4) 0.039(5) 0.031(4) -0.012(3) 0.007(3) 0.008(3) C(65) 0.038(4) 0.026(4) 0.037(4) 0.002(3) 0.018(4) 0.008(3) C(66) 0.030(4) 0.035(4) 0.021(4) 0.005(3) 0.008(3) 0.012(3) C(71) 0.059(6) 0.044(5) 0.052(6) 0.008(4) 0.023(5) 0.016(5) Cl(3) 0.0529(13) 0.0467(13) 0.0608(14) 0.0136(11) 0.0288(12) 0.0230(11) Cl(4) 0.0524(15) 0.0720(18) 0.099(2) 0.0233(16) 0.0370(15) 0.0260(14) C(72) 0.069(8) 0.070(8) 0.080(8) 0.009(6) 0.031(7) 0.025(6) Cl(5) 0.0518(14) 0.0627(16) 0.0728(17) 0.0293(13) 0.0319(13) 0.0209(12) Cl(6) 0.216(5) 0.090(3) 0.085(2) 0.038(2) 0.073(3) 0.090(3)

Page 170: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

152

Table A.4 Bond lengths [Å] for 6.3 atom-atom distance atom-atom distance

Pd(1)-C(2) 2.055(6) Pd(1)-N(1) 2.122(5)

Pd(1)-P(1) 2.1750(18) Pd(1)-Cl(1) 2.3928(18)

Pd(1)-Ni(1) 2.9655(10) Ni(1)-N(2) 1.977(5)

Ni(1)-P(2) 2.1318(18) Ni(1)-Cl(2) 2.133(2)

Ni(1)-Cl(1) 2.3077(17) P(1)-C(21) 1.810(7)

P(1)-C(11) 1.811(7) P(1)-C(31) 1.815(7)

P(2)-C(41) 1.793(6) P(2)-C(51) 1.807(7)

P(2)-C(61) 1.812(7) N(1)-C(1) 1.312(8)

N(1)-C(12) 1.422(8) N(2)-C(1) 1.327(8)

N(2)-C(42) 1.422(8) C(11)-C(16) 1.396(9)

C(11)-C(12) 1.403(9) C(12)-C(13) 1.404(9)

C(13)-C(14) 1.373(10) C(14)-C(15) 1.375(10)

C(15)-C(16) 1.392(9) C(21)-C(26) 1.385(9)

C(21)-C(22) 1.388(10) C(22)-C(23) 1.377(11)

C(23)-C(24) 1.390(11) C(24)-C(25) 1.388(11)

C(25)-C(26) 1.377(10) C(31)-C(32) 1.381(10)

C(31)-C(36) 1.389(10) C(32)-C(33) 1.387(10)

C(33)-C(34) 1.384(11) C(34)-C(35) 1.380(11)

C(35)-C(36) 1.385(10) C(41)-C(46) 1.384(9)

C(41)-C(42) 1.409(9) C(42)-C(43) 1.388(9)

C(43)-C(44) 1.384(9) C(44)-C(45) 1.385(10)

C(45)-C(46) 1.380(9) C(51)-C(52) 1.384(10)

C(51)-C(56) 1.392(9) C(52)-C(53) 1.385(11)

C(53)-C(54) 1.367(11) C(54)-C(55) 1.387(11)

C(55)-C(56) 1.380(10) C(61)-C(62) 1.378(9)

Page 171: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

153

C(61)-C(66) 1.401(10) C(62)-C(63) 1.386(10)

C(63)-C(64) 1.370(11) C(64)-C(65) 1.391(11)

C(65)-C(66) 1.375(10) C(71)-Cl(4) 1.740(10)

C(71)-Cl(3) 1.745(10) C(72)-Cl(5) 1.731(11)

C(72)-Cl(6) 1.767(12)

Page 172: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

154

Table A.5 Bond angles [°] for 6.3

atom-atom-atom angle atom-atom-atom angle

C(2)-Pd(1)-N(1) 174.0(2) C(2)-Pd(1)-P(1) 91.43(16)

N(1)-Pd(1)-P(1) 82.74(15) C(2)-Pd(1)-Cl(1) 93.10(16)

N(1)-Pd(1)-Cl(1) 92.55(15) P(1)-Pd(1)-Cl(1) 172.42(6)

C(2)-Pd(1)-Ni(1) 108.08(16) N(1)-Pd(1)-Ni(1) 77.27(14)

P(1)-Pd(1)-Ni(1) 134.09(5) Cl(1)-Pd(1)-Ni(1) 49.62(4)

N(2)-Ni(1)-P(2) 84.01(15) N(2)-Ni(1)-Cl(2) 169.94(16)

P(2)-Ni(1)-Cl(2) 89.09(7) N(2)-Ni(1)-Cl(1) 94.15(15)

P(2)-Ni(1)-Cl(1) 162.96(7) Cl(2)-Ni(1)-Cl(1) 94.58(7)

N(2)-Ni(1)-Pd(1) 85.06(15) P(2)-Ni(1)-Pd(1) 143.94(6)

Cl(2)-Ni(1)-Pd(1) 96.37(6) Cl(1)-Ni(1)-Pd(1) 52.17(5)

Ni(1)-Cl(1)-Pd(1) 78.21(6) C(21)-P(1)-C(11) 108.2(3)

C(21)-P(1)-C(31) 106.4(3) C(11)-P(1)-C(31) 105.9(3)

C(21)-P(1)-Pd(1) 115.4(2) C(11)-P(1)-Pd(1) 100.6(2)

C(31)-P(1)-Pd(1) 119.3(2) C(41)-P(2)-C(51) 107.8(3)

C(41)-P(2)-C(61) 105.4(3) C(51)-P(2)-C(61) 106.4(3)

C(41)-P(2)-Ni(1) 100.4(2) C(51)-P(2)-Ni(1) 117.2(2)

C(61)-P(2)-Ni(1) 118.4(2) C(1)-N(1)-C(12) 117.8(5)

C(1)-N(1)-Pd(1) 127.9(4) C(12)-N(1)-Pd(1) 114.0(4)

C(1)-N(2)-C(42) 116.7(5) C(1)-N(2)-Ni(1) 124.3(4)

C(42)-N(2)-Ni(1) 117.2(4) N(1)-C(1)-N(2) 124.6(6)

C(16)-C(11)-C(12) 121.6(6) C(16)-C(11)-P(1) 123.4(5)

C(12)-C(11)-P(1) 115.0(5) C(11)-C(12)-C(13) 117.8(6)

C(11)-C(12)-N(1) 117.1(6) C(13)-C(12)-N(1) 125.1(6)

C(14)-C(13)-C(12) 120.3(6) C(13)-C(14)-C(15) 121.4(6)

C(14)-C(15)-C(16) 120.2(6) C(15)-C(16)-C(11) 118.6(6)

Page 173: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

155

C(26)-C(21)-C(22) 118.7(6) C(26)-C(21)-P(1) 122.0(5)

C(22)-C(21)-P(1) 119.3(5) C(23)-C(22)-C(21) 121.1(7)

C(22)-C(23)-C(24) 119.8(7) C(25)-C(24)-C(23) 119.2(7)

C(26)-C(25)-C(24) 120.5(7) C(25)-C(26)-C(21) 120.5(7)

C(32)-C(31)-C(36) 119.6(7) C(32)-C(31)-P(1) 117.9(5)

C(36)-C(31)-P(1) 122.4(5) C(31)-C(32)-C(33) 121.0(7)

C(34)-C(33)-C(32) 118.9(7) C(35)-C(34)-C(33) 120.7(7)

C(34)-C(35)-C(36) 120.1(7) C(35)-C(36)-C(31) 119.7(7)

C(46)-C(41)-C(42) 120.2(6) C(46)-C(41)-P(2) 127.2(5)

C(42)-C(41)-P(2) 112.6(4) C(43)-C(42)-C(41) 119.0(6)

C(43)-C(42)-N(2) 125.0(6) C(41)-C(42)-N(2) 116.0(5)

C(44)-C(43)-C(42) 119.8(6) C(43)-C(44)-C(45) 121.3(6)

C(46)-C(45)-C(44) 119.2(6) C(45)-C(46)-C(41) 120.5(6)

C(52)-C(51)-C(56) 119.0(7) C(52)-C(51)-P(2) 119.7(5)

C(56)-C(51)-P(2) 121.1(5) C(51)-C(52)-C(53) 119.8(7)

C(54)-C(53)-C(52) 121.2(8) C(53)-C(54)-C(55) 119.4(7)

C(56)-C(55)-C(54) 120.1(7) C(55)-C(56)-C(51) 120.5(7)

C(62)-C(61)-C(66) 119.3(6) C(62)-C(61)-P(2) 122.4(5)

C(66)-C(61)-P(2) 118.3(5) C(61)-C(62)-C(63) 120.1(7)

C(64)-C(63)-C(62) 120.8(7) C(63)-C(64)-C(65) 119.3(7)

C(66)-C(65)-C(64) 120.5(7) C(65)-C(66)-C(61) 119.9(7)

Cl(4)-C(71)-Cl(3) 112.3(5) Cl(5)-C(72)-Cl(6) 110.2(7)

Page 174: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

156

Table A.6 Torsion angles [°] for 6.3

atom-atom-atom-atom angle atom-atom-atom-atom angle

C(2)-Pd(1)-Ni(1)-N(2) 177.4(2) N(1)-Pd(1)-Ni(1)-N(2) -5.5(2)

P(1)-Pd(1)-Ni(1)-N(2) -71.91(17) Cl(1)-Pd(1)-Ni(1)-N(2) 99.15(16)

C(2)-Pd(1)-Ni(1)-P(2) -109.82(19) N(1)-Pd(1)-Ni(1)-P(2) 67.30(17)

P(1)-Pd(1)-Ni(1)-P(2) 0.84(12) Cl(1)-Pd(1)-Ni(1)-P(2) 171.89(10)

C(2)-Pd(1)-Ni(1)-Cl(2) -12.58(18) N(1)-Pd(1)-Ni(1)-Cl(2) 164.54(16)

P(1)-Pd(1)-Ni(1)-Cl(2) 98.08(9) Cl(1)-Pd(1)-Ni(1)-Cl(2) -90.86(8)

C(2)-Pd(1)-Ni(1)-Cl(1) 78.28(18) N(1)-Pd(1)-Ni(1)-Cl(1) -104.60(16)

P(1)-Pd(1)-Ni(1)-Cl(1) -171.06(8) N(2)-Ni(1)-Cl(1)-Pd(1) -80.47(16)

P(2)-Ni(1)-Cl(1)-Pd(1) -163.5(2) Cl(2)-Ni(1)-Cl(1)-Pd(1) 94.51(7)

C(2)-Pd(1)-Cl(1)-Ni(1) -111.22(17) N(1)-Pd(1)-Cl(1)-Ni(1) 70.88(14)

P(1)-Pd(1)-Cl(1)-Ni(1) 122.2(5) C(2)-Pd(1)-P(1)-C(21) 90.0(3)

N(1)-Pd(1)-P(1)-C(21) -91.5(3) Cl(1)-Pd(1)-P(1)-C(21) -143.3(5)

Ni(1)-Pd(1)-P(1)-C(21) -27.1(3) C(2)-Pd(1)-P(1)-C(11) -153.8(3)

N(1)-Pd(1)-P(1)-C(11) 24.7(3) Cl(1)-Pd(1)-P(1)-C(11) -27.1(6)

Ni(1)-Pd(1)-P(1)-C(11) 89.1(2) C(2)-Pd(1)-P(1)-C(31) -38.7(3)

N(1)-Pd(1)-P(1)-C(31) 139.8(3) Cl(1)-Pd(1)-P(1)-C(31) 87.9(5)

Ni(1)-Pd(1)-P(1)-C(31) -155.9(2) N(2)-Ni(1)-P(2)-C(41) -25.3(3)

Cl(2)-Ni(1)-P(2)-C(41) 162.0(2) Cl(1)-Ni(1)-P(2)-C(41) 59.2(3)

Pd(1)-Ni(1)-P(2)-C(41) -98.4(2) N(2)-Ni(1)-P(2)-C(51) 90.9(3)

Cl(2)-Ni(1)-P(2)-C(51) -81.7(3) Cl(1)-Ni(1)-P(2)-C(51) 175.5(3)

Pd(1)-Ni(1)-P(2)-C(51) 17.9(3) N(2)-Ni(1)-P(2)-C(61) -139.4(3)

Cl(2)-Ni(1)-P(2)-C(61) 48.0(2) Cl(1)-Ni(1)-P(2)-C(61) -54.8(3)

Pd(1)-Ni(1)-P(2)-C(61) 147.6(2) C(2)-Pd(1)-N(1)-C(1) 156.8(19)

P(1)-Pd(1)-N(1)-C(1) 142.3(5) Cl(1)-Pd(1)-N(1)-C(1) -43.7(5)

Ni(1)-Pd(1)-N(1)-C(1) 3.9(5) C(2)-Pd(1)-N(1)-C(12) -16(2)

Page 175: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

157

P(1)-Pd(1)-N(1)-C(12) -30.5(4) Cl(1)-Pd(1)-N(1)-C(12) 143.5(4)

Ni(1)-Pd(1)-N(1)-C(12) -168.9(4) P(2)-Ni(1)-N(2)-C(1) -136.2(5)

Cl(2)-Ni(1)-N(2)-C(1) -89.2(10) Cl(1)-Ni(1)-N(2)-C(1) 60.9(5)

Pd(1)-Ni(1)-N(2)-C(1) 9.4(5) P(2)-Ni(1)-N(2)-C(42) 28.2(4)

Cl(2)-Ni(1)-N(2)-C(42) 75.1(11) Cl(1)-Ni(1)-N(2)-C(42) -134.8(4)

Pd(1)-Ni(1)-N(2)-C(42) 173.8(4) C(12)-N(1)-C(1)-N(2) 174.2(6)

Pd(1)-N(1)-C(1)-N(2) 1.6(9) C(42)-N(2)-C(1)-N(1) -174.3(6)

Ni(1)-N(2)-C(1)-N(1) -9.8(9) C(21)-P(1)-C(11)-C(16) -81.1(6)

C(31)-P(1)-C(11)-C(16) 32.7(6) Pd(1)-P(1)-C(11)-C(16) 157.5(5)

C(21)-P(1)-C(11)-C(12) 100.2(5) C(31)-P(1)-C(11)-C(12) -146.0(5)

Pd(1)-P(1)-C(11)-C(12) -21.2(5) C(16)-C(11)-C(12)-C(13) -0.5(9)

P(1)-C(11)-C(12)-C(13) 178.2(5) C(16)-C(11)-C(12)-N(1) -179.4(6)

P(1)-C(11)-C(12)-N(1) -0.6(7) C(1)-N(1)-C(12)-C(11) -149.1(6)

Pd(1)-N(1)-C(12)-C(11) 24.5(7) C(1)-N(1)-C(12)-C(13) 32.2(9)

Pd(1)-N(1)-C(12)-C(13) -154.2(5) C(11)-C(12)-C(13)-C(14) 0.7(10)

N(1)-C(12)-C(13)-C(14) 179.5(6) C(12)-C(13)-C(14)-C(15) -0.6(11)

C(13)-C(14)-C(15)-C(16) 0.3(11) C(14)-C(15)-C(16)-C(11) -0.1(11)

C(12)-C(11)-C(16)-C(15) 0.2(10) P(1)-C(11)-C(16)-C(15) -178.4(5)

C(11)-P(1)-C(21)-C(26) 15.2(7) C(31)-P(1)-C(21)-C(26) -98.2(6)

Pd(1)-P(1)-C(21)-C(26) 127.0(5) C(11)-P(1)-C(21)-C(22) -164.0(6)

C(31)-P(1)-C(21)-C(22) 82.6(6) Pd(1)-P(1)-C(21)-C(22) -52.2(7)

C(26)-C(21)-C(22)-C(23) 3.7(12) P(1)-C(21)-C(22)-C(23) -177.1(7)

C(21)-C(22)-C(23)-C(24) -4.3(14) C(22)-C(23)-C(24)-C(25) 2.6(13)

C(23)-C(24)-C(25)-C(26) -0.3(12) C(24)-C(25)-C(26)-C(21) -0.3(12)

C(22)-C(21)-C(26)-C(25) -1.3(11) P(1)-C(21)-C(26)-C(25) 179.5(6)

C(21)-P(1)-C(31)-C(32) 178.9(6) C(11)-P(1)-C(31)-C(32) 63.9(6)

Pd(1)-P(1)-C(31)-C(32) -48.3(6) C(21)-P(1)-C(31)-C(36) -2.8(7)

C(11)-P(1)-C(31)-C(36) -117.8(6) Pd(1)-P(1)-C(31)-C(36) 130.0(5)

Page 176: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

158

C(36)-C(31)-C(32)-C(33) -1.2(12) P(1)-C(31)-C(32)-C(33) 177.2(6)

C(31)-C(32)-C(33)-C(34) -0.1(12) C(32)-C(33)-C(34)-C(35) 1.3(12)

C(33)-C(34)-C(35)-C(36) -1.3(12) C(34)-C(35)-C(36)-C(31) 0.0(11)

C(32)-C(31)-C(36)-C(35) 1.2(11) P(1)-C(31)-C(36)-C(35) -177.0(5)

C(51)-P(2)-C(41)-C(46) 79.9(7) C(61)-P(2)-C(41)-C(46) -33.5(7)

Ni(1)-P(2)-C(41)-C(46) -157.0(6) C(51)-P(2)-C(41)-C(42) -99.2(5)

C(61)-P(2)-C(41)-C(42) 147.5(5) Ni(1)-P(2)-C(41)-C(42) 23.9(5)

C(46)-C(41)-C(42)-C(43) -3.6(10) P(2)-C(41)-C(42)-C(43) 175.6(5)

C(46)-C(41)-C(42)-N(2) 175.1(6) P(2)-C(41)-C(42)-N(2) -5.8(7)

C(1)-N(2)-C(42)-C(43) -34.7(9) Ni(1)-N(2)-C(42)-C(43) 159.7(5)

C(1)-N(2)-C(42)-C(41) 146.7(6) Ni(1)-N(2)-C(42)-C(41) -18.9(7)

C(41)-C(42)-C(43)-C(44) 1.6(10) N(2)-C(42)-C(43)-C(44) -177.0(6)

C(42)-C(43)-C(44)-C(45) 1.7(10) C(43)-C(44)-C(45)-C(46) -2.9(10)

C(44)-C(45)-C(46)-C(41) 0.8(10) C(42)-C(41)-C(46)-C(45) 2.4(10)

P(2)-C(41)-C(46)-C(45) -176.6(5) C(41)-P(2)-C(51)-C(52) 169.1(6)

C(61)-P(2)-C(51)-C(52) -78.2(7) Ni(1)-P(2)-C(51)-C(52) 56.9(7)

C(41)-P(2)-C(51)-C(56) -14.2(6) C(61)-P(2)-C(51)-C(56) 98.5(6)

Ni(1)-P(2)-C(51)-C(56) -126.4(5) C(56)-C(51)-C(52)-C(53) 1.1(13)

P(2)-C(51)-C(52)-C(53) 177.9(7) C(51)-C(52)-C(53)-C(54) -0.1(15)

C(52)-C(53)-C(54)-C(55) -0.5(15) C(53)-C(54)-C(55)-C(56) 0.1(13)

C(54)-C(55)-C(56)-C(51) 0.9(11) C(52)-C(51)-C(56)-C(55) -1.5(11)

P(2)-C(51)-C(56)-C(55) -178.3(6) C(41)-P(2)-C(61)-C(62) 112.9(6)

C(51)-P(2)-C(61)-C(62) -1.4(6) Ni(1)-P(2)-C(61)-C(62) -135.9(5)

C(41)-P(2)-C(61)-C(66) -66.4(6) C(51)-P(2)-C(61)-C(66) 179.3(5)

Ni(1)-P(2)-C(61)-C(66) 44.9(6) C(66)-C(61)-C(62)-C(63) 2.6(10)

P(2)-C(61)-C(62)-C(63) -176.6(5) C(61)-C(62)-C(63)-C(64) -1.3(11)

C(62)-C(63)-C(64)-C(65) -0.9(11) C(63)-C(64)-C(65)-C(66) 1.8(12)

C(64)-C(65)-C(66)-C(61) -0.5(11) C(62)-C(61)-C(66)-C(65) -1.7(10)

Page 177: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

159

P(2)-C(61)-C(66)-C(65) 177.6(6)

Page 178: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

160

Table A.7 Table of Least-squares planes for 6.3

Least-squares planes (x,y,z in crystal coordinates) and deviations from them

(* indicates atom used to define plane)

4.8125 (0.0212) x - 6.0702 (0.0119) y + 9.8308 (0.0202) z = 4.2887 (0.0046)

* 0.0388 (0.0018) Cl1

* 0.0470 (0.0022) P1

* -0.0442 (0.0021) N1

* -0.0416 (0.0020) C2

-0.0762 (0.0021) Pd1

Rms deviation of fitted atoms = 0.0430

- 5.6136 (0.0125) x - 9.4545 (0.0087) y + 3.9821 (0.0185) z = 1.9163 (0.0037)

Angle to previous plane (with approximate esd) = 89.07 ( 0.10 )

* 0.1923 (0.0014) Cl1

* -0.2009 (0.0016) Cl2

* 0.2387 (0.0018) P2

* -0.2300 (0.0017) N2

-0.1071 (0.0017) Ni1

Rms deviation of fitted atoms = 0.2163

Page 179: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

APPENDIX B

X-RAY CRYSTALLOGRAPHIC DATA FOR (PNNP)NiCl(μ-X)NiCl (X = Cl or OH in

1:1 ratio) (6.4)

Page 180: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

162

Data Collection

A fragment of a red tablet-like crystal having approximate dimensions of 0.18 × 0.12 ×

0.04 mm was mounted on a Kapton loop using Paratone N hydrocarbon oil. All

measurements were made on a Bruker APEX-II1 CCD area detector with graphite

monochromated Mo-Kα radiation.

Cell constants and an orientation matrix, obtained from a least-squares refinement using

the measured positions of 4269 centered reflections with I > 10σ(I) in the range 2.42 < θ

< 22.72° corresponded to a Monoclinic cell with dimensions:

a = 15.834(4) Å α = 90°

b = 9.963(2) Å β = 94.639(3)°

c = 45.658(11) Å γ = 90°

V = 7179(3) Å3

For Z = 8 and F.W. = 863.04, the calculated density is 1.597 g.cm-3.

Analysis of the systematic absences allowed the space group to be uniquely determined

to be:

C2/c

The data were collected at a temperature of 150(2) K. Frames corresponding to an

arbitrary sphere of data were collected using ω-scans of 0.3° counted for a total of 10

seconds per frame.

Page 181: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

163

Data Reduction

Data were integrated by the program SAINT2 to a maximum θ-value of 26.39°. The data

were corrected for Lorentz and polarization effects. Data were analyzed for agreement

and possible absorption using XPREP3. An empirical absorption correction based on

comparison of redundant and equivalent reflections was applied using SADABS4. (Tmax

= 0.9422, Tmin = 0.7731). Of the 34702 reflections that were collected, 7362 were

unique (Rint = 0.0764); equivalent reflections were merged. No decay correction was

applied.

Structure Solution and Refinement

The structure was solved by direct methods5 and expanded using Fourier techniques6.

Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in

calculated positions but were not refined. The final cycle of full-matrix least-squares

refinement7 was based on 7362 reflections (all data) and 451 variable parameters and

converged (largest parameter shift was 0.001 times its esd) with conventional unweighted

and weighted agreement factors of:

R1 = Σ||Fo| - |Fc|| / Σ|Fo| = 0.0527 for 5462 data with I > 2σ(I)

wR2 = [(Σw (|Fo|2- |Fc|2)2 / Σw |Fo| 2)] 1/2 = 0.0862

The standard deviation of an observation of unit weight8 was 1.084. The weighting

scheme was based on counting statistics and included a factor to downweight the intense

reflections. The maximum and minimum peaks on the final difference Fourier map

corresponded to 0.665 and -0.671 e–.Å3, respectively.

Page 182: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

164

Neutral atom scattering factors were taken from Cromer and Waber9 . Anomalous

dispersion effects were included in Fcalc2; the values for Δf' and Δf" were those of

Creagh and McAuley10. The values for the mass attenuation coefficients are those of

Creagh and Hubbel11. All calculations were performed using the SHELXTL1-6

crystallographic software package of Bruker Analytical X-ray Systems Inc.

References

(1) APEX-II: Area-Detector Software Package; Bruker Analytical X-ray Systems, Inc.:

Madison, WI, (2006)

(2) SAINT: SAX Area-Dectector Integration Program; Bruker Analytical X-ray Systems,

Inc.: Madison, WI, (2006)

(3) XPREP:(v 6.14) Part of the SHELXTL Crystal Structure Determination Package;

Bruker Analytical X-ray Systems, Inc.: Madison, WI, (1995)

(4) SADABS: Siemens Area Detector ABSorption correction program, George Sheldrick,

(2005).

(5) XS: Program for the Solution of X-ray Crystal Structures, Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

(6) XL: Program for the Refinement of X-ray Crystal Structures, Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

Page 183: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

165

(7) Least-Squares:

Function minimized: Σw (|Fo|2- |Fc|2)2

(8) Standard deviation of an observation of unit weight:

[Σw(|Fo|2 -|Fc|2 )2/(No -Nv)]1/2

where: No = number of observations

Nv = number of variables

(9) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol.

IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(10) Creagh, D. C. & McAuley, W. J.; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222

(1992).

(11) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206

(1992).

Page 184: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

166

Table B.1 Crystal data and structure refinement for 6.4

Empirical formula C37H29.5Cl2.5N2Ni2O0.5P2

Formula weight 778.11

Temperature 150(2) K

Wavelength 0.71073 Å

Crystal system monoclinic

Space group C2/c

Unit cell dimensions a = 15.834(4) Å α = 90°

b = 9.963(2) Å β = 94.639(3)°

c = 45.658(11) Å γ = 90°

Volume 7179(3) Å3

Z 8

Density (calculated) 1.597 g.cm-3

Absorption coefficient (μ) 1.507 mm-1

F(000) 3520

Crystal size 0.18 × 0.12 × 0.04 mm3

ω range for data collection 2.42 to 26.39°

Index ranges -19 ≤ h ≤ 19, -12 ≤ k ≤ 12, -57 ≤ l ≤ 57

Reflections collected 34702

Independent reflections 7362 [Rint = 0.0764]

Completeness to θ = 26.39° 99.9 %

Absorption correction Numerical

Max. and min. transmission 0.9422 and 0.7731

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 7362 / 0 / 451

Goodness-of-fit on F2 1.084

Final R indices [I>2σ(I)] R1 = 0.0527, wR2 = 0.0862

R indices (all data) R1 = 0.0813, wR2 = 0.0943

Largest diff. peak and hole 0.665 and -0.671 e–.Å-3

Page 185: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

167

Table B.2 Atomic coordinates and equivalent isotropic displacement parameters (Å2)

for 6.4. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Ni(1) 0.16199(3) 0.84789(5) 0.07736(1) 0.021(1) Ni(2) 0.31478(3) 0.93282(5) 0.13693(1) 0.024(1) Cl(1) 0.10909(8) 1.01961(11) 0.05330(3) 0.041(1) Cl(2) 0.29658(7) 1.13352(12) 0.15343(3) 0.053(1) Cl(3) 0.22903(19) 1.0011(3) 0.10261(7) 0.031(1) O(1) 0.2299(6) 0.9394(7) 0.1059(2) 0.048(3) P(1) 0.08417(6) 0.72400(10) 0.04862(2) 0.018(1) P(2) 0.41071(6) 0.89635(10) 0.17161(2) 0.021(1) N(1) 0.20385(19) 0.6876(3) 0.09692(7) 0.019(1) N(2) 0.33542(19) 0.7551(3) 0.12347(7) 0.021(1) C(1) 0.2795(2) 0.6688(4) 0.11105(8) 0.021(1) C(11) 0.0958(2) 0.5659(4) 0.06723(8) 0.018(1) C(12) 0.1568(2) 0.5670(4) 0.09104(8) 0.019(1) C(13) 0.1666(2) 0.4506(4) 0.10858(8) 0.023(1) C(14) 0.1201(2) 0.3379(4) 0.10093(9) 0.026(1) C(15) 0.0602(2) 0.3362(4) 0.07683(9) 0.026(1) C(16) 0.0480(2) 0.4518(4) 0.06043(8) 0.022(1) C(21) 0.1150(2) 0.7018(4) 0.01161(8) 0.020(1) C(22) 0.1417(2) 0.5775(4) 0.00182(9) 0.025(1) C(23) 0.1655(2) 0.5621(5) -0.02641(9) 0.027(1) C(24) 0.1617(2) 0.6706(5) -0.04539(9) 0.028(1) C(25) 0.1373(3) 0.7944(5) -0.03582(9) 0.031(1) C(26) 0.1142(3) 0.8113(4) -0.00761(9) 0.026(1) C(31) -0.0286(2) 0.7597(4) 0.04665(8) 0.019(1) C(32) -0.0759(2) 0.7992(4) 0.02098(9) 0.026(1) C(33) -0.1613(3) 0.8300(4) 0.02171(10) 0.032(1) C(34) -0.1999(3) 0.8184(4) 0.04767(10) 0.033(1) C(35) -0.1540(3) 0.7789(4) 0.07318(10) 0.032(1)

Page 186: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

168

C(36) -0.0685(2) 0.7502(4) 0.07268(9) 0.026(1) C(41) 0.4611(2) 0.7509(4) 0.15742(8) 0.020(1) C(42) 0.4149(2) 0.6954(4) 0.13291(8) 0.019(1) C(43) 0.4502(2) 0.5885(4) 0.11869(8) 0.023(1) C(44) 0.5264(2) 0.5339(4) 0.12964(9) 0.028(1) C(45) 0.5710(2) 0.5871(4) 0.15432(9) 0.027(1) C(46) 0.5388(2) 0.6975(4) 0.16794(9) 0.023(1) C(51) 0.3729(2) 0.8539(4) 0.20707(8) 0.024(1) C(52) 0.3130(3) 0.9363(5) 0.21870(10) 0.036(1) C(53) 0.2815(3) 0.9027(5) 0.24515(11) 0.044(1) C(54) 0.3096(3) 0.7893(5) 0.26020(10) 0.038(1) C(55) 0.3692(3) 0.7088(5) 0.24914(10) 0.036(1) C(56) 0.4007(3) 0.7403(4) 0.22252(9) 0.029(1) C(61) 0.4937(2) 1.0200(4) 0.17872(9) 0.022(1) C(62) 0.5216(3) 1.0898(4) 0.15509(9) 0.031(1) C(63) 0.5863(3) 1.1832(5) 0.15933(11) 0.038(1) C(64) 0.6245(3) 1.2063(4) 0.18744(11) 0.035(1) C(65) 0.5967(3) 1.1365(5) 0.21070(10) 0.036(1) C(66) 0.5324(3) 1.0436(4) 0.20672(9) 0.030(1) C(70) 0.3952(3) 0.4065(5) 0.18493(10) 0.040(1) Cl(4) 0.29519(8) 0.48410(13) 0.18134(3) 0.042(1) Cl(5) 0.42728(9) 0.36906(16) 0.22135(3) 0.065(1) H(1B) 0.2147 1.0314 0.1037 0.057 H(1A) 0.2967 0.5776 0.1125 0.026 H(13A) 0.2052 0.4503 0.1256 0.028 H(14A) 0.1289 0.2588 0.1124 0.031 H(15A) 0.0285 0.2574 0.0718 0.031 H(16A) 0.0063 0.4534 0.0443 0.026 H(22A) 0.1436 0.5026 0.0147 0.030 H(23A) 0.1843 0.4773 -0.0328 0.032 H(24A) 0.1760 0.6595 -0.0651 0.034 H(25A) 0.1364 0.8691 -0.0488 0.037 H(26A) 0.0977 0.8974 -0.0012 0.032

Page 187: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

169

H(32A) -0.0497 0.8051 0.0030 0.031 H(33A) -0.1932 0.8589 0.0043 0.038 H(34A) -0.2586 0.8377 0.0480 0.039 H(35A) -0.1808 0.7714 0.0910 0.039 H(36A) -0.0368 0.7238 0.0903 0.031 H(43A) 0.4217 0.5528 0.1013 0.027 H(44A) 0.5487 0.4585 0.1201 0.033 H(45A) 0.6231 0.5481 0.1618 0.032 H(46A) 0.5697 0.7368 0.1845 0.028 H(52A) 0.2939 1.0152 0.2086 0.043 H(53A) 0.2401 0.9584 0.2530 0.053 H(54A) 0.2874 0.7671 0.2783 0.046 H(55A) 0.3891 0.6312 0.2597 0.044 H(56A) 0.4417 0.6835 0.2148 0.035 H(62A) 0.4962 1.0736 0.1359 0.037 H(63A) 0.6047 1.2314 0.1431 0.046 H(64A) 0.6691 1.2697 0.1905 0.042 H(65A) 0.6223 1.1526 0.2299 0.044 H(66A) 0.5145 0.9955 0.2231 0.036 H(70A) 0.3931 0.3227 0.1732 0.048 H(70B) 0.4375 0.4668 0.1769 0.048

Page 188: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

170

Table B.3 Anisotropic displacement parameters (Å)2 for 6.4. The anisotropic displacement factor exponent takes the form: -2π2[ h 2 a*2 U11 + ... + 2 h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Ni(1) 0.0223(3) 0.0180(3) 0.0220(3) -0.0044(2) 0.0040(2) -0.0032(2) Ni(2) 0.0186(3) 0.0230(3) 0.0290(3) 0.0017(2) -0.0007(2) 0.0016(2) Cl(1) 0.0557(8) 0.0166(6) 0.0533(8) 0.0059(5) 0.0191(6) 0.0086(5) Cl(2) 0.0290(6) 0.0214(7) 0.1069(12) -0.0089(7) -0.0009(7) 0.0040(5) Cl(3) 0.0258(12) 0.0318(18) 0.0332(14) -0.0091(14) -0.0075(10) 0.0031(14) O(1) 0.065(5) 0.009(4) 0.067(6) -0.004(5) -0.015(4) 0.017(5) P(1) 0.0197(5) 0.0159(5) 0.0183(5) 0.0010(4) 0.0010(4) -0.0003(4) P(2) 0.0187(5) 0.0205(6) 0.0239(6) -0.0041(4) 0.0005(4) -0.0003(4) N(1) 0.0165(16) 0.0238(19) 0.0174(17) -0.0003(14) 0.0006(13) -0.0043(14) N(2) 0.0180(17) 0.028(2) 0.0151(17) -0.0008(14) 0.0012(13) -0.0006(15) C(1) 0.022(2) 0.024(2) 0.019(2) 0.0006(17) 0.0038(16) -0.0007(17) C(11) 0.0157(18) 0.019(2) 0.018(2) -0.0003(16) 0.0018(15) -0.0007(16) C(12) 0.0177(19) 0.023(2) 0.017(2) 0.0008(17) 0.0065(15) -0.0016(17) C(13) 0.021(2) 0.029(2) 0.018(2) 0.0057(18) 0.0005(16) -0.0024(18) C(14) 0.026(2) 0.019(2) 0.033(2) 0.0090(19) 0.0087(18) -0.0011(18) C(15) 0.027(2) 0.019(2) 0.033(2) -0.0028(19) 0.0046(18) -0.0026(18) C(16) 0.0173(19) 0.023(2) 0.024(2) -0.0010(18) -0.0011(16) -0.0019(17) C(21) 0.0181(19) 0.025(2) 0.015(2) -0.0024(17) -0.0010(16) -0.0013(17) C(22) 0.022(2) 0.026(2) 0.026(2) 0.0008(19) -0.0001(17) 0.0027(18) C(23) 0.024(2) 0.030(3) 0.026(2) -0.006(2) 0.0035(17) 0.0015(19) C(24) 0.020(2) 0.044(3) 0.021(2) -0.002(2) 0.0046(17) -0.005(2) C(25) 0.035(2) 0.033(3) 0.025(2) 0.012(2) 0.0044(19) -0.007(2) C(26) 0.034(2) 0.022(2) 0.025(2) 0.0000(18) 0.0090(18) -0.0030(19) C(31) 0.022(2) 0.013(2) 0.024(2) 0.0010(16) 0.0034(16) 0.0008(16) C(32) 0.020(2) 0.029(3) 0.029(2) 0.0032(19) -0.0020(17) 0.0003(18) C(33) 0.028(2) 0.029(3) 0.038(3) 0.006(2) -0.004(2) 0.001(2) C(34) 0.022(2) 0.026(3) 0.050(3) 0.004(2) 0.004(2) 0.0046(19) C(35) 0.033(2) 0.026(3) 0.040(3) 0.002(2) 0.015(2) 0.002(2) C(36) 0.023(2) 0.027(2) 0.027(2) 0.0023(19) 0.0027(18) 0.0056(18)

Page 189: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

171

C(41) 0.020(2) 0.021(2) 0.020(2) 0.0011(17) 0.0054(16) 0.0015(17) C(42) 0.0172(19) 0.022(2) 0.019(2) 0.0052(16) 0.0042(16) -0.0011(16) C(43) 0.024(2) 0.024(2) 0.020(2) -0.0016(17) 0.0036(17) -0.0028(18) C(44) 0.027(2) 0.022(2) 0.035(3) -0.0039(19) 0.0123(19) 0.0003(18) C(45) 0.021(2) 0.027(2) 0.033(2) 0.0048(19) 0.0064(18) 0.0032(18) C(46) 0.022(2) 0.026(2) 0.022(2) -0.0006(18) 0.0004(17) -0.0002(18) C(51) 0.020(2) 0.028(2) 0.023(2) -0.0081(18) -0.0004(16) -0.0083(18) C(52) 0.032(2) 0.037(3) 0.040(3) -0.005(2) 0.011(2) 0.004(2) C(53) 0.037(3) 0.058(4) 0.039(3) -0.011(3) 0.017(2) 0.002(3) C(54) 0.039(3) 0.049(3) 0.029(3) -0.006(2) 0.012(2) -0.011(2) C(55) 0.045(3) 0.036(3) 0.027(3) -0.003(2) 0.004(2) -0.009(2) C(56) 0.031(2) 0.028(3) 0.029(2) -0.006(2) 0.0066(19) -0.001(2) C(61) 0.020(2) 0.017(2) 0.028(2) -0.0026(17) -0.0027(17) 0.0016(17) C(62) 0.031(2) 0.032(3) 0.029(2) -0.005(2) 0.0019(19) -0.007(2) C(63) 0.037(3) 0.027(3) 0.052(3) 0.003(2) 0.013(2) -0.004(2) C(64) 0.026(2) 0.024(3) 0.055(3) -0.009(2) 0.004(2) -0.0058(19) C(65) 0.036(3) 0.035(3) 0.035(3) -0.010(2) -0.010(2) -0.007(2) C(66) 0.030(2) 0.029(3) 0.030(2) -0.004(2) -0.0023(19) -0.006(2) C(70) 0.040(3) 0.045(3) 0.036(3) -0.009(2) 0.016(2) -0.010(2) Cl(4) 0.0433(7) 0.0490(8) 0.0322(6) 0.0035(6) -0.0027(5) -0.0042(6) Cl(5) 0.0657(9) 0.0771(11) 0.0514(9) 0.0177(8) 0.0069(7) 0.0389(8)

Page 190: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

172

Table B.4 Bond lengths [Å] for 6.4 atom-atom distance atom-atom distance

Ni(1)-O(1) 1.859(9) Ni(1)-N(1) 1.921(3)

Ni(1)-P(1) 2.1217(11) Ni(1)-Cl(3) 2.142(3)

Ni(1)-Cl(1) 2.1647(13) Ni(2)-O(1) 1.874(9)

Ni(2)-N(2) 1.911(3) Ni(2)-Cl(3) 2.102(3)

Ni(2)-P(2) 2.1348(12) Ni(2)-Cl(2) 2.1643(14)

O(1)-H(1B) 0.9500 P(1)-C(11) 1.792(4)

P(1)-C(21) 1.810(4) P(1)-C(31) 1.816(4)

P(2)-C(41) 1.800(4) P(2)-C(61) 1.812(4)

P(2)-C(51) 1.820(4) N(1)-C(1) 1.328(5)

N(1)-C(12) 1.429(5) N(2)-C(1) 1.327(5)

N(2)-C(42) 1.427(5) C(1)-H(1A) 0.9500

C(11)-C(16) 1.387(5) C(11)-C(12) 1.394(5)

C(12)-C(13) 1.410(5) C(13)-C(14) 1.373(5)

C(13)-H(13A) 0.9500 C(14)-C(15) 1.393(5)

C(14)-H(14A) 0.9500 C(15)-C(16) 1.379(5)

C(15)-H(15A) 0.9500 C(16)-H(16A) 0.9500

C(21)-C(22) 1.394(5) C(21)-C(26) 1.399(5)

C(22)-C(23) 1.380(5) C(22)-H(22A) 0.9500

C(23)-C(24) 1.384(6) C(23)-H(23A) 0.9500

C(24)-C(25) 1.374(6) C(24)-H(24A) 0.9500

C(25)-C(26) 1.378(6) C(25)-H(25A) 0.9500

C(26)-H(26A) 0.9500 C(31)-C(36) 1.394(5)

C(31)-C(32) 1.395(5) C(32)-C(33) 1.390(5)

C(32)-H(32A) 0.9500 C(33)-C(34) 1.382(6)

C(33)-H(33A) 0.9500 C(34)-C(35) 1.379(6)

C(34)-H(34A) 0.9500 C(35)-C(36) 1.385(5)

Page 191: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

173

C(35)-H(35A) 0.9500 C(36)-H(36A) 0.9500

C(41)-C(46) 1.390(5) C(41)-C(42) 1.400(5)

C(42)-C(43) 1.388(5) C(43)-C(44) 1.381(5)

C(43)-H(43A) 0.9500 C(44)-C(45) 1.386(6)

C(44)-H(44A) 0.9500 C(45)-C(46) 1.381(5)

C(45)-H(45A) 0.9500 C(46)-H(46A) 0.9500

C(51)-C(56) 1.387(6) C(51)-C(52) 1.391(6)

C(52)-C(53) 1.385(6) C(52)-H(52A) 0.9500

C(53)-C(54) 1.377(7) C(53)-H(53A) 0.9500

C(54)-C(55) 1.367(6) C(54)-H(54A) 0.9500

C(55)-C(56) 1.386(6) C(55)-H(55A) 0.9500

C(56)-H(56A) 0.9500 C(61)-C(62) 1.386(6)

C(61)-C(66) 1.392(5) C(62)-C(63) 1.386(6)

C(62)-H(62A) 0.9500 C(63)-C(64) 1.392(6)

C(63)-H(63A) 0.9500 C(64)-C(65) 1.371(6)

C(64)-H(64A) 0.9500 C(65)-C(66) 1.377(6)

C(65)-H(65A) 0.9500 C(66)-H(66A) 0.9500

C(70)-Cl(5) 1.739(5) C(70)-Cl(4) 1.758(5)

C(70)-H(70A) 0.9900 C(70)-H(70B) 0.9900

Page 192: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

174

Table B.5 Bond angles [°] for 6.4

atom-atom-atom angle atom-atom-atom angle

O(1)-Ni(1)-N(1) 85.6(2) O(1)-Ni(1)-P(1) 173.0(3)

N(1)-Ni(1)-P(1) 88.01(10) O(1)-Ni(1)-Cl(3) 16.3(2)

N(1)-Ni(1)-Cl(3) 101.82(12) P(1)-Ni(1)-Cl(3) 170.11(9)

O(1)-Ni(1)-Cl(1) 98.4(2) N(1)-Ni(1)-Cl(1) 175.98(10)

P(1)-Ni(1)-Cl(1) 87.97(5) Cl(3)-Ni(1)-Cl(1) 82.20(9)

O(1)-Ni(2)-N(2) 85.4(2) O(1)-Ni(2)-Cl(3) 17.1(2)

N(2)-Ni(2)-Cl(3) 100.21(12) O(1)-Ni(2)-P(2) 172.2(2)

N(2)-Ni(2)-P(2) 87.18(10) Cl(3)-Ni(2)-P(2) 170.41(9)

O(1)-Ni(2)-Cl(2) 97.1(2) N(2)-Ni(2)-Cl(2) 177.45(10)

Cl(3)-Ni(2)-Cl(2) 82.20(9) P(2)-Ni(2)-Cl(2) 90.33(5)

Ni(2)-Cl(3)-Ni(1) 115.63(14) Ni(1)-O(1)-Ni(2) 148.3(4)

Ni(1)-O(1)-H(1B) 105.8 Ni(2)-O(1)-H(1B) 105.8

C(11)-P(1)-C(21) 108.08(18) C(11)-P(1)-C(31) 105.00(17)

C(21)-P(1)-C(31) 108.40(17) C(11)-P(1)-Ni(1) 100.71(12)

C(21)-P(1)-Ni(1) 117.49(13) C(31)-P(1)-Ni(1) 115.85(13)

C(41)-P(2)-C(61) 106.00(18) C(41)-P(2)-C(51) 108.69(19)

C(61)-P(2)-C(51) 106.54(18) C(41)-P(2)-Ni(2) 100.34(13)

C(61)-P(2)-Ni(2) 118.66(13) C(51)-P(2)-Ni(2) 115.70(13)

C(1)-N(1)-C(12) 114.2(3) C(1)-N(1)-Ni(1) 127.4(3)

C(12)-N(1)-Ni(1) 117.2(2) C(1)-N(2)-C(42) 113.6(3)

C(1)-N(2)-Ni(2) 127.7(3) C(42)-N(2)-Ni(2) 117.3(2)

N(1)-C(1)-N(2) 131.4(4) N(1)-C(1)-H(1A) 114.3

N(2)-C(1)-H(1A) 114.3 C(16)-C(11)-C(12) 120.8(4)

C(16)-C(11)-P(1) 125.5(3) C(12)-C(11)-P(1) 113.7(3)

C(11)-C(12)-C(13) 118.3(4) C(11)-C(12)-N(1) 118.1(3)

C(13)-C(12)-N(1) 123.6(3) C(14)-C(13)-C(12) 119.7(4)

Page 193: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

175

C(14)-C(13)-H(13A) 120.1 C(12)-C(13)-H(13A) 120.1

C(13)-C(14)-C(15) 121.9(4) C(13)-C(14)-H(14A) 119.1

C(15)-C(14)-H(14A) 119.1 C(16)-C(15)-C(14) 118.4(4)

C(16)-C(15)-H(15A) 120.8 C(14)-C(15)-H(15A) 120.8

C(15)-C(16)-C(11) 120.9(4) C(15)-C(16)-H(16A) 119.6

C(11)-C(16)-H(16A) 119.6 C(22)-C(21)-C(26) 118.6(4)

C(22)-C(21)-P(1) 121.3(3) C(26)-C(21)-P(1) 120.1(3)

C(23)-C(22)-C(21) 120.7(4) C(23)-C(22)-H(22A) 119.6

C(21)-C(22)-H(22A) 119.6 C(22)-C(23)-C(24) 119.8(4)

C(22)-C(23)-H(23A) 120.1 C(24)-C(23)-H(23A) 120.1

C(25)-C(24)-C(23) 120.1(4) C(25)-C(24)-H(24A) 120.0

C(23)-C(24)-H(24A) 120.0 C(24)-C(25)-C(26) 120.6(4)

C(24)-C(25)-H(25A) 119.7 C(26)-C(25)-H(25A) 119.7

C(25)-C(26)-C(21) 120.1(4) C(25)-C(26)-H(26A) 119.9

C(21)-C(26)-H(26A) 119.9 C(36)-C(31)-C(32) 119.1(4)

C(36)-C(31)-P(1) 117.2(3) C(32)-C(31)-P(1) 123.7(3)

C(33)-C(32)-C(31) 119.9(4) C(33)-C(32)-H(32A) 120.0

C(31)-C(32)-H(32A) 120.0 C(34)-C(33)-C(32) 120.1(4)

C(34)-C(33)-H(33A) 120.0 C(32)-C(33)-H(33A) 120.0

C(35)-C(34)-C(33) 120.6(4) C(35)-C(34)-H(34A) 119.7

C(33)-C(34)-H(34A) 119.7 C(34)-C(35)-C(36) 119.6(4)

C(34)-C(35)-H(35A) 120.2 C(36)-C(35)-H(35A) 120.2

C(35)-C(36)-C(31) 120.8(4) C(35)-C(36)-H(36A) 119.6

C(31)-C(36)-H(36A) 119.6 C(46)-C(41)-C(42) 121.0(4)

C(46)-C(41)-P(2) 126.1(3) C(42)-C(41)-P(2) 112.8(3)

C(43)-C(42)-C(41) 118.3(3) C(43)-C(42)-N(2) 123.9(3)

C(41)-C(42)-N(2) 117.9(3) C(44)-C(43)-C(42) 120.4(4)

C(44)-C(43)-H(43A) 119.8 C(42)-C(43)-H(43A) 119.8

C(43)-C(44)-C(45) 121.1(4) C(43)-C(44)-H(44A) 119.4

Page 194: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

176

C(45)-C(44)-H(44A) 119.4 C(46)-C(45)-C(44) 119.2(4)

C(46)-C(45)-H(45A) 120.4 C(44)-C(45)-H(45A) 120.4

C(45)-C(46)-C(41) 119.9(4) C(45)-C(46)-H(46A) 120.1

C(41)-C(46)-H(46A) 120.1 C(56)-C(51)-C(52) 119.0(4)

C(56)-C(51)-P(2) 121.9(3) C(52)-C(51)-P(2) 119.1(3)

C(53)-C(52)-C(51) 119.7(5) C(53)-C(52)-H(52A) 120.2

C(51)-C(52)-H(52A) 120.2 C(54)-C(53)-C(52) 120.6(4)

C(54)-C(53)-H(53A) 119.7 C(52)-C(53)-H(53A) 119.7

C(55)-C(54)-C(53) 120.1(4) C(55)-C(54)-H(54A) 119.9

C(53)-C(54)-H(54A) 119.9 C(54)-C(55)-C(56) 119.9(5)

C(54)-C(55)-H(55A) 120.0 C(56)-C(55)-H(55A) 120.0

C(55)-C(56)-C(51) 120.6(4) C(55)-C(56)-H(56A) 119.7

C(51)-C(56)-H(56A) 119.7 C(62)-C(61)-C(66) 119.1(4)

C(62)-C(61)-P(2) 118.3(3) C(66)-C(61)-P(2) 122.6(3)

C(61)-C(62)-C(63) 120.4(4) C(61)-C(62)-H(62A) 119.8

C(63)-C(62)-H(62A) 119.8 C(62)-C(63)-C(64) 120.0(4)

C(62)-C(63)-H(63A) 120.0 C(64)-C(63)-H(63A) 120.0

C(65)-C(64)-C(63) 119.2(4) C(65)-C(64)-H(64A) 120.4

C(63)-C(64)-H(64A) 120.4 C(64)-C(65)-C(66) 121.2(4)

C(64)-C(65)-H(65A) 119.4 C(66)-C(65)-H(65A) 119.4

C(65)-C(66)-C(61) 120.0(4) C(65)-C(66)-H(66A) 120.0

C(61)-C(66)-H(66A) 120.0 Cl(5)-C(70)-Cl(4) 112.0(2)

Cl(5)-C(70)-H(70A) 109.2 Cl(4)-C(70)-H(70A) 109.2

Cl(5)-C(70)-H(70B) 109.2 Cl(4)-C(70)-H(70B) 109.2

H(70A)-C(70)-H(70B) 107.9

Page 195: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

177

Table B.6 Torsion angles [°] for 6.4 atom-atom-atom-atom angle atom-atom-atom-atom angle

O(1)-Ni(2)-Cl(3)-Ni(1) -8.0(12) N(2)-Ni(2)-Cl(3)-Ni(1) 22.49(19)

P(2)-Ni(2)-Cl(3)-Ni(1) 162.5(5) Cl(2)-Ni(2)-Cl(3)-Ni(1) -158.38(16)

O(1)-Ni(1)-Cl(3)-Ni(2) 8.4(13) N(1)-Ni(1)-Cl(3)-Ni(2) 1.74(19)

P(1)-Ni(1)-Cl(3)-Ni(2) 175.2(4) Cl(1)-Ni(1)-Cl(3)-Ni(2) -178.42(16)

N(1)-Ni(1)-O(1)-Ni(2) 9.8(12) P(1)-Ni(1)-O(1)-Ni(2) 35(4)

Cl(3)-Ni(1)-O(1)-Ni(2) -164(3) Cl(1)-Ni(1)-O(1)-Ni(2) -170.5(11)

N(2)-Ni(2)-O(1)-Ni(1) 14.1(12) Cl(3)-Ni(2)-O(1)-Ni(1) 164(2)

P(2)-Ni(2)-O(1)-Ni(1) -4(4) Cl(2)-Ni(2)-O(1)-Ni(1) -166.4(11)

O(1)-Ni(1)-P(1)-C(11) -14(3) N(1)-Ni(1)-P(1)-C(11) 11.34(15)

Cl(3)-Ni(1)-P(1)-C(11) -162.2(6) Cl(1)-Ni(1)-P(1)-C(11) -168.58(13)

O(1)-Ni(1)-P(1)-C(21) -131(3) N(1)-Ni(1)-P(1)-C(21) -105.69(17)

Cl(3)-Ni(1)-P(1)-C(21) 80.7(6) Cl(1)-Ni(1)-P(1)-C(21) 74.39(15)

O(1)-Ni(1)-P(1)-C(31) 99(3) N(1)-Ni(1)-P(1)-C(31) 123.94(17)

Cl(3)-Ni(1)-P(1)-C(31) -49.6(6) Cl(1)-Ni(1)-P(1)-C(31) -55.97(15)

O(1)-Ni(2)-P(2)-C(41) 34(2) N(2)-Ni(2)-P(2)-C(41) 15.87(16) Cl(3)-

Ni(2)-P(2)-C(41) -124.8(6) Cl(2)-Ni(2)-P(2)-C(41) -163.54(14)

O(1)-Ni(2)-P(2)-C(61) 149(2) N(2)-Ni(2)-P(2)-C(61) 130.64(18)

Cl(3)-Ni(2)-P(2)-C(61) -10.1(6) Cl(2)-Ni(2)-P(2)-C(61) -48.77(16)

O(1)-Ni(2)-P(2)-C(51) -83(2) N(2)-Ni(2)-P(2)-C(51) -100.83(18)

Cl(3)-Ni(2)-P(2)-C(51) 118.5(6) Cl(2)-Ni(2)-P(2)-C(51) 79.76(16)

O(1)-Ni(1)-N(1)-C(1) -31.8(5) P(1)-Ni(1)-N(1)-C(1) 151.2(3)

Cl(3)-Ni(1)-N(1)-C(1) -29.9(3) Cl(1)-Ni(1)-N(1)-C(1) 152.4(13)

O(1)-Ni(1)-N(1)-C(12) 161.8(4) P(1)-Ni(1)-N(1)-C(12) -15.2(2)

Cl(3)-Ni(1)-N(1)-C(12) 163.7(3) Cl(1)-Ni(1)-N(1)-C(12) -14.0(16)

O(1)-Ni(2)-N(2)-C(1) -32.6(5) Cl(3)-Ni(2)-N(2)-C(1) -41.2(3)

P(2)-Ni(2)-N(2)-C(1) 144.9(3) Cl(2)-Ni(2)-N(2)-C(1) 158(2)

Page 196: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

178

O(1)-Ni(2)-N(2)-C(42) 161.7(4) Cl(3)-Ni(2)-N(2)-C(42) 153.1(3)

P(2)-Ni(2)-N(2)-C(42) -20.8(2) Cl(2)-Ni(2)-N(2)-C(42) -7(3)

C(12)-N(1)-C(1)-N(2) -169.9(4) Ni(1)-N(1)-C(1)-N(2) 23.4(6)

C(42)-N(2)-C(1)-N(1) -171.7(4) Ni(2)-N(2)-C(1)-N(1) 22.2(6)

C(21)-P(1)-C(11)-C(16) -66.7(4) C(31)-P(1)-C(11)-C(16) 48.8(4)

Ni(1)-P(1)-C(11)-C(16) 169.5(3) C(21)-P(1)-C(11)-C(12) 116.1(3)

C(31)-P(1)-C(11)-C(12) -128.4(3) Ni(1)-P(1)-C(11)-C(12) -7.7(3)

C(16)-C(11)-C(12)-C(13) -2.1(5) P(1)-C(11)-C(12)-C(13) 175.3(3)

C(16)-C(11)-C(12)-N(1) -179.9(3) P(1)-C(11)-C(12)-N(1) -2.6(4)

C(1)-N(1)-C(12)-C(11) -154.4(3) Ni(1)-N(1)-C(12)-C(11) 13.7(4)

C(1)-N(1)-C(12)-C(13) 27.9(5) Ni(1)-N(1)-C(12)-C(13) -164.0(3)

C(11)-C(12)-C(13)-C(14) 3.8(6) N(1)-C(12)-C(13)-C(14) -178.5(3)

C(12)-C(13)-C(14)-C(15) -2.8(6) C(13)-C(14)-C(15)-C(16) 0.0(6)

C(14)-C(15)-C(16)-C(11) 1.8(6) C(12)-C(11)-C(16)-C(15) -0.8(6)

P(1)-C(11)-C(16)-C(15) -177.8(3) C(11)-P(1)-C(21)-C(22) 0.3(4)

C(31)-P(1)-C(21)-C(22) -113.0(3) Ni(1)-P(1)-C(21)-C(22) 113.2(3)

C(11)-P(1)-C(21)-C(26) -178.2(3) C(31)-P(1)-C(21)-C(26) 68.5(3)

Ni(1)-P(1)-C(21)-C(26) -65.2(3) C(26)-C(21)-C(22)-C(23) -1.1(6)

P(1)-C(21)-C(22)-C(23) -179.6(3) C(21)-C(22)-C(23)-C(24) -0.9(6)

C(22)-C(23)-C(24)-C(25) 2.3(6) C(23)-C(24)-C(25)-C(26) -1.8(6)

C(24)-C(25)-C(26)-C(21) -0.3(6) C(22)-C(21)-C(26)-C(25) 1.7(6)

P(1)-C(21)-C(26)-C(25) -179.8(3) C(11)-P(1)-C(31)-C(36) 50.6(3)

C(21)-P(1)-C(31)-C(36) 165.9(3) Ni(1)-P(1)-C(31)-C(36) -59.5(3)

C(11)-P(1)-C(31)-C(32) -131.3(3) C(21)-P(1)-C(31)-C(32) -16.0(4)

Ni(1)-P(1)-C(31)-C(32) 118.6(3) C(36)-C(31)-C(32)-C(33) 0.8(6)

P(1)-C(31)-C(32)-C(33) -177.4(3) C(31)-C(32)-C(33)-C(34) -1.5(6)

C(32)-C(33)-C(34)-C(35) 1.3(7) C(33)-C(34)-C(35)-C(36) -0.2(7)

C(34)-C(35)-C(36)-C(31) -0.5(6) C(32)-C(31)-C(36)-C(35) 0.3(6)

P(1)-C(31)-C(36)-C(35) 178.5(3) C(61)-P(2)-C(41)-C(46) 42.4(4) C(51)-

Page 197: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

179

P(2)-C(41)-C(46) -71.8(4) Ni(2)-P(2)-C(41)-C(46) 166.4(3)

C(61)-P(2)-C(41)-C(42) -135.3(3) C(51)-P(2)-C(41)-C(42) 110.5(3)

Ni(2)-P(2)-C(41)-C(42) -11.3(3) C(46)-C(41)-C(42)-C(43) -2.4(6)

P(2)-C(41)-C(42)-C(43) 175.5(3) C(46)-C(41)-C(42)-N(2) 179.7(3)

P(2)-C(41)-C(42)-N(2) -2.5(4) C(1)-N(2)-C(42)-C(43) 32.7(5)

Ni(2)-N(2)-C(42)-C(43) -159.6(3) C(1)-N(2)-C(42)-C(41) -149.4(3)

Ni(2)-N(2)-C(42)-C(41) 18.3(4) C(41)-C(42)-C(43)-C(44) 3.9(6)

N(2)-C(42)-C(43)-C(44) -178.3(4) C(42)-C(43)-C(44)-C(45) -2.5(6)

C(43)-C(44)-C(45)-C(46) -0.7(6) C(44)-C(45)-C(46)-C(41) 2.2(6)

C(42)-C(41)-C(46)-C(45) -0.7(6) P(2)-C(41)-C(46)-C(45) -178.2(3)

C(41)-P(2)-C(51)-C(56) 15.5(4) C(61)-P(2)-C(51)-C(56) -98.3(3)

Ni(2)-P(2)-C(51)-C(56) 127.4(3) C(41)-P(2)-C(51)-C(52) -163.1(3)

C(61)-P(2)-C(51)-C(52) 83.1(4) Ni(2)-P(2)-C(51)-C(52) -51.2(4)

C(56)-C(51)-C(52)-C(53) -0.9(6) P(2)-C(51)-C(52)-C(53) 177.7(3)

C(51)-C(52)-C(53)-C(54) 0.7(7) C(52)-C(53)-C(54)-C(55) 0.1(7)

C(53)-C(54)-C(55)-C(56) -0.9(7) C(54)-C(55)-C(56)-C(51) 0.7(6)

C(52)-C(51)-C(56)-C(55) 0.2(6) P(2)-C(51)-C(56)-C(55) -178.4(3)

C(41)-P(2)-C(61)-C(62) 77.3(4) C(51)-P(2)-C(61)-C(62) -167.0(3)

Ni(2)-P(2)-C(61)-C(62) -34.3(4) C(41)-P(2)-C(61)-C(66) -100.2(4)

C(51)-P(2)-C(61)-C(66) 15.5(4) Ni(2)-P(2)-C(61)-C(66) 148.2(3)

C(66)-C(61)-C(62)-C(63) -0.9(6) P(2)-C(61)-C(62)-C(63) -178.5(3)

C(61)-C(62)-C(63)-C(64) 0.7(7) C(62)-C(63)-C(64)-C(65) -0.5(7)

C(63)-C(64)-C(65)-C(66) 0.5(7) C(64)-C(65)-C(66)-C(61) -0.7(7)

C(62)-C(61)-C(66)-C(65) 0.9(6) P(2)-C(61)-C(66)-C(65) 178.4(3)

Page 198: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

180

This page was intentionally left blank.

Page 199: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

APPENDIX C

X-RAY CRYSTALLOGRAPHIC DATA FOR [(PNNP)NiCl(μ-Cl)]2 (6.5)

Page 200: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

182

Data Collection

A fragment of a yellow prismatic crystal having approximate dimensions of 0.22 × 0.20 ×

0.17 mm was mounted on a Kapton loop using Paratone N hydrocarbon oil. All

measurements were made on a Bruker APEX-II1 CCD area detector with graphite

monochromated Mo-Kα radiation.

Cell constants and an orientation matrix, obtained from a least-squares refinement using

the measured positions of 9926 centered reflections with I > 10σ(I) in the range 2.38 < θ

< 28.15° corresponded to a Monoclinic cell with dimensions:

a = 23.651(5) Å α = 90°

b = 9.4114(19) Å β = 99.660(2)°

c = 32.702(7) Å γ = 90°

V = 7176(3) Å3

For Z = 8 and F.W. = 779.11, the calculated density is 1.442 g.cm-3.

Analysis of the systematic absences allowed the space group to be uniquely determined

to be:

C2/c

The data were collected at a temperature of 150(2) K. Frames corresponding to an

arbitrary sphere of data were collected using ω-scans of 0.3° counted for a total of 20

seconds per frame.

Page 201: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

183

Data Reduction

Data were integrated by the program SAINT2 to a maximum θ-value of 28.28°. The data

were corrected for Lorentz and polarization effects. Data were analyzed for agreement

and possible absorption using XPREP3. An empirical absorption correction based on

comparison of redundant and equivalent reflections was applied using SADABS4. (Tmax

= 0.8540, Tmin = 0.8168). Of the 39432 reflections that were collected, 8841 were

unique (Rint = 0.0324); equivalent reflections were merged. No decay correction was

applied.

Structure Solution and Refinement

The structure was solved by direct methods5 and expanded using Fourier techniques6.

Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in

calculated positions but were not refined. The final cycle of full-matrix least-squares

refinement7 was based on 8841 reflections (all data) and 427 variable parameters and

converged (largest parameter shift was 0.050 times its esd) with conventional unweighted

and weighted agreement factors of:

R1 = Σ||Fo| - |Fc|| / Σ|Fo| = 0.0332 for 7313 data with I > 2σ(I)

wR2 = [(Σw (|Fo|2- |Fc|2)2 / Σw |Fo| 2)] 1/2 = 0.0847

The standard deviation of an observation of unit weight8 was 1.051. The weighting

scheme was based on counting statistics and included a factor to downweight the intense

reflections. The maximum and minimum peaks on the final difference Fourier map

corresponded to 0.497 and -0.448 e–.Å3, respectively.

Neutral atom scattering factors were taken from Cromer and Waber9. Anomalous

Page 202: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

184

dispersion effects were included in Fcalc2; the values for Δf' and Δf" were those of

Creagh and McAuley10. The values for the mass attenuation coefficients are those of

Creagh and Hubbel11. All calculations were performed using the SHELXTL1-6

crystallographic software package of Bruker Analytical X-ray Systems Inc.

References

(1)APEX-II: Area-Detector Software Package v2.1, Bruker Analytical X-ray Systems,

Inc.: Madison, WI, (2006)

(2)SAINT: SAX Area-Dectector Integration Program, 7.34A; Siemens Industrial

Automation, Inc.: Madison, WI, (2006)

(3)XPREP:(v 6.14) Part of the SHELXTL Crystal Structure Determination Package,

Siemens Industrial Automation, Inc.: Madison, WI, (1995)

(4)SADABS: Siemens Area Detector ABSorption correction program v.2.10, George

Sheldrick, (2005).

(5) XS: Program for the Solution of X-ray Crystal Structures, Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

(6) XL: Program for the Refinement of X-ray Crystal Structure Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

Page 203: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

185

(7) Least-Squares:

Function minimized: Σw (|Fo|2- |Fc|2)2

(8) Standard deviation of an observation of unit weight:

[Σw(|Fo|2 -|Fc|2 )2/(No-Nv)]1/2

where: No = number of observations

Nv = number of variables

(9) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol.

IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(10) Creagh, D. C. & McAuley, W. J.; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222

(1992).

(11) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206

(1992).

Page 204: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

186

Table C.1 Crystal data and structure refinement for 6.5

Empirical formula C74H58Cl4N4Ni2P4

Formula weight 1386.37

Temperature 150(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group C2/c

Unit cell dimensions a = 23.651(5) Å α = 90°

b = 9.4114(19) Å β = 99.660(2)°

c = 32.702(7) Å γ = 90°

Volume 7176(3) Å3

Z 8

Density (calculated) 1.442 g.cm-3

Absorption coefficient (μ) 0.959 mm-1

F(000) 3200

Crystal size 0.22 × 0.20 × 0.17 mm3

ω range for data collection 2.32 to 28.28°

Index ranges -31 ≤ h ≤1, -12 ≤ k ≤ 12, -43 ≤ l ≤ 43

Reflections collected 39432

Independent reflections 8841 [Rint = 0.0324]

Completeness to θ = 28.28° 99.3 %

Absorption correction Numerical

Max. and min. transmission 0.8540 and 0.8168

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 8841 / 0 / 427

Goodness-of-fit on F2 1.051

Final R indices [I>2σ(I)] R1 = 0.0332, wR2 = 0.0847

R indices (all data) R1 = 0.0431, wR2 = 0.0910

Largest diff. peak and hole 0.497 and -0.448 e–.Å-3

Page 205: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

187

Table C.2 Atomic coordinates and equivalent isotropic displacement parameters (Å2)

for 6.5. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Ni(1) 0.28809(1) 0.14574(2) 0.04061(1) 0.018(1) Cl(1) 0.26917(2) 0.39669(4) 0.02328(1) 0.021(1) Cl(2) 0.28757(2) 0.18992(5) 0.10801(1) 0.029(1) P(1) 0.37863(2) 0.13818(5) 0.02460(1) 0.018(1) P(2) 0.21836(2) -0.03242(5) 0.18159(2) 0.024(1) N(1) 0.30347(6) -0.07508(16) 0.04779(4) 0.019(1) N(2) 0.25284(7) -0.13643(17) 0.10112(5) 0.023(1) C(1) 0.28532(8) -0.1665(2) 0.07238(5) 0.021(1) C(11) 0.37628(7) -0.04109(19) 0.00458(5) 0.019(1) C(12) 0.33679(7) -0.13223(19) 0.01892(5) 0.019(1) C(13) 0.33033(8) -0.2702(2) 0.00332(6) 0.024(1) C(14) 0.36347(8) -0.3172(2) -0.02542(6) 0.027(1) C(15) 0.40166(8) -0.2265(2) -0.03994(6) 0.027(1) C(16) 0.40790(8) -0.0886(2) -0.02506(6) 0.025(1) C(21) 0.40284(8) 0.24480(19) -0.01539(5) 0.021(1) C(22) 0.45781(9) 0.3000(2) -0.01161(6) 0.030(1) C(23) 0.47473(10) 0.3742(3) -0.04428(7) 0.039(1) C(24) 0.43682(10) 0.3938(2) -0.08084(7) 0.036(1) C(25) 0.38139(9) 0.3405(2) -0.08482(6) 0.031(1) C(26) 0.36435(8) 0.2671(2) -0.05217(6) 0.025(1) C(31) 0.43577(8) 0.1431(2) 0.06920(6) 0.022(1) C(32) 0.44023(9) 0.2641(3) 0.09396(7) 0.035(1) C(33) 0.48337(10) 0.2740(3) 0.12849(7) 0.043(1) C(34) 0.52102(10) 0.1626(3) 0.13869(7) 0.043(1) C(35) 0.51630(10) 0.0409(3) 0.11445(7) 0.040(1) C(36) 0.47368(8) 0.0309(2) 0.07962(6) 0.029(1) C(41) 0.20872(8) -0.2132(2) 0.16017(5) 0.022(1) C(42) 0.22786(8) -0.2454(2) 0.12248(5) 0.022(1)

Page 206: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

188

C(43) 0.22078(9) -0.3814(2) 0.10607(6) 0.029(1) C(44) 0.19676(9) -0.4876(2) 0.12689(6) 0.031(1) C(45) 0.17740(9) -0.4593(2) 0.16300(6) 0.029(1) C(46) 0.18331(9) -0.3224(2) 0.17957(6) 0.028(1) C(51) 0.29216(8) -0.0443(2) 0.20983(6) 0.025(1) C(52) 0.31462(9) -0.1651(2) 0.23114(7) 0.032(1) C(53) 0.37113(10) -0.1670(3) 0.25111(7) 0.038(1) C(54) 0.40571(10) -0.0495(3) 0.24985(7) 0.040(1) C(55) 0.38416(10) 0.0697(3) 0.22880(7) 0.040(1) C(56) 0.32727(10) 0.0738(2) 0.20889(6) 0.033(1) C(61) 0.17414(9) -0.0423(2) 0.22239(6) 0.027(1) C(62) 0.11446(9) -0.0402(3) 0.20944(7) 0.036(1) C(63) 0.07781(10) -0.0433(3) 0.23857(8) 0.042(1) C(64) 0.10005(10) -0.0458(3) 0.28103(8) 0.042(1) C(65) 0.15858(11) -0.0471(2) 0.29376(7) 0.038(1) C(66) 0.19566(9) -0.0461(2) 0.26469(6) 0.030(1) C(70) 0.42071(11) 0.7680(3) 0.15325(8) 0.050(1) Cl(3) 0.40495(4) 0.64611(10) 0.11276(2) 0.072(1) Cl(4) 0.48904(3) 0.73588(10) 0.18185(2) 0.068(1) H(2) 0.2448(9) -0.039(3) 0.1083(7) 0.027 H(1A) 0.2960 -0.2630 0.0698 0.025 H(13A) 0.3032 -0.3324 0.0123 0.028 H(14A) 0.3598 -0.4124 -0.0351 0.032 H(15A) 0.4235 -0.2587 -0.0600 0.032 H(16A) 0.4339 -0.0260 -0.0351 0.029 H(22A) 0.4841 0.2870 0.0135 0.036 H(23A) 0.5125 0.4115 -0.0414 0.047 H(24A) 0.4486 0.4437 -0.1032 0.043 H(25A) 0.3552 0.3544 -0.1099 0.037 H(26A) 0.3263 0.2317 -0.0548 0.030 H(32A) 0.4138 0.3400 0.0873 0.042 H(33A) 0.4869 0.3575 0.1450 0.051 H(34A) 0.5503 0.1693 0.1624 0.051

Page 207: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

189

H(35A) 0.5422 -0.0358 0.1216 0.048 H(36A) 0.4705 -0.0525 0.0630 0.035 H(43A) 0.2325 -0.4017 0.0803 0.034 H(44A) 0.1937 -0.5813 0.1159 0.037 H(45A) 0.1600 -0.5321 0.1768 0.035 H(46A) 0.1697 -0.3030 0.2047 0.033 H(52A) 0.2911 -0.2466 0.2320 0.038 H(53A) 0.3862 -0.2496 0.2657 0.046 H(54A) 0.4444 -0.0513 0.2636 0.048 H(55A) 0.4081 0.1502 0.2278 0.049 H(56A) 0.3125 0.1573 0.1947 0.039 H(62A) 0.0990 -0.0366 0.1807 0.043 H(63A) 0.0375 -0.0438 0.2296 0.051 H(64A) 0.0750 -0.0467 0.3009 0.050 H(65A) 0.1739 -0.0487 0.3225 0.046 H(66A) 0.2359 -0.0479 0.2739 0.036 H(70A) 0.3917 0.7605 0.1717 0.060 H(70B) 0.4191 0.8656 0.1418 0.060

Page 208: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

190

Table C.3 Anisotropic displacement parameters (Å)2 for 6.5. The anisotropic displacement factor exponent takes the form: -2π2[ h2 a*2 U11 + ... + 2 h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Ni(1) 0.0193(1) 0.0170(1) 0.0177(1) 0.0001(1) 0.0060(1) 0.0008(1) Cl(1) 0.0255(2) 0.0160(2) 0.0212(2) -0.0011(2) 0.0031(2) -0.0002(2) Cl(2) 0.0455(3) 0.0245(2) 0.0187(2) -0.0017(2) 0.0086(2) -0.0009(2) P(1) 0.0179(2) 0.0179(2) 0.0195(2) -0.0006(2) 0.0048(2) -0.0010(2) P(2) 0.0277(2) 0.0255(3) 0.0205(2) -0.0007(2) 0.0073(2) 0.0004(2) N(1) 0.0206(7) 0.0188(7) 0.0182(7) -0.0001(6) 0.0060(6) 0.0003(6) N(2) 0.0280(8) 0.0209(8) 0.0212(7) -0.0002(6) 0.0084(6) 0.0000(6) C(1) 0.0219(9) 0.0208(9) 0.0203(8) 0.0000(7) 0.0025(7) 0.0007(7) C(11) 0.0191(8) 0.0179(9) 0.0199(8) -0.0017(6) 0.0034(6) 0.0008(6) C(12) 0.0192(8) 0.0196(9) 0.0183(8) 0.0010(7) 0.0036(6) 0.0026(7) C(13) 0.0275(9) 0.0189(9) 0.0249(9) -0.0004(7) 0.0058(7) -0.0015(7) C(14) 0.0309(10) 0.0200(9) 0.0288(10) -0.0046(7) 0.0046(8) 0.0031(8) C(15) 0.0270(9) 0.0289(10) 0.0261(9) -0.0055(8) 0.0086(8) 0.0068(8) C(16) 0.0224(9) 0.0254(10) 0.0272(9) -0.0004(8) 0.0084(7) 0.0008(7) C(21) 0.0220(8) 0.0182(9) 0.0227(8) -0.0011(7) 0.0078(7) -0.0012(7) C(22) 0.0257(10) 0.0338(11) 0.0308(10) 0.0024(9) 0.0052(8) -0.0058(8) C(23) 0.0323(11) 0.0450(14) 0.0414(13) 0.0024(10) 0.0132(10) -0.0166(10) C(24) 0.0448(13) 0.0347(12) 0.0313(11) 0.0038(9) 0.0175(10) -0.0064(10) C(25) 0.0378(11) 0.0316(11) 0.0238(9) 0.0026(8) 0.0072(8) 0.0006(9) C(26) 0.0242(9) 0.0262(10) 0.0250(9) -0.0018(7) 0.0071(7) -0.0009(7) C(31) 0.0189(8) 0.0272(10) 0.0207(8) 0.0001(7) 0.0051(7) -0.0029(7) C(32) 0.0306(11) 0.0402(13) 0.0329(11) -0.0101(9) 0.0023(9) 0.0018(9) C(33) 0.0366(12) 0.0576(16) 0.0328(12) -0.0169(11) 0.0032(10) -0.0069(11) C(34) 0.0297(11) 0.0683(18) 0.0267(11) 0.0010(11) -0.0040(9) -0.0091(11) C(35) 0.0290(11) 0.0524(15) 0.0369(12) 0.0114(11) -0.0015(9) 0.0028(10) C(36) 0.0261(10) 0.0323(11) 0.0296(10) 0.0029(8) 0.0053(8) -0.0007(8) C(41) 0.0220(9) 0.0261(10) 0.0182(8) -0.0004(7) 0.0033(7) -0.0002(7) C(42) 0.0248(9) 0.0244(9) 0.0163(8) 0.0017(7) 0.0033(7) -0.0038(7) C(43) 0.0357(11) 0.0302(11) 0.0218(9) -0.0025(8) 0.0112(8) -0.0051(8)

Page 209: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

191

C(44) 0.0371(11) 0.0251(10) 0.0304(10) -0.0023(8) 0.0027(9) -0.0078(8) C(45) 0.0287(10) 0.0303(11) 0.0280(10) 0.0088(8) 0.0046(8) -0.0072(8) C(46) 0.0302(10) 0.0329(11) 0.0212(9) 0.0017(8) 0.0083(8) -0.0028(8) C(51) 0.0274(9) 0.0283(10) 0.0209(9) -0.0045(7) 0.0069(7) -0.0003(8) C(52) 0.0328(11) 0.0273(11) 0.0358(11) -0.0030(8) 0.0064(9) 0.0013(8) C(53) 0.0364(12) 0.0388(13) 0.0391(12) -0.0038(10) 0.0034(10) 0.0084(10) C(54) 0.0283(11) 0.0542(15) 0.0357(12) -0.0087(11) 0.0018(9) 0.0009(10) C(55) 0.0398(12) 0.0447(14) 0.0369(12) -0.0044(10) 0.0068(10) -0.0149(10) C(56) 0.0402(12) 0.0320(11) 0.0255(10) 0.0004(8) 0.0048(9) -0.0061(9) C(61) 0.0303(10) 0.0254(10) 0.0265(10) -0.0013(8) 0.0097(8) 0.0009(8) C(62) 0.0309(11) 0.0417(13) 0.0358(11) 0.0005(10) 0.0088(9) 0.0039(9) C(63) 0.0313(11) 0.0477(15) 0.0507(14) -0.0011(11) 0.0163(10) 0.0036(10) C(64) 0.0421(13) 0.0418(14) 0.0477(14) -0.0020(11) 0.0268(11) 0.0006(10) C(65) 0.0524(14) 0.0365(12) 0.0286(11) -0.0049(9) 0.0173(10) -0.0017(10) C(66) 0.0342(11) 0.0302(11) 0.0266(10) -0.0037(8) 0.0079(8) -0.0009(8) C(70) 0.0484(15) 0.0544(17) 0.0482(15) 0.0002(12) 0.0109(12) 0.0038(12) Cl(3) 0.0653(5) 0.0920(6) 0.0517(4) -0.0232(4) -0.0130(3) 0.0336(4) Cl(4) 0.0512(4) 0.0825(6) 0.0632(5) 0.0064(4) -0.0066(3) -0.0144(4)

Page 210: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

192

Table C.4 Bond lengths [Å] for 6.5 atom-atom distance atom-atom distance

Ni(1)-N(1) 2.1161(16) Ni(1)-Cl(2) 2.2450(7)

Ni(1)-P(1) 2.2893(6) Ni(1)-Cl(1)#1 2.3258(6)

Ni(1)-Cl(1) 2.4524(7) Cl(1)-Ni(1)#1 2.3258(6)

P(1)-C(11) 1.8073(18) P(1)-C(31) 1.8151(19)

P(1)-C(21) 1.8155(18) P(2)-C(61) 1.831(2)

P(2)-C(51) 1.836(2) P(2)-C(41) 1.839(2)

N(1)-C(1) 1.299(2) N(1)-C(12) 1.432(2)

N(2)-C(1) 1.340(2) N(2)-C(42) 1.424(2)

C(11)-C(16) 1.394(2) C(11)-C(12) 1.405(2)

C(12)-C(13) 1.394(3) C(13)-C(14) 1.393(3)

C(14)-C(15) 1.383(3) C(15)-C(16) 1.385(3)

C(21)-C(22) 1.386(3) C(21)-C(26) 1.397(3)

C(22)-C(23) 1.390(3) C(23)-C(24) 1.381(3)

C(24)-C(25) 1.389(3) C(25)-C(26) 1.388(3)

C(31)-C(36) 1.390(3) C(31)-C(32) 1.391(3)

C(32)-C(33) 1.392(3) C(33)-C(34) 1.380(4)

C(34)-C(35) 1.387(4) C(35)-C(36) 1.392(3)

C(41)-C(46) 1.396(3) C(41)-C(42) 1.415(2)

C(42)-C(43) 1.387(3) C(43)-C(44) 1.384(3)

C(44)-C(45) 1.363(3) C(45)-C(46) 1.396(3)

C(51)-C(52) 1.391(3) C(51)-C(56) 1.391(3)

C(52)-C(53) 1.386(3) C(53)-C(54) 1.380(3)

C(54)-C(55) 1.369(4) C(55)-C(56) 1.393(3)

C(61)-C(66) 1.392(3) C(61)-C(62) 1.404(3)

C(62)-C(63) 1.392(3) C(63)-C(64) 1.400(4)

C(64)-C(65) 1.377(3) C(65)-C(66) 1.397(3)

Page 211: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

193

C(70)-Cl(3) 1.744(3) C(70)-Cl(4) 1.752(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,-y+1/2,-z

Page 212: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

194

Table C.5 Bond angles [°] for 6.5 atom-atom-atom angle atom-atom-atom angle

N(1)-Ni(1)-Cl(2) 95.86(4) N(1)-Ni(1)-P(1) 81.08(4)

Cl(2)-Ni(1)-P(1) 112.93(2) N(1)-Ni(1)-Cl(1)#1 89.68(4)

Cl(2)-Ni(1)-Cl(1)#1 144.63(2) P(1)-Ni(1)-Cl(1)#1 102.43(2)

N(1)-Ni(1)-Cl(1) 173.11(4) Cl(2)-Ni(1)-Cl(1) 91.007(19)

P(1)-Ni(1)-Cl(1) 96.803(17) Cl(1)#1-Ni(1)-Cl(1) 84.359(18)

Ni(1)#1-Cl(1)-Ni(1) 95.641(18) C(11)-P(1)-C(31) 106.76(9)

C(11)-P(1)-C(21) 104.44(8) C(31)-P(1)-C(21) 106.40(8)

C(11)-P(1)-Ni(1) 97.98(6) C(31)-P(1)-Ni(1) 114.48(6)

C(21)-P(1)-Ni(1) 124.59(6) C(61)-P(2)-C(51) 103.97(9)

C(61)-P(2)-C(41) 100.42(9) C(51)-P(2)-C(41) 100.48(9)

C(1)-N(1)-C(12) 115.77(15) C(1)-N(1)-Ni(1) 130.61(12)

C(12)-N(1)-Ni(1) 113.52(11) C(1)-N(2)-C(42) 121.71(16)

N(1)-C(1)-N(2) 125.59(17) C(16)-C(11)-C(12) 120.04(17)

C(16)-C(11)-P(1) 124.34(14) C(12)-C(11)-P(1) 115.51(13)

C(13)-C(12)-C(11) 118.97(16) C(13)-C(12)-N(1) 123.53(16)

C(11)-C(12)-N(1) 117.44(15) C(14)-C(13)-C(12) 120.21(18)

C(15)-C(14)-C(13) 120.64(18) C(14)-C(15)-C(16) 119.64(17)

C(15)-C(16)-C(11) 120.45(18) C(22)-C(21)-C(26) 119.11(17)

C(22)-C(21)-P(1) 123.19(15) C(26)-C(21)-P(1) 117.66(14)

C(21)-C(22)-C(23) 120.42(19) C(24)-C(23)-C(22) 120.2(2)

C(23)-C(24)-C(25) 119.88(19) C(26)-C(25)-C(24) 119.9(2)

C(25)-C(26)-C(21) 120.39(18) C(36)-C(31)-C(32) 119.76(18)

C(36)-C(31)-P(1) 122.70(15) C(32)-C(31)-P(1) 117.53(15)

C(31)-C(32)-C(33) 120.0(2) C(34)-C(33)-C(32) 120.0(2)

C(33)-C(34)-C(35) 120.2(2) C(34)-C(35)-C(36) 120.1(2)

C(31)-C(36)-C(35) 119.9(2) C(46)-C(41)-C(42) 117.58(17)

Page 213: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

195

C(46)-C(41)-P(2) 122.91(14) C(42)-C(41)-P(2) 119.50(14)

C(43)-C(42)-C(41) 119.95(17) C(43)-C(42)-N(2) 120.52(16)

C(41)-C(42)-N(2) 119.50(17) C(44)-C(43)-C(42) 120.61(18)

C(45)-C(44)-C(43) 120.7(2) C(44)-C(45)-C(46) 119.38(18)

C(45)-C(46)-C(41) 121.74(18) C(52)-C(51)-C(56) 119.01(19)

C(52)-C(51)-P(2) 123.55(16) C(56)-C(51)-P(2) 117.43(16)

C(53)-C(52)-C(51) 120.2(2) C(54)-C(53)-C(52) 120.3(2)

C(55)-C(54)-C(53) 119.9(2) C(54)-C(55)-C(56) 120.4(2)

C(51)-C(56)-C(55) 120.1(2) C(66)-C(61)-C(62) 118.78(18)

C(66)-C(61)-P(2) 124.56(16) C(62)-C(61)-P(2) 116.61(15)

C(63)-C(62)-C(61) 120.2(2) C(62)-C(63)-C(64) 120.4(2)

C(65)-C(64)-C(63) 119.4(2) C(64)-C(65)-C(66) 120.5(2)

C(61)-C(66)-C(65) 120.6(2) Cl(3)-C(70)-Cl(4) 110.62(15)

Page 214: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

196

Table C.6 Torsion angles [°] for 6.5 atom-atom-atom-atom angle atom-atom-atom-atom angle

N(1)-Ni(1)-Cl(1)-Ni(1)#1 30.2(4) Cl(2)-Ni(1)-Cl(1)-Ni(1)#1 -

144.87(2)P(1)-Ni(1)-Cl(1)-Ni(1)#1 101.89(2) Cl(1)#1-Ni(1)-Cl(1)-Ni(1)#1 0.0

N(1)-Ni(1)-P(1)-C(11) 28.37(7) Cl(2)-Ni(1)-P(1)-C(11) 120.99(6)

Cl(1)#1-Ni(1)-P(1)-C(11) -59.32(6) Cl(1)-Ni(1)-P(1)-C(11) -145.01(6)

N(1)-Ni(1)-P(1)-C(31) -84.20(8) Cl(2)-Ni(1)-P(1)-C(31) 8.42(7)

Cl(1)#1-Ni(1)-P(1)-C(31) -171.89(7) Cl(1)-Ni(1)-P(1)-C(31) 102.42(7)

N(1)-Ni(1)-P(1)-C(21) 142.10(8) Cl(2)-Ni(1)-P(1)-C(21) -125.28(7)

Cl(1)#1-Ni(1)-P(1)-C(21) 54.41(7) Cl(1)-Ni(1)-P(1)-C(21) -31.28(7)

Cl(2)-Ni(1)-N(1)-C(1) 36.34(16) P(1)-Ni(1)-N(1)-C(1) 148.70(16)

Cl(1)#1-Ni(1)-N(1)-C(1) -108.66(16) Cl(1)-Ni(1)-N(1)-C(1) -138.7(3)

Cl(2)-Ni(1)-N(1)-C(12) -147.61(11) P(1)-Ni(1)-N(1)-C(12) -35.25(11)

Cl(1)#1-Ni(1)-N(1)-C(12) 67.39(11) Cl(1)-Ni(1)-N(1)-C(12) 37.3(4)

C(12)-N(1)-C(1)-N(2) -178.85(17) Ni(1)-N(1)-C(1)-N(2) -2.9(3)

C(42)-N(2)-C(1)-N(1) 170.54(17) C(31)-P(1)-C(11)-C(16) -89.29(17)

C(21)-P(1)-C(11)-C(16) 23.17(18) Ni(1)-P(1)-C(11)-C(16) 152.07(15)

C(31)-P(1)-C(11)-C(12) 94.65(15) C(21)-P(1)-C(11)-C(12) -152.89(14)

Ni(1)-P(1)-C(11)-C(12) -23.98(14) C(16)-C(11)-C(12)-C(13) 0.6(3)

P(1)-C(11)-C(12)-C(13) 176.80(14) C(16)-C(11)-C(12)-N(1) -176.89(16)

P(1)-C(11)-C(12)-N(1) -0.7(2) C(1)-N(1)-C(12)-C(13) 28.8(2)

Ni(1)-N(1)-C(12)-C(13) -147.90(15) C(1)-N(1)-C(12)-C(11) -153.90(16)

Ni(1)-N(1)-C(12)-C(11) 29.43(19) C(11)-C(12)-C(13)-C(14) 1.3(3)

N(1)-C(12)-C(13)-C(14) 178.54(17) C(12)-C(13)-C(14)-C(15) -2.3(3)

C(13)-C(14)-C(15)-C(16) 1.4(3) C(14)-C(15)-C(16)-C(11) 0.4(3)

C(12)-C(11)-C(16)-C(15) -1.4(3) P(1)-C(11)-C(16)-C(15) -177.30(15)

C(11)-P(1)-C(21)-C(22) -105.53(17) C(31)-P(1)-C(21)-C(22) 7.19(19)

Ni(1)-P(1)-C(21)-C(22) 143.88(15) C(11)-P(1)-C(21)-C(26) 72.10(16)

Page 215: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

197

C(31)-P(1)-C(21)-C(26) -175.18(14) Ni(1)-P(1)-C(21)-C(26) -38.49(17)

C(26)-C(21)-C(22)-C(23) -1.2(3) P(1)-C(21)-C(22)-C(23) 176.40(17)

C(21)-C(22)-C(23)-C(24) 0.1(4) C(22)-C(23)-C(24)-C(25) 0.7(4)

C(23)-C(24)-C(25)-C(26) -0.4(3) C(24)-C(25)-C(26)-C(21) -0.7(3)

C(22)-C(21)-C(26)-C(25) 1.5(3) P(1)-C(21)-C(26)-C(25) -176.22(15)

C(11)-P(1)-C(31)-C(36) 8.56(18) C(21)-P(1)-C(31)-C(36) -102.55(17)

Ni(1)-P(1)-C(31)-C(36) 115.79(15) C(11)-P(1)-C(31)-C(32) -170.15(15)

C(21)-P(1)-C(31)-C(32) 78.75(17) Ni(1)-P(1)-C(31)-C(32) -62.91(17)

C(36)-C(31)-C(32)-C(33) 1.5(3) P(1)-C(31)-C(32)-C(33) -179.76(17)

C(31)-C(32)-C(33)-C(34) -1.3(4) C(32)-C(33)-C(34)-C(35) 0.4(4)

C(33)-C(34)-C(35)-C(36) 0.3(4) C(32)-C(31)-C(36)-C(35) -0.8(3)

P(1)-C(31)-C(36)-C(35) -179.46(16) C(34)-C(35)-C(36)-C(31) -0.1(3)

C(61)-P(2)-C(41)-C(46) -11.41(18) C(51)-P(2)-C(41)-C(46) 95.07(17)

C(61)-P(2)-C(41)-C(42) 168.92(15) C(51)-P(2)-C(41)-C(42) -84.60(16)

C(46)-C(41)-C(42)-C(43) 0.3(3) P(2)-C(41)-C(42)-C(43) 180.00(15)

C(46)-C(41)-C(42)-N(2) 178.58(17) P(2)-C(41)-C(42)-N(2) -1.7(2)

C(1)-N(2)-C(42)-C(43) -20.3(3) C(1)-N(2)-C(42)-C(41) 161.44(17)

C(41)-C(42)-C(43)-C(44) -2.1(3) N(2)-C(42)-C(43)-C(44) 179.67(19)

C(42)-C(43)-C(44)-C(45) 2.8(3) C(43)-C(44)-C(45)-C(46) -1.7(3)

C(44)-C(45)-C(46)-C(41) -0.1(3) C(42)-C(41)-C(46)-C(45) 0.8(3)

P(2)-C(41)-C(46)-C(45) -178.88(15) C(61)-P(2)-C(51)-C(52) 66.43(19)

C(41)-P(2)-C(51)-C(52) -37.19(18) C(61)-P(2)-C(51)-C(56) -114.85(16)

C(41)-P(2)-C(51)-C(56) 141.53(16) C(56)-C(51)-C(52)-C(53) 0.1(3)

P(2)-C(51)-C(52)-C(53) 178.78(16) C(51)-C(52)-C(53)-C(54) -0.4(3)

C(52)-C(53)-C(54)-C(55) 0.0(4) C(53)-C(54)-C(55)-C(56) 0.6(4)

C(52)-C(51)-C(56)-C(55) 0.5(3) P(2)-C(51)-C(56)-C(55) -178.26(17)

C(54)-C(55)-C(56)-C(51) -0.8(3) C(51)-P(2)-C(61)-C(66) 4.6(2)

C(41)-P(2)-C(61)-C(66) 108.27(19) C(51)-P(2)-C(61)-C(62) -178.06(17)

C(41)-P(2)-C(61)-C(62) -74.39(18) C(66)-C(61)-C(62)-C(63) -0.7(3)

Page 216: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

198

P(2)-C(61)-C(62)-C(63) -178.20(19) C(61)-C(62)-C(63)-C(64) 1.3(4)

C(62)-C(63)-C(64)-C(65) -0.9(4) C(63)-C(64)-C(65)-C(66) -0.1(4)

C(62)-C(61)-C(66)-C(65) -0.2(3) P(2)-C(61)-C(66)-C(65) 177.04(17)

C(64)-C(65)-C(66)-C(61) 0.6(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,-y+1/2,-z

Page 217: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

199

Table C.7 Hydrogen bonds for 6.5 [Å and °]. D-H...A d(D-H) d(H...A) d(D...A) <(DHA) N(2)-H(2)...Cl(2) 0.97(2) 2.38(2) 3.1775(18) 138.7(17) Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+1/2,-z

Page 218: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

200

This page was intentionally left blank.

Page 219: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

APPENDIX D

X-RAY CRYSTALLOGRAPHIC DATA FOR (PNNP)CoCl2 (6.6)

Page 220: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

202

Data Collection

A fragment of a turquoise rod-like crystal of having approximate dimensions of 0.05 ×

0.04 × 0.02 mm was mounted on a Kapton loop using Paratone N hydrocarbon oil. All

measurements were made on a Bruker APEX-II1 CCD area detector with channel-cut Si-

<111> crystal monochromated synchrotron radiation.

Cell constants and an orientation matrix, obtained from a least-squares refinement using

the measured positions of 4458 centered reflections with I > 10σ(I) in the range 2.59 < θ

< 31.02° corresponded to a triclinic cell with dimensions:

a = 9.1132(8) Å α = 109.998(1)°

b = 14.1147(13) Å β = 106.364(1)°

c = 15.0208(14) Å γ = 91.036(1)°

V = 1728.0(3) Å3

For Z = 2 and F.W. = 728.94, the calculated density is 1.401 g.cm-3.

Analysis of the systematic absences allowed the space group to be uniquely determined

to be:

P-1

The data were collected at a temperature of 150(2) K. Frames corresponding to an

arbitrary sphere of data were collected using ω-scans of 0.3° counted for a total of 2

seconds per frame.

Page 221: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

203

Data Reduction

Data were integrated by the program SAINT2 to a maximum θ-value of 31.11°. The data

were corrected for Lorentz and polarization effects. Data were analyzed for agreement

and possible absorption using XPREP3. An empirical absorption correction based on

comparison of redundant and equivalent reflections was applied using SADABS4. (Tmax

= 0.9807, Tmin = 0.9528). Of the 22370 reflections that were collected, 8518 were

unique (Rint = 0.0480); equivalent reflections were merged. No decay correction was

applied.

Structure Solution and Refinement

The structure was solved by direct methods5 and expanded using Fourier techniques6.

Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in

calculated positions but were not refined. The final cycle of full-matrix least-squares

refinement7 was based on 8518 reflections (all data) and 421 variable parameters and

converged (largest parameter shift was 0.001 times its esd) with conventional unweighted

and weighted agreement factors of:

R1 = Σ||Fo| - |Fc|| / Σ|Fo| = 0.0434 for 6360 data with I > 2σ(I)

wR2 = [(Σw (|Fo|2- |Fc|2)2 / Σw |Fo| 2)] 1/2 = 0.1001

The standard deviation of an observation of unit weight8 was 1.027. The weighting

scheme was based on counting statistics and included a factor to downweight the intense

reflections. The maximum and minimum peaks on the final difference Fourier map

corresponded to 0.780 and -0.692 e–.Å3, respectively.

Neutral atom scattering factors were taken from Cromer and Waber9. Anomalous

Page 222: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

204

dispersion effects were included in Fcalc2; the values for Δf' and Δf" were those of

Creagh and McAuley10. The values for the mass attenuation coefficients are those of

Creagh and Hubbel11. All calculations were performed using the SHELXTL1-6

crystallographic software package of Bruker Analytical X-ray Systems Inc.

References

(1)APEX-II: Area-Detector Software Package v2.1, Bruker Analytical X-ray Systems,

Inc.: Madison, WI, (2006)

(2)SAINT: SAX Area-Dectector Integration Program, 7.34A; Siemens Industrial

Automation, Inc.: Madison, WI, (2006)

(3)XPREP:(v 6.14) Part of the SHELXTL Crystal Structure Determination Package,

Siemens Industrial Automation, Inc.: Madison, WI, (1995)

(4)SADABS: Siemens Area Detector ABSorption correction program v.2.10, George

Sheldrick, (2005).

(5) XS: Program for the Solution of X-ray Crystal Structures, Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

(6) XL: Program for the Refinement of X-ray Crystal Structure Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

Page 223: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

205

(7) Least-Squares:

Function minimized: Σw (|Fo|2- |Fc|2)2

(8) Standard deviation of an observation of unit weight:

[Σw(|Fo|2 -|Fc|2 )2/(No-Nv)]1/2

where: No = number of observations

Nv = number of variables

(9) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol.

IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(10) Creagh, D. C. & McAuley, W. J.; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222

(1992).

(11) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206

(1992).

Page 224: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

206

Table D.1 Crystal data and structure refinement for 6.6 Empirical formula C37H30Cl2CoN2P2

Formula weight 694.43

Temperature 150(2) K

Wavelength 0.77490 Å

Crystal system triclinic

Space group P-1

Unit cell dimensions a=9.1132(8) Å α=109.9980(10)°

b=14.1147(13) Å β=106.3640(10)°

c=15.0208(14) Å γ=91.0360(10)°

Volume 1728.0(3) Å3

Z 2

Density (calculated) 1.401 g.cm-3

Absorption coefficient (μ) 0.976 mm-1

F(000) 751

Crystal size 0.05 × 0.04 × 0.02 mm3

ω range for data collection 2.56 to 31.11°

Index ranges -12 ≤ h ≤2, -18 ≤ k ≤ 18, -19 ≤ l ≤ 19

Reflections collected 22370

Independent reflections 8518 [Rint = 0.0480]

Completeness to θ = 31.11° 99.3 %

Absorption correction Empiricial

Max. and min. transmission 0.9807 and 0.9528

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 8518 / 0 / 421

Goodness-of-fit on F2 1.027

Final R indices [I>2σ(I)] R1 = 0.0434, wR2 = 0.1001

R indices (all data) R1 = 0.0646, wR2 = 0.1095

Page 225: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

207

Largest diff. peak and hole 0.780 and -0.692 e–.Å-3

Page 226: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

208

Table D.2 Atomic coordinates and equivalent isotropic displacement parameters (Å2) for 6.6. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Co(1) 0.38528(4) 0.75800(2) 0.90495(2) 0.023(1) Cl(1) 0.34669(8) 0.80883(5) 1.05300(5) 0.033(1) Cl(2) 0.17168(8) 0.70754(6) 0.77525(6) 0.042(1) P(1) 0.60401(7) 0.67062(5) 0.91403(4) 0.022(1) P(2) 0.34391(7) 0.80202(5) 0.56505(5) 0.024(1) N(1) 0.5261(2) 0.86364(14) 0.89393(14) 0.021(1) N(2) 0.3518(2) 0.90746(16) 0.77488(15) 0.024(1) C(1) 0.4913(3) 0.92036(18) 0.83999(17) 0.023(1) C(11) 0.7374(3) 0.78800(17) 0.97282(16) 0.021(1) C(12) 0.6804(3) 0.87541(18) 0.95777(16) 0.021(1) C(13) 0.7712(3) 0.96931(18) 1.00844(17) 0.025(1) C(14) 0.9190(3) 0.97613(19) 1.07107(18) 0.028(1) C(15) 0.9777(3) 0.88982(19) 1.08416(18) 0.027(1) C(16) 0.8861(3) 0.79660(19) 1.03556(18) 0.026(1) C(21) 0.6378(3) 0.60009(18) 0.79729(18) 0.026(1) C(22) 0.7857(3) 0.5985(2) 0.7861(2) 0.032(1) C(23) 0.8059(4) 0.5395(2) 0.6964(2) 0.038(1) C(24) 0.6799(4) 0.4826(2) 0.6176(2) 0.039(1) C(25) 0.5339(4) 0.4847(2) 0.6272(2) 0.040(1) C(26) 0.5130(3) 0.5438(2) 0.71686(19) 0.032(1) C(31) 0.6686(3) 0.60053(18) 0.99642(18) 0.024(1) C(32) 0.6277(3) 0.6298(2) 1.08309(19) 0.030(1) C(33) 0.6776(3) 0.5826(2) 1.1514(2) 0.035(1) C(34) 0.7687(3) 0.5052(2) 1.1330(2) 0.036(1) C(35) 0.8076(3) 0.4743(2) 1.0462(2) 0.038(1) C(36) 0.7586(3) 0.5214(2) 0.9773(2) 0.032(1) C(41) 0.2827(3) 0.92798(18) 0.61367(17) 0.023(1) C(42) 0.3022(3) 0.96942(18) 0.71612(17) 0.021(1) C(43) 0.2699(3) 1.06665(19) 0.76058(18) 0.027(1)

Page 227: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

209

C(44) 0.2122(3) 1.12375(19) 0.70202(19) 0.030(1) C(45) 0.1875(3) 1.0832(2) 0.6007(2) 0.033(1) C(46) 0.2229(3) 0.98654(19) 0.55664(18) 0.029(1) C(51) 0.5535(3) 0.83790(19) 0.61333(17) 0.026(1) C(52) 0.6454(3) 0.7650(2) 0.6312(2) 0.042(1) C(53) 0.8046(4) 0.7859(3) 0.6628(3) 0.060(1) C(54) 0.8741(4) 0.8800(3) 0.6784(2) 0.050(1) C(55) 0.7850(3) 0.9548(2) 0.66355(19) 0.036(1) C(56) 0.6254(3) 0.9335(2) 0.63096(19) 0.031(1) C(61) 0.3034(3) 0.78161(18) 0.43232(18) 0.025(1) C(62) 0.4132(3) 0.7995(2) 0.38975(19) 0.031(1) C(63) 0.3751(3) 0.7757(2) 0.2877(2) 0.036(1) C(64) 0.2264(3) 0.7338(2) 0.22688(19) 0.033(1) C(65) 0.1164(3) 0.7155(2) 0.2680(2) 0.034(1) C(66) 0.1549(3) 0.7390(2) 0.3703(2) 0.032(1) C(71) 1.1616(11) 0.3579(8) 0.5696(7) 0.075(2) C(72) 1.1275(4) 0.4115(3) 0.5769(2) 0.040(1) C(73) 1.0996(10) 0.4469(7) 0.5521(6) 0.052(2) C(74) 1.0000 0.5000 0.5000 0.065(3) C(75) 0.9472(4) 0.5335(3) 0.4780(3) 0.043(1) C(76) 1.0133(11) 0.5852(8) 0.5263(7) 0.076(2) H(2) 0.285(3) 0.855(2) 0.762(2) 0.029 H(1A) 0.5671 0.9719 0.8473 0.027 H(13A) 0.7322 1.0287 1.0002 0.030 H(14A) 0.9807 1.0404 1.1054 0.033 H(15A) 1.0797 0.8948 1.1260 0.032 H(16A) 0.9254 0.7378 1.0452 0.031 H(22A) 0.8720 0.6379 0.8402 0.038 H(23A) 0.9060 0.5381 0.6890 0.045 H(24A) 0.6942 0.4417 0.5564 0.046 H(25A) 0.4478 0.4458 0.5726 0.048 H(26A) 0.4121 0.5457 0.7231 0.038 H(32A) 0.5648 0.6827 1.0958 0.036

Page 228: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

210

H(33A) 0.6494 0.6034 1.2109 0.042 H(34A) 0.8043 0.4734 1.1802 0.043 H(35A) 0.8685 0.4203 1.0331 0.046 H(36A) 0.7861 0.5000 0.9176 0.039 H(43A) 0.2870 1.0942 0.8304 0.032 H(44A) 0.1899 1.1906 0.7319 0.036 H(45A) 0.1459 1.1218 0.5608 0.039 H(46A) 0.2064 0.9598 0.4868 0.035 H(52A) 0.5986 0.7001 0.6218 0.050 H(53A) 0.8662 0.7349 0.6737 0.072 H(54A) 0.9834 0.8936 0.6995 0.060 H(55A) 0.8326 1.0203 0.6755 0.043 H(56A) 0.5642 0.9848 0.6205 0.037 H(62A) 0.5153 0.8283 0.4309 0.038 H(63A) 0.4510 0.7882 0.2594 0.043 H(64A) 0.2005 0.7176 0.1571 0.040 H(65A) 0.0144 0.6870 0.2265 0.041 H(66A) 0.0789 0.7258 0.3982 0.039

Page 229: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

211

Table D.3 Anisotropic displacement parameters (Å)2 for 6.6. The anisotropic displacement factor exponent takes the form: -2π2[ h2 a*2 U11 + ... + 2 h k a* b* U12 ] U11 U22 U33 U23 U13 U12

Co(1) 0.0209(2) 0.0251(2) 0.0251(2) 0.0136(1) 0.0065(1) 0.0045(1)

Cl(1) 0.0431(4) 0.0333(3) 0.0366(3) 0.0196(3) 0.0232(3) 0.0147(3)

Cl(2) 0.0289(3) 0.0426(4) 0.0521(4) 0.0301(3) -0.0086(3) -0.0061(3)

P(1) 0.0230(3) 0.0227(3) 0.0200(3) 0.0091(2) 0.0050(2) 0.0048(2)

P(2) 0.0275(3) 0.0238(3) 0.0219(3) 0.0097(2) 0.0070(2) 0.0045(2)

N(1) 0.0224(10) 0.0217(10) 0.0199(9) 0.0103(8) 0.0055(8) 0.0043(8)

N(2) 0.0245(10) 0.0287(11) 0.0214(10) 0.0141(9) 0.0049(8) 0.0028(8)

C(1) 0.0255(12) 0.0255(12) 0.0199(11) 0.0096(9) 0.0094(9) 0.0062(9)

C(11) 0.0227(11) 0.0238(11) 0.0183(11) 0.0078(9) 0.0084(9) 0.0044(9)

C(12) 0.0214(11) 0.0259(12) 0.0180(11) 0.0103(9) 0.0079(9) 0.0056(9)

C(13) 0.0283(12) 0.0254(12) 0.0235(12) 0.0119(10) 0.0087(10) 0.0039(10)

C(14) 0.0275(13) 0.0299(13) 0.0241(12) 0.0101(10) 0.0060(10) -0.0024(10)

C(15) 0.0222(12) 0.0340(14) 0.0234(12) 0.0093(10) 0.0059(10) 0.0038(10)

C(16) 0.0265(12) 0.0301(13) 0.0225(12) 0.0103(10) 0.0070(10) 0.0090(10)

C(21) 0.0332(13) 0.0218(12) 0.0228(12) 0.0090(9) 0.0085(10) 0.0059(10)

C(22) 0.0331(14) 0.0330(14) 0.0277(13) 0.0079(11) 0.0099(11) 0.0056(11)

C(23) 0.0421(16) 0.0394(16) 0.0356(15) 0.0132(13) 0.0184(13) 0.0106(13)

C(24) 0.0593(19) 0.0293(14) 0.0290(14) 0.0077(11) 0.0199(14) 0.0095(13)

C(25) 0.0516(18) 0.0326(15) 0.0253(14) 0.0031(11) 0.0062(13) -0.0040(13)

C(26) 0.0344(14) 0.0322(14) 0.0259(13) 0.0088(11) 0.0076(11) 0.0008(11)

C(31) 0.0256(12) 0.0220(11) 0.0235(12) 0.0100(10) 0.0024(9) 0.0026(9)

C(32) 0.0331(14) 0.0282(13) 0.0304(13) 0.0138(11) 0.0095(11) 0.0062(10)

C(33) 0.0408(15) 0.0375(15) 0.0315(14) 0.0196(12) 0.0092(12) 0.0026(12)

C(34) 0.0377(15) 0.0312(14) 0.0390(16) 0.0230(12) -0.0013(12) -0.0016(11)

C(35) 0.0387(15) 0.0274(14) 0.0461(17) 0.0187(13) 0.0029(13) 0.0098(11)

Page 230: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

212

C(36) 0.0362(14) 0.0280(13) 0.0304(14) 0.0114(11) 0.0061(11) 0.0088(11)

C(41) 0.0226(11) 0.0257(12) 0.0216(11) 0.0106(10) 0.0053(9) 0.0032(9)

C(42) 0.0190(11) 0.0271(12) 0.0221(11) 0.0145(10) 0.0054(9) 0.0042(9)

C(43) 0.0283(13) 0.0278(13) 0.0231(12) 0.0093(10) 0.0069(10) 0.0050(10)

C(44) 0.0343(14) 0.0254(13) 0.0306(13) 0.0105(11) 0.0096(11) 0.0084(10)

C(45) 0.0355(14) 0.0345(14) 0.0298(13) 0.0185(12) 0.0044(11) 0.0098(11)

C(46) 0.0355(14) 0.0314(13) 0.0209(12) 0.0127(10) 0.0055(10) 0.0065(11)

C(51) 0.0291(13) 0.0298(13) 0.0190(11) 0.0101(10) 0.0061(10) 0.0054(10)

C(52) 0.0362(16) 0.0336(15) 0.0530(18) 0.0202(14) 0.0050(14) 0.0057(12)

C(53) 0.0349(17) 0.054(2) 0.086(3) 0.034(2) 0.0015(18) 0.0140(15)

C(54) 0.0278(15) 0.065(2) 0.0493(19) 0.0224(17) -0.0007(14) -0.0002(14)

C(55) 0.0363(15) 0.0434(16) 0.0242(13) 0.0115(12) 0.0038(11) -0.0051(12)

C(56) 0.0355(14) 0.0304(13) 0.0268(13) 0.0123(11) 0.0059(11) 0.0018(11)

C(61) 0.0294(12) 0.0244(12) 0.0225(12) 0.0086(10) 0.0084(10) 0.0047(10)

C(62) 0.0303(13) 0.0377(15) 0.0239(12) 0.0097(11) 0.0073(10) -0.0007(11)

C(63) 0.0385(15) 0.0467(17) 0.0269(13) 0.0153(12) 0.0127(12) 0.0025(12)

C(64) 0.0425(15) 0.0346(14) 0.0214(12) 0.0096(11) 0.0080(11) 0.0061(12)

C(65) 0.0304(14) 0.0361(15) 0.0270(13) 0.0069(11) 0.0007(11) 0.0013(11)

C(66) 0.0286(13) 0.0361(14) 0.0314(14) 0.0113(11) 0.0100(11) 0.0039(11)

Page 231: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

213

Table D.4 Bond lengths [Å] for 6.6

atom-atom distance atom-atom distance

Co(1)-N(1) 2.029(2) Co(1)-Cl(1) 2.2232(7)

Co(1)-Cl(2) 2.2262(7) Co(1)-P(1) 2.3587(7)

P(1)-C(21) 1.812(2) P(1)-C(31) 1.818(2)

P(1)-C(11) 1.823(2) P(2)-C(51) 1.834(3)

P(2)-C(41) 1.839(2) P(2)-C(61) 1.839(2)

N(1)-C(1) 1.306(3) N(1)-C(12) 1.431(3)

N(2)-C(1) 1.333(3) N(2)-C(42) 1.437(3)

C(11)-C(16) 1.391(3) C(11)-C(12) 1.411(3)

C(12)-C(13) 1.392(3) C(13)-C(14) 1.388(3)

C(14)-C(15) 1.392(4) C(15)-C(16) 1.386(4)

C(21)-C(26) 1.386(3) C(21)-C(22) 1.404(4)

C(22)-C(23) 1.386(4) C(23)-C(24) 1.384(4)

C(24)-C(25) 1.377(4) C(25)-C(26) 1.389(4)

C(31)-C(32) 1.384(3) C(31)-C(36) 1.395(3)

C(32)-C(33) 1.385(3) C(33)-C(34) 1.384(4)

C(34)-C(35) 1.376(4) C(35)-C(36) 1.391(4)

C(41)-C(46) 1.397(3) C(41)-C(42) 1.403(3)

C(42)-C(43) 1.384(3) C(43)-C(44) 1.393(3)

C(44)-C(45) 1.379(4) C(45)-C(46) 1.387(4)

C(51)-C(52) 1.388(4) C(51)-C(56) 1.395(4)

C(52)-C(53) 1.385(4) C(53)-C(54) 1.376(5)

C(54)-C(55) 1.384(4) C(55)-C(56) 1.388(4)

C(61)-C(62) 1.391(3) C(61)-C(66) 1.392(4)

C(62)-C(63) 1.389(4) C(63)-C(64) 1.387(4)

C(64)-C(65) 1.379(4) C(65)-C(66) 1.393(4)

C(71)-C(72) 0.807(9) C(71)-C(73) 1.461(12)

Page 232: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

214

C(72)-C(73) 0.729(9) C(72)-C(75)#1 1.374(5)

C(72)-C(76)#1 1.727(10) C(73)-C(75)#1 0.666(9)

C(73)-C(76)#1 1.259(12) C(73)-C(74) 1.423(10)

C(74)-C(75)#1 0.768(4) C(74)-C(75) 0.768(4)

C(74)-C(76)#1 1.123(10) C(74)-C(76) 1.123(10)

C(74)-C(73)#1 1.423(10) C(75)-C(73)#1 0.666(9)

C(75)-C(76) 0.894(10) C(75)-C(72)#1 1.374(5)

C(75)-C(75)#1 1.536(8) C(75)-C(76)#1 1.704(10)

C(76)-C(73)#1 1.259(12) C(76)-C(75)#1 1.704(10)

C(76)-C(72)#1 1.727(10)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1

Page 233: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

215

Table D.5 Bond angles [°] for 6.6 atom-atom-atom angle atom-atom-atom angle

N(1)-Co(1)-Cl(1) 111.74(6) N(1)-Co(1)-Cl(2) 110.77(6)

Cl(1)-Co(1)-Cl(2) 115.00(3) N(1)-Co(1)-P(1) 83.09(6)

Cl(1)-Co(1)-P(1) 108.31(3) Cl(2)-Co(1)-P(1) 123.59(3)

C(21)-P(1)-C(31) 107.24(11) C(21)-P(1)-C(11) 107.49(11)

C(31)-P(1)-C(11) 103.95(11) C(21)-P(1)-Co(1) 116.77(8)

C(31)-P(1)-Co(1) 125.04(8) C(11)-P(1)-Co(1) 92.94(8)

C(51)-P(2)-C(41) 99.17(11) C(51)-P(2)-C(61) 102.29(11)

C(41)-P(2)-C(61) 102.06(11) C(1)-N(1)-C(12) 119.5(2)

C(1)-N(1)-Co(1) 128.42(16) C(12)-N(1)-Co(1) 112.08(14)

C(1)-N(2)-C(42) 124.8(2) N(1)-C(1)-N(2) 121.4(2)

C(16)-C(11)-C(12) 119.3(2) C(16)-C(11)-P(1) 123.69(18)

C(12)-C(11)-P(1) 116.89(17) C(13)-C(12)-C(11) 119.7(2)

C(13)-C(12)-N(1) 122.7(2) C(11)-C(12)-N(1) 117.6(2)

C(14)-C(13)-C(12) 120.0(2) C(13)-C(14)-C(15) 120.7(2)

C(16)-C(15)-C(14) 119.4(2) C(15)-C(16)-C(11) 120.9(2)

C(26)-C(21)-C(22) 119.0(2) C(26)-C(21)-P(1) 118.5(2)

C(22)-C(21)-P(1) 122.5(2) C(23)-C(22)-C(21) 120.1(3)

C(24)-C(23)-C(22) 119.9(3) C(25)-C(24)-C(23) 120.6(3)

C(24)-C(25)-C(26) 119.8(3) C(21)-C(26)-C(25) 120.7(3)

C(32)-C(31)-C(36) 119.4(2) C(32)-C(31)-P(1) 117.25(18)

C(36)-C(31)-P(1) 123.4(2) C(31)-C(32)-C(33) 120.6(2)

C(34)-C(33)-C(32) 119.9(3) C(35)-C(34)-C(33) 119.9(2)

C(34)-C(35)-C(36) 120.6(3) C(35)-C(36)-C(31) 119.6(3)

C(46)-C(41)-C(42) 117.8(2) C(46)-C(41)-P(2) 124.78(18)

C(42)-C(41)-P(2) 117.43(17) C(43)-C(42)-C(41) 121.5(2)

C(43)-C(42)-N(2) 119.7(2) C(41)-C(42)-N(2) 118.7(2)

Page 234: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

216

C(42)-C(43)-C(44) 119.4(2) C(45)-C(44)-C(43) 120.0(2)

C(44)-C(45)-C(46) 120.4(2) C(45)-C(46)-C(41) 120.8(2)

C(52)-C(51)-C(56) 118.4(2) C(52)-C(51)-P(2) 118.0(2)

C(56)-C(51)-P(2) 123.65(19) C(53)-C(52)-C(51) 120.6(3)

C(54)-C(53)-C(52) 120.4(3) C(53)-C(54)-C(55) 120.0(3)

C(54)-C(55)-C(56) 119.5(3) C(55)-C(56)-C(51) 121.0(3)

C(62)-C(61)-C(66) 118.5(2) C(62)-C(61)-P(2) 124.38(19)

C(66)-C(61)-P(2) 116.93(19) C(63)-C(62)-C(61) 120.6(2)

C(64)-C(63)-C(62) 120.2(3) C(65)-C(64)-C(63) 119.9(2)

C(64)-C(65)-C(66) 119.9(3) C(61)-C(66)-C(65) 120.9(2)

C(72)-C(71)-C(73) 17.1(6) C(73)-C(72)-C(71) 143.9(11)

C(73)-C(72)-C(75)#1 9.7(7) C(71)-C(72)-C(75)#1 140.5(8)

C(73)-C(72)-C(76)#1 40.1(8) C(71)-C(72)-C(76)#1 114.8(8)

C(75)#1-C(72)-C(76)#1 30.9(3) C(75)#1-C(73)-C(72) 159.7(15)

C(75)#1-C(73)-C(76)#1 42.8(8) C(72)-C(73)-C(76)#1 118.0(11)

C(75)#1-C(73)-C(74) 7.9(5) C(72)-C(73)-C(74) 161.9(10)

C(76)#1-C(73)-C(74) 49.0(6) C(75)#1-C(73)-C(71) 149.2(11)

C(72)-C(73)-C(71) 19.0(6) C(76)#1-C(73)-C(71) 107.1(8)

C(74)-C(73)-C(71) 156.1(7) C(75)#1-C(74)-C(75) 180.0(6)

C(75)#1-C(74)-C(76)#1 52.4(5) C(75)-C(74)-C(76)#1 127.6(5)

C(75)#1-C(74)-C(76) 127.6(5) C(75)-C(74)-C(76) 52.4(5)

C(76)#1-C(74)-C(76) 180.0(3) C(75)#1-C(74)-C(73) 6.8(5)

C(75)-C(74)-C(73) 173.2(5) C(76)#1-C(74)-C(73) 57.9(6)

C(76)-C(74)-C(73) 122.1(6) C(75)#1-C(74)-C(73)#1 173.2(5)

C(75)-C(74)-C(73)#1 6.8(5) C(76)#1-C(74)-C(73)#1 122.1(6)

C(76)-C(74)-C(73)#1 57.9(6) C(73)-C(74)-C(73)#1 180.000(3)

C(73)#1-C(75)-C(74) 165.3(10) C(73)#1-C(75)-C(76) 106.8(11)

C(74)-C(75)-C(76) 84.7(8) C(73)#1-C(75)-C(72)#1 10.6(8)

C(74)-C(75)-C(72)#1 166.5(4) C(76)-C(75)-C(72)#1 96.9(7)

Page 235: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

217

C(73)#1-C(75)-C(75)#1 165.3(10) C(74)-C(75)-C(75)#1 0.0(3)

C(76)-C(75)-C(75)#1 84.7(8) C(72)#1-C(75)-C(75)#1 166.5(4)

C(73)#1-C(75)-C(76)#1 136.1(10) C(74)-C(75)-C(76)#1 31.5(3)

C(76)-C(75)-C(76)#1 116.1(8) C(72)#1-C(75)-C(76)#1 144.4(5)

C(75)#1-C(75)-C(76)#1 31.5(3) C(75)-C(76)-C(74) 42.9(6)

C(75)-C(76)-C(73)#1 30.4(6) C(74)-C(76)-C(73)#1 73.1(8)

C(75)-C(76)-C(75)#1 63.9(8) C(74)-C(76)-C(75)#1 20.9(3)

C(73)#1-C(76)-C(75)#1 93.9(9) C(75)-C(76)-C(72)#1 52.2(6)

C(74)-C(76)-C(72)#1 94.2(7) C(73)#1-C(76)-C(72)#1 21.9(5)

C(75)#1-C(76)-C(72)#1 114.8(7)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1

Page 236: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

218

Table D.6 Torsion angles [°] for 6.6

atom-atom-atom-atom angle atom-atom-atom-atom angle

N(1)-Co(1)-P(1)-C(21) -81.13(11) Cl(1)-Co(1)-P(1)-C(21) 168.21(9)

Cl(2)-Co(1)-P(1)-C(21) 29.26(10) N(1)-Co(1)-P(1)-C(31) 139.47(11)

Cl(1)-Co(1)-P(1)-C(31) 28.81(10) Cl(2)-Co(1)-P(1)-C(31) -110.14(10)

N(1)-Co(1)-P(1)-C(11) 30.16(9) Cl(1)-Co(1)-P(1)-C(11) -80.51(8)

Cl(2)-Co(1)-P(1)-C(11) 140.54(7) Cl(1)-Co(1)-N(1)-C(1) -110.20(19)

Cl(2)-Co(1)-N(1)-C(1) 19.4(2) P(1)-Co(1)-N(1)-C(1) 142.8(2)

Cl(1)-Co(1)-N(1)-C(12) 67.79(15) Cl(2)-Co(1)-N(1)-C(12) -162.58(13)

P(1)-Co(1)-N(1)-C(12) -39.21(14) C(12)-N(1)-C(1)-N(2) 175.6(2)

Co(1)-N(1)-C(1)-N(2) -6.5(3) C(42)-N(2)-C(1)-N(1) 177.1(2)

C(21)-P(1)-C(11)-C(16) -88.0(2) C(31)-P(1)-C(11)-C(16) 25.5(2)

Co(1)-P(1)-C(11)-C(16) 152.70(19) C(21)-P(1)-C(11)-C(12) 96.20(19)

C(31)-P(1)-C(11)-C(12) -150.32(17) Co(1)-P(1)-C(11)-C(12) -23.08(17)

C(16)-C(11)-C(12)-C(13) -2.3(3) P(1)-C(11)-C(12)-C(13) 173.68(17)

C(16)-C(11)-C(12)-N(1) -179.1(2) P(1)-C(11)-C(12)-N(1) -3.1(3)

C(1)-N(1)-C(12)-C(13) 36.1(3) Co(1)-N(1)-C(12)-C(13) -142.05(19)

C(1)-N(1)-C(12)-C(11) -147.2(2) Co(1)-N(1)-C(12)-C(11) 34.6(2)

C(11)-C(12)-C(13)-C(14) 2.0(3) N(1)-C(12)-C(13)-C(14) 178.6(2)

C(12)-C(13)-C(14)-C(15) -0.2(4) C(13)-C(14)-C(15)-C(16) -1.3(4)

C(14)-C(15)-C(16)-C(11) 1.0(4) C(12)-C(11)-C(16)-C(15) 0.8(3)

P(1)-C(11)-C(16)-C(15) -174.88(19) C(31)-P(1)-C(21)-C(26) 103.9(2)

C(11)-P(1)-C(21)-C(26) -144.8(2) Co(1)-P(1)-C(21)-C(26) -42.1(2)

C(31)-P(1)-C(21)-C(22) -74.5(2) C(11)-P(1)-C(21)-C(22) 36.8(2)

Co(1)-P(1)-C(21)-C(22) 139.43(19) C(26)-C(21)-C(22)-C(23) -1.4(4)

P(1)-C(21)-C(22)-C(23) 177.0(2) C(21)-C(22)-C(23)-C(24) 0.3(4)

C(22)-C(23)-C(24)-C(25) 0.6(4) C(23)-C(24)-C(25)-C(26) -0.5(4)

C(22)-C(21)-C(26)-C(25) 1.5(4) P(1)-C(21)-C(26)-C(25) -176.9(2)

Page 237: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

219

C(24)-C(25)-C(26)-C(21) -0.6(4) C(21)-P(1)-C(31)-C(32) -168.14(19)

C(11)-P(1)-C(31)-C(32) 78.2(2) Co(1)-P(1)-C(31)-C(32) -25.6(2)

C(21)-P(1)-C(31)-C(36) 13.2(3) C(11)-P(1)-C(31)-C(36) -100.5(2)

Co(1)-P(1)-C(31)-C(36) 155.71(18) C(36)-C(31)-C(32)-C(33) 1.2(4)

P(1)-C(31)-C(32)-C(33) -177.5(2) C(31)-C(32)-C(33)-C(34) -0.3(4)

C(32)-C(33)-C(34)-C(35) -0.9(4) C(33)-C(34)-C(35)-C(36) 1.2(4)

C(34)-C(35)-C(36)-C(31) -0.2(4) C(32)-C(31)-C(36)-C(35) -1.0(4)

P(1)-C(31)-C(36)-C(35) 177.7(2) C(51)-P(2)-C(41)-C(46) 104.4(2)

C(61)-P(2)-C(41)-C(46) -0.3(2) C(51)-P(2)-C(41)-C(42) -73.4(2)

C(61)-P(2)-C(41)-C(42) -178.21(19) C(46)-C(41)-C(42)-C(43) -2.7(4)

P(2)-C(41)-C(42)-C(43) 175.30(19) C(46)-C(41)-C(42)-N(2) 175.1(2)

P(2)-C(41)-C(42)-N(2) -6.9(3) C(1)-N(2)-C(42)-C(43) -74.0(3)

C(1)-N(2)-C(42)-C(41) 108.1(3) C(41)-C(42)-C(43)-C(44) 2.0(4)

N(2)-C(42)-C(43)-C(44) -175.8(2) C(42)-C(43)-C(44)-C(45) 0.1(4)

C(43)-C(44)-C(45)-C(46) -1.4(4) C(44)-C(45)-C(46)-C(41) 0.7(4)

C(42)-C(41)-C(46)-C(45) 1.4(4) P(2)-C(41)-C(46)-C(45) -176.5(2)

C(41)-P(2)-C(51)-C(52) 153.0(2) C(61)-P(2)-C(51)-C(52) -102.4(2)

C(41)-P(2)-C(51)-C(56) -28.4(2) C(61)-P(2)-C(51)-C(56) 76.2(2)

C(56)-C(51)-C(52)-C(53) -2.0(5) P(2)-C(51)-C(52)-C(53) 176.6(3)

C(51)-C(52)-C(53)-C(54) 1.1(6) C(52)-C(53)-C(54)-C(55) 0.6(6)

C(53)-C(54)-C(55)-C(56) -1.2(5) C(54)-C(55)-C(56)-C(51) 0.2(4)

C(52)-C(51)-C(56)-C(55) 1.4(4) P(2)-C(51)-C(56)-C(55) -177.2(2)

C(51)-P(2)-C(61)-C(62) -4.4(2) C(41)-P(2)-C(61)-C(62) 97.9(2)

C(51)-P(2)-C(61)-C(66) 171.1(2) C(41)-P(2)-C(61)-C(66) -86.6(2)

C(66)-C(61)-C(62)-C(63) 0.3(4) P(2)-C(61)-C(62)-C(63) 175.7(2)

C(61)-C(62)-C(63)-C(64) 0.0(4) C(62)-C(63)-C(64)-C(65) -0.1(4)

C(63)-C(64)-C(65)-C(66) -0.2(4) C(62)-C(61)-C(66)-C(65) -0.5(4)

P(2)-C(61)-C(66)-C(65) -176.3(2) C(64)-C(65)-C(66)-C(61) 0.5(4)

C(73)-C(71)-C(72)-C(75)#1 14.9(13) C(73)-C(71)-C(72)-C(76)#1 37.2(16)

Page 238: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

220

C(71)-C(72)-C(73)-C(75)#1 76(5) C(76)#1-C(72)-C(73)-C(75)#1 17(3)

C(71)-C(72)-C(73)-C(76)#1 59(2) C(75)#1-C(72)-C(73)-C(76)#1 -17(3)

C(71)-C(72)-C(73)-C(74) 99(3) C(75)#1-C(72)-C(73)-C(74) 23.1(19)

C(76)#1-C(72)-C(73)-C(74) 40(3) C(75)#1-C(72)-C(73)-C(71) -76(5)

C(76)#1-C(72)-C(73)-C(71) -59(2) C(72)-C(71)-C(73)-C(75)#1 -139(3)

C(72)-C(71)-C(73)-C(76)#1 -128(2) C(72)-C(71)-C(73)-C(74) -131(3)

C(72)-C(73)-C(74)-C(75)#1 -84(5) C(76)#1-C(73)-C(74)-C(75)#1 -35(4)

C(71)-C(73)-C(74)-C(75)#1 -32(3) C(75)#1-C(73)-C(74)-C(75) 180.00(9)

C(72)-C(73)-C(74)-C(75) 96(5) C(76)#1-C(73)-C(74)-C(75) 145(4)

C(71)-C(73)-C(74)-C(75) 148(3) C(75)#1-C(73)-C(74)-C(76)#1 35(4)

C(72)-C(73)-C(74)-C(76)#1 -49(3) C(71)-C(73)-C(74)-C(76)#1 3.6(17)

C(75)#1-C(73)-C(74)-C(76) -145(4) C(72)-C(73)-C(74)-C(76) 131(3)

C(76)#1-C(73)-C(74)-C(76) 180.000(4) C(71)-C(73)-C(74)-C(76) -176.4(17)

C(75)#1-C(73)-C(74)-C(73)#1 -118(100) C(72)-C(73)-C(74)-C(73)#1 158(100)

C(76)#1-C(73)-C(74)-C(73)#1 -153(100) C(71)-C(73)-C(74)-C(73)#1 -150(100)

C(75)#1-C(74)-C(75)-C(73)#1 -163(100) C(76)#1-C(74)-C(75)-C(73)#1 -38(4)

C(76)-C(74)-C(75)-C(73)#1 142(4) C(73)-C(74)-C(75)-C(73)#1 180.00(3)

C(75)#1-C(74)-C(75)-C(76) 55(100) C(76)#1-C(74)-C(75)-C(76) 180.000(3)

C(73)-C(74)-C(75)-C(76) 38(4) C(73)#1-C(74)-C(75)-C(76) -142(4)

C(75)#1-C(74)-C(75)-C(72)#1 153(100) C(76)#1-C(74)-C(75)-C(72)#1 -83(2)

C(76)-C(74)-C(75)-C(72)#1 97(2) C(73)-C(74)-C(75)-C(72)#1 136(3)

C(73)#1-C(74)-C(75)-C(72)#1 -44(3) C(76)#1-C(74)-C(75)-C(75)#1125(100)

C(76)-C(74)-C(75)-C(75)#1 -55(100) C(73)-C(74)-C(75)-C(75)#1 -17(100)

C(73)#1-C(74)-C(75)-C(75)#1 163(100)

C(75)#1-C(74)-C(75)-C(76)#1 -125(100) C(76)-C(74)-C(75)-C(76)#1 180.000(3)

C(73)-C(74)-C(75)-C(76)#1 -142(4) C(73)#1-C(74)-C(75)-C(76)#1 38(4)

C(73)#1-C(75)-C(76)-C(74) -170.6(11) C(72)#1-C(75)-C(76)-C(74) -166.5(4)

C(75)#1-C(75)-C(76)-C(74) 0.000(3) C(76)#1-C(75)-C(76)-C(74) 0.000(2)

C(74)-C(75)-C(76)-C(73)#1 170.6(11) C(72)#1-C(75)-C(76)-C(73)#1 4.1(8)

Page 239: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

221

C(75)#1-C(75)-C(76)-C(73)#1 170.6(11)

C(76)#1-C(75)-C(76)-C(73)#1 170.6(11)

C(73)#1-C(75)-C(76)-C(75)#1 -170.6(11) C(74)-C(75)-C(76)-C(75)#1 0.000(2)

C(72)#1-C(75)-C(76)-C(75)#1 -166.5(4) C(76)#1-C(75)-C(76)-C(75)#1 0.0

C(73)#1-C(75)-C(76)-C(72)#1 -4.1(8) C(74)-C(75)-C(76)-C(72)#1 166.5(4)

C(75)#1-C(75)-C(76)-C(72)#1 166.5(4) C(76)#1-C(75)-C(76)-C(72)#1 166.5(4)

C(75)#1-C(74)-C(76)-C(75) 180.000(7) C(76)#1-C(74)-C(76)-C(75) 42(100)

C(73)-C(74)-C(76)-C(75) -175.0(6) C(73)#1-C(74)-C(76)-C(75) 5.0(6)

C(75)#1-C(74)-C(76)-C(73)#1 175.0(6) C(75)-C(74)-C(76)-C(73)#1 -5.0(6)

C(76)#1-C(74)-C(76)-C(73)#1 37(100) C(73)-C(74)-C(76)-C(73)#1 180.000(3)

C(75)-C(74)-C(76)-C(75)#1 180.000(4)

C(76)#1-C(74)-C(76)-C(75)#1 -138(100) C(73)-C(74)-C(76)-C(75)#1 5.0(6)

C(73)#1-C(74)-C(76)-C(75)#1 -175.0(6) C(75)#1-C(74)-C(76)-C(72)#1 169.4(3)

C(75)-C(74)-C(76)-C(72)#1 -10.6(3) C(76)#1-C(74)-C(76)-C(72)#1 31(100)

C(73)-C(74)-C(76)-C(72)#1 174.3(4) C(73)#1-C(74)-C(76)-C(72)#1 -5.7(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,-z+1

Page 240: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

222

Table D.7 Hydrogen bonds for 6.6 [Å and °]. D-H...A d(D-H) d(H...A) d(D...A) <(DHA) N(2)-H(2)...Cl(2) 0.87(3) 2.41(3) 3.241(2) 160(2) Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1

Page 241: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

APPENDIX E

X-RAY CRYSTALLOGRAPHIC DATA FOR (PNNP)FeCl2 (6.7)

Page 242: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

224

Data Collection

A fragment of a colorless columnar-like crystal of having approximate dimensions of

0.22 × 0.12 × 0.08 mm was mounted on a Kapton loop using Paratone N hydrocarbon oil.

All measurements were made on a Bruker APEX-II1 CCD area detector with graphite

monochromated Mo-Kα radiation.

Cell constants and an orientation matrix, obtained from a least-squares refinement using

the measured positions of 8101 centered reflections with I > 10σ(I) in the range 2.34 < θ

< 28.22° corresponded to a triclinic cell with dimensions:

a = 9.1502(18) Å α = 109.988(2)°

b = 14.158(3) Å β = 106.472(2)°

c = 15.015(3) Å γ = 90.733(2)°

V = 1739.9(6) Å3

For Z = 2 and F.W. = 730.40, the calculated density is 1.394 g.cm-3.

Analysis of the systematic absences allowed the space group to be uniquely determined

to be:

P-1

The data were collected at a temperature of 150(2) K. Frames corresponding to an

arbitrary sphere of data were collected using ω-scans of 0.3° counted for a total of 20

seconds per frame.

Page 243: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

225

Data Reduction

Data were integrated by the program SAINT2 to a maximum θ-value of 28.29°. The data

were corrected for Lorentz and polarization effects. Data were analyzed for agreement

and possible absorption using XPREP3. An empirical absorption correction based on

comparison of redundant and equivalent reflections was applied using SADABS4. (Tmax

= 0.9452, Tmin = 0.8591). Of the 21628 reflections that were collected, 8517 were

unique (Rint = 0.0250); equivalent reflections were merged. No decay correction was

applied.

Structure Solution and Refinement

The structure was solved by direct methods5 and expanded using Fourier techniques6.

Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in

calculated positions but were not refined. The final cycle of full-matrix least-squares

refinement7 was based on 8517 reflections (all data) and 420 variable parameters and

converged (largest parameter shift was 0.016 times its esd) with conventional unweighted

and weighted agreement factors of:

R1 = Σ||Fo| - |Fc|| / Σ|Fo| = 0.0406 for 7005 data with I > 2σ(I)

wR2 = [(Σw (|Fo|2- |Fc|2)2 / Σw |Fo| 2)] 1/2 = 0.0991

The standard deviation of an observation of unit weight8 was 1.036. The weighting

scheme was based on counting statistics and included a factor to downweight the intense

reflections. The maximum and minimum peaks on the final difference Fourier map

corresponded to 1.227 and -1.001 e–.Å3, respectively.

Neutral atom scattering factors were taken from Cromer and Waber9. Anomalous

Page 244: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

226

dispersion effects were included in Fcalc2; the values for Δf' and Δf" were those of

Creagh and McAuley10. The values for the mass attenuation coefficients are those of

Creagh and Hubbel11. All calculations were performed using the SHELXTL1-6

crystallographic software package of Bruker Analytical X-ray Systems Inc.

References

(1)APEX-II: Area-Detector Software Package v2.1, Bruker Analytical X-ray Systems,

Inc.: Madison, WI, (2006)

(2)SAINT: SAX Area-Dectector Integration Program, 7.34A; Siemens Industrial

Automation, Inc.: Madison, WI, (2006)

(3)XPREP:(v 6.14) Part of the SHELXTL Crystal Structure Determination Package,

Siemens Industrial Automation, Inc.: Madison, WI, (1995)

(4)SADABS: Siemens Area Detector ABSorption correction program v.2.10, George

Sheldrick, (2005).

(5) XS: Program for the Solution of X-ray Crystal Structures, Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

(6) XL: Program for the Refinement of X-ray Crystal Structure Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

(7) Least-Squares:

Page 245: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

227

Function minimized: Σw (|Fo|2- |Fc|2)2

(8) Standard deviation of an observation of unit weight:

[Σw(|Fo|2 -|Fc|2 )2/(No-Nv)]1/2

where: No = number of observations

Nv = number of variables

(9) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol.

IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(10) Creagh, D. C. & McAuley, W. J.; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222

(1992).

(11) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206

(1992).

Page 246: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

228

Table E.1 Crystal data and structure refinement for 6.7 Empirical formula C37H30Cl2FeN2P2

Formula weight 691.35

Temperature 150(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 9.1502(18) Å α = 109.988(2)°

b = 14.158(3) Å β = 106.472(2)°

c = 15.015(3) Å γ = 90.733(2)°

Volume 1739.9(6) Å3

Z 2

Density (calculated) 1.394 g.cm-3

Absorption coefficient (μ) 0.712 mm-1

F(000) 758

Crystal size 0.22 × 0.12 × 0.08 mm3

ω range for data collection 2.34 to 28.29°

Index ranges -12 ≤ h ≤2, -18 ≤ k ≤ 18, -19 ≤ l ≤ 19

Reflections collected 21628

Independent reflections 8517 [Rint = 0.0250]

Completeness to θ = 28.29° 98.6 %

Absorption correction Numerical

Max. and min. transmission 0.9452 and 0.8591

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 8517 / 0 / 420

Goodness-of-fit on F2 1.036

Final R indices [I>2σ(I)] R1 = 0.0406, wR2 = 0.0991

R indices (all data) R1 = 0.0518, wR2 = 0.1064

Page 247: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

229

Table E.2 Atomic coordinates and equivalent isotropic displacement parameters (Å2)

for 6.7. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Fe(1) 0.87405(3) 0.75327(2) 0.40337(2) 0.022(1) Cl(1) 0.66716(7) 0.70303(5) 0.26847(5) 0.044(1) Cl(2) 0.85180(7) 0.81355(4) 0.55664(4) 0.033(1) P(1) 1.10274(6) 0.66852(4) 0.41259(4) 0.020(1) P(2) 0.84479(6) 0.80265(4) 0.06513(4) 0.022(1) N(1) 1.02352(18) 0.85987(12) 0.39212(12) 0.019(1) N(2) 0.8500(2) 0.90594(13) 0.27439(12) 0.021(1) C(1) 0.9892(2) 0.91716(15) 0.33911(14) 0.020(1) C(11) 1.2350(2) 0.78464(14) 0.47064(14) 0.019(1) C(12) 1.1773(2) 0.87177(15) 0.45569(14) 0.019(1) C(13) 1.2677(2) 0.96496(15) 0.50578(15) 0.023(1) C(14) 1.4155(2) 0.97143(17) 0.56771(16) 0.026(1) C(15) 1.4748(2) 0.88614(17) 0.58103(15) 0.026(1) C(16) 1.3841(2) 0.79325(16) 0.53333(15) 0.024(1) C(21) 1.1370(2) 0.59813(15) 0.29600(15) 0.024(1) C(22) 1.0120(3) 0.54098(17) 0.21615(16) 0.031(1) C(23) 1.0333(3) 0.48244(19) 0.12644(18) 0.040(1) C(24) 1.1783(3) 0.48120(18) 0.11599(18) 0.039(1) C(25) 1.3025(3) 0.53864(19) 0.19413(18) 0.037(1) C(26) 1.2832(3) 0.59744(17) 0.28394(17) 0.030(1) C(31) 1.1704(2) 0.59862(15) 0.49477(15) 0.022(1) C(32) 1.1311(3) 0.62847(17) 0.58226(17) 0.029(1) C(33) 1.1840(3) 0.58246(18) 0.65148(18) 0.035(1) C(34) 1.2759(3) 0.50535(18) 0.63294(18) 0.035(1) C(35) 1.3119(3) 0.47401(18) 0.54517(19) 0.038(1) C(36) 1.2602(3) 0.52005(17) 0.47576(18) 0.032(1) C(41) 0.7829(2) 0.92778(15) 0.11380(14) 0.021(1) C(42) 0.8009(2) 0.96824(15) 0.21598(14) 0.020(1)

Page 248: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

230

C(43) 0.7681(2) 1.06497(16) 0.26084(16) 0.025(1) C(44) 0.7112(3) 1.12260(17) 0.20258(17) 0.029(1) C(45) 0.6874(3) 1.08327(17) 0.10135(17) 0.030(1) C(46) 0.7240(3) 0.98670(16) 0.05724(16) 0.027(1) C(51) 1.0531(2) 0.83875(16) 0.11429(15) 0.024(1) C(52) 1.1444(3) 0.7659(2) 0.1326(2) 0.042(1) C(53) 1.3028(3) 0.7873(3) 0.1659(3) 0.065(1) C(54) 1.3720(3) 0.8813(2) 0.1811(2) 0.050(1) C(55) 1.2825(3) 0.9547(2) 0.16489(17) 0.035(1) C(56) 1.1237(3) 0.93388(17) 0.13173(16) 0.030(1) C(61) 0.8056(2) 0.78283(15) -0.06714(15) 0.023(1) C(62) 0.9148(3) 0.80003(18) -0.10952(16) 0.030(1) C(63) 0.8769(3) 0.77631(19) -0.21158(17) 0.034(1) C(64) 0.7300(3) 0.73534(18) -0.27242(17) 0.032(1) C(65) 0.6198(3) 0.71740(18) -0.23181(17) 0.034(1) C(66) 0.6573(3) 0.74076(18) -0.12970(17) 0.031(1) C(70) 0.5350(4) 0.4815(3) 0.0150(3) 0.056(1) C(71) 0.6276(3) 0.4100(2) 0.0801(2) 0.047(1) C(72) 0.5004(12) 0.5919(8) 0.0200(7) 0.089(3) C(73) 0.5739(7) 0.4603(5) 0.0334(5) 0.039(1) C(74) 0.6650(8) 0.3564(5) 0.0733(5) 0.056(2) H(2) 0.785(3) 0.8561(19) 0.2636(18) 0.025 H(1A) 1.0652 0.9681 0.3467 0.024 H(13A) 1.2284 1.0243 0.4976 0.027 H(14A) 1.4768 1.0354 0.6014 0.032 H(15A) 1.5768 0.8912 0.6225 0.031 H(16A) 1.4238 0.7348 0.5434 0.029 H(22A) 0.9119 0.5420 0.2230 0.037 H(23A) 0.9479 0.4432 0.0722 0.048 H(24A) 1.1925 0.4406 0.0547 0.047 H(25A) 1.4019 0.5379 0.1863 0.045 H(26A) 1.3691 0.6373 0.3374 0.036 H(32A) 1.0674 0.6808 0.5948 0.035

Page 249: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

231

H(33A) 1.1573 0.6037 0.7115 0.042 H(34A) 1.3138 0.4744 0.6806 0.042 H(35A) 1.3729 0.4202 0.5319 0.045 H(36A) 1.2860 0.4979 0.4155 0.038 H(43A) 0.7841 1.0918 0.3306 0.030 H(44A) 0.6889 1.1892 0.2328 0.035 H(45A) 0.6460 1.1221 0.0616 0.036 H(46A) 0.7086 0.9605 -0.0125 0.032 H(52A) 1.0981 0.7010 0.1223 0.050 H(53A) 1.3646 0.7370 0.1783 0.078 H(54A) 1.4808 0.8952 0.2027 0.060 H(55A) 1.3295 1.0198 0.1764 0.042 H(56A) 1.0626 0.9850 0.1208 0.036 H(62A) 1.0165 0.8283 -0.0683 0.036 H(63A) 0.9528 0.7884 -0.2397 0.041 H(64A) 0.7046 0.7195 -0.3422 0.039 H(65A) 0.5185 0.6891 -0.2736 0.041 H(66A) 0.5812 0.7280 -0.1021 0.037

Page 250: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

232

Table E.3 Anisotropic displacement parameters (Å)2 for 6.7. The anisotropic displacement factor exponent takes the form: -2π2[ h2 a*2 U11 + ... + 2 h k a* b* U12 ] U11 U22 U33 U23 U13 U12

Fe(1) 0.0189(2) 0.0240(2) 0.0269(2) 0.0143(1) 0.0062(1) 0.0041(1)

Cl(1) 0.0282(3) 0.0440(3) 0.0565(4) 0.0335(3) -0.0119(3) -0.0083(2)

Cl(2) 0.0432(3) 0.0329(3) 0.0383(3) 0.0200(2) 0.0250(3) 0.0154(2)

P(1) 0.0211(2) 0.0190(2) 0.0189(2) 0.0080(2) 0.0044(2) 0.0047(2)

P(2) 0.0259(3) 0.0206(2) 0.0205(2) 0.0088(2) 0.0070(2) 0.0042(2)

N(1) 0.0206(8) 0.0202(8) 0.0185(8) 0.0096(7) 0.0061(6) 0.0043(6)

N(2) 0.0213(8) 0.0240(8) 0.0198(8) 0.0129(7) 0.0040(6) 0.0022(7)

C(1) 0.0219(9) 0.0206(9) 0.0186(9) 0.0076(7) 0.0088(7) 0.0042(7)

C(11) 0.0209(9) 0.0201(9) 0.0166(9) 0.0067(7) 0.0066(7) 0.0043(7)

C(12) 0.0203(9) 0.0238(9) 0.0161(9) 0.0100(7) 0.0074(7) 0.0045(7)

C(13) 0.0276(10) 0.0213(9) 0.0217(10) 0.0104(8) 0.0075(8) 0.0019(8)

C(14) 0.0265(10) 0.0283(11) 0.0237(10) 0.0098(9) 0.0060(8) -0.0040(8)

C(15) 0.0193(10) 0.0340(11) 0.0229(10) 0.0095(9) 0.0044(8) 0.0022(8)

C(16) 0.0230(10) 0.0280(10) 0.0226(10) 0.0106(8) 0.0070(8) 0.0082(8)

C(21) 0.0288(11) 0.0200(9) 0.0217(10) 0.0084(8) 0.0064(8) 0.0051(8)

C(22) 0.0350(12) 0.0285(11) 0.0249(11) 0.0064(9) 0.0060(9) -0.0015(9)

C(23) 0.0528(16) 0.0308(12) 0.0244(11) 0.0008(10) 0.0050(11) -0.0061(11)

C(24) 0.0613(17) 0.0270(12) 0.0280(12) 0.0050(10) 0.0192(12) 0.0085(11)

C(25) 0.0426(14) 0.0373(13) 0.0339(13) 0.0097(11) 0.0190(11) 0.0121(11)

C(26) 0.0304(11) 0.0311(11) 0.0249(11) 0.0070(9) 0.0079(9) 0.0060(9)

C(31) 0.0227(10) 0.0197(9) 0.0227(10) 0.0088(8) 0.0026(8) 0.0008(7)

C(32) 0.0330(12) 0.0280(11) 0.0313(11) 0.0156(9) 0.0109(9) 0.0076(9)

C(33) 0.0427(14) 0.0352(12) 0.0304(12) 0.0182(10) 0.0081(10) 0.0022(10)

C(34) 0.0361(12) 0.0301(12) 0.0392(13) 0.0238(11) -0.0020(10) -0.0025(10)

C(35) 0.0389(13) 0.0276(11) 0.0456(14) 0.0191(11) 0.0048(11) 0.0122(10)

Page 251: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

233

C(36) 0.0361(12) 0.0273(11) 0.0336(12) 0.0129(10) 0.0093(10) 0.0106(9)

C(41) 0.0221(9) 0.0230(9) 0.0201(9) 0.0103(8) 0.0056(7) 0.0036(7)

C(42) 0.0181(9) 0.0238(9) 0.0200(9) 0.0120(8) 0.0043(7) 0.0046(7)

C(43) 0.0274(10) 0.0269(10) 0.0212(10) 0.0083(8) 0.0083(8) 0.0058(8)

C(44) 0.0332(12) 0.0238(10) 0.0320(12) 0.0114(9) 0.0097(9) 0.0105(9)

C(45) 0.0337(12) 0.0289(11) 0.0291(11) 0.0173(9) 0.0045(9) 0.0098(9)

C(46) 0.0329(11) 0.0290(11) 0.0202(10) 0.0129(9) 0.0055(8) 0.0085(9)

C(51) 0.0275(10) 0.0261(10) 0.0173(9) 0.0074(8) 0.0049(8) 0.0038(8)

C(52) 0.0328(13) 0.0316(12) 0.0559(16) 0.0192(12) 0.0018(11) 0.0071(10)

C(53) 0.0324(15) 0.0558(19) 0.101(3) 0.0394(19) -0.0017(16) 0.0125(13)

C(54) 0.0266(13) 0.0633(19) 0.0502(17) 0.0215(15) -0.0030(11) 0.0006(12)

C(55) 0.0356(12) 0.0410(13) 0.0231(11) 0.0102(10) 0.0020(9) -0.0073(10)

C(56) 0.0314(11) 0.0305(11) 0.0266(11) 0.0123(9) 0.0056(9) 0.0026(9)

C(61) 0.0280(10) 0.0210(9) 0.0207(9) 0.0073(8) 0.0068(8) 0.0047(8)

C(62) 0.0293(11) 0.0359(12) 0.0238(10) 0.0093(9) 0.0073(9) -0.0004(9)

C(63) 0.0361(13) 0.0419(13) 0.0259(11) 0.0122(10) 0.0119(10) 0.0010(10)

C(64) 0.0427(13) 0.0317(12) 0.0199(10) 0.0074(9) 0.0072(9) 0.0053(10)

C(65) 0.0313(12) 0.0362(12) 0.0259(11) 0.0087(10) 0.0001(9) 0.0004(10)

C(66) 0.0290(11) 0.0342(12) 0.0273(11) 0.0095(9) 0.0082(9) 0.0014(9)

Page 252: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

234

Table E.4 Bond lengths [Å] for 6.7

atom-atom distance atom-atom distance

Fe(1)-N(1) 2.1046(17) Fe(1)-Cl(2) 2.2345(8)

Fe(1)-Cl(1) 2.2357(7) Fe(1)-P(1) 2.4189(7)

P(1)-C(21) 1.812(2) P(1)-C(11) 1.816(2)

P(1)-C(31) 1.817(2) P(2)-C(51) 1.833(2)

P(2)-C(61) 1.834(2) P(2)-C(41) 1.835(2)

N(1)-C(1) 1.302(2) N(1)-C(12) 1.429(2)

N(2)-C(1) 1.334(3) N(2)-C(42) 1.437(2)

N(2)-H(2) 0.86(3) C(1)-H(1A) 0.9500

C(11)-C(16) 1.397(3) C(11)-C(12) 1.410(3)

C(12)-C(13) 1.390(3) C(13)-C(14) 1.388(3)

C(13)-H(13A) 0.9500 C(14)-C(15) 1.383(3)

C(14)-H(14A) 0.9500 C(15)-C(16) 1.387(3)

C(15)-H(15A) 0.9500 C(16)-H(16A) 0.9500

C(21)-C(22) 1.392(3) C(21)-C(26) 1.399(3)

C(22)-C(23) 1.389(3) C(22)-H(22A) 0.9500

C(23)-C(24) 1.379(4) C(23)-H(23A) 0.9500

C(24)-C(25) 1.377(4) C(24)-H(24A) 0.9500

C(25)-C(26) 1.384(3) C(25)-H(25A) 0.9500

C(26)-H(26A) 0.9500 C(31)-C(32) 1.388(3)

C(31)-C(36) 1.390(3) C(32)-C(33) 1.387(3)

C(32)-H(32A) 0.9500 C(33)-C(34) 1.388(4)

C(33)-H(33A) 0.9500 C(34)-C(35) 1.375(4)

C(34)-H(34A) 0.9500 C(35)-C(36) 1.388(3)

C(35)-H(35A) 0.9500 C(36)-H(36A) 0.9500

C(41)-C(46) 1.394(3) C(41)-C(42) 1.401(3)

C(42)-C(43) 1.384(3) C(43)-C(44) 1.394(3)

Page 253: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

235

C(43)-H(43A) 0.9500 C(44)-C(45) 1.378(3)

C(44)-H(44A) 0.9500 C(45)-C(46) 1.392(3)

C(45)-H(45A) 0.9500 C(46)-H(46A) 0.9500

C(51)-C(52) 1.387(3) C(51)-C(56) 1.393(3)

C(52)-C(53) 1.385(4) C(52)-H(52A) 0.9500

C(53)-C(54) 1.383(4) C(53)-H(53A) 0.9500

C(54)-C(55) 1.375(4) C(54)-H(54A) 0.9500

C(55)-C(56) 1.387(3) C(55)-H(55A) 0.9500

C(56)-H(56A) 0.9500 C(61)-C(62) 1.387(3)

C(61)-C(66) 1.397(3) C(62)-C(63) 1.387(3)

C(62)-H(62A) 0.9500 C(63)-C(64) 1.379(3)

C(63)-H(63A) 0.9500 C(64)-C(65) 1.378(3)

C(64)-H(64A) 0.9500 C(65)-C(66) 1.389(3)

C(65)-H(65A) 0.9500 C(66)-H(66A) 0.9500

C(70)-C(73) 0.545(6) C(70)-C(70)#1 0.946(7)

C(70)-C(72)#1 0.991(10) C(70)-C(73)#1 1.490(8)

C(70)-C(72) 1.579(11) C(70)-C(71) 1.711(5)

C(71)-C(74) 0.822(7) C(71)-C(73) 1.181(7)

C(71)-C(72)#1 1.615(10) C(72)-C(73)#1 0.961(11)

C(72)-C(70)#1 0.991(10) C(72)-C(71)#1 1.615(10)

C(73)-C(72)#1 0.961(11) C(73)-C(70)#1 1.490(8)

C(73)-C(74) 1.888(10) C(73)-C(73)#1 2.035(13)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

Page 254: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

236

Table E.5 Bond angles [°] for 6.7

atom-atom-atom angle atom-atom-atom angle

N(1)-Fe(1)-Cl(2) 107.71(5) N(1)-Fe(1)-Cl(1) 109.53(5)

Cl(2)-Fe(1)-Cl(1) 121.30(3) N(1)-Fe(1)-P(1) 79.66(5)

Cl(2)-Fe(1)-P(1) 107.34(2) Cl(1)-Fe(1)-P(1) 122.67(3)

C(21)-P(1)-C(11) 107.18(9) C(21)-P(1)-C(31) 106.62(9)

C(11)-P(1)-C(31) 103.58(9) C(21)-P(1)-Fe(1) 117.11(7)

C(11)-P(1)-Fe(1) 94.83(6) C(31)-P(1)-Fe(1) 124.45(7)

C(51)-P(2)-C(61) 102.31(9) C(51)-P(2)-C(41) 98.97(9)

C(61)-P(2)-C(41) 102.20(9) C(1)-N(1)-C(12) 118.74(16)

C(1)-N(1)-Fe(1) 127.61(14) C(12)-N(1)-Fe(1) 113.55(12)

C(1)-N(2)-C(42) 125.10(17) C(1)-N(2)-H(2) 118.8(16)

C(42)-N(2)-H(2) 116.0(16) N(1)-C(1)-N(2) 121.54(18)

N(1)-C(1)-H(1A) 119.2 N(2)-C(1)-H(1A) 119.2

C(16)-C(11)-C(12) 119.22(18) C(16)-C(11)-P(1) 123.92(15)

C(12)-C(11)-P(1) 116.71(14) C(13)-C(12)-C(11) 119.55(18)

C(13)-C(12)-N(1) 122.99(18) C(11)-C(12)-N(1) 117.41(17)

C(14)-C(13)-C(12) 120.05(19) C(14)-C(13)-H(13A) 120.0

C(12)-C(13)-H(13A) 120.0 C(15)-C(14)-C(13) 120.9(2)

C(15)-C(14)-H(14A) 119.5 C(13)-C(14)-H(14A) 119.5

C(14)-C(15)-C(16) 119.44(19) C(14)-C(15)-H(15A) 120.3

C(16)-C(15)-H(15A) 120.3 C(15)-C(16)-C(11) 120.77(19)

C(15)-C(16)-H(16A) 119.6 C(11)-C(16)-H(16A) 119.6

C(22)-C(21)-C(26) 119.2(2) C(22)-C(21)-P(1) 117.92(17)

C(26)-C(21)-P(1) 122.86(16) C(23)-C(22)-C(21) 120.1(2)

C(23)-C(22)-H(22A) 120.0 C(21)-C(22)-H(22A) 120.0

C(24)-C(23)-C(22) 120.2(2) C(24)-C(23)-H(23A) 119.9

C(22)-C(23)-H(23A) 119.9 C(25)-C(24)-C(23) 120.2(2)

Page 255: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

237

C(25)-C(24)-H(24A) 119.9 C(23)-C(24)-H(24A) 119.9

C(24)-C(25)-C(26) 120.4(2) C(24)-C(25)-H(25A) 119.8

C(26)-C(25)-H(25A) 119.8 C(25)-C(26)-C(21) 120.0(2)

C(25)-C(26)-H(26A) 120.0 C(21)-C(26)-H(26A) 120.0

C(32)-C(31)-C(36) 119.3(2) C(32)-C(31)-P(1) 116.70(16)

C(36)-C(31)-P(1) 123.98(17) C(33)-C(32)-C(31) 120.5(2)

C(33)-C(32)-H(32A) 119.7 C(31)-C(32)-H(32A) 119.7

C(32)-C(33)-C(34) 119.9(2) C(32)-C(33)-H(33A) 120.1

C(34)-C(33)-H(33A) 120.1 C(35)-C(34)-C(33) 119.6(2)

C(35)-C(34)-H(34A) 120.2 C(33)-C(34)-H(34A) 120.2

C(34)-C(35)-C(36) 120.8(2) C(34)-C(35)-H(35A) 119.6

C(36)-C(35)-H(35A) 119.6 C(35)-C(36)-C(31) 119.8(2)

C(35)-C(36)-H(36A) 120.1 C(31)-C(36)-H(36A) 120.1

C(46)-C(41)-C(42) 117.73(18) C(46)-C(41)-P(2) 124.84(16)

C(42)-C(41)-P(2) 117.40(14) C(43)-C(42)-C(41) 121.64(18)

C(43)-C(42)-N(2) 119.60(18) C(41)-C(42)-N(2) 118.73(17)

C(42)-C(43)-C(44) 119.29(19) C(42)-C(43)-H(43A) 120.4

C(44)-C(43)-H(43A) 120.4 C(45)-C(44)-C(43) 120.2(2)

C(45)-C(44)-H(44A) 119.9 C(43)-C(44)-H(44A) 119.9

C(44)-C(45)-C(46) 120.05(19) C(44)-C(45)-H(45A) 120.0

C(46)-C(45)-H(45A) 120.0 C(45)-C(46)-C(41) 121.02(19)

C(45)-C(46)-H(46A) 119.5 C(41)-C(46)-H(46A) 119.5

C(52)-C(51)-C(56) 118.8(2) C(52)-C(51)-P(2) 117.59(17)

C(56)-C(51)-P(2) 123.63(17) C(53)-C(52)-C(51) 120.2(3)

C(53)-C(52)-H(52A) 119.9 C(51)-C(52)-H(52A) 119.9

C(54)-C(53)-C(52) 120.6(3) C(54)-C(53)-H(53A) 119.7

C(52)-C(53)-H(53A) 119.7 C(55)-C(54)-C(53) 119.6(3)

C(55)-C(54)-H(54A) 120.2 C(53)-C(54)-H(54A) 120.2

C(54)-C(55)-C(56) 120.1(2) C(54)-C(55)-H(55A) 119.9

Page 256: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

238

C(56)-C(55)-H(55A) 119.9 C(55)-C(56)-C(51) 120.6(2)

C(55)-C(56)-H(56A) 119.7 C(51)-C(56)-H(56A) 119.7

C(62)-C(61)-C(66) 118.4(2) C(62)-C(61)-P(2) 124.61(16)

C(66)-C(61)-P(2) 116.83(16) C(61)-C(62)-C(63) 120.6(2)

C(61)-C(62)-H(62A) 119.7 C(63)-C(62)-H(62A) 119.7

C(64)-C(63)-C(62) 120.5(2) C(64)-C(63)-H(63A) 119.8

C(62)-C(63)-H(63A) 119.8 C(65)-C(64)-C(63) 119.9(2)

C(65)-C(64)-H(64A) 120.1 C(63)-C(64)-H(64A) 120.1

C(64)-C(65)-C(66) 119.9(2) C(64)-C(65)-H(65A) 120.1

C(66)-C(65)-H(65A) 120.1 C(65)-C(66)-C(61) 120.8(2)

C(65)-C(66)-H(66A) 119.6 C(61)-C(66)-H(66A) 119.6

C(73)-C(70)-C(70)#1 177.5(13) C(73)-C(70)-C(72)#1 70.8(10)

C(70)#1-C(70)-C(72)#1 109.2(9) C(73)-C(70)-C(73)#1 178.4(8)

C(70)#1-C(70)-C(73)#1 0.9(5) C(72)#1-C(70)-C(73)#1 109.2(7)

C(73)-C(70)-C(72) 143.6(10) C(70)#1-C(70)-C(72) 36.3(5)

C(72)#1-C(70)-C(72) 145.6(5) C(73)#1-C(70)-C(72) 36.4(4)

C(73)-C(70)-C(71) 11.1(8) C(70)#1-C(70)-C(71) 166.5(6)

C(72)#1-C(70)-C(71) 67.4(6) C(73)#1-C(70)-C(71) 167.3(3)

C(72)-C(70)-C(71) 145.4(5) C(74)-C(71)-C(73) 140.3(7)

C(74)-C(71)-C(72)#1 112.9(7) C(73)-C(71)-C(72)#1 36.2(4)

C(74)-C(71)-C(70) 142.6(6) C(73)-C(71)-C(70) 5.1(4)

C(72)#1-C(71)-C(70) 34.5(4) C(73)#1-C(72)-C(70)#1 32.4(5)

C(73)#1-C(72)-C(70) 66.8(8) C(70)#1-C(72)-C(70) 34.4(5)

C(73)#1-C(72)-C(71)#1 46.5(6) C(70)#1-C(72)-C(71)#1 78.1(7)

C(70)-C(72)-C(71)#1 111.5(7) C(70)-C(73)-C(72)#1 76.8(10)

C(70)-C(73)-C(71) 163.7(12) C(72)#1-C(73)-C(71) 97.3(9)

C(70)-C(73)-C(70)#1 1.6(8) C(72)#1-C(73)-C(70)#1 76.8(8)

C(71)-C(73)-C(70)#1 162.2(5) C(70)-C(73)-C(74) 163.9(11)

C(72)#1-C(73)-C(74) 87.3(8) C(71)-C(73)-C(74) 16.1(3)

Page 257: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

239

C(70)#1-C(73)-C(74) 163.6(4) C(70)-C(73)-C(73)#1 1.2(6)

C(72)#1-C(73)-C(73)#1 76.8(8) C(71)-C(73)-C(73)#1 162.6(6)

C(70)#1-C(73)-C(73)#1 0.4(2) C(74)-C(73)-C(73)#1 163.7(6)

C(71)-C(74)-C(73) 23.5(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

Page 258: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

240

Table E.6 Torsion angles [°] for 6.7 atom-atom-atom-atom angle atom-atom-atom-atom angle

N(1)-Fe(1)-P(1)-C(21) -82.09(9) Cl(2)-Fe(1)-P(1)-C(21) 172.43(8)

Cl(1)-Fe(1)-P(1)-C(21) 24.57(8) N(1)-Fe(1)-P(1)-C(11) 30.01(8)

Cl(2)-Fe(1)-P(1)-C(11) -75.47(6) Cl(1)-Fe(1)-P(1)-C(11) 136.67(6)

N(1)-Fe(1)-P(1)-C(31) 140.11(9) Cl(2)-Fe(1)-P(1)-C(31) 34.63(9)

Cl(1)-Fe(1)-P(1)-C(31) -113.23(8) Cl(2)-Fe(1)-N(1)-C(1) -110.72(16)

Cl(1)-Fe(1)-N(1)-C(1) 23.06(17) P(1)-Fe(1)-N(1)-C(1) 144.22(17)

Cl(2)-Fe(1)-N(1)-C(12) 65.57(13) Cl(1)-Fe(1)-N(1)-C(12) -160.65(11)

P(1)-Fe(1)-N(1)-C(12) -39.49(12) C(12)-N(1)-C(1)-N(2) 176.31(17)

Fe(1)-N(1)-C(1)-N(2) -7.6(3) C(42)-N(2)-C(1)-N(1) 177.46(18)

C(21)-P(1)-C(11)-C(16) -87.72(18) C(31)-P(1)-C(11)-C(16) 24.78(19)

Fe(1)-P(1)-C(11)-C(16) 151.97(16) C(21)-P(1)-C(11)-C(12) 96.72(16)

C(31)-P(1)-C(11)-C(12) -150.79(15) Fe(1)-P(1)-C(11)-C(12) -23.60(15)

C(16)-C(11)-C(12)-C(13) -1.9(3) P(1)-C(11)-C(12)-C(13) 173.86(14)

C(16)-C(11)-C(12)-N(1) -179.14(17) P(1)-C(11)-C(12)-N(1) -3.4(2)

C(1)-N(1)-C(12)-C(13) 35.3(3) Fe(1)-N(1)-C(12)-C(13) -141.36(16)

C(1)-N(1)-C(12)-C(11) -147.60(18) Fe(1)-N(1)-C(12)-C(11) 35.7(2)

C(11)-C(12)-C(13)-C(14) 1.9(3) N(1)-C(12)-C(13)-C(14) 178.96(18)

C(12)-C(13)-C(14)-C(15) -0.3(3) C(13)-C(14)-C(15)-C(16) -1.3(3)

C(14)-C(15)-C(16)-C(11) 1.3(3) C(12)-C(11)-C(16)-C(15) 0.3(3)

P(1)-C(11)-C(16)-C(15) -175.11(16) C(11)-P(1)-C(21)-C(22) -145.81(17)

C(31)-P(1)-C(21)-C(22) 103.78(18) Fe(1)-P(1)-C(21)-C(22) -40.91(19)

C(11)-P(1)-C(21)-C(26) 35.5(2) C(31)-P(1)-C(21)-C(26) -74.9(2)

Fe(1)-P(1)-C(21)-C(26) 140.41(16) C(26)-C(21)-C(22)-C(23) 1.4(3)

P(1)-C(21)-C(22)-C(23) -177.38(18) C(21)-C(22)-C(23)-C(24) -0.4(4)

C(22)-C(23)-C(24)-C(25) -0.6(4) C(23)-C(24)-C(25)-C(26) 0.5(4)

C(24)-C(25)-C(26)-C(21) 0.5(4) C(22)-C(21)-C(26)-C(25) -1.4(3)

Page 259: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

241

P(1)-C(21)-C(26)-C(25) 177.24(18) C(21)-P(1)-C(31)-C(32) -168.83(17)

C(11)-P(1)-C(31)-C(32) 78.27(18) Fe(1)-P(1)-C(31)-C(32) -27.4(2)

C(21)-P(1)-C(31)-C(36) 12.5(2) C(11)-P(1)-C(31)-C(36) -100.4(2)

Fe(1)-P(1)-C(31)-C(36) 153.94(16) C(36)-C(31)-C(32)-C(33) 1.7(3)

P(1)-C(31)-C(32)-C(33) -176.94(18) C(31)-C(32)-C(33)-C(34) -0.5(4)

C(32)-C(33)-C(34)-C(35) -1.0(4) C(33)-C(34)-C(35)-C(36) 1.4(4)

C(34)-C(35)-C(36)-C(31) -0.2(4) C(32)-C(31)-C(36)-C(35) -1.4(3)

P(1)-C(31)-C(36)-C(35) 177.22(18) C(51)-P(2)-C(41)-C(46) 104.19(19)

C(61)-P(2)-C(41)-C(46) -0.6(2) C(51)-P(2)-C(41)-C(42) -73.69(17)

C(61)-P(2)-C(41)-C(42) -178.46(16) C(46)-C(41)-C(42)-C(43) -2.8(3)

P(2)-C(41)-C(42)-C(43) 175.27(16) C(46)-C(41)-C(42)-N(2) 175.17(18)

P(2)-C(41)-C(42)-N(2) -6.8(2) C(1)-N(2)-C(42)-C(43) -75.0(3)

C(1)-N(2)-C(42)-C(41) 107.0(2) C(41)-C(42)-C(43)-C(44) 2.0(3)

N(2)-C(42)-C(43)-C(44) -175.94(19) C(42)-C(43)-C(44)-C(45) 0.3(3)

C(43)-C(44)-C(45)-C(46) -1.7(4) C(44)-C(45)-C(46)-C(41) 0.9(4)

C(42)-C(41)-C(46)-C(45) 1.3(3) P(2)-C(41)-C(46)-C(45) -176.57(17)

C(61)-P(2)-C(51)-C(52) -102.6(2) C(41)-P(2)-C(51)-C(52) 152.68(19)

C(61)-P(2)-C(51)-C(56) 75.8(2) C(41)-P(2)-C(51)-C(56) -28.9(2)

C(56)-C(51)-C(52)-C(53) -1.2(4) P(2)-C(51)-C(52)-C(53) 177.3(3)

C(51)-C(52)-C(53)-C(54) -0.1(5) C(52)-C(53)-C(54)-C(55) 1.2(5)

C(53)-C(54)-C(55)-C(56) -1.1(4) C(54)-C(55)-C(56)-C(51) -0.1(4)

C(52)-C(51)-C(56)-C(55) 1.3(3) P(2)-C(51)-C(56)-C(55) -177.11(17)

C(51)-P(2)-C(61)-C(62) -3.7(2) C(41)-P(2)-C(61)-C(62) 98.4(2)

C(51)-P(2)-C(61)-C(66) 171.58(17) C(41)-P(2)-C(61)-C(66) -86.27(18)

C(66)-C(61)-C(62)-C(63) 0.3(3) P(2)-C(61)-C(62)-C(63) 175.54(18)

C(61)-C(62)-C(63)-C(64) 0.1(4) C(62)-C(63)-C(64)-C(65) -0.2(4)

C(63)-C(64)-C(65)-C(66) 0.1(4) C(64)-C(65)-C(66)-C(61) 0.3(4)

C(62)-C(61)-C(66)-C(65) -0.5(3) P(2)-C(61)-C(66)-C(65) -176.09(18)

C(73)-C(70)-C(71)-C(74) -66(4) C(70)#1-C(70)-C(71)-C(74) 118(3)

Page 260: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

242

C(72)#1-C(70)-C(71)-C(74) 39.6(12) C(73)#1-C(70)-C(71)-C(74) 116.6(16)

C(72)-C(70)-C(71)-C(74) -154.4(11) C(70)#1-C(70)-C(71)-C(73) -176(6)

C(72)#1-C(70)-C(71)-C(73) 106(4) C(73)#1-C(70)-C(71)-C(73) -177(4)

C(72)-C(70)-C(71)-C(73) -88(4) C(73)-C(70)-C(71)-C(72)#1 -106(4)

C(70)#1-C(70)-C(71)-C(72)#1 78(3) C(73)#1-C(70)-C(71)-C(72)#1 77.0(15)

C(72)-C(70)-C(71)-C(72)#1 166.0(7) C(73)-C(70)-C(72)-C(73)#1 -177.3(14)

C(70)#1-C(70)-C(72)-C(73)#1 -1.6(8) C(72)#1-C(70)-C(72)-C(73)#1 -1.6(8)

C(71)-C(70)-C(72)-C(73)#1 -158.3(6) C(73)-C(70)-C(72)-C(70)#1 -176(2)

C(72)#1-C(70)-C(72)-C(70)#1 0.000(4) C(73)#1-C(70)-C(72)-C(70)#1 1.6(8)

C(71)-C(70)-C(72)-C(70)#1 -156.7(11) C(73)-C(70)-C(72)-C(71)#1 169.5(16)

C(70)#1-C(70)-C(72)-C(71)#1 -14.8(7) C(72)#1-C(70)-C(72)-C(71)#1 -14.8(7)

C(73)#1-C(70)-C(72)-C(71)#1 -13.2(4) C(71)-C(70)-C(72)-C(71)#1 -171.5(4)

C(70)#1-C(70)-C(73)-C(72)#1 92(32) C(73)#1-C(70)-C(73)-C(72)#1 92(33)

C(72)-C(70)-C(73)-C(72)#1 177.4(13) C(71)-C(70)-C(73)-C(72)#1 70(4)

C(70)#1-C(70)-C(73)-C(71) 22(35) C(72)#1-C(70)-C(73)-C(71) -70(4)

C(73)#1-C(70)-C(73)-C(71) 22(37) C(72)-C(70)-C(73)-C(71) 107(4)

C(72)#1-C(70)-C(73)-C(70)#1 -92(32) C(73)#1-C(70)-C(73)-C(70)#1 0.0(19)

C(72)-C(70)-C(73)-C(70)#1 85(32) C(71)-C(70)-C(73)-C(70)#1 -22(35)

C(70)#1-C(70)-C(73)-C(74) 82(32) C(72)#1-C(70)-C(73)-C(74) -10(4)

C(73)#1-C(70)-C(73)-C(74) 82(34) C(72)-C(70)-C(73)-C(74) 168(3)

C(71)-C(70)-C(73)-C(74) 60(4) C(70)#1-C(70)-C(73)-C(73)#1 0.0(19)

C(72)#1-C(70)-C(73)-C(73)#1 -92(33) C(72)-C(70)-C(73)-C(73)#1 85(33)

C(71)-C(70)-C(73)-C(73)#1 -22(37) C(74)-C(71)-C(73)-C(70) 120(4)

C(72)#1-C(71)-C(73)-C(70) 67(4) C(74)-C(71)-C(73)-C(72)#1 52.1(13)

C(70)-C(71)-C(73)-C(72)#1 -67(4) C(74)-C(71)-C(73)-C(70)#1 121.6(17)

C(72)#1-C(71)-C(73)-C(70)#1 69.4(16) C(70)-C(71)-C(73)-C(70)#1 2(3)

C(72)#1-C(71)-C(73)-C(74) -52.1(13) C(70)-C(71)-C(73)-C(74) -120(4)

C(74)-C(71)-C(73)-C(73)#1 121(2) C(72)#1-C(71)-C(73)-C(73)#1 69(2)

C(70)-C(71)-C(73)-C(73)#1 1(2) C(72)#1-C(71)-C(74)-C(73) 30.4(8)

Page 261: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

243

C(70)-C(71)-C(74)-C(73) 7.3(6) C(70)-C(73)-C(74)-C(71) -119(4)

C(72)#1-C(73)-C(74)-C(71) -128.4(13) C(70)#1-C(73)-C(74)-C(71) -113.2(18)

C(73)#1-C(73)-C(74)-C(71) -115(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z

Page 262: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

244

Table E.7 Hydrogen bonds for 6.7 [Å and °]. D-H...A d(D-H) d(H...A) d(D...A) <(DHA) N(2)-H(2)...Cl(1) 0.86(3) 2.44(3) 3.2676(19) 162(2) Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

Page 263: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

APPENDIX F

X-RAY CRYSTALLOGRAPHIC DATA FOR (PNNP)Pd(Me)CuPd(Me)(PNNP) ⋅ PF6

(6.8)

Page 264: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

246

Data Collection

A fragment of a yellow block-like crystal having approximate dimensions of 0.18 × 0.17

× 0.13 mm was mounted on a Kapton loop using Paratone N hydrocarbon oil. All

measurements were made on a Bruker APEX-II1 CCD area detector with graphite

monochromated Mo-Kα radiation.

Cell constants and an orientation matrix, obtained from a least-squares refinement using

the measured positions of 9945 centered reflections with I > 10σ(I) in the range 2.19 < θ

< 28.23° corresponded to a triclinic cell with dimensions:

a = 13.3474(12) Å α = 83.275(1)°

b = 13.5411(12) Å β = 74.156(1)°

c = 21.2449(19) Å γ = 89.096(1)°

V = 3668.0(6) Å3

For Z = 2 and F.W. = 1699.46, the calculated density is 1.539 g.cm-3.

Analysis of the systematic absences allowed the space group to be uniquely determined

to be:

P-1

The data were collected at a temperature of 150(2) K. Frames corresponding to an

arbitrary sphere of data were collected using ω-scans of 0.3° counted for a total of 20

seconds per frame.

Page 265: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

247

Data Reduction

Data were integrated by the program SAINT2 to a maximum θ-value of 28.29°. The data

were corrected for Lorentz and polarization effects. Data were analyzed for agreement

and possible absorption using XPREP3. An empirical absorption correction based on

comparison of redundant and equivalent reflections was applied using SADABS4. (Tmax

= 0.8791, Tmin = 0.8381). Of the 44877 reflections that were collected, 17901 were

unique (Rint = 0.0274); equivalent reflections were merged. No decay correction was

applied.

Structure Solution and Refinement

The structure was solved by direct methods5 and expanded using Fourier techniques6.

Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in

calculated positions but were not refined. The final cycle of full-matrix least-squares

refinement7 was based on 17901 reflections (all data) and 895 variable parameters and

converged (largest parameter shift was 0.001 times its esd) with conventional unweighted

and weighted agreement factors of:

R1 = Σ||Fo| - |Fc|| / Σ|Fo| = 0.0447 for 13867 data with I > 2σ(I)

wR2 = [(Σw (|Fo|2- |Fc|2)2 / Σw |Fo| 2)] 1/2 = 0.1225

The standard deviation of an observation of unit weight8 was 1.026. The weighting

scheme was based on counting statistics and included a factor to downweight the intense

reflections. The maximum and minimum peaks on the final difference Fourier map

corresponded to 2.586 and -1.553 e–.Å3, respectively.

Neutral atom scattering factors were taken from Cromer and Waber9. Anomalous

Page 266: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

248

dispersion effects were included in Fcalc2; the values for Δf' and Δf" were those of

Creagh and McAuley10. The values for the mass attenuation coefficients are those of

Creagh and Hubbel11. All calculations were performed using the SHELXTL1-6

crystallographic software package of Bruker Analytical X-ray Systems Inc.

References

(1)APEX-II: Area-Detector Software Package v2.1, Bruker Analytical X-ray Systems,

Inc.: Madison, WI, (2006)

(2)SAINT: SAX Area-Dectector Integration Program, 7.34A; Siemens Industrial

Automation, Inc.: Madison, WI, (2006)

(3)XPREP:(v 6.14) Part of the SHELXTL Crystal Structure Determination Package,

Siemens Industrial Automation, Inc.: Madison, WI, (1995)

(4)SADABS: Siemens Area Detector ABSorption correction program v.2.10, George

Sheldrick, (2005).

(5) XS: Program for the Solution of X-ray Crystal Structures, Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

(6) XL: Program for the Refinement of X-ray Crystal Structure Part of the SHELXTL

Crystal Structure Determination Package, Bruker Analytical X-ray Systems Inc.:

Madison, WI, (1995-99)

(7) Least-Squares:

Page 267: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

249

Function minimized: Σw (|Fo|2- |Fc|2)2

(8) Standard deviation of an observation of unit weight:

[Σw(|Fo|2 -|Fc|2 )2/(No-Nv)]1/2

where: No = number of observations

Nv = number of variables

(9) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallography", Vol.

IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(10) Creagh, D. C. & McAuley, W. J.; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222

(1992).

(11) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography", Vol C,

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206

(1992).

Page 268: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

250

Table F.1 Crystal data and structure refinement for 6.8 Empirical formula C76H64CuF6N4P5Pd2

Formula weight 1578.59

Temperature 150(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13.3474(12) Å α = 83.2750(10)°

b = 13.5411(12) Å β = 74.1560(10)°

c = 21.2449(19) Å γ = 89.0960(10)°

Volume 3668.0(6) Å3

Z 2

Density (calculated) 1.539 g.cm-3

Absorption coefficient (μ) 1.017 mm-1

F(000) 1716

Crystal size 0.18 × 0.17 × 0.13 mm3

ω range for data collection 1.91 to 28.29°

Index ranges -17 ≤ h ≤7, -17 ≤ k ≤ 18, -28 ≤ l ≤ 28

Reflections collected 44877

Independent reflections 17901 [Rint = 0.0274]

Completeness to θ = 28.29° 98.3 %

Absorption correction Numerical

Max. and min. transmission 0.8791 and 0.8381

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 17901 / 0 / 895

Goodness-of-fit on F2 1.026

Final R indices [I>2σ(I)] R1 = 0.0447, wR2 = 0.1225

R indices (all data) R1 = 0.0638, wR2 = 0.1352

Page 269: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

251

Table F.2 Atomic coordinates and equivalent isotropic displacement parameters (Å2)

for 6.8. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Pd(1) 0.35843(2) 0.14222(2) 0.36606(1) 0.018(1) Pd(2) 0.56782(2) 0.13547(2) 0.15140(1) 0.020(1) Cu(1) 0.45341(3) 0.25500(3) 0.24398(2) 0.020(1) P(1) 0.31819(7) -0.01422(7) 0.41245(4) 0.020(1) P(2) 0.53486(8) 0.29000(7) 0.09963(4) 0.021(1) P(3) 0.35298(7) 0.31689(7) 0.36730(4) 0.020(1) P(4) 0.64755(8) -0.01314(7) 0.15449(5) 0.022(1) N(1) 0.2752(2) 0.1008(2) 0.29766(15) 0.021(1) N(2) 0.3368(2) 0.2303(2) 0.21435(15) 0.021(1) N(3) 0.5693(2) 0.2817(2) 0.27290(15) 0.022(1) N(4) 0.6717(2) 0.1691(2) 0.20818(15) 0.022(1) C(1) 0.2720(3) 0.1561(3) 0.24230(18) 0.022(1) C(2) 0.6543(3) 0.2279(3) 0.25508(18) 0.022(1) C(3) 0.4542(3) 0.1480(3) 0.42786(19) 0.026(1) C(4) 0.4689(3) 0.0768(3) 0.1050(2) 0.030(1) C(11) 0.2336(3) -0.0565(3) 0.36763(18) 0.022(1) C(12) 0.2240(3) 0.0066(3) 0.31176(18) 0.024(1) C(13) 0.1684(4) -0.0320(3) 0.2725(2) 0.034(1) C(14) 0.1219(4) -0.1249(3) 0.2887(2) 0.036(1) C(15) 0.1289(3) -0.1851(3) 0.3447(2) 0.033(1) C(16) 0.1850(3) -0.1505(3) 0.3836(2) 0.029(1) C(21) 0.2401(3) -0.0144(3) 0.49709(18) 0.024(1) C(22) 0.1389(3) 0.0188(4) 0.5092(2) 0.037(1) C(23) 0.0803(4) 0.0306(5) 0.5734(2) 0.051(1) C(24) 0.1250(4) 0.0088(5) 0.6254(2) 0.049(1) C(25) 0.2250(4) -0.0235(4) 0.6135(2) 0.037(1) C(26) 0.2837(3) -0.0357(3) 0.55004(19) 0.029(1) C(31) 0.4152(3) -0.1080(3) 0.41617(18) 0.024(1)

Page 270: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

252

C(32) 0.5180(3) -0.0871(3) 0.3796(2) 0.028(1) C(33) 0.5941(4) -0.1580(3) 0.3811(2) 0.035(1) C(34) 0.5674(4) -0.2499(3) 0.4182(2) 0.038(1) C(35) 0.4663(4) -0.2711(3) 0.4539(2) 0.036(1) C(36) 0.3897(4) -0.2004(3) 0.4538(2) 0.030(1) C(41) 0.4007(3) 0.3277(3) 0.10591(17) 0.022(1) C(42) 0.3171(3) 0.2916(3) 0.16002(17) 0.022(1) C(43) 0.2164(3) 0.3205(3) 0.1606(2) 0.029(1) C(44) 0.1972(4) 0.3844(3) 0.1097(2) 0.033(1) C(45) 0.2796(4) 0.4213(3) 0.0567(2) 0.031(1) C(46) 0.3791(3) 0.3924(3) 0.05507(19) 0.026(1) C(51) 0.5914(3) 0.2803(3) 0.01150(18) 0.026(1) C(52) 0.5337(4) 0.2388(3) -0.0253(2) 0.032(1) C(53) 0.5810(4) 0.2182(3) -0.0890(2) 0.038(1) C(54) 0.6857(4) 0.2382(3) -0.1168(2) 0.041(1) C(55) 0.7430(4) 0.2806(4) -0.0819(2) 0.040(1) C(56) 0.6967(3) 0.3011(3) -0.0178(2) 0.034(1) C(61) 0.6005(3) 0.3995(3) 0.11292(18) 0.025(1) C(62) 0.5539(3) 0.4926(3) 0.11589(19) 0.029(1) C(63) 0.6073(4) 0.5734(3) 0.1263(2) 0.035(1) C(64) 0.7069(4) 0.5635(3) 0.1336(2) 0.039(1) C(65) 0.7530(4) 0.4718(4) 0.1311(2) 0.038(1) C(66) 0.7010(3) 0.3900(3) 0.1214(2) 0.031(1) C(71) 0.4785(3) 0.3738(3) 0.36424(18) 0.023(1) C(72) 0.5704(3) 0.3507(3) 0.31740(17) 0.021(1) C(73) 0.6631(3) 0.4003(3) 0.3145(2) 0.028(1) C(74) 0.6678(3) 0.4650(3) 0.3598(2) 0.030(1) C(75) 0.5779(3) 0.4835(3) 0.4078(2) 0.030(1) C(76) 0.4844(3) 0.4395(3) 0.40901(18) 0.026(1) C(81) 0.2653(3) 0.3470(3) 0.44565(19) 0.026(1) C(82) 0.2332(3) 0.2736(3) 0.4989(2) 0.031(1) C(83) 0.1659(4) 0.2972(4) 0.5583(2) 0.044(1) C(84) 0.1307(4) 0.3924(4) 0.5644(3) 0.051(1)

Page 271: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

253

C(85) 0.1610(4) 0.4650(4) 0.5117(3) 0.051(1) C(86) 0.2282(4) 0.4430(3) 0.4524(2) 0.039(1) C(91) 0.3043(3) 0.4031(3) 0.31052(18) 0.023(1) C(92) 0.1980(3) 0.3986(3) 0.3145(2) 0.032(1) C(93) 0.1548(3) 0.4681(3) 0.2768(2) 0.036(1) C(94) 0.2169(4) 0.5419(3) 0.2342(2) 0.035(1) C(95) 0.3220(3) 0.5452(3) 0.2279(2) 0.032(1) C(96) 0.3668(3) 0.4766(3) 0.26619(19) 0.027(1) C(101) 0.7660(3) 0.0214(3) 0.17412(18) 0.024(1) C(102) 0.7654(3) 0.1139(3) 0.19730(18) 0.024(1) C(103) 0.8573(3) 0.1502(3) 0.2068(2) 0.032(1) C(104) 0.9463(4) 0.0929(4) 0.1949(3) 0.041(1) C(105) 0.9465(3) 0.0002(4) 0.1736(2) 0.038(1) C(106) 0.8562(3) -0.0344(3) 0.1619(2) 0.032(1) C(111) 0.6975(3) -0.0537(3) 0.07256(19) 0.027(1) C(112) 0.7282(5) 0.0186(4) 0.0198(2) 0.050(1) C(113) 0.7715(5) -0.0073(5) -0.0432(3) 0.062(2) C(114) 0.7835(4) -0.1045(4) -0.0541(2) 0.048(1) C(115) 0.7508(4) -0.1775(4) -0.0016(3) 0.050(1) C(116) 0.7073(4) -0.1525(3) 0.0616(2) 0.038(1) C(121) 0.5880(3) -0.1224(3) 0.20834(18) 0.024(1) C(122) 0.6462(4) -0.2034(3) 0.2237(2) 0.032(1) C(123) 0.5963(4) -0.2888(3) 0.2614(2) 0.037(1) C(124) 0.4892(4) -0.2929(3) 0.2834(2) 0.039(1) C(125) 0.4316(4) -0.2135(3) 0.2699(2) 0.035(1) C(126) 0.4799(3) -0.1271(3) 0.23279(19) 0.028(1) P(5) 0.06178(9) 0.32314(9) 0.77646(6) 0.036(1) F(1) -0.0259(3) 0.2417(3) 0.81458(15) 0.058(1) F(2) 0.0004(3) 0.3471(3) 0.72234(16) 0.066(1) F(3) 0.1206(3) 0.2934(3) 0.83199(17) 0.061(1) F(4) 0.1241(3) 0.2401(3) 0.73512(16) 0.067(1) F(5) -0.0040(3) 0.4023(2) 0.82038(18) 0.062(1) F(6) 0.1487(4) 0.4015(4) 0.7406(3) 0.111(2)

Page 272: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

254

C(131) 0.8892(14) 0.2622(14) 0.4132(8) 0.085(4) Cl(3) 0.9743(3) 0.2792(3) 0.45599(18) 0.059(1) Cl(4) 0.9436(3) 0.2836(3) 0.3231(2) 0.082(1) C(132) 0.9578(16) 0.2155(14) 0.3883(10) 0.100(5) Cl(3A) 0.9949(4) 0.2480(4) 0.4539(2) 0.080(1) Cl(4A) 0.8766(7) 0.3104(6) 0.3647(4) 0.165(3) C(133) 1.0014(14) 0.2708(13) -0.0238(9) 0.089(5) C(134) 0.9334(10) 0.1731(10) 0.0267(7) 0.053(3) C(135) 0.9865(9) 0.4023(9) -0.0088(6) 0.054(3) C(136) 0.9551(10) 0.1407(10) -0.0012(7) 0.055(3) C(137) 0.9436(10) 0.2195(11) 0.0439(7) 0.062(3) C(138) 0.9790(11) 0.3497(11) 0.0226(8) 0.071(4) H(1A) 0.2199 0.1411 0.2219 0.027 H(2A) 0.7061 0.2322 0.2777 0.026 H(3A) 0.4222 0.1092 0.4704 0.038 H(3B) 0.4635 0.2173 0.4346 0.038 H(3C) 0.5221 0.1202 0.4078 0.038 H(4A) 0.5084 0.0349 0.0725 0.045 H(4B) 0.4372 0.1311 0.0827 0.045 H(4C) 0.4141 0.0367 0.1377 0.045 H(13A) 0.1627 0.0073 0.2336 0.041 H(14A) 0.0845 -0.1482 0.2610 0.043 H(15A) 0.0958 -0.2488 0.3561 0.039 H(16A) 0.1908 -0.1912 0.4220 0.035 H(22A) 0.1088 0.0338 0.4736 0.044 H(23A) 0.0107 0.0532 0.5814 0.061 H(24A) 0.0858 0.0165 0.6691 0.058 H(25A) 0.2549 -0.0380 0.6492 0.044 H(26A) 0.3532 -0.0584 0.5426 0.034 H(32A) 0.5360 -0.0245 0.3537 0.033 H(33A) 0.6644 -0.1436 0.3567 0.042 H(34A) 0.6195 -0.2984 0.4188 0.046 H(35A) 0.4485 -0.3344 0.4788 0.043

Page 273: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

255

H(36A) 0.3200 -0.2149 0.4792 0.036 H(43A) 0.1598 0.2958 0.1967 0.035 H(44A) 0.1279 0.4031 0.1109 0.040 H(45A) 0.2670 0.4662 0.0219 0.037 H(46A) 0.4350 0.4169 0.0184 0.032 H(52A) 0.4616 0.2247 -0.0064 0.038 H(53A) 0.5410 0.1902 -0.1135 0.045 H(54A) 0.7182 0.2228 -0.1601 0.049 H(55A) 0.8147 0.2961 -0.1016 0.048 H(56A) 0.7373 0.3294 0.0062 0.040 H(62A) 0.4857 0.5005 0.1108 0.035 H(63A) 0.5750 0.6365 0.1285 0.042 H(64A) 0.7432 0.6194 0.1402 0.047 H(65A) 0.8214 0.4647 0.1362 0.045 H(66A) 0.7334 0.3270 0.1203 0.037 H(73A) 0.7243 0.3895 0.2808 0.033 H(74A) 0.7320 0.4962 0.3579 0.036 H(75A) 0.5805 0.5263 0.4397 0.036 H(76A) 0.4228 0.4544 0.4411 0.031 H(82A) 0.2569 0.2075 0.4950 0.037 H(83A) 0.1444 0.2469 0.5946 0.052 H(84A) 0.0857 0.4081 0.6049 0.061 H(85A) 0.1359 0.5307 0.5157 0.062 H(86A) 0.2489 0.4938 0.4163 0.047 H(92A) 0.1552 0.3475 0.3433 0.038 H(93A) 0.0824 0.4651 0.2803 0.043 H(94A) 0.1869 0.5904 0.2091 0.042 H(95A) 0.3647 0.5946 0.1972 0.038 H(96A) 0.4394 0.4799 0.2621 0.032 H(10A) 0.8588 0.2138 0.2213 0.039 H(10B) 1.0082 0.1179 0.2016 0.049 H(10C) 1.0072 -0.0392 0.1670 0.046 H(10D) 0.8563 -0.0967 0.1454 0.038

Page 274: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

256

H(11A) 0.7199 0.0868 0.0265 0.059 H(11B) 0.7931 0.0435 -0.0792 0.074 H(11C) 0.8140 -0.1218 -0.0972 0.058 H(11D) 0.7580 -0.2456 -0.0087 0.060 H(11E) 0.6842 -0.2033 0.0973 0.045 H(12A) 0.7201 -0.2004 0.2084 0.038 H(12B) 0.6360 -0.3440 0.2720 0.045 H(12C) 0.4552 -0.3518 0.3082 0.047 H(12D) 0.3579 -0.2171 0.2859 0.041 H(12E) 0.4394 -0.0715 0.2242 0.034 H(13B) 0.8302 0.3077 0.4263 0.102 H(13C) 0.8612 0.1933 0.4254 0.102 H(13D) 0.9192 0.1511 0.4005 0.120 H(13E) 1.0199 0.2081 0.3511 0.120

Page 275: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

257

Table F.3 Anisotropic displacement parameters (Å)2 for 6.8. The anisotropic displacement factor exponent takes the form: -2π2[ h2 a*2 U11 + ... + 2 h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Pd(1) 0.0213(1) 0.0187(1) 0.0158(1) -0.0017(1) -0.0070(1) 0.0001(1)

Pd(2) 0.0233(1) 0.0188(1) 0.0182(1) -0.0041(1) -0.0074(1) 0.0030(1)

Cu(1) 0.0216(2) 0.0226(2) 0.0173(2) -0.0038(2) -0.0068(2) 0.0006(2)

P(1) 0.0229(4) 0.0199(4) 0.0180(4) -0.0005(3) -0.0072(3) -0.0008(3)

P(2) 0.0253(5) 0.0197(4) 0.0167(4) -0.0020(3) -0.0057(3) 0.0009(4)

P(3) 0.0241(5) 0.0191(4) 0.0167(4) -0.0034(3) -0.0048(3) 0.0015(3)

P(4) 0.0244(5) 0.0196(4) 0.0213(4) -0.0040(3) -0.0058(4) 0.0035(4)

N(1) 0.0225(15) 0.0223(15) 0.0200(15) -0.0020(12) -0.0086(12) -0.0015(12)

N(2) 0.0251(16) 0.0231(15) 0.0168(14) -0.0018(12) -0.0072(12) 0.0007(12)

N(3) 0.0229(15) 0.0239(15) 0.0191(15) -0.0048(12) -0.0064(12) 0.0015(12)

N(4) 0.0210(15) 0.0253(16) 0.0210(15) -0.0054(12) -0.0059(12) 0.0034(12)

C(1) 0.0229(18) 0.0262(18) 0.0195(17) -0.0036(14) -0.0082(14) 0.0015(14)

C(2) 0.0239(18) 0.0232(18) 0.0189(17) -0.0008(13) -0.0078(14) -0.0014(14)

C(3) 0.030(2) 0.0278(19) 0.0239(18) -0.0023(15) -0.0157(16) -0.0013(16)

C(4) 0.037(2) 0.027(2) 0.032(2) -0.0057(16) -0.0185(18) 0.0020(17)

C(11) 0.0205(17) 0.0267(19) 0.0194(17) -0.0034(14) -0.0062(14) -0.0001(14)

C(12) 0.0251(18) 0.0270(19) 0.0213(18) -0.0039(14) -0.0077(14) -0.0015(15)

C(13) 0.044(2) 0.035(2) 0.027(2) 0.0002(17) -0.0177(19) -0.0085(19)

C(14) 0.037(2) 0.038(2) 0.038(2) -0.0073(19) -0.0189(19) -0.0084(19)

C(15) 0.033(2) 0.028(2) 0.037(2) -0.0037(17) -0.0092(18) -0.0105(17)

C(16) 0.031(2) 0.026(2) 0.029(2) -0.0019(16) -0.0084(16) -0.0017(16)

C(21) 0.0280(19) 0.0231(18) 0.0190(17) -0.0011(14) -0.0051(14) -0.0058(15)

C(22) 0.030(2) 0.056(3) 0.026(2) -0.0085(19) -0.0094(17) 0.003(2)

C(23) 0.029(2) 0.087(4) 0.036(3) -0.016(3) -0.003(2) 0.003(3)

C(24) 0.041(3) 0.077(4) 0.022(2) -0.009(2) 0.0032(19) -0.008(3)

Page 276: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

258

C(25) 0.043(3) 0.044(3) 0.023(2) -0.0005(18) -0.0097(18) -0.009(2)

C(26) 0.033(2) 0.031(2) 0.0238(19) -0.0008(15) -0.0100(16) -0.0033(17)

C(31) 0.0295(19) 0.0221(18) 0.0231(18) -0.0037(14) -0.0135(15) 0.0014(15)

C(32) 0.030(2) 0.0267(19) 0.030(2) -0.0067(16) -0.0131(16) 0.0003(16)

C(33) 0.033(2) 0.034(2) 0.045(3) -0.0204(19) -0.0179(19) 0.0060(18)

C(34) 0.044(3) 0.032(2) 0.053(3) -0.017(2) -0.032(2) 0.0112(19)

C(35) 0.056(3) 0.024(2) 0.035(2) -0.0047(17) -0.027(2) 0.0067(19)

C(36) 0.042(2) 0.026(2) 0.026(2) -0.0022(15) -0.0143(17) 0.0025(17)

C(41) 0.0287(19) 0.0228(18) 0.0170(16) -0.0027(13) -0.0083(14) 0.0014(15)

C(42) 0.0281(19) 0.0220(17) 0.0172(16) -0.0039(13) -0.0093(14) 0.0029(14)

C(43) 0.026(2) 0.036(2) 0.0257(19) -0.0051(16) -0.0078(16) 0.0047(16)

C(44) 0.035(2) 0.039(2) 0.029(2) -0.0049(17) -0.0143(18) 0.0112(18)

C(45) 0.044(2) 0.029(2) 0.0240(19) -0.0032(16) -0.0159(18) 0.0093(18)

C(46) 0.037(2) 0.0210(18) 0.0214(18) -0.0020(14) -0.0088(16) 0.0025(16)

C(51) 0.035(2) 0.0228(18) 0.0177(17) -0.0015(14) -0.0048(15) 0.0050(15)

C(52) 0.038(2) 0.035(2) 0.0216(19) -0.0057(16) -0.0077(17) 0.0036(18)

C(53) 0.055(3) 0.035(2) 0.025(2) -0.0077(17) -0.013(2) 0.007(2)

C(54) 0.059(3) 0.038(2) 0.0195(19) -0.0038(17) -0.0025(19) 0.014(2)

C(55) 0.036(2) 0.046(3) 0.027(2) 0.0038(19) 0.0030(18) 0.008(2)

C(56) 0.035(2) 0.038(2) 0.025(2) 0.0002(17) -0.0054(17) 0.0035(18)

C(61) 0.032(2) 0.0235(18) 0.0168(17) -0.0009(14) -0.0041(14) -0.0031(15)

C(62) 0.036(2) 0.027(2) 0.0219(19) -0.0043(15) -0.0043(16) -0.0004(16)

C(63) 0.046(3) 0.023(2) 0.034(2) -0.0062(17) -0.0071(19) -0.0025(18)

C(64) 0.049(3) 0.033(2) 0.035(2) -0.0093(19) -0.009(2) -0.013(2)

C(65) 0.039(2) 0.040(2) 0.036(2) -0.0022(19) -0.0139(19) -0.009(2)

C(66) 0.035(2) 0.028(2) 0.030(2) 0.0002(16) -0.0117(17) -0.0020(17)

C(71) 0.0278(19) 0.0206(17) 0.0203(17) -0.0027(13) -0.0080(14) 0.0001(14)

C(72) 0.0269(18) 0.0213(17) 0.0158(16) -0.0014(13) -0.0066(14) -0.0016(14)

C(73) 0.028(2) 0.032(2) 0.0244(19) -0.0050(16) -0.0068(15) -0.0029(16)

Page 277: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

259

C(74) 0.035(2) 0.028(2) 0.029(2) -0.0027(16) -0.0115(17) -0.0084(17)

C(75) 0.045(2) 0.0227(19) 0.0253(19) -0.0078(15) -0.0133(17) -0.0050(17)

C(76) 0.036(2) 0.0220(18) 0.0181(17) -0.0049(14) -0.0050(15) 0.0008(15)

C(81) 0.0250(19) 0.031(2) 0.0205(18) -0.0069(15) -0.0035(14) 0.0026(15)

C(82) 0.027(2) 0.041(2) 0.0229(19) -0.0065(17) -0.0038(15) 0.0004(17)

C(83) 0.042(3) 0.059(3) 0.025(2) -0.004(2) -0.0003(19) -0.005(2)

C(84) 0.048(3) 0.068(4) 0.032(3) -0.021(2) 0.004(2) 0.004(3)

C(85) 0.054(3) 0.051(3) 0.044(3) -0.022(2) 0.002(2) 0.012(2)

C(86) 0.048(3) 0.034(2) 0.030(2) -0.0091(18) -0.0006(19) 0.007(2)

C(91) 0.0270(19) 0.0227(18) 0.0200(17) -0.0047(14) -0.0057(14) 0.0046(15)

C(92) 0.029(2) 0.030(2) 0.033(2) 0.0019(17) -0.0081(17) 0.0025(17)

C(93) 0.029(2) 0.038(2) 0.040(2) 0.0011(19) -0.0110(18) 0.0075(18)

C(94) 0.039(2) 0.034(2) 0.035(2) 0.0006(18) -0.0138(19) 0.0108(19)

C(95) 0.037(2) 0.027(2) 0.027(2) 0.0051(16) -0.0047(17) 0.0028(17)

C(96) 0.030(2) 0.0247(19) 0.0241(19) -0.0017(15) -0.0062(15) 0.0022(15)

C(101) 0.0235(18) 0.0254(19) 0.0224(18) -0.0008(14) -0.0044(14) 0.0023(15)

C(102) 0.0249(18) 0.0245(18) 0.0215(18) -0.0034(14) -0.0052(14) 0.0031(15)

C(103) 0.026(2) 0.034(2) 0.038(2) -0.0114(18) -0.0087(17) 0.0017(17)

C(104) 0.026(2) 0.044(3) 0.055(3) -0.012(2) -0.015(2) 0.0023(19)

C(105) 0.026(2) 0.040(2) 0.048(3) -0.007(2) -0.0092(19) 0.0114(18)

C(106) 0.029(2) 0.028(2) 0.036(2) -0.0043(17) -0.0068(17) 0.0049(16)

C(111) 0.028(2) 0.027(2) 0.0249(19) -0.0065(15) -0.0066(15) 0.0046(16)

C(112) 0.074(4) 0.037(3) 0.026(2) -0.0009(19) 0.003(2) 0.018(2)

C(113) 0.089(5) 0.057(3) 0.026(2) -0.002(2) 0.005(3) 0.025(3)

C(114) 0.045(3) 0.072(4) 0.028(2) -0.022(2) -0.005(2) 0.013(3)

C(115) 0.047(3) 0.051(3) 0.050(3) -0.032(3) 0.000(2) -0.005(2)

C(116) 0.040(2) 0.034(2) 0.035(2) -0.0145(19) -0.0005(19) -0.0026(19)

C(121) 0.0268(19) 0.0238(18) 0.0214(18) -0.0038(14) -0.0056(14) 0.0022(15)

C(122) 0.036(2) 0.027(2) 0.030(2) -0.0021(16) -0.0060(17) 0.0073(17)

Page 278: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

260

C(123) 0.051(3) 0.026(2) 0.032(2) -0.0016(17) -0.007(2) 0.0039(19)

C(124) 0.058(3) 0.030(2) 0.027(2) -0.0037(17) -0.008(2) -0.014(2)

C(125) 0.035(2) 0.045(3) 0.023(2) -0.0085(18) -0.0047(17) -0.0099(19)

C(126) 0.027(2) 0.036(2) 0.0207(18) -0.0070(16) -0.0048(15) 0.0046(16)

P(5) 0.0260(5) 0.0416(7) 0.0410(6) -0.0034(5) -0.0098(5) 0.0044(5)

F(1) 0.059(2) 0.067(2) 0.0460(17) -0.0137(15) -0.0079(15) -0.0229(16)

F(2) 0.066(2) 0.089(3) 0.0464(18) -0.0063(17) -0.0250(16) 0.0361(19)

F(3) 0.0501(19) 0.081(2) 0.069(2) -0.0245(18) -0.0383(17) 0.0179(17)

F(4) 0.060(2) 0.093(3) 0.0511(19) -0.0276(18) -0.0165(16) 0.0422(19)

F(5) 0.069(2) 0.0536(19) 0.073(2) -0.0256(17) -0.0296(18) 0.0258(17)

F(6) 0.092(3) 0.099(4) 0.116(4) 0.025(3) 0.000(3) -0.054(3)

Page 279: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

261

Table F.4 Bond lengths [Å] for 6.8 atom-atom distance atom-atom distance

Pd(1)-C(3) 2.075(4) Pd(1)-N(1) 2.180(3)

Pd(1)-P(1) 2.2372(10) Pd(1)-P(3) 2.3683(10)

Pd(1)-Cu(1) 2.8291(5) Pd(2)-C(4) 2.068(4)

Pd(2)-N(4) 2.156(3) Pd(2)-P(4) 2.2641(10)

Pd(2)-P(2) 2.3405(10) Pd(2)-Cu(1) 2.8016(5)

Cu(1)-N(3) 1.868(3) Cu(1)-N(2) 1.880(3)

Cu(1)-P(3) 2.8149(10) P(1)-C(11) 1.802(4)

P(1)-C(31) 1.810(4) P(1)-C(21) 1.815(4)

P(2)-C(61) 1.822(4) P(2)-C(41) 1.828(4)

P(2)-C(51) 1.837(4) P(3)-C(91) 1.821(4)

P(3)-C(71) 1.837(4) P(3)-C(81) 1.840(4)

P(4)-C(121) 1.810(4) P(4)-C(101) 1.822(4)

P(4)-C(111) 1.831(4) N(1)-C(1) 1.329(5)

N(1)-C(12) 1.418(5) N(2)-C(1) 1.310(5)

N(2)-C(42) 1.423(4) N(3)-C(2) 1.328(5)

N(3)-C(72) 1.408(5) N(4)-C(2) 1.317(5)

N(4)-C(102) 1.425(5) C(11)-C(16) 1.400(5)

C(11)-C(12) 1.413(5) C(12)-C(13) 1.404(5)

C(13)-C(14) 1.376(6) C(14)-C(15) 1.386(6)

C(15)-C(16) 1.380(6) C(21)-C(22) 1.382(6)

C(21)-C(26) 1.401(5) C(22)-C(23) 1.402(6)

C(23)-C(24) 1.393(7) C(24)-C(25) 1.364(7)

C(25)-C(26) 1.389(6) C(31)-C(32) 1.395(6)

C(31)-C(36) 1.396(5) C(32)-C(33) 1.391(6)

C(33)-C(34) 1.388(7) C(34)-C(35) 1.372(7)

C(35)-C(36) 1.390(6) C(41)-C(46) 1.399(5)

Page 280: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

262

C(41)-C(42) 1.411(5) C(42)-C(43) 1.390(5)

C(43)-C(44) 1.381(6) C(44)-C(45) 1.392(6)

C(45)-C(46) 1.372(6) C(51)-C(56) 1.391(6)

C(51)-C(52) 1.402(6) C(52)-C(53) 1.387(6)

C(53)-C(54) 1.378(7) C(54)-C(55) 1.375(7)

C(55)-C(56) 1.391(6) C(61)-C(62) 1.397(6)

C(61)-C(66) 1.403(6) C(62)-C(63) 1.387(6)

C(63)-C(64) 1.383(7) C(64)-C(65) 1.377(7)

C(65)-C(66) 1.383(6) C(71)-C(76) 1.394(5)

C(71)-C(72) 1.410(5) C(72)-C(73) 1.401(5)

C(73)-C(74) 1.388(6) C(74)-C(75) 1.388(6)

C(75)-C(76) 1.384(6) C(81)-C(82) 1.391(6)

C(81)-C(86) 1.394(6) C(82)-C(83) 1.403(6)

C(83)-C(84) 1.374(8) C(84)-C(85) 1.376(8)

C(85)-C(86) 1.394(6) C(91)-C(96) 1.397(5)

C(91)-C(92) 1.400(6) C(92)-C(93) 1.385(6)

C(93)-C(94) 1.383(6) C(94)-C(95) 1.373(6)

C(95)-C(96) 1.398(5) C(101)-C(106) 1.392(5)

C(101)-C(102) 1.398(5) C(102)-C(103) 1.401(6)

C(103)-C(104) 1.389(6) C(104)-C(105) 1.383(7)

C(105)-C(106) 1.394(6) C(111)-C(112) 1.374(6)

C(111)-C(116) 1.383(6) C(112)-C(113) 1.390(7)

C(113)-C(114) 1.362(8) C(114)-C(115) 1.379(8)

C(115)-C(116) 1.388(6) C(121)-C(122) 1.393(5)

C(121)-C(126) 1.394(5) C(122)-C(123) 1.392(6)

C(123)-C(124) 1.377(7) C(124)-C(125) 1.360(7)

C(125)-C(126) 1.391(6) P(5)-F(6) 1.555(4)

P(5)-F(2) 1.587(3) P(5)-F(4) 1.591(3)

P(5)-F(5) 1.596(3) P(5)-F(1) 1.598(3)

Page 281: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

263

P(5)-F(3) 1.599(3) C(131)-Cl(3) 1.670(17)

C(131)-Cl(4) 1.843(18) C(132)-Cl(3A) 1.704(19)

C(132)-Cl(4A) 1.78(2) C(133)-C(138) 1.51(2)

C(133)-C(137) 1.52(2) C(133)-C(134) 1.70(2)

C(133)-C(136) 1.84(2) C(133)-C(135) 1.84(2)

C(134)-C(136) 0.769(15) C(134)-C(137) 0.793(15)

C(135)-C(138) 0.905(16) C(136)-C(137) 1.495(18)

C(137)-C(138) 1.81(2)

Page 282: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

264

Table F.5 Bond angles [°] for 6.8 atom-atom-atom angle atom-atom-atom angle

C(3)-Pd(1)-N(1) 165.98(14) C(3)-Pd(1)-P(1) 87.12(11)

N(1)-Pd(1)-P(1) 82.88(8) C(3)-Pd(1)-P(3) 83.91(11)

N(1)-Pd(1)-P(3) 109.31(8) P(1)-Pd(1)-P(3) 152.98(4)

C(3)-Pd(1)-Cu(1) 108.60(11) N(1)-Pd(1)-Cu(1) 74.39(8)

P(1)-Pd(1)-Cu(1) 141.98(3) P(3)-Pd(1)-Cu(1) 64.88(2)

C(4)-Pd(2)-N(4) 169.49(14) C(4)-Pd(2)-P(4) 89.12(12)

N(4)-Pd(2)-P(4) 81.79(9) C(4)-Pd(2)-P(2) 85.95(12)

N(4)-Pd(2)-P(2) 104.53(9) P(4)-Pd(2)-P(2) 153.79(4)

C(4)-Pd(2)-Cu(1) 109.05(12) N(4)-Pd(2)-Cu(1) 74.72(8)

P(4)-Pd(2)-Cu(1) 136.28(3) P(2)-Pd(2)-Cu(1) 69.19(3)

N(3)-Cu(1)-N(2) 179.07(14) N(3)-Cu(1)-Pd(2) 92.59(9)

N(2)-Cu(1)-Pd(2) 87.79(10) N(3)-Cu(1)-P(3) 80.10(10)

N(2)-Cu(1)-P(3) 99.83(10) Pd(2)-Cu(1)-P(3) 159.36(3)

N(3)-Cu(1)-Pd(1) 90.89(10) N(2)-Cu(1)-Pd(1) 89.76(9)

Pd(2)-Cu(1)-Pd(1) 111.832(18) P(3)-Cu(1)-Pd(1) 49.62(2)

C(11)-P(1)-C(31) 108.30(17) C(11)-P(1)-C(21) 106.50(17)

C(31)-P(1)-C(21) 104.76(18) C(11)-P(1)-Pd(1) 103.33(13)

C(31)-P(1)-Pd(1) 123.09(13) C(21)-P(1)-Pd(1) 109.89(13)

C(61)-P(2)-C(41) 105.23(18) C(61)-P(2)-C(51) 103.22(18)

C(41)-P(2)-C(51) 104.29(17) C(61)-P(2)-Pd(2) 118.07(13)

C(41)-P(2)-Pd(2) 119.94(12) C(51)-P(2)-Pd(2) 103.94(12)

C(91)-P(3)-C(71) 102.88(17) C(91)-P(3)-C(81) 99.23(18)

C(71)-P(3)-C(81) 104.21(18) C(91)-P(3)-Pd(1) 124.46(13)

C(71)-P(3)-Pd(1) 113.85(12) C(81)-P(3)-Pd(1) 109.70(13)

C(91)-P(3)-Cu(1) 77.29(12) C(71)-P(3)-Cu(1) 86.55(12)

C(81)-P(3)-Cu(1) 169.22(13) Pd(1)-P(3)-Cu(1) 65.50(2)

Page 283: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

265

C(121)-P(4)-C(101) 109.86(18) C(121)-P(4)-C(111) 105.82(18)

C(101)-P(4)-C(111) 102.74(18) C(121)-P(4)-Pd(2) 123.24(13)

C(101)-P(4)-Pd(2) 100.90(13) C(111)-P(4)-Pd(2) 112.41(13)

C(1)-N(1)-C(12) 117.5(3) C(1)-N(1)-Pd(1) 124.6(2)

C(12)-N(1)-Pd(1) 117.9(2) C(1)-N(2)-C(42) 118.0(3)

C(1)-N(2)-Cu(1) 121.4(3) C(42)-N(2)-Cu(1) 120.5(2)

C(2)-N(3)-C(72) 116.6(3) C(2)-N(3)-Cu(1) 119.2(3)

C(72)-N(3)-Cu(1) 124.0(2) C(2)-N(4)-C(102) 117.0(3)

C(2)-N(4)-Pd(2) 127.4(3) C(102)-N(4)-Pd(2) 115.4(2)

N(2)-C(1)-N(1) 123.6(3) N(4)-C(2)-N(3) 124.5(3)

C(16)-C(11)-C(12) 120.5(3) C(16)-C(11)-P(1) 122.3(3)

C(12)-C(11)-P(1) 117.0(3) C(13)-C(12)-C(11) 116.6(4)

C(13)-C(12)-N(1) 125.1(3) C(11)-C(12)-N(1) 118.2(3)

C(14)-C(13)-C(12) 122.0(4) C(13)-C(14)-C(15) 121.0(4)

C(16)-C(15)-C(14) 118.5(4) C(15)-C(16)-C(11) 121.3(4)

C(22)-C(21)-C(26) 119.0(4) C(22)-C(21)-P(1) 119.1(3)

C(26)-C(21)-P(1) 121.4(3) C(21)-C(22)-C(23) 120.7(4)

C(24)-C(23)-C(22) 119.4(5) C(25)-C(24)-C(23) 120.0(4)

C(24)-C(25)-C(26) 121.1(4) C(25)-C(26)-C(21) 119.8(4)

C(32)-C(31)-C(36) 119.5(4) C(32)-C(31)-P(1) 118.5(3)

C(36)-C(31)-P(1) 122.0(3) C(33)-C(32)-C(31) 119.8(4)

C(34)-C(33)-C(32) 120.0(4) C(35)-C(34)-C(33) 120.4(4)

C(34)-C(35)-C(36) 120.3(4) C(35)-C(36)-C(31) 120.0(4)

C(46)-C(41)-C(42) 118.5(3) C(46)-C(41)-P(2) 119.5(3)

C(42)-C(41)-P(2) 122.0(3) C(43)-C(42)-C(41) 119.1(3)

C(43)-C(42)-N(2) 120.9(3) C(41)-C(42)-N(2) 120.0(3)

C(44)-C(43)-C(42) 121.2(4) C(43)-C(44)-C(45) 119.9(4)

C(46)-C(45)-C(44) 119.4(4) C(45)-C(46)-C(41) 121.8(4)

C(56)-C(51)-C(52) 118.2(4) C(56)-C(51)-P(2) 120.3(3)

Page 284: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

266

C(52)-C(51)-P(2) 120.8(3) C(53)-C(52)-C(51) 120.7(4)

C(54)-C(53)-C(52) 120.2(4) C(55)-C(54)-C(53) 119.9(4)

C(54)-C(55)-C(56) 120.5(4) C(51)-C(56)-C(55) 120.5(4)

C(62)-C(61)-C(66) 118.6(4) C(62)-C(61)-P(2) 122.4(3)

C(66)-C(61)-P(2) 118.9(3) C(63)-C(62)-C(61) 120.1(4)

C(64)-C(63)-C(62) 120.8(4) C(65)-C(64)-C(63) 119.5(4)

C(64)-C(65)-C(66) 120.7(4) C(65)-C(66)-C(61) 120.3(4)

C(76)-C(71)-C(72) 119.0(4) C(76)-C(71)-P(3) 120.3(3)

C(72)-C(71)-P(3) 120.7(3) C(73)-C(72)-N(3) 120.2(3)

C(73)-C(72)-C(71) 118.5(3) N(3)-C(72)-C(71) 121.2(3)

C(74)-C(73)-C(72) 121.6(4) C(73)-C(74)-C(75) 119.4(4)

C(76)-C(75)-C(74) 119.8(4) C(75)-C(76)-C(71) 121.6(4)

C(82)-C(81)-C(86) 118.8(4) C(82)-C(81)-P(3) 120.5(3)

C(86)-C(81)-P(3) 120.7(3) C(81)-C(82)-C(83) 120.1(4)

C(84)-C(83)-C(82) 120.5(5) C(83)-C(84)-C(85) 119.7(4)

C(84)-C(85)-C(86) 120.5(5) C(81)-C(86)-C(85) 120.4(5)

C(96)-C(91)-C(92) 118.9(4) C(96)-C(91)-P(3) 123.0(3)

C(92)-C(91)-P(3) 118.0(3) C(93)-C(92)-C(91) 120.5(4)

C(94)-C(93)-C(92) 120.0(4) C(95)-C(94)-C(93) 120.2(4)

C(94)-C(95)-C(96) 120.6(4) C(91)-C(96)-C(95) 119.7(4)

C(106)-C(101)-C(102) 120.2(4) C(106)-C(101)-P(4) 123.7(3)

C(102)-C(101)-P(4) 115.9(3) C(101)-C(102)-C(103) 119.1(4)

C(101)-C(102)-N(4) 118.2(3) C(103)-C(102)-N(4) 122.7(3)

C(104)-C(103)-C(102) 119.8(4) C(105)-C(104)-C(103) 121.3(4)

C(104)-C(105)-C(106) 118.9(4) C(101)-C(106)-C(105) 120.6(4)

C(112)-C(111)-C(116) 118.9(4) C(112)-C(111)-P(4) 117.6(3)

C(116)-C(111)-P(4) 123.4(3) C(111)-C(112)-C(113) 120.4(5)

C(114)-C(113)-C(112) 120.9(5) C(113)-C(114)-C(115) 119.0(4)

C(114)-C(115)-C(116) 120.6(5) C(111)-C(116)-C(115) 120.2(5)

Page 285: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

267

C(122)-C(121)-C(126) 119.2(4) C(122)-C(121)-P(4) 122.2(3)

C(126)-C(121)-P(4) 118.6(3) C(123)-C(122)-C(121) 120.1(4)

C(124)-C(123)-C(122) 119.8(4) C(125)-C(124)-C(123) 120.7(4)

C(124)-C(125)-C(126) 120.5(4) C(125)-C(126)-C(121) 119.7(4)

F(6)-P(5)-F(2) 92.4(3) F(6)-P(5)-F(4) 90.6(3)

F(2)-P(5)-F(4) 89.22(19) F(6)-P(5)-F(5) 92.0(3)

F(2)-P(5)-F(5) 91.49(18) F(4)-P(5)-F(5) 177.3(2)

F(6)-P(5)-F(1) 178.5(3) F(2)-P(5)-F(1) 89.0(2)

F(4)-P(5)-F(1) 89.3(2) F(5)-P(5)-F(1) 88.1(2)

F(6)-P(5)-F(3) 90.3(3) F(2)-P(5)-F(3) 177.0(2)

F(4)-P(5)-F(3) 89.61(18) F(5)-P(5)-F(3) 89.56(18)

F(1)-P(5)-F(3) 88.2(2) Cl(3)-C(131)-Cl(4) 114.5(10)

Cl(3A)-C(132)-Cl(4A) 108.5(11) C(138)-C(133)-C(137) 73.1(12)

C(138)-C(133)-C(134) 99.9(13) C(137)-C(133)-C(134) 27.8(7)

C(138)-C(133)-C(136) 124.5(13) C(137)-C(133)-C(136) 51.7(8)

C(134)-C(133)-C(136) 24.7(5) C(138)-C(133)-C(135) 29.2(7)

C(137)-C(133)-C(135) 100.6(12) C(134)-C(133)-C(135) 125.4(12)

C(136)-C(133)-C(135) 149.3(12) C(136)-C(134)-C(137) 146(3)

C(136)-C(134)-C(133) 87.8(16) C(137)-C(134)-C(133) 63.5(15)

C(138)-C(135)-C(133) 54.4(13) C(134)-C(136)-C(137) 17.2(13)

C(134)-C(136)-C(133) 67.5(15) C(137)-C(136)-C(133) 53.1(8)

C(134)-C(137)-C(136) 16.7(13) C(134)-C(137)-C(133) 88.8(17)

C(136)-C(137)-C(133) 75.2(10) C(134)-C(137)-C(138) 139.4(18)

C(136)-C(137)-C(138) 128.1(11) C(133)-C(137)-C(138) 53.1(9)

C(135)-C(138)-C(133) 96.4(16) C(135)-C(138)-C(137) 145.1(17)

C(133)-C(138)-C(137) 53.8(9)

Page 286: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

268

Table F.6 Torsion angles [°] for 6.8 atom-atom-atom-atom angle atom-atom-atom-atom angle C(4)-Pd(2)-Cu(1)-N(3) 177.21(16) N(4)-Pd(2)-Cu(1)-N(3) 7.48(13)

P(4)-Pd(2)-Cu(1)-N(3) 67.48(10) P(2)-Pd(2)-Cu(1)-N(3) -104.98(10)

C(4)-Pd(2)-Cu(1)-N(2) -3.64(15) N(4)-Pd(2)-Cu(1)-N(2) -173.36(13)

P(4)-Pd(2)-Cu(1)-N(2) -113.37(10) P(2)-Pd(2)-Cu(1)-N(2) 74.17(10)

C(4)-Pd(2)-Cu(1)-P(3) 108.83(15) N(4)-Pd(2)-Cu(1)-P(3) -60.90(12)

P(4)-Pd(2)-Cu(1)-P(3) -0.90(9) P(2)-Pd(2)-Cu(1)-P(3) -173.36(8)

C(4)-Pd(2)-Cu(1)-Pd(1) 85.22(13) N(4)-Pd(2)-Cu(1)-Pd(1) -84.51(9)

P(4)-Pd(2)-Cu(1)-Pd(1) -24.52(5) P(2)-Pd(2)-Cu(1)-Pd(1) 163.02(3)

C(3)-Pd(1)-Cu(1)-N(3) 2.52(15) N(1)-Pd(1)-Cu(1)-N(3) -163.14(13)

P(1)-Pd(1)-Cu(1)-N(3) -107.63(10) P(3)-Pd(1)-Cu(1)-N(3) 76.18(10)

C(3)-Pd(1)-Cu(1)-N(2) -176.82(15) N(1)-Pd(1)-Cu(1)-N(2) 17.52(13)

P(1)-Pd(1)-Cu(1)-N(2) 73.03(11) P(3)-Pd(1)-Cu(1)-N(2) -103.16(10)

C(3)-Pd(1)-Cu(1)-Pd(2) 95.66(12) N(1)-Pd(1)-Cu(1)-Pd(2) -70.00(9)

P(1)-Pd(1)-Cu(1)-Pd(2) -14.49(5) P(3)-Pd(1)-Cu(1)-Pd(2) 169.32(3)

C(3)-Pd(1)-Cu(1)-P(3) -73.66(12) N(1)-Pd(1)-Cu(1)-P(3) 120.68(9)

P(1)-Pd(1)-Cu(1)-P(3) 176.19(5) C(3)-Pd(1)-P(1)-C(11) -177.07(17)

N(1)-Pd(1)-P(1)-C(11) -6.93(15) P(3)-Pd(1)-P(1)-C(11) 112.34(14)

Cu(1)-Pd(1)-P(1)-C(11) -60.06(14) C(3)-Pd(1)-P(1)-C(31) -54.41(19)

N(1)-Pd(1)-P(1)-C(31) 115.74(17) P(3)-Pd(1)-P(1)-C(31) -125.00(16)

Cu(1)-Pd(1)-P(1)-C(31) 62.61(16) C(3)-Pd(1)-P(1)-C(21) 69.59(18)

N(1)-Pd(1)-P(1)-C(21) -120.26(16) P(3)-Pd(1)-P(1)-C(21) -0.99(17)

Cu(1)-Pd(1)-P(1)-C(21) -173.39(13) C(4)-Pd(2)-P(2)-C(61) -178.70(19)

N(4)-Pd(2)-P(2)-C(61) 2.09(17) P(4)-Pd(2)-P(2)-C(61) -99.00(16)

Cu(1)-Pd(2)-P(2)-C(61) 69.15(14) C(4)-Pd(2)-P(2)-C(41) 50.71(19)

N(4)-Pd(2)-P(2)-C(41) -128.50(16) P(4)-Pd(2)-P(2)-C(41) 130.41(15)

Cu(1)-Pd(2)-P(2)-C(41) -61.44(14) C(4)-Pd(2)-P(2)-C(51) -65.17(19) N(4)-

Page 287: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

269

Pd(2)-P(2)-C(51) 115.63(16) P(4)-Pd(2)-P(2)-C(51) 14.53(17)

Cu(1)-Pd(2)-P(2)-C(51) -177.32(14) C(3)-Pd(1)-P(3)-C(91) 166.55(19)

N(1)-Pd(1)-P(3)-C(91) -8.67(18) P(1)-Pd(1)-P(3)-C(91) -122.14(16)

Cu(1)-Pd(1)-P(3)-C(91) 52.70(15) C(3)-Pd(1)-P(3)-C(71) 39.74(17)

N(1)-Pd(1)-P(3)-C(71) -135.47(16) P(1)-Pd(1)-P(3)-C(71) 111.06(15)

Cu(1)-Pd(1)-P(3)-C(71) -74.11(13) C(3)-Pd(1)-P(3)-C(81) -76.57(18)

N(1)-Pd(1)-P(3)-C(81) 108.22(16) P(1)-Pd(1)-P(3)-C(81) -5.26(17)

Cu(1)-Pd(1)-P(3)-C(81) 169.58(14) C(3)-Pd(1)-P(3)-Cu(1) 113.85(12)

N(1)-Pd(1)-P(3)-Cu(1) -61.36(9) P(1)-Pd(1)-P(3)-Cu(1) -174.84(7)

N(3)-Cu(1)-P(3)-C(91) 122.51(16) N(2)-Cu(1)-P(3)-C(91) -56.55(16)

Pd(2)-Cu(1)-P(3)-C(91) -166.97(14) Pd(1)-Cu(1)-P(3)-C(91) -137.75(13)

N(3)-Cu(1)-P(3)-C(71) 18.47(15) N(2)-Cu(1)-P(3)-C(71) -160.59(15)

Pd(2)-Cu(1)-P(3)-C(71) 88.99(14) Pd(1)-Cu(1)-P(3)-C(71) 118.21(12)

N(3)-Cu(1)-P(3)-C(81) -165.3(7) N(2)-Cu(1)-P(3)-C(81) 15.6(7)

Pd(2)-Cu(1)-P(3)-C(81) -94.8(7) Pd(1)-Cu(1)-P(3)-C(81) -65.6(7)

N(3)-Cu(1)-P(3)-Pd(1) -99.74(10) N(2)-Cu(1)-P(3)-Pd(1) 81.20(10)

Pd(2)-Cu(1)-P(3)-Pd(1) -29.22(8) C(4)-Pd(2)-P(4)-C(121) -71.9(2)

N(4)-Pd(2)-P(4)-C(121) 102.79(18) P(2)-Pd(2)-P(4)-C(121) -150.90(16)

Cu(1)-Pd(2)-P(4)-C(121) 45.22(16) C(4)-Pd(2)-P(4)-C(101) 165.40(18)

N(4)-Pd(2)-P(4)-C(101) -19.88(15) P(2)-Pd(2)-P(4)-C(101) 86.43(15)

Cu(1)-Pd(2)-P(4)-C(101) -77.45(13) C(4)-Pd(2)-P(4)-C(111) 56.59(19)

N(4)-Pd(2)-P(4)-C(111) -128.69(17) P(2)-Pd(2)-P(4)-C(111) -22.38(18)

Cu(1)-Pd(2)-P(4)-C(111) 173.74(14) C(3)-Pd(1)-N(1)-C(1) -126.2(6)

P(1)-Pd(1)-N(1)-C(1) -171.1(3) P(3)-Pd(1)-N(1)-C(1) 33.7(3)

Cu(1)-Pd(1)-N(1)-C(1) -21.9(3) C(3)-Pd(1)-N(1)-C(12) 51.2(7)

P(1)-Pd(1)-N(1)-C(12) 6.3(3) P(3)-Pd(1)-N(1)-C(12) -148.8(2)

Cu(1)-Pd(1)-N(1)-C(12) 155.6(3) N(3)-Cu(1)-N(2)-C(1) -154(8)

Pd(2)-Cu(1)-N(2)-C(1) 92.0(3) P(3)-Cu(1)-N(2)-C(1) -68.7(3)

Pd(1)-Cu(1)-N(2)-C(1) -19.9(3) N(3)-Cu(1)-N(2)-C(42) 26(9)

Page 288: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

270

Pd(2)-Cu(1)-N(2)-C(42) -87.3(3) P(3)-Cu(1)-N(2)-C(42) 112.0(3)

Pd(1)-Cu(1)-N(2)-C(42) 160.8(3) N(2)-Cu(1)-N(3)-C(2) -127(8)

Pd(2)-Cu(1)-N(3)-C(2) -12.9(3) P(3)-Cu(1)-N(3)-C(2) 147.6(3)

Pd(1)-Cu(1)-N(3)-C(2) 99.0(3) N(2)-Cu(1)-N(3)-C(72) 59(9)

Pd(2)-Cu(1)-N(3)-C(72) 172.5(3) P(3)-Cu(1)-N(3)-C(72) -27.0(3)

Pd(1)-Cu(1)-N(3)-C(72) -75.6(3) C(4)-Pd(2)-N(4)-C(2) -116.7(8)

P(4)-Pd(2)-N(4)-C(2) -147.0(3) P(2)-Pd(2)-N(4)-C(2) 59.0(3)

Cu(1)-Pd(2)-N(4)-C(2) -4.2(3) C(4)-Pd(2)-N(4)-C(102) 57.2(9)

P(4)-Pd(2)-N(4)-C(102) 26.9(2) P(2)-Pd(2)-N(4)-C(102) -127.2(2)

Cu(1)-Pd(2)-N(4)-C(102) 169.7(3) C(42)-N(2)-C(1)-N(1) -172.1(3)

Cu(1)-N(2)-C(1)-N(1) 8.6(5) C(12)-N(1)-C(1)-N(2) -161.1(4)

Pd(1)-N(1)-C(1)-N(2) 16.4(5) C(102)-N(4)-C(2)-N(3) -177.7(3)

Pd(2)-N(4)-C(2)-N(3) -3.9(5) C(72)-N(3)-C(2)-N(4) -171.3(3)

Cu(1)-N(3)-C(2)-N(4) 13.7(5) C(31)-P(1)-C(11)-C(16) 51.7(4)

C(21)-P(1)-C(11)-C(16) -60.5(4) Pd(1)-P(1)-C(11)-C(16) -176.3(3)

C(31)-P(1)-C(11)-C(12) -123.6(3) C(21)-P(1)-C(11)-C(12) 124.2(3)

Pd(1)-P(1)-C(11)-C(12) 8.4(3) C(16)-C(11)-C(12)-C(13) -3.0(6)

P(1)-C(11)-C(12)-C(13) 172.4(3) C(16)-C(11)-C(12)-N(1) -179.7(3)

P(1)-C(11)-C(12)-N(1) -4.3(5) C(1)-N(1)-C(12)-C(13) -1.4(6)

Pd(1)-N(1)-C(12)-C(13) -179.0(3) C(1)-N(1)-C(12)-C(11) 175.0(3)

Pd(1)-N(1)-C(12)-C(11) -2.6(4) C(11)-C(12)-C(13)-C(14) 2.5(7)

N(1)-C(12)-C(13)-C(14) 178.9(4) C(12)-C(13)-C(14)-C(15) -0.5(7)

C(13)-C(14)-C(15)-C(16) -1.0(7) C(14)-C(15)-C(16)-C(11) 0.4(7)

C(12)-C(11)-C(16)-C(15) 1.6(6) P(1)-C(11)-C(16)-C(15) -173.5(3)

C(11)-P(1)-C(21)-C(22) -41.0(4) C(31)-P(1)-C(21)-C(22) -155.6(3)

Pd(1)-P(1)-C(21)-C(22) 70.3(4) C(11)-P(1)-C(21)-C(26) 146.9(3)

C(31)-P(1)-C(21)-C(26) 32.3(4) Pd(1)-P(1)-C(21)-C(26) -101.8(3)

C(26)-C(21)-C(22)-C(23) -0.3(7) P(1)-C(21)-C(22)-C(23) -172.6(4)

C(21)-C(22)-C(23)-C(24) 0.2(8) C(22)-C(23)-C(24)-C(25) 0.1(9) C(23)-

Page 289: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

271

C(24)-C(25)-C(26) -0.2(8) C(24)-C(25)-C(26)-C(21) 0.1(7)

C(22)-C(21)-C(26)-C(25) 0.2(6) P(1)-C(21)-C(26)-C(25) 172.3(3)

C(11)-P(1)-C(31)-C(32) 109.8(3) C(21)-P(1)-C(31)-C(32) -136.9(3)

Pd(1)-P(1)-C(31)-C(32) -10.6(4) C(11)-P(1)-C(31)-C(36) -69.4(4)

C(21)-P(1)-C(31)-C(36) 43.9(4) Pd(1)-P(1)-C(31)-C(36) 170.2(3)

C(36)-C(31)-C(32)-C(33) -0.3(6) P(1)-C(31)-C(32)-C(33) -179.5(3)

C(31)-C(32)-C(33)-C(34) 0.9(6) C(32)-C(33)-C(34)-C(35) -0.5(6)

C(33)-C(34)-C(35)-C(36) -0.6(6) C(34)-C(35)-C(36)-C(31) 1.2(6)

C(32)-C(31)-C(36)-C(35) -0.8(6) P(1)-C(31)-C(36)-C(35) 178.4(3)

C(61)-P(2)-C(41)-C(46) 72.7(3) C(51)-P(2)-C(41)-C(46) -35.6(3)

Pd(2)-P(2)-C(41)-C(46) -151.3(3) C(61)-P(2)-C(41)-C(42) -108.9(3)

C(51)-P(2)-C(41)-C(42) 142.8(3) Pd(2)-P(2)-C(41)-C(42) 27.2(4)

C(46)-C(41)-C(42)-C(43) 0.8(5) P(2)-C(41)-C(42)-C(43) -177.7(3)

C(46)-C(41)-C(42)-N(2) -176.4(3) P(2)-C(41)-C(42)-N(2) 5.1(5)

C(1)-N(2)-C(42)-C(43) 41.4(5) Cu(1)-N(2)-C(42)-C(43) -139.3(3)

C(1)-N(2)-C(42)-C(41) -141.5(4) Cu(1)-N(2)-C(42)-C(41) 37.8(4)

C(41)-C(42)-C(43)-C(44) -0.7(6) N(2)-C(42)-C(43)-C(44) 176.4(4)

C(42)-C(43)-C(44)-C(45) -0.2(7) C(43)-C(44)-C(45)-C(46) 1.1(6)

C(44)-C(45)-C(46)-C(41) -1.0(6) C(42)-C(41)-C(46)-C(45) 0.1(6)

P(2)-C(41)-C(46)-C(45) 178.6(3) C(61)-P(2)-C(51)-C(56) 38.7(4)

C(41)-P(2)-C(51)-C(56) 148.5(3) Pd(2)-P(2)-C(51)-C(56) -85.1(3)

C(61)-P(2)-C(51)-C(52) -150.4(3) C(41)-P(2)-C(51)-C(52) -40.6(4)

Pd(2)-P(2)-C(51)-C(52) 85.8(3) C(56)-C(51)-C(52)-C(53) 0.6(6)

P(2)-C(51)-C(52)-C(53) -170.5(3) C(51)-C(52)-C(53)-C(54) 0.1(7)

C(52)-C(53)-C(54)-C(55) -1.3(7) C(53)-C(54)-C(55)-C(56) 1.8(7)

C(52)-C(51)-C(56)-C(55) -0.2(6) P(2)-C(51)-C(56)-C(55) 171.0(3)

C(54)-C(55)-C(56)-C(51) -1.0(7) C(41)-P(2)-C(61)-C(62) -9.0(4)

C(51)-P(2)-C(61)-C(62) 100.0(3) Pd(2)-P(2)-C(61)-C(62) -146.0(3)

C(41)-P(2)-C(61)-C(66) 170.1(3) C(51)-P(2)-C(61)-C(66) -80.8(3)

Page 290: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

272

Pd(2)-P(2)-C(61)-C(66) 33.1(4) C(66)-C(61)-C(62)-C(63) 0.6(6)

P(2)-C(61)-C(62)-C(63) 179.8(3) C(61)-C(62)-C(63)-C(64) 0.3(6)

C(62)-C(63)-C(64)-C(65) -0.7(7) C(63)-C(64)-C(65)-C(66) 0.1(7)

C(64)-C(65)-C(66)-C(61) 0.8(7) C(62)-C(61)-C(66)-C(65) -1.2(6)

P(2)-C(61)-C(66)-C(65) 179.6(3) C(91)-P(3)-C(71)-C(76) 92.0(3)

C(81)-P(3)-C(71)-C(76) -11.2(4) Pd(1)-P(3)-C(71)-C(76) -130.7(3)

Cu(1)-P(3)-C(71)-C(76) 168.1(3) C(91)-P(3)-C(71)-C(72) -89.0(3)

C(81)-P(3)-C(71)-C(72) 167.8(3) Pd(1)-P(3)-C(71)-C(72) 48.3(3)

Cu(1)-P(3)-C(71)-C(72) -12.9(3) C(2)-N(3)-C(72)-C(73) 34.6(5)

Cu(1)-N(3)-C(72)-C(73) -150.7(3) C(2)-N(3)-C(72)-C(71) -147.3(4)

Cu(1)-N(3)-C(72)-C(71) 27.4(5) C(76)-C(71)-C(72)-C(73) -4.6(5)

P(3)-C(71)-C(72)-C(73) 176.4(3) C(76)-C(71)-C(72)-N(3) 177.3(3)

P(3)-C(71)-C(72)-N(3) -1.7(5) N(3)-C(72)-C(73)-C(74) -176.7(4)

C(71)-C(72)-C(73)-C(74) 5.2(6) C(72)-C(73)-C(74)-C(75) -2.1(6)

C(73)-C(74)-C(75)-C(76) -1.6(6) C(74)-C(75)-C(76)-C(71) 2.1(6)

C(72)-C(71)-C(76)-C(75) 1.0(6) P(3)-C(71)-C(76)-C(75) -179.9(3)

C(91)-P(3)-C(81)-C(82) 146.8(3) C(71)-P(3)-C(81)-C(82) -107.3(3)

Pd(1)-P(3)-C(81)-C(82) 15.0(4) Cu(1)-P(3)-C(81)-C(82) 76.6(8)

C(91)-P(3)-C(81)-C(86) -32.0(4) C(71)-P(3)-C(81)-C(86) 73.9(4)

Pd(1)-P(3)-C(81)-C(86) -163.8(3) Cu(1)-P(3)-C(81)-C(86) -102.2(8)

C(86)-C(81)-C(82)-C(83) -0.8(6) P(3)-C(81)-C(82)-C(83) -179.6(3)

C(81)-C(82)-C(83)-C(84) 0.3(7) C(82)-C(83)-C(84)-C(85) 0.6(8)

C(83)-C(84)-C(85)-C(86) -0.9(9) C(82)-C(81)-C(86)-C(85) 0.6(7)

P(3)-C(81)-C(86)-C(85) 179.4(4) C(84)-C(85)-C(86)-C(81) 0.3(9)

C(71)-P(3)-C(91)-C(96) 14.1(4) C(81)-P(3)-C(91)-C(96) 121.1(3)

Pd(1)-P(3)-C(91)-C(96) -117.2(3) Cu(1)-P(3)-C(91)-C(96) -69.3(3)

C(71)-P(3)-C(91)-C(92) -162.1(3) C(81)-P(3)-C(91)-C(92) -55.1(3)

Pd(1)-P(3)-C(91)-C(92) 66.6(3) Cu(1)-P(3)-C(91)-C(92) 114.5(3)

C(96)-C(91)-C(92)-C(93) -2.3(6) P(3)-C(91)-C(92)-C(93) 174.1(3)

Page 291: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

273

C(91)-C(92)-C(93)-C(94) 0.9(7) C(92)-C(93)-C(94)-C(95) 1.5(7)

C(93)-C(94)-C(95)-C(96) -2.4(7) C(92)-C(91)-C(96)-C(95) 1.3(6)

P(3)-C(91)-C(96)-C(95) -174.8(3) C(94)-C(95)-C(96)-C(91) 1.0(6)

C(121)-P(4)-C(101)-C(106) 69.3(4) C(111)-P(4)-C(101)-C(106) -42.9(4)

Pd(2)-P(4)-C(101)-C(106) -159.1(3) C(121)-P(4)-C(101)-C(102) -116.4(3)

C(111)-P(4)-C(101)-C(102) 131.3(3) Pd(2)-P(4)-C(101)-C(102) 15.1(3)

C(106)-C(101)-C(102)-C(103) 1.2(6) P(4)-C(101)-C(102)-C(103) -173.3(3)

C(106)-C(101)-C(102)-N(4) 179.1(4) P(4)-C(101)-C(102)-N(4) 4.6(5)

C(2)-N(4)-C(102)-C(101) 149.8(4) Pd(2)-N(4)-C(102)-C(101) -24.7(4)

C(2)-N(4)-C(102)-C(103) -32.4(5) Pd(2)-N(4)-C(102)-C(103) 153.1(3)

C(101)-C(102)-C(103)-C(104) -1.8(6) N(4)-C(102)-C(103)-C(104) -179.6(4)

C(102)-C(103)-C(104)-C(105) 0.2(7) C(103)-C(104)-C(105)-C(106) 2.1(8)

C(102)-C(101)-C(106)-C(105) 1.1(6) P(4)-C(101)-C(106)-C(105) 175.2(3)

C(104)-C(105)-C(106)-C(101) -2.8(7) C(121)-P(4)-C(111)-C(112) 167.4(4)

C(101)-P(4)-C(111)-C(112) -77.4(4) Pd(2)-P(4)-C(111)-C(112) 30.3(4)

C(121)-P(4)-C(111)-C(116) -13.8(4) C(101)-P(4)-C(111)-C(116) 101.4(4)

Pd(2)-P(4)-C(111)-C(116) -150.9(3) C(116)-C(111)-C(112)-C(113) -2.0(8)

P(4)-C(111)-C(112)-C(113) 176.8(5) C(111)-C(112)-C(113)-C(114) 0.5(10)

C(112)-C(113)-C(114)-C(115) 0.8(10) C(113)-C(114)-C(115)-C(116) -0.7(9)

C(112)-C(111)-C(116)-C(115) 2.1(7) P(4)-C(111)-C(116)-C(115) -176.7(4)

C(114)-C(115)-C(116)-C(111) -0.8(8) C(101)-P(4)-C(121)-C(122) -42.8(4)

C(111)-P(4)-C(121)-C(122) 67.4(4) Pd(2)-P(4)-C(121)-C(122) -161.3(3)

C(101)-P(4)-C(121)-C(126) 140.1(3) C(111)-P(4)-C(121)-C(126) -109.7(3)

Pd(2)-P(4)-C(121)-C(126) 21.6(4) C(126)-C(121)-C(122)-C(123) 1.8(6)

P(4)-C(121)-C(122)-C(123) -175.3(3) C(121)-C(122)-C(123)-C(124) 0.1(7)

C(122)-C(123)-C(124)-C(125) -1.5(7) C(123)-C(124)-C(125)-C(126) 0.9(7)

C(124)-C(125)-C(126)-C(121) 1.1(6) C(122)-C(121)-C(126)-C(125) -2.4(6)

P(4)-C(121)-C(126)-C(125) 174.8(3)

C(138)-C(133)-C(134)-C(136) -175.8(17)

Page 292: ORGANOMETALLIC CATALYSIS FOR CONTROLLED OLEFIN POLYMERIZATION AND OLIGOMERIZATIONbc712ws2157/KSon... · 2011-09-22 · Organometallics for publication. Chapter 4 describes titanocenes

274

C(137)-C(133)-C(134)-C(136) -161(3)

C(135)-C(133)-C(134)-C(136) 168.5(17)

C(138)-C(133)-C(134)-C(137) -14.5(17) C(136)-C(133)-C(134)-C(137) 161(3)

C(135)-C(133)-C(134)-C(137) -30.2(19) C(137)-C(133)-C(135)-C(138) 19.4(16)

C(134)-C(133)-C(135)-C(138) 33.1(19) C(136)-C(133)-C(135)-C(138) 42(3)

C(133)-C(134)-C(136)-C(137) 31(4) C(137)-C(134)-C(136)-C(133) -31(4)

C(138)-C(133)-C(136)-C(134) 5(2) C(137)-C(133)-C(136)-C(134) 11.0(15)

C(135)-C(133)-C(136)-C(134) -19(3) C(138)-C(133)-C(136)-C(137) -5.9(14)

C(134)-C(133)-C(136)-C(137) -11.0(15) C(135)-C(133)-C(136)-C(137) -29(2)

C(133)-C(134)-C(137)-C(136) -35(5) C(136)-C(134)-C(137)-C(133) 35(5)

C(136)-C(134)-C(137)-C(138) 53(6) C(133)-C(134)-C(137)-C(138) 18(2)

C(133)-C(136)-C(137)-C(134) 144(5) C(134)-C(136)-C(137)-C(133) -144(5)

C(134)-C(136)-C(137)-C(138) -138(5) C(133)-C(136)-C(137)-C(138) 5.2(12)

C(138)-C(133)-C(137)-C(134) 165.1(18) C(136)-C(133)-C(137)-C(134) -9.8(13)

C(135)-C(133)-C(137)-C(134) 155.4(16)

C(138)-C(133)-C(137)-C(136) 174.9(12) C(134)-C(133)-C(137)-C(136) 9.8(13)

C(135)-C(133)-C(137)-C(136) 165.2(11)

C(134)-C(133)-C(137)-C(138) -165.1(18)

C(136)-C(133)-C(137)-C(138) -174.9(12) C(135)-C(133)-C(137)-C(138) -9.7(8)

C(133)-C(135)-C(138)-C(137) -29(2)

C(137)-C(133)-C(138)-C(135) -160.1(16)

C(134)-C(133)-C(138)-C(135) -153.1(15)

C(136)-C(133)-C(138)-C(135) -155.3(16) C(134)-C(133)-C(138)-C(137) 7.0(8)

C(136)-C(133)-C(138)-C(137) 4.8(11)

C(135)-C(133)-C(138)-C(137) 160.1(16) C(134)-C(137)-C(138)-C(135) 13(5)

C(136)-C(137)-C(138)-C(135) 30(4) C(133)-C(137)-C(138)-C(135) 36(3)

C(134)-C(137)-C(138)-C(133) -23(3) C(136)-C(137)-C(138)-C(133) -6.2(14)