pcr unsoed

Upload: ndah2627

Post on 06-Apr-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 PCR unsoed

    1/38

    POLYMERASE CHAIN

    REACTION (PCR)

    AMPLIFIKASI FRAGMEN DNA

  • 8/3/2019 PCR unsoed

    2/38

    Background

    Ability to generate identical high

    copy number DNAs madepossible in the 1970s byrecombinant DNA technology(i.e., cloning).

    Cloning DNA is time consumingand expensive (>>$15/sample).

  • 8/3/2019 PCR unsoed

    3/38

    PCR, discovered in 1983 by Kary Mullis, enables theamplification (or duplication) of millions of copies of any DNAsequence with known flanking sequences.

    Requires only simple, inexpensive ingredients and a couple hours.

    DNA template

    Primers (anneal to flanking sequences)

    DNA polymerase

    dNTPs

    Mg2+

    Buffer

    Can be performed by hand or in a machine called a thermalcycler.

    1993: Nobel Prize for Chemistry

  • 8/3/2019 PCR unsoed

    4/38

    The polymerase chain reaction (PCR) can

    selectively and rapidly amplify a given DNAsequence to large amounts

    Usedincloning, sequencing, forensics, diagnosis

    Specificprimers hybridize on each side ofthe DNA

    sequence to be copied

    Enzyme Taq DNA polymerase fromThermus

    aquaticus resistantto high temperatures

    Very sensitive canamplify a sequence presentin

    very lowcopy number

  • 8/3/2019 PCR unsoed

    5/38

    How PCR works:

    1. Begins with DNA containing a sequence to be amplified and a pairof synthetic oligonucleotide primers that flank the sequence.

    2. Next, denature the DNA at 94C.

    3. Rapidly cool the DNA (37-65C) and anneal primers tocomplementary s.s. sequences flanking the target DNA.

    4. Extend primers at 72C using a heat-resistant DNA polymerase

    (e.g., Taq polymerase derived from Thermus aquaticus).

    5. Repeat the cycle of denaturing, annealing, and extension 20-45times to produce 1 million (220)to 35 trillion copies (245) of thetarget DNA.

    6. Extend the primers at 72C once more to allow incomplete

    extension products in the reaction mixture to extend completely.

    7. Cool to 4C and store or use amplified PCR product for analysis.

  • 8/3/2019 PCR unsoed

    6/38

    Hot water bacteria:Thermus aquaticus

    Taq DNA polymerase

    Life at High Temperaturesby Thomas D. BrockBiotechnology in Yellowstone

    1994 Yellowstone Association for Natural Sciencehttp://www.bact.wisc.edu/Bact303/b27

  • 8/3/2019 PCR unsoed

    7/38

    Example thermal cycler protocol used in lab:

    Step 1 7 min at 94C Initial Denature

    Step 2 45 cycles of:

    20 sec at 94C Denature20 sec at 64C Anneal1 min at 72C Extension

    Step 3 7 min at 72C Final Extension

    Step 4 Infinite hold at 4C Storage

    BIOL 362 samples processed in:MJ Research DNA Engine Dyad

  • 8/3/2019 PCR unsoed

    8/38

    Fig. 7.23

    Denature

    Anneal PCRPrimers

    Extend PCRPrimersw/Taq

    Repeat

  • 8/3/2019 PCR unsoed

    9/38

    10_27_1_PCR_amplify.jpgThe polymerase chain reaction usedtoamplify a specific

    DNA sequence with cyclical changes intemperature

  • 8/3/2019 PCR unsoed

    10/38

    10_27_2_PCR_amplify.jpg

  • 8/3/2019 PCR unsoed

    11/38

    PCR applications:

    1) The methodofchoice forcloning relatively short

    DNA sequences (under10,000nts) can use to get

    genomicclone orcDNA clone

  • 8/3/2019 PCR unsoed

    12/38

    10_28_PCR_clones.jpg

  • 8/3/2019 PCR unsoed

    13/38

    PCR applications:

    1) The methodofchoice forcloning relatively short

    DNA sequences (under10,000nts) can use to get

    genomicclone orcDNA clone

    2) Candetectinfectious pathogens atvery earlystages

  • 8/3/2019 PCR unsoed

    14/38

    10_29_PCR_viral.jpgUsing PCR todetectaviral genome inadropofblood

  • 8/3/2019 PCR unsoed

    15/38

    53

    35

    5

    3

    3

    5

    Melt template, then rapidly cool

    * some primers will anneal to complementary sequence

    5 3

    53

  • 8/3/2019 PCR unsoed

    16/38

    53

    35

    5

    3

    3

    5

    Melt template, then rapidly cool

    * some primers will anneal to complementary sequence

    Add DNA polymerase

    * provide substrate + time to extend

  • 8/3/2019 PCR unsoed

    17/38

    53

    35

    5

    3

    3

    5

    Melt template, then rapidly cool

    * some primers will anneal to complementary sequence

    Add DNA polymerase

    * provide sunstrate + time to extend

  • 8/3/2019 PCR unsoed

    18/38

    These 3 steps constitute 1PCR cycle, which will be repeated

    many times (usually 25-30)

    1) melt template

    2) anneal oligonucleotide primers

    3) extend with DNA polymerase

    If ever confused about how PCR works

    * draw out first three cycles

    25-30x

  • 8/3/2019 PCR unsoed

    19/38

    53

    35

    5

    3

    3

    5

    First cycle

  • 8/3/2019 PCR unsoed

    20/38

    53

    35

    5

    3

    3

    5

    First cycle

  • 8/3/2019 PCR unsoed

    21/38

    53

    35

    5

    3

    3

    5

    First cycle

  • 8/3/2019 PCR unsoed

    22/38

    Second Cycle

  • 8/3/2019 PCR unsoed

    23/38

    Second Cycle

  • 8/3/2019 PCR unsoed

    24/38

    Second Cycle

  • 8/3/2019 PCR unsoed

    25/38

    Third cycle

  • 8/3/2019 PCR unsoed

    26/38

    Third cycle

  • 8/3/2019 PCR unsoed

    27/38

    Third cycle

  • 8/3/2019 PCR unsoed

    28/38

    Third cycle

  • 8/3/2019 PCR unsoed

    29/38

    From 3rd cycle onwards this species will predominate

    Once it gets going truly exponential growth

    amplification = 2n

    (n = # cycles)

    So, 30-35 cycles, 10 billion-fold amplification

    - in reality, will never get this much

  • 8/3/2019 PCR unsoed

    30/38

    Limitations finite amounts of

    * dNTPs

    * primers

    * DNA pols

    Exhaustion after 30

  • 8/3/2019 PCR unsoed

    31/38

  • 8/3/2019 PCR unsoed

    32/38

    AKUMULASI EKSPONENSIAL

    FRAGMEN TERAMPLIFIKASI

    Setelah 30 siklus

    2pangkat28 = 268 345 456fragmen

  • 8/3/2019 PCR unsoed

    33/38

  • 8/3/2019 PCR unsoed

    34/38

    Good Primers Characteristic

    A melting temperature (Tm)inthe range of

    52 C to65 C

    Absence ofdimerizationcapability Absence ofsignificant hairpinformation

    (>3 bp)

    Lackofsecondary priming sites Low specific binding atthe 3' end (ie.

    lower GC contenttoavoidmispriming)

  • 8/3/2019 PCR unsoed

    35/38

    UniquenessThere shall be one and only one target site in the template DNAwhere the primer binds, which means the primer sequence shall beunique in the template DNA.

    There shall be no annealing site in possible contaminant sources,such as human, rat, mouse, etc. (BLAST search against

    corresponding genome)

    Primer candidate 1 5-TGCTAAGTTG-3

    Primer candidate 2 5-CAGTCAACTGCTAC-3

    TGCTAAGTTG CAGTCAACTGCTAC

    Template DNA5...TCAACTTAGCATGATCGGGTA...GTAGCAGTTGACTGTACAACTCAGCAA...3

    NOT UNIQUE!

    UNIQUE!

    TGCTAGTTG

    A

  • 8/3/2019 PCR unsoed

    36/38

    Length

    Primer length has effects on uniqueness andmelting/annealing temperature. Roughly speaking, thelonger the primer, the more chance that its unique; the

    longer the primer, the higher melting/annealingtemperature.

    Generally speaking, the length of primer has to be atleast 15 bases to ensure uniqueness. Usually, we pick

    primers of17-28

    bases long. This range varies basedon if you can find unique primers with appropriateannealing temperature within this range.

  • 8/3/2019 PCR unsoed

    37/38

    PANJANG PRIMER

    Panjang primer8

    4 pangkat8 = 65.536pb

    Ukurankromosom 3.000.000kb ada 46.000

    kemungkinan situs

    Panjang primer17

    = 17.179.869.184 pb diharapkan hanyamenempel pada1 situs

  • 8/3/2019 PCR unsoed

    38/38

    Base Composition

    Base composition affects hybridization specificity andmelting/annealing temperature.

    Random base composition is preferred. We shall avoid long (A+T)and (G+C) rich region if possible.

    Usually, average (G+C) content around 50-60% will give us theright melting/annealing temperature for ordinary PCR reactions, andwill give appropriate hybridization stability. However,melting/annealing temperature and hybridization stability areaffected by other factors. Therefore, (G+C) content is allowed tochange.

    Template DNA5...TCAACTTAGCATGATCGGGCA...AAGATGCACGGGCCTGTACACAA...3

    TGCCC G GCCCGATCATGCT