recent trends · 3su3i/uoi^3g q ‘uaijiaif ijj 'jpiunps o 'mifos^ '/y pqudffl et?...

83
Recent Trends in Charged Particle Optics and Surface Physics Instrumentation Proceedings of the 6lh International Seminar, held in Skalsky dvur near Brno, Czech Republic, from June 29 to July 3, 1998, organised by the Institute of Scientific Instruments AS CR and the Czechoslovak Society for Electron Microscopy Edited by Ilona Miillerová and Luděk Frank ISBN 80-238-2333-7 Proceedings have been printed from the camera-ready manuscripts supplied by the authors Published and distributed by the Czechoslovak Society for Electron Microscopy, printed in Czech Republic by Artiq Brno Czechoslovak Society for Electron Microscopy (CSEM), Královopolská 147, 612 64 Brno, Czech Republic; fax +420 5 41514 402, e-mail [email protected], http: www.isibrno.cz/csem ©CSEM Brno 1998 All rights reserved. No part of this publication may be reproduced without the prior written permission of the publisher.

Upload: others

Post on 16-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Recent Trendsin Charged Particle Optics and

Surface Physics Instrumentation

Proceedingso f the 6lh International Seminar,

held in Skalsky dvur near Brno, Czech Republic, from June 29 to July 3, 1998,

organised by the Institute o f Scientific Instrum ents AS CR and

the C zechoslovak Society for Electron M icroscopy

Edited by Ilona Miillerová and Luděk Frank

ISB N 80-238-2333-7

Proceedings have been printed from the camera-ready m anuscripts supplied by the authors Published and distributed by the C zechoslovak Society for Electron M icroscopy,

printed in Czech Republic by A rtiq Brno

Czechoslovak Society for Electron Microscopy (CSEM), Královopolská 147, 612 64 Brno, Czech Republic; fax +420 5 41514 402, e-mail [email protected], http: www.isibrno.cz/csem

© CSEM Brno 1998All rights reserved. No part o f this publication may be reproduced without the prior written permission of the publisher.

Page 2: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

PREFACE

Two years have quickly elapsed and the seminar on the Recent Trends in Charged Particle Optics and Surface Physics Instrumentation is again here, already the sixth one. The history o f the meeting was described in the preface to the previous seminar's proceedings. Let us now summarise briefly the main points. The germ was the traditional summer seminar held nearly regularly in the Institute o f Scientific Instruments in Brno on the occasion o f visits o f Professor Tom Mulvey from University o f Aston in Birmingham, UK. In the seventies and eighties, this was valuable enough for us and offered us the opportunity to make the seminar English spoken. In the summer o f 1989 we started to extend the participation, and the 1989 sem inar was numbered the first. In 1990, there were as many as 30 participants from 5 countries. The third seminar in 1992 was moved to hotel Skalsky dvur in Highlands and the next three seminars organised there, each with around forty participants, had a similar schedule, at least from the point o f view o f non-scientific aspects o f organisation. The fifth seminar was the first one to which the proceedings were published.

It seems there have been no important events since the previous seminar that are worth adding to the sem inar history. This may be simply the consequence o f that the seminar has established a fully defined regularly repeating meeting and nothing is new about it except that its serial number increases by one and the year by two and that the registered participation is so numerous and high-quality one as it was expected. This could be a sign o f stability and tradition and we do hope that this is the explanation.

It was claimed many times at various occasions during the seminars that their prevailing orientation to charged particle optics was and remains desirable owing to the lack o f meetings o f that kind. This argument is generally correct but this time much less than usually: in 1998 the seminar coincided with the CPO conference held in Europe, in April in Delft. We are really happy that this circumstance has not caused any reduction in the participation in Recent Trends. (To be exact, the "collision" appeared already earlier, in 1990, when the C P03 was held in Toulouse but our second seminar was then still smaller and less ambitious.)

Our traditional and a bit unusual style o f the meeting, based on a not too large circle o f personalities, knowing one another quite well, more and more seems to be something that will become usual in the future. Large congresses, aiming at gathering hundreds or even thousands o f anonymous professional colleagues to one place to present their cofttributions to the crowd, are mainly organised because o f tradition. But in fact they are also already split into symposia o f a moderate size, attended by groups similar to ours. One surely cannot consider quite unrealistic a vision that presentation o f scientific contributions will be fully replaced by electronic conferences. But this will never be (as we hope) the case for personal face to face meetings and discussions.

The surface physics has apparently disappeared to a significant extent from our program o f a meeting o f people connected in different ways with electron microscopy. No wonder, the newest surface analytical methods, various scanning probe microscopies but not only them , exhibit surface sensitivities unachievable by electron beams. A few o f us, operating the low energy electron microscopes that have those capabilities, are the only

Page 3: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

^urjj >|5pn'[

RAOJ3||npM BUO|]

■sssssns jbuiuiss sqj oj uoijnqujuoa iiaqj jírspadsE jjb joj sjuBdpijjBd

31)1 33UBApB Ul >[URL|1 OJ 3>{T| pjtlOM 3.Yl !SJ3SIUBSjO JBUIUI3S pUB SJOJipS SnUip3300jd Sy

33U3I3S U0IJBJU3UIIUJSUI Oqj

jo ipuBjq JU3JSISU03 juBjJoduii 3U0 ui ssaařiojd sqj jo3[)3j os|B jnq ssinos jbuiuiss sqj SAnpjB

Á|uo jou him qsiqM ‘sřiiupooooid jbuiuiss jo ssuss b uodo [jim ‘3uo snoiA3jd sqj oj psreduios

Áiqnnh |C3uiq33j pire (ROiqdcjS pSAOidiui ub jo Suisq ‘>jooq siqi jEqj sdoq 3/\\

MOU ireqj JSSISJUl JSJBSJŽ? B p3J3BJJJB 3do3S0J3IUI U0JJ33J3 UB Ul U0IJ33J3p U0JJ3SJS

jsSny sqj ‘ S s usqM ssuiij ui psjBSJo ‘soidoj jno jo qjoq jo uoijBuiquios jo s3ubas[sj sjojsoj

UB3 ‘SJSBJJU03 JO XJIUIBJ pBOjq pUB XJIAIJISUSS 33BJjnS qgiq SJI qjIM \\d03S0J3IUI AŽJSUS MO[

Xj3A 8ujUUB3S 3qj JO UOIJBaqddB pspuojxs pUB JU3UldO]3A3p jaqjjnj ‘SS3]3qji3AS[v[ SU0IjdS3X3

Page 4: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

C ON TEN TS

Autrata R., J. Jirák, M. Klvač, V. Romanovský Detection o f backscattered electrons in environmental SEM

Autrata R., V. Romanovský J. Jirák, M. Klvač,Ionisation detector for the environmental SEM

Autrata R., J. Jirák, M. Michálek, J. Spinka Amplification o f signal electrons in gas environment

Autrata R., J. Jirák, M. Michálek, J. ŠpinkaConditions for specimen observation in environmental SEM

Barth J.E., M.D. Nykerk, M.J. FransenApplication o f a two param eter bell distribution in charged particle optics

Delong A., V. Kolařík, D.C. MartinLow voltage transmission electron microscope LVEM-5

El-Gomati M.M.Quantitative surface analysis at high spatial resolution

Gerheim V., H. RoseQuadrupole projector system with variable magnification for energy-filtering transmission electron microscopes

Hartei P., D. Preikszas, R. Spehr, H. RoseTest o f a beam separator for a corrected PEEM / LEEM v-

Hasselbach F., H. Kiesel, U. MaierRecent advances in ion- and electron-biprism interferometry

Hejna J.Optimisation o f an immersion lens design in the BSE detector for the low voltage SEM

Hutař O.Noncharging microscopy o f semiconductor structures

Hutař O., R. AutrataThe separation o f secondary electrons in annular and planar detectors

Janzen R., E. WeimerStudy o f detection properties o f a MEDOL / GEMINI objective lens for secondary electrons

Kahl F., H. RoseOutline o f an electron monochromator with small Boersch effect

Page 5: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

¡ ¡_ J3J3UI0J3JJ3JUI

uisudiq uojpsp un ui J3j[ij ud¡/,\ aqj jo guipuBjsjspun ¡Boijajoaq; sqj uo

lf3Pq¡3SSDf{ ‘¡3S3t}¡ // ‘ J 8d)U3UUOS

¿í) Adoosoioiuj uojjoo[o 3uiuunos |Buoisu3unp sajqj.

Ai os/MpfS

¿<) jsBjjuoo oipuSEiu uo sisBqduia qjiM jA¡33d'X oidoosojpadg£) nSUDLjUOLjJf;

f,í) uoipajip ouo ut sixb aqi jo jjiqs XjrejjiqjB q;i,w suaj sixB-sjqBUBA tí jo stripnQ

3s°n h "dPim°s

09 sjopsjsp JAJ3(l)S J0.l S|BJsXj3 3|Suis jo saiyadojd ju30S3uium[opoi(iB3

Divmy íi ' d -»znoifos

(,ç ¿ssdoosojoiui ainjnj joj spoau sqj sjb lEqw luopnjossj sjEunqn

H 3S°V

XÇ J0J33JJ03 jojiiui b Supsaj joj qouaq [Eoijdo-uojpsjo ub jo uoiprujsuo')

3SOd H ¥ ‘PUVH d "a SDzsypjj

v C ■ ssijdo uojpsp ui suoiiBJJSqB pro

S3U0133IBJJ ‘sppij áuijnduios jo XoEinsoB puB pssds 3qj 3uiAOjdun jo s,\ba\ jo Xpnjs y

nij a 'asnoy f (ni¡2 X ‘‘3 ouunyq

suoijBjngijuos [AIHS X3j3U3-moi uo 3jou 1-ioqs

yuruj j “■/ tpMU3i¡njA¡

I Ç W3S X8j3U3 MO| JOJ JU3UI3J3 p[3IJ SuipJBJ3J OpOlU 3jqBIJBy\

ústupy ¿¡ ‘yunA¿ 7 ' / mwap;y

(,t- /üoaqj 30i|si¡|nuj oj qsBOjddB uoipunj ssusjaqos y

3yoÿ h H &nm

¿p [AJ33J uoi;n|os3j qSiq b jo spsdsojd sijXjbubojsiiu sq j

3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl

et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdopwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡

t-t- 3do3S0J3IUI U0Jp3[3 ÁoiSUO AVO| 3qj qjIM 3ui3bUJI 3|d03S0jp3d§

usrwq g ‘a.9uuj )¡ ‘(»jumping g ‘¡piuiifos i¡j ' {) dvum¡u3ijn

()f S3Ijdo U0JP3(3 JOJ 3JBMIJOS UI SpUSJJ M3J\[

¡[ DA03U3']

(,t suoijBjjsqB sqj 3uippB jo sXba\ jusjsjjiq

3U37 n }/ yuujoy

Page 6: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Spehr R.Variable axis lens with an extremely large scanning area in one direction

Slekly R., L. Frank, I. MiillerovaDistributed Monte Carlo: smart way for computing complex problems

Tsuno K., N. Handa, S. Mat sumo toAn E+B+E beam separator for detecting secondary electrons in low voltage SEM

Tyc T.Antibunching o f electrons as a consequence o f the indistinguishableness o f fermions

Zadrazil M., M. El-GomatiMeasurements o f the secondary and backscattered electron coefficients in the very low energy range

Zadrazil M., L. Frank, J. NorrisImaging o f non-conducting specimens by noncharging scanning electron microscopy with method for automatically adjusted critical energies

Page 7: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-
Page 8: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

DETECTION OF BACKSCATTERED ELECTRONS IN ENVIRONMENTAL SEM

R. Autrata, J. Jirák *, M. Klvac, V. RomanovskyInstitute o f Scientific Instruments ofASCR, Královopolská 147, CZ-612 64 Brno,Czech RepublicDepartment o f Electrotechnology, Faculty o f Electrical Engineering and Computer Science,

Technical University Brno, Antonínská 1, CZ-612 64 Brno, Czech Republic

Scanning electron microscopy working with pressure in the specimen chamber that are higher than 100 Pa enables investigation o f in-situ specimens and certain dynamic effects, which is not possible in convential SEM.

In our case for the detection o f backscattered electrons (BSE) in environmental scanning electron microscope we use a paired scintillation detector YAG {yttrium aluminium garnet) doped with Ce3+, provided w ith a central hole o f 300 to 500 fim in diameter. The detector acts simultaneously as a pressure limiting aperture, which allows to achieving different pressures in the specimen and differential chamber. The configuration o f the detector ensures a large collection angle for the BSE signal and allows the use o f the small working distance o f the specimen from detector to ensure a sufficient signal even in high pressures in the specimen chamber when an increase number o f collisions o f electrons with the gaseous m edium occurs. Theoretical calculations and practical measuring showed that a considerable portion o f the BSE signal escapes through the hole o f the scintillator and is not detected by the detector. Figure 1 shows a decrease in the detection efficiency o f the detector in relation to the working distance. This effect is appreciable above all for very small working distances o f the specimen from the detector. For this reason a double paired scintillation detector was designed and constructed.

The principle o f the double paired detector I d [mm]is evident from Figure 2. For small working distances d o f the specimen from detector 1 whichare comparable with the diam eter o f the hole D¡, the collection angle o f the detector 1 decreases rapidly and a considerable portion o f BSEs escapes through the hole into the differential chamber. The detector 2 is positioned here and it ensures the detection o f those BSEs. The single crystals o f both detection stages are symmetrically divided into the right and the left half. The interface between them is provided with an optical reflecting layer. Then both the halves are mechanically associated. Both detection stages thus provide two paired

signals with the possibility o f further processing signals.

The properties o f the detectors 1 and 2 were investigated by measuring the signal and noise levels in relation to the pressure in the specimen chamber and the specimen distance d from detector 1. The signal levels were measured in the signal path behind the photomultiplier and preamplifier. As the measuring specimen a carbon cylinder with a central hole coated with an Au - layer wasObr. 2

Page 9: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Ol

‘8Z1 'd ‘S66l‘u!lJ30 P3 l ‘Sbjjba - JaSuuds ‘Xdoasojaij uojjaajg Suiinreas :g jauiiay [g]TI ‘£661 ‘93 °P39 'sadoosojoiui uoijaap

SUIUUBDS 1BJU3UIU0JIAU3 JOJ Jojoajap UOJpap pajajJBaSípBg :'f B5find§ l'f ÍJBJIf ‘ BJBJjnV [i]

SZl-ÍZl dd sued ‘£1 W33I W3S pjuauiuoJiAug ui suojjaajg pajajjBaspBg jo uoijaajaQ :uj (t?66l) f mpnds ‘f íjBJíf BjBjjny [i]

:S33U3J3J3^J

ssSbjsuopaajap qioq ujojj s[bu8is aqj jo uins aqj jo asn 3>)Bui oj ajqissod si )i /([[Bnbg p saauBjsip Suiíjjom [|Bujs Xjsa joj pire b<j 0001 iTBMl J3MOJ sajnssajd joj ‘JAI3S3 Joj 3SH uoijoajap aqj joj g§g jojaajap uo;jb[|;iuios pojisd ajqnop aqj asn oj a(q;ssod si jj - [ jojaajap aqj uBqj [3A3] |buSis jaqSiq b sapiAOjd asnBoaq uiui '0 oj uiui ['0 uioif aSuBj aqj ui p saauBjsip Suijom joj 3[qBj;ns 3JOIU si j jojaajap jaddn aqi pqi juapiAa si ji p puB £ sojnSy aqj iuojj

A 009 = pn sSbjjoa sapouXp ja;|dij[nuio)oqj -(uiui jj'0 = P “«nu yQ = p turn Z'0 = P ‘unu 1'0 = P) JOpapp uiojjoq aqj uíoij p saauBjsip uaunaads joj jaquiBqa uaunaads aqj ui d ojnssajd aqj uo z Jopopp jaddn aqj jo "/} asi ou puB 73 [BuSis aqj jo aauapuadag p uqo

(Bd)d

001

v..

4-s.\ _______1 _—"x-" 8‘0=P1►‘0=p-•■•••-----*Z‘0=p--H--l‘0=P—•—

Z Jojoajap jaddn - leußi.s

A 00t7 = pfl sSbijoa sapouXp jaqdijinuiojoqg -(unu g o = P ‘u™ V0 = P ‘unu Z'o - p ‘uiui {"0 = p) Jojaajap uiouoq aqi uioif p saauBjsip uaiupads joj jaquiBqa uauipads aqj ui d ajnssajd aqj uo [ jojaajap uiojjoq aqj jo “ß asiou puB 73 jbuSis aqj jo aauapuadaQ £'jqo

TímnoBA aqi ui juajjna ureaq ÁJBuiad aqj jo

an|BA jUBjsuoa aqj jb jno paujBo ajaM sjuauiajnsBaui [jy -uaAi§ ajaM agejs uoipapp jaddn aqj

jo j[Bq jqSu aqj puB aSBjs uiouoq aqj jo j|Bq ya[ aqj uioij sjbuSis SuiuuBas aqj SuijnQ pasn

Page 10: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

IONISATION DETECTOR FOR THE ENVIRONMENTAL SEM

R. Autrata, V. Romanovský, J. Jirák , M. KlvačInstitute o f Scientific Instruments ofASCR, Královopolská 147, CZ-612 64 Brno.Czech RepublicDepartment o f Electrotechnology, Faculty o f Electrical Engineering and C 'omputer Science,

Technical University Brno, Antonínská I, CZ-612 64 Brno. Czech Republic

One o f the relatively new trends in the field o f scanning electron microscopy focuses on observing specimens placed in the specimen chamber under higher pressures. The group o f these microscopes is usually called ESEM (environmental scanning electron microscopy). The value o f the working pressure in the specimen chamber 609 Pa in 0 °C is tixed as the limit for the groups o f microscopes SEM and ESEM.

The ESEM microscopes have wide application in observing biological specimens and various types o f specimen o f insulation character. The observation biological specimens does not require any special preparation technology. No charging phenomena occur due to the presence o f a gaseous medium. Consequently, the complicated and long coating o f the specimen is no longer needed. The coating usually causes the loss o f information on the material consistence o f the specimen surface.

Nowadays scintillation detectors are usually used for the ESEM field. However, their principle does not enable full application o f these microscopes for observing biological specimens, i.e. specimens containing a larger amount o f water and especially in the lield o f topography contrast, which is important, above all, for the already mentioned field ol biological specimens.

The configuration o f this detector described and used is already fully functional and enables the detection o f the low energy electrons, thanks to which we have approached to the possibility o f the better detection o f the topography contrast which we have lacked when observing certain specimens. In our case, a gaseous medium surrounding the specimen is used as an amplifier. In this medium an avalanche o f electrons occurs, produced byvxillision o f signal particles w ith a gaseous medium.

The aim o f the project was a design and construction o f the ionisation detector lor the ESEM microscopes, containing besides the reached functional configuration also optimisation o f the working condition o f the detector. In Figure 1 there is a design o f a combined detector, which we used and which makes use o f the features o f the scintillation and ionisation detectors. With this configuration a large collection angle is reached.When designing the detector we tried to find primarily the optimal working distance D and the pressure in the specimen chamber p as you can see in Figure 2.Keeping these optimal conditions,it is possible to reach the maximum possibilities offered by this detector.

I Primary electrons

T

scintillation detector

ionization detector

specimen

tig . 1 Geometrical configuration ot specimen anddeieciw

Page 11: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

6L d ‘¿661 ‘61 Xuiuuoos 'sodoosojoitu suojpsp Suiuubos jBjuauiuojiAug nqi ui s|bu3jbui hi of jo uo|ibS;js3au! oqj joj jsbjjuod Sutziunjdo jo spadsB suioç :\\\ §uijnj ‘j [ xretnps [j]

¿9^7 d 9661 "81 Siuuoos aopspp snoosBQ sadoosojotui uojpap Suiuubds

||’)u3iuuojiauo aqj ui suoipBjajui SBS-uoapajg :g piqj ‘‘j^y p[BU0Q ‘ j i|jip3.iO[A] [[]

:S33U3J3J3^J

<M 0001 ‘D |Euáis - ny [euSis ¿ SlJ

Bd 0001-

Xjjsnputjopnpuo3|ui3s 3qi puB X8o]oiq ui [|B jo jsjij pus Xdoosojoiui jo sppy oqj ||B u¡ sadoosojniuj IM IS I ■'iqi jo uo|jB3|[ddE oqi jo ssijqiqtssod msu uado pjnoqs jopapp jo odÁi siqx

Page 12: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

AM PLIFICATION OF SIGNAL ELECTRONS IN GAS ENVIRONMENT

R. Autrata.*, J. Jirák, M. Michálek, J. Špinka* Institute o f Scientific Instruments ofASCR, Královopolská 147, CZ-612 64 Brno, Czech RepublicDepartment o f Electrotechnology, Faculty o f Electrical Engineering and Computer Science, Technical University Brno, Antonínská 1, CZ-612 64 Brno, Czech Republic

Environmental scanning electron microscopes (ESEM) enable the observation of specimens at higher pressures than in ordinary SEM. The pressure in the specimen chamber can be beween 10 -5.103 Pa. W orking at higher pressures, it is advantageous to use the ionization of gas for detection o f signal electrons. To amplify the signal, ionization detectors take advantage of ionization that occurs in the space between the specimen and the detector.

The detected current is proportional to the number of electrons emitted from the specimen. W e assume that the total detected current can be found by summing the following contributions:

where I “PE , I “E , I “SE are the contributions of the primary electrons, the SEs, and the BSEs to the total detected current, respectively.Acording to [1] the total amplification is given by:

collisions with the gas evironment, p is the pressure, a and y are the Townsend first and second ionization coefficients, respectively, s ^ and Sbse are the field-independent ionization efficiencies o f the primary electrons and the BSEs, respectively, and 5 and T| are the SE and BSE coefficients, respectively.The calculation of the amplification can only be done for a particular type of the electrode system. In the following part, we consider the parallel plate electrode system as shown in Fig. 1. For the calculation it is also necessary to know the surface emissive properties and the ionization properties o f the used gas. Usually, we consider that the environment which surrounds the specimen is air, and that ionization takes place in this gas. However it is also

PRIMARY BEAM Fig .l. A schematic diagram o f the parallel plate electrode system.

dd is the sample-to-detector distance, E is the electric field intensity. Electrons are multiplied through ionizing collisions in the gas (indicated by x).

A - contribution o f primary electrons, B - contribution of secondary electrons (SE), C - contribution o f backscattered electrons (BSE) to the total detected current.

SPECIMEN1

( 1 )

(2 )

where I;p is the part o f the primary beam current impacting the specimen without any

Page 13: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

H

d ‘Ç86I u!Ija8 'P3 I ‘Sup^A ~ JaSuudg ‘Xdoasojaïui uojjaap SuiuuBOg rjaïupy qf V ] d 61 £ ‘S96I pjojxo “P3 Z ‘SS3JJ XjisiaAïun pjojxo ‘sssbS paziuoj :'ja8ug uoa y[ £ ]

'LSZZ - 6PZZ'd ‘¿66T ‘0£ 'S^d ïddy :a sXqj 3 ‘IAI3S IBjuauiuojiAua ui sasßS SuiSbuii aAIJBUiaj[B JO SJU3UI3jnSB3UI UOI}B3I}I(duiy ipjBUOQ IAJ V ‘ptqi T a ‘13113)313 3 y[ Z ]

■£¿p - ¿gp d ‘9661 ‘81 ‘Suiuireos ‘Jojoajap snoasBS sadoosojaïui uojjaaja Suiuubos[BJU3UIUOJIAU3 aqj UI UOIJOBJ3JUI SB§-UOJ}03IH:'[3iqX "a ‘P[BUOQ H V ‘qlip3J01AI d[ I ]

:s30U3jajay

sapiredajsip asaqj urejdxa oj aq [[im îjjo/W jaqjjnj jo rare aqx sapuapuadap pajnduioo aqj jo asoqj ireqj sajnssajd jsmoj je sjnaoo [euSis iiinuiixEUi3qj }Bqj 33S UE3 3M ‘aOUBJSip JOp3pp-OJ-3[dUIBS JUBJSU03 B JOJ ‘¡BuSlS 3qi JO 33U3pU3dsp 3jnss3jd pajnduioa sqj qjiM ssuspusdsp sjnsssjd psjnsBam aqj SuuBduio^ ajnssajd uo jBuâts uoi]BoyqduiB aqj jo 33u3pusd3p sqj pipsjd Xpijsjosqj ubo sa\ pqj uijijuoo suoijBjnduios sqx

A 00£ PUB OOZ 3J3M 3pojj33{3 U0ip3||03 oqi uo spsijuajod sqx suojjosp jo uotpspp sqj joj pssn sbm jbjsXjo +£sd:qva b uo psjisodsp sapojpa[3 Suu qjiM jojoajsp uoijbziuoi uy apoui uBOS-auq aqj ui ajdures ny ub joj pauuojjad sbm aoirejsip SupjJOM usaiS B joj ajnssajd aqj uo aouapuadap sji puB jeuSis aqj jo juauiajnsBam [Bjuamuadxa aqx

apojjosja uoipa[[oo aqj uo a 00£ P11 OOZ sjBijuajod aqj qjiM ‘jib ui jopapp uoijbziuoi ub joj uoi}BDiji[duiB pazqBUiJou pajB[najB3 puB painsBaui jo aouapuadap aqx 'Z'%U

[•didoooi

■sanjBA pajnsBaui X[[Bjuaiuu3dx3 aqj qjiM jsqjaSoj Z '3ig ui UMoqs sjb ‘uiui £3 = p aouBjsip SupfjoM jirejsuoa aqj qjiM jaqureqo uauipads aqj ui ajnsssjd aqj uo aouspuadap jpqj puB juajjno pajoajsp aqj jo sanjBA uoijBjnorBO sqx '[>] uiojj g b U sanjBA puB [g] uiojj ua>[Bj pus “Va ‘V sarqEA aqj pasn a« ‘uopBjnaiBOsiqj joj ‘paziuoi aq oj sbS aqj jo XjijiqB aqj ssajdxa qoiqM sjubjsuoo 3jb a puB y ajaqM

/a

(£)8~

dxay = a

:» juapyjaoa puasuMOX Jsjij aqj Xq pazuajDBJBqo si uotjnqujuoo siqx 'jsaqSiq aqj si juajjna pajoajap jbjoj aqj oj sgs J° uoijnqujuoo aqj jBqj SMOqs uoijBjnaiBD ajafduioa aqx '(z) uoijsnba ui ^s l3ds sjuaiayjaoo aqj aauarqjui pjnoM sbS aqj SurŽireq -[j] sssbS jo sajnjxiui sb qa/w sb sassS jaqjo asn oj ajqissod

Page 14: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

CONDITIONS FOR SPECIMEN OBSERVATION IN ENVIRONMENTAL SEM

R. Autrata.*, J. Jirák, M. Michálek, J. Špinka Institute o f Scientific Instruments ofASCR, Královopolská 147, CZ-612 64 Brno, Czech

RepublicDepartment o f Electrotechnology, Faculty o f Electrical Engineering and Computer Science, Technical University Brno, Antonínská 1, CZ-612 64 Brno, Czech Republic

Classical scanning electron microscopes (SEM) possess extraordinary properties (resolution, image sharpness, possibility o f element analysis o f specimens, etc.) but they have certain limitations as regards vacuum that is necessary for their operation.The examined specimens should be:- vacuum resistant: On exposing a specimen in vacuum conditions, its properties should not

be affected.- vacuum inert: The specimens may not emit gases or vapours or particles into vacuum.

This could endanger successful operation.- and electrically conducting.In practice, not all specimens meet these demands. Therefore complex methods, e.g. freezing, fixation, etc., must be used to treat them. Specimens having the character o f insulators must be coated with metal mostly.In the environmental SEM, where we work with pressures around 1000 Pa in the specimen chamber, we can fill the chamber with suitable gases and vapours. From this it follows that it is possible to examine hydrated specimens, to watch the interaction of specimens with the gaseous or liquid atmosphere, and to observe dynamic processes, such as crystal growth, wetting, corrosion processes, cementing process. Charging effects are eliminated, owing to the presence o f ionized particles o f a gas [1],Conditions for the creation of an optimum environment in the specimen chamber that is necessary for a successful observation of specimens are different for different cases, depending on the kind of processes and specimens to be examined. Sometimes, some "preparation" o f specimens for ESEM is needed.Let us focus on the most frequent case o f observation of specimens containing water that is

carried out in the presence o f water vapour. For the environmental SEM, the most suitable-, range of working pressures and temperatures follows from the curves o f relative humidity [2].To cool specimens, it is advantageous to use the Peltier cell which makes it possible to achieve a temperature diffe­rence as high as 40 K, compared with the temperature of the warm end. The setting and control o f temperature of the cell by a change in the flowing current are advan­tageous, and when needed, the

-----► tem perature ( °C)

Fig. 1 Relative humidity versus pressure and temperature in the specimen chamber

Page 15: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

'Li.Z~L.ZZ d >661 ‘£¿1 ‘Xdoosojoi^v jo [Bujnof odoosojoiui uojjoop

SllIUUBOS |BJUOUIUOJIAUO UI UOIJBJOdBAO ŽUIZIUIIUIJM : ]AJ V ‘P|BU0Q - g y ‘U0.13UItí3 [£]

SS d ‘JAJ3S3 °J uoijonpojjui uy sdqiqj uuij oqj jo ojnjBlojii [Eoiuqoox [z]•(qoozo

u!) ZOZ~661 d ‘5661 V3ZId JHZ 33J ‘£6 b^ijsouSbiq :uj Xdoosojoiui uojjoop Suiuubosu; s.io]B[nsu| jo uoijBAJOsqo jo soijqiqissod mssj :f ‘E5juidç - f ‘5|BJif - y ‘BlEuny [j]

:soouojojoy

JoquiBqo usunoods oqj u; ojnssojd b<j OOZ [

PUR 00c uooMioq Xiipiuinq oAiinpj jBuiijdo ub ds3>[ oj puB 'ju oí oj i oSubj oqi ui uouipods

oqi jo ojnjBJodiuoi ozB[iqBis oi ojqissod si ji jBqj Moqs sjjnsoj (Bjuouiijodxgjojsod oqj

uo poiuosojd oq qiM sqnsoj |Eiuouiuodxg 'oojnos sjnodBA jsjbm jo jodopAop b puB [po JOijpj

oqi qiiM - IAI3SVÍ10V ~ °dX| [bjuouiuojiauo jo odoosojoiui oqj poddrnbo sm ‘XjojBJoqBj jno jy

oojnos jnodBA jsjbm oqj

ui jsjbm jo o.injEJoduioj oqj si jojobj juBjjodui; uy Suizoojj jojbm jo jaSuBp oqi osjb jopisuoo isnui OM joaomoj [ 0[qiss0d SB MO] SB oq pjnoqs ji 3|OJ b sXE[d os[B 0JnjBJ3dui0j uouipods

•(ojoui puB %£(> Xjipiumq) ojnjBJoduioj uoaiS oqj joj sjnodBA jojbaa psjiunjBs jo ojnssojd 3qj soqoBOjddB sjnodBA jojbm jo sjnsssjd oqi odoosojoiui oqj jo Suiduind oqi jo pua oqi jB jBqj os joqureqo uouipods oqi uiojj POAOUIOJ oq jsnui jib Xjp oqj jo jso[/\[ -

poonpojd oq Xbui S3|qqnq ou ‘3[qissod si; o|nq SB ojB.iodBAO p[noqs 3SBqd pinbq oqx Suqioq ptOAB oj uouipods oqj ui sjnodBA J3JBA\ pojBjnjBS oqj jo [3A3[ oqi Mopq ssROJOsp jou p|noqs uouipods oqi OAoqß ojnssojd j[bjoao oqx -

:ss330jd oqj oziiuiido oj pojopisuoo oq jsnui sjobj Suimojjoj oqx

•poouB[Bq oiuoooq yqj oqj qSnojqi poduind sosbS jo xnjj oqi

puB sjnodBA joibm qjiM poqouuo jib jo mojj-ui oqj qoiqM jb ojbjs uinuqqinbo oqj jo Suiuos '£

sjnodBA joibm qjiM psjBjnjBS jib jo Suqjig 'z joqiuBqo |Bi)uoJ3jjip oqj sduind qoiqM diund b Suisn Xq (ygd) sjnjJodB Suijiuiq

ojnssojd p0|[B0 os oqj ui Suiuodo ][Buis b qSnojqj uoijbhobao snonuijuoo puB posop oq ubo iBqi oa|ba b Suisn JoquiBqo uouipods oqj oj pojoouuoo duind Xjbjoj uibui oqj Xq uoijBnoBAg ' [

:sdojs Suimojioj oqj SBq joqraBqo uouipods oqj jo uoijsnoBAO jo ssooojd oqj jiyoiqissod

SB MO| SB OJB SjnodBA JOJBM JO UOIJBSUOpUOD pUB UOUipodS Oqj UIOJJ JOJBAV JO UOIJBJOdBAO

uoqM poAO|qoB si ojbjs siqj uiojsXs oqj ui jBqj omsuo pjnoqs uotjBnoBAO jo osjnoo oqx 'ZsjnodBA jojem qjiM pojBjnjBS si uouipods oqj jo sSuipunojjns

oq) ui jib qo|qM jb ojbjs uinijqqinbo ui pspuo oq jsnui uoijBnoBAO jo ssooojd ojoqM oqx I

:[£ I îunoooB oj ui uo5)bj oq jsnui buojuo omj ‘uoijBnoBAO jo suoijipOoo uinuiijdo ouiuijojop ox

inodBA jojBM jo ouinjOA Xjbssooou B Xq ssooojd uoijBnoBAO oqj Suunp Xbm pouijop

i‘ ui pooB(d3j 3q oi ‘uoijBnoBAO jo SuiuuiSoq oqi jb uouipods oqj jo Suipunojjns oqj ui juosojd

si qoiqM "ojoiidsouiiB jojno oqj jo jib Xjp XjOAijBpj oqj joj Xjbssooou si ji ojojojoqx 'a\0[ JoqjBJ

lins si i( inq [Aigs [boissbjo oqj jo joqureqo oqj ui jBqj UBqj joqSiq si JMgs ibjuouiuojiauo oqj jo

loquiBqo oqi ui ojnssojd oqi ‘odoosoioiui oqi Suiibhobao uo :]UBiJoduii ojb sjobj Suimo^oj oqx

pojBOJO oq ubo Suijjom uouipods joj

suo;i|puoo ‘ooiqd so>jBi joibm jo uoiiBSUopuoo uoqM ‘Xjbjjuoo oqi uo popiOAB oq ubo SuiXjp

uouuoods ‘Xbm siqi iq sjnodBA joibm qiiM pojBjnjBS si joqureqo uouipods oqj ui ojoqdsouijB

snoosnS oqi )Bqi os los ojb uoijBAJOsqo joj suoijipuoo ‘suouipods duiBp puB jom joj

•juo.uno SuiMog oqi jo Xqjtqod oqi SuiSuBqo Xq Suiinoq uouipods joj pesn oq ubo jpo

Page 16: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

APPLICATION OF A TWO PARAM ETER BELL DISTRIBUTION IN CHARGED PARTICLE OPTICS

J.E. Barth, M.D. Nykerk and M.J. FransenDelft University o f Technology, Department o f Applied Physics, Lorentzweg I, 262H ( \J Delft. The Netherlands

For the sake o f simplicity, the Gaussian distribution exp(-w2x2) is used whenever the actual distribution has more or less such a form. Real distributions often have tails which fall off more slowly than a Gaussian. A, still simple, bell shaped distribution that can model this is 1/(1 + w2x2)p. Having two parameters, a width measure w and the power p, it can better lit a variety o f real distributions than the Gaussian. For large p it approaches the Gaussian.

A practical measure for the size o f the image o f a point blurred by chromatic aberration is the diam eter o f the circle containing 50% o f the particles,

dc = KcCc(AU/U)a.

With AU the full width half maximum (FWHM) o f the energy distribution the value o f K( depends on the form o f the energy distribution. Kc = 0.34 for the Gaussian and K, = 0.62 for the Lorentzian distribution (bell with p = 1). It was found [1] that if instead o fthe FWHM the FW 50 (50% o f the particles within AU) is used for the measure o f AU that the coefficient K, is very nearly independent o f the distribution form; K<; = 0.61 +/- 0.01.

A practical definition o f source reduced brightness is

B = I[/(V(ro'4)dI2).

In is the angular current density, V the energy and d, the FW50 diameter o f the source image. Fransen has measured [2] the brightness o f an ultra sharp tungsten field emitter by analyzing Frensel fringes occurring at sample edges in the point projection microscope. The fringe intensity profile calculated when a point, Gaussian or Lorentzian distribution is assumed for the source, will be shown.

When making numerical Monte Carlo simulations o f the Coulomb interaction deterioration of beam quality in a charged particle optics column it is necessary to make assumptions as to the properties o f the source as viewed from the extractor. Inclusion o f more realistic distributions for the initial energy spread and source profile should allow better analysis o fth e effects o f adjusting the beam configuration in the column.

[1] J.E. Barth, M.D. Nykerk: Dependence o f the chromatic aberration spot size on the form of the energy distribution o f the charged particles. In: Proc. o f the Fifth Int. Conf. on Charged Particle Optics, to be published in Nucl. Inst, and Methods A

[2] M.J. Fransen: Electron emitters for electron microscopes, PhD. thesis, Delft University o f Technology, to be published.

Page 17: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

.-iill 3uia\0||e puB 3U3[Xqpojo¡q3Bjpj ui uopnjos jU33J3d jm j'o e Suijssq Xq psJBdsjd 3J3M sjejsXjs

•■"l.l. I ti 61T J° xspu; XjisjsdsipXjod pue spui/suiS 000‘0ZI J° iqSiSM JBjnssjoui sSbjsab )qSpA\

n SujABq 3U3[XqpXjod jo s[bjsXjo 3]8uis 3J3a\ psjESpssAUi 3J3m qoiqA\ ssjdures 3qx

puu.iuiuodxg 'c

[s,->nbiuqo3i sqojd pssnsoj pue uopaBjjjip uojpsjs sb qsns sisXjbubjo sapoui jsq)o joj jBpusjod

3qi pttt> '\j0)RJ0qE| sqj ui ssn joj JU3IU3AU03 Ji S3>jbui qoiqM ‘juudjooj jjbujs 3q) apnpui ssSBiUEApB

joqio s¡sX[eue luanbssqns puB Suipjossj 3§buii joj bjsuibs uiui g£ jo 033 b qjiA\ psddinbs Xjpsjip

?q ub:> pus ‘sjnysdB |B0U3umu aqj ui jusiusAOjduii }UB3ijiu8is b sspuojd q3iqA\ sdoDSOJOiui jBOijdo

|EU0JJU3AU03 B SI 33IA3p 3qj JO )JBd pU033S 3qX 'U33J3S OVA JU33S3JOri|J B UO pSUUOJ 3JB SUJSJJBd

UOipBJJJip UO.IP3J3 puB SsSbUII 3qX 'UOIJBOIJIuSbUI |OJ)UOD O} S3SU3[ 3IJBJSOJP3J3 pUB ‘UOpBUUOJ

.InlHUI JOJ SOSUO] 3¡Pu8bUI }U3UBUU3d ‘33JUOS J3JJIUI3 ,\>¡}10q3g B S3ST1 qSiqAV 3d03S0J3IUI U0JP3J3

uoissiuisuEJi /\>] g 3jnjB]uiui b si }sjij sqx 'JsqpSoj pssn sjb qoiqM ssdoosojoiui omj jo sjsisuos

ui3jsXs aq | "i puB [ SJnSij ui UA\oqs sjb ujejSeip sji puB juauinjjsui Jno jo sjnpid V

uoijduasap )uauinj)sa] 'z

■SJU3UIB[IJ pUB SSpiJJEd 3JB3S J3PUI0UBU

pul! SUI|IJ UIl|) puB S|EJSXJ3 J3UlX[0d pus 3IUb8jO JJBU1S ‘SU0IP3S |B3l80]0tq spnpui JS3J3JUI 3}Bip3UIUII

|0 KO|duiBS S3|duiBS OIUbSjO Uiqi JO 8UI8BUII JAJ3X 3qj JOJ |BIJU3)od 3|qBJ3piSU03 SBlf JU3UIWJSUI

3l|) )EL|J 3IEJ]SUOU13p SSSeUII 3S3qX SJBJJSqnS U0qjB3 SnOqdjOUIE UB OJUO psjisodsp 3U3[XqpXj0d

jo sjeisXjd 3)8uis jb||3uib| uiqj jo SuiSeiui pjsssssns sq; sjBjjsuouisp puB jusumjjsm siqj

|o uSissp 3qi 3ui|jno 3A\ ‘3J3U uopnpssj jo ssoj jBijuBjsqns e inoqjiA\ susuipsds jsquinu 3iuio}E a\o[

JOJ ISBJIU03 uUiSbUII p33UBqU3 SpiAOjd Xj)U3IU3AU03 pjnOS qSiqM ;U3UItUlSUI UB 3JB3J3 OJ SEM JJOJJ3

siqj jo ]bo3 sqx '[i] qoBOJddB jBuoiiusAuosun X(3}3]dui03 b 8uisn (g-JAJHXAl) sdoasojai^ uojpsjg

uoissiiusiiBj j 38ej[o¿\ a\oj a^I S b pspnjisuos pus psuSissp 3ABq sa\ uopBnjis siq; usaiq

SUIBSq U0JJ33J3 X8J3U3 MO] jo ssn 3qj

si s)ii3iuru)sui |EU0i)U3AU03 u¡ snsjnd oí sjqissod jou si qsiqM jnq |Biju3iod sjqBJspisuos jo qsBOJddB

jaqjouv 'Suu3i|ij X8j3U3 uojpsp Aq jo ‘3[8ub SjnjjadB 3Ap33fqo sq) jo uoipnpsj se qans jusurnjjsui

aqj jo snpdo uojpsjs sqi oí ssSuBqo uibjj33 Xq p33usqu3 sq osjb UB3 jj -uiniuiso jo uiniusqpj

se i|3ns siu3ui3[3 jaquinu oiiuojB jsqSiq qjiA\ Suiuibjs Xq psAOjduii sq ue3 jsbjjuo^ -sjuauisp

joqumu 3IIU0JE A\0| JO p3S0dui03 S3]dulBS JOJ ]B3ldÁJ JSBJJU03 sSbUII MOJ 3qj SI SJBIJ3IBUI JESlSOJOiq

puB 3IUb8j0 JO Xd03S0J3IUI UOJP3J3 UOISSIUISUBJJ UI SUISjqOjd JUBUOdui^JSOUI 3q) JO 3UO

uoipnpojjuj •[

9eiz-6oi8ť vs’n ‘in ‘joqjv «uv ‘Smpipa «°a hh zzoz•SuiJoouiSuj pue onuong sjeiJajeiAJ jo jdQ ‘3uu3aui0u3 jo 3831103 ‘UESiqoiiM jo XjisjSAiufi aqj.»»

Diiqndffy qoszo ‘oaig 00 319 ‘8t> ?>iSJEmng ‘ o j s siusuinjjsuj Suopa,

„UpjEJAJ J piABQ puB ‘*>1!JB[0>I JIUJipBJA ‘+8uOJ3a UlUUy

S-W3A1 adoDsojDiui uoapap uoissiuisubjj 3§bíioa Avoq

Page 18: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

suspension to crystallize by cooling to room temperature. It is known from previous studies that this method of sample preparation leads to regular lozenge shaped crystals, with a nominal thickness of10 nm. The crystals were deposited from the suspension onto an amorphous carbon coated sheet of cleaved mica and susequently floated onto the surface of distilled water, where they were retrieved onto copper finder grids.

the PE single crystal morphology. The regularity in the crystal faceting and presence of overgrowths at their edges are similar to previous observations o f these same samples by conventional high voltage TEM and scanning tunnelling microscopy [3]. The estimated resolution of these images is on the order of 2 nm. The images show that variations in contrast are perceptible up to three or four layers thick, corresponding to the penetration o f the low voltage electron beam through samples with an estimated mass thickness (pt) o f 4 x 10'5 kg/m2.

1. Delong A., Low Voltage TEM, Electron Microscopy 1992, V ol.l, 79-82, 1992.2. Delong A., Hladil K., Kolařík V., A Low Voltage Transmission Electron Microscope, Microscopy & Analysis,

27(Europe), January 1994.3. R. Piner, R. Reifenberger, D. C. Martin, E. L. Thomas, and R. Apkarian, J. Poly. Sci.:C: Poly. Lett., 28, 399, (1990)

The images (Figures 3,4) show the well known, lozenge shaped crystals associated with

References

Fig .l: The Low Voltage TEM Fig-2: Schematic Device Arrangement

Fig.3: LVTEM Image of PE Single Crystals Fig.4: LVTEM Image of PE Single Crystals

Page 19: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

oz

'suoi}Ejnuils 8uisn uoispojd oit?nbapi: qjiM papipajd uooq jou

oaih| .T/is ui 'juruqs sjb Xsqj se ssoiAop SOIA13 u! psAJssqo spsjjs sip -i[0JB>f-[g oj SuipjosoB MriADMOu -| || spoqpui psjjsjsjd s^úisnpui sqj sjb sjusuisjiisesiu jBOupsp pire suoi)R[niutg uonnndsu! 3uq-uo ui [ojiuos Xjljenb ouqnoj uiojj pspnjsxs aiojaraqi sjb ssnbiinpsj

osnq i suauipsds ozis ||buis X[uo sjpusq oj psuSissp usaq 3ABq ppij siqj ui suoijBjusiurujsui I¡ir 'uo|j;ppt: uj mojs ooj SB Xjjsnpui Xq psjspisuos 8upq [jps si suoisusiuip £ puB 1 o) ssnbiuqssi osoqj Suipusjxg 33B|d sures aqi ib sjqEjBsdsj ;ou 3íb os pire SAiprujssp sjb 3S3l|l JB3U||-U0U Supq SB [[3A\ SB "SSJnOO JO ‘pUB p3PSPp 3JE }USS3jd SJB JBqj SIU3UISJS [|B JBqj 3JI1SU3 O) SB ARA\ B ipns UI 3JH33X3 OJ J|tl3IJJip ‘8uiUinSU03 SUIIJ X||BJSU33 3JB S3nll|Ul|33J 3S3q j \Z\ suoi sb3 JJ3UI qjlM ji SuipjEquioq Xq ssRjjns oqi jo uoisojs [Rijusnbss sqj ssajoaui qsiqM

((SIA11S) Xdossojpsds ssbuj uoi XjBpuosss ‘(SdX) Xdoosojpads uoipsj3-o;oqd Xbj-x ‘(S3V) Xdo3soj]33ds uojpsp J33ny S a) snbiuqssj Xdossojpsds soBjjns b Sutsn psjnsRsui sjb sssqx S3[l|Ojd (EUOIJlSOdlUOS |BUOISU3UIip 3UO SSIjdlUOO spoqpui [ESIjXjBUB 3¡qB[lBAB XjJUSJJtlS 3l[ ]

‘uMBjp Supq 3je SJ3JBAV uiui ()(){7 puB uiui 00£ J° Supssj puB uoipnpojd 3l|l jo| sire|d jnq jspureip ui uiui 002 J° sjsjbm 3|puBq sjuBjd jopnpuosiuiss ‘Xpusjjn^ S3[3ub s3jr| oi p3j|i) sq Xbui 3[diUBS sqj 3JSI[a\ puB suoisusiuip sjdures sSjb] uo S)S3J q3ns uuojjsd oi p33u 3qi Xq psjEsijduioo jsqynj sjb sjusurajinbsj sssqj ‘Xijsnput jopnpuooiuiss sq; ui 3SB3 3l|l SI SB ‘SUOIJEOqddB J0JJU03 XjIJBtlb UI ‘3|dlUBX3 JO.[ 3AipnilS3p-U0U pUE 3JEjn33E ‘JSBJ 3q oi p33u siu3|qojd qjoq 8uiajos joj spoqp[Aj X80[0jpui jo uoijEUiuuspp 3q; puB ‘sisXjbub |B3jlU3l|3 JO |B)U3UI3p SAIJEJIJUBnb ‘Sp|OJ OMJ 3JOJSJ3qj 3JB XßpOJ 33EJ 5M SUPjqOjd 3qj_

3|qB|iBAB si poqpiu jbsijXjbub sjqBjíns ou iBqj [[Buis os 3uiuiossq si ssjnpnjis pssodoid

JO 3|B3S 3qi 3J3l[A\ X80[0Uq33J 33IA3P J0ptipU03IUI3S Ul JUBJJOdUIl XjJBpsdSS SI SIsXpUB

3AI)BJUUEnf) SUOip3JJ3dlUI JO SJUBdop 33BJJI1S JO 33U3S3jd 3q} UIOJJ 3UISUB SJU3UI33UBIJU3

io X|jn|n3iijt:d -ssssssojd qjMOj3 pixEjids jo SuipuEjsjspun oqi oj puB ísuisisXs j3XB[ij|niu

3I13u3eIU pun 3|[|BPUJ ‘8uipnpU03IUI3S UI SSJIIPIUJS J3\B[ JO SDISXqd 3l|] JO UOIJBpjdlSJUI

put: [0J1UO3 3qj JOJ :S03IA3p J0pnpU03IUI3S U0J3IUI-qnS pAOU JO 3ui[pp0ui puB 3uipiIB}SJ3pun

'UO[lB3UqRJ 'u3[S3p sqj UI |BI3IU3 SI Siqj ‘3]duiBX3 JOJ ’33U3I3S JBIJ3JBIU pUE S33IA3p 3IUOjp3[3

III SR3JB JO XpUBA 3piA\ B UI )S3J3JUI ¡BJJU33 JO 3JOJ3J3qj SI pi[OS B JO SU0I3SJ 33BJJI1S JB3U pUB

33BJJI1S 3ql UI qioq SJU3UI3[3 JO UOIjnqiJISip [EUOISUOUIip 33jqi 3SI03jd 3qi JO UOI1EUIUU3PP 3q [

3AIIISU3S UOIJBipBJ OSJB 3JE q3[l[A\ JO 31U0S 3J3qM SlU3lU3|3-IJ[tlUI JO pSSOdUIOO

3.1 R 3S3qj_ S3jnPnj}S-0UBU JO 3pBUI S¡BIJ3JBUI pAOU UO SISBqdlUS JO [B3p JB3j3 B X[[Enb3

SI 3J3l|l ‘33U3I3S [BIJ31BUI UJ [ [] UIU 001 1SOUI JB JO SUOISUSUIip [RJ31B| JO pUR 33EJJI1S 3qj MOpq

IUU 0^-01 J° 3[R3S 3qj UO S33EJJ3JUI 3AipB MO[[EqS l[l[A\ SSjnptUJS JO U0IJB3IjqBJ 3qi 3Jinb3J

||[A\ Ujni UI 3S3qi (ZHW 0081 J° spssds >[30|0 )E 3ui>[jom sdiqo IAJV>IS/I\V>ia SOIAI3

)¡qO p ’S'3) pndo[3A3p sq [|ia\ uojoiui j o -qns sqj uo suoisusuitp ssiAsp ‘sjbsX oi-S ixsu

3qi ui )Bqi uo|js333ns sq; o; spB3[ sjínojp psjBjgsjui jo uonESunjBiuiui 3qi ui spusjx

>[n • 3B ’ 5[joX ■ uiqo@3uiui)in ‘aaSOIOA ^J°á ‘VGA jo XjisjaAiun ‘somojpsjj jo lusuijjBdsQ

PBUIOQ-I3 jai ^

UOIjn|OS3>I |B!JBcls q§ÎH SIsX|BUy OAIJBJIJUBIlf)

Page 20: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

High voltage transmission electron microscopy (STEM), has been used in the past as the prime tool for obtaining dimensional (i.e. metrology) and crystallographic information at high spatial resolution. The technique remains to be so for fundamental research, but is considered less favourable to use in industry and particularly in quality control because o f its destructive nature during the course o f sample preparation. In addition, in the STEM, the whole sample thickness contributes to the image formation, making the results obtained to be less reliable even with the aid o f deconvolution methods. The use o f STEMs is therefore considered not to be practical in on-line analysis o f large samples.

M etrology techniques currently available primarily involve the use o f low voltage electron microscopes (LVSEM). Although there has been a great deal o f instrument development in LVSEM over the last decade, and where currently most microscope manufacturers offer SKM operating around the 1 keV and lower, data analysis at these operating voltages is still in its infancy stages. Other probe microscopies, such as the various forms o f tunnelling microscopes (STM, AFM etc.) are very slow and are therefore ruled out for the foreseeable future. Energy dispersive x-ray analysis (EDX) at low incident electron energies is an area o f research which is seeing some activities. These, however, are again limited to electron energies around (he 5 keV region.

The present contribution will attempt to highlight the areas o f developments in stirlace microanalysis and high resolution electron microscopy. In particular the session is to address the recent developments demonstrating the successful use o f the cathode lens in scanning electron microscopes (SLEEM ) [3] and the measurements o f low energy secondary and backscattered electron coefficients from clean solid surfaces for use in both LVSEM and SLEEM [4], O f importance in this respect is the correlation between the atomic number contrast obtainable in SLEEM and LVSEM as a function o f the incident electron energy. W ork in combining Auger analysis with low energy imaging as a step in the interpretation o f the SLEEM contrast will be covered [5]. Recent developments in parallel data acquisition in AES will also be addressed [6]. »-

References

[1] El Kareh B, 3rd International W orkshop on M easurements and Characterisation-of U ltra-Shallow Doping Profiles In Sem iconductors. M arch 1993, N. Carolina, USA.

[2] See for exam ple Q uantitative surface Analysis Seah and Briggs[3] M ullerova I and Lenc M, U ltra m icroscopy, 41, (1992) 399, and

M ullerova I and Frank L, Scanning, 15, (1993) 193.[4] El Gom ati M and A saa’d A, M icrochim ica A cta, (1998) In Press.[5] El Gom ati M, M ullerova I and Frank L, Proceeding o f the International Centennial Symposium on

the Electron, Cam bridge, UK, Septem ber (1997), In Press.[6] Jacka M, Kirk M, Prutton M and El Gomati M, 5th International Conference on Charged particle

Optics, Delft, A pril (1998).

Page 21: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Il

h 11 mi i'rí i is i > i. » ! a Ajisi;.) m?:> ma;sAs ajodtup^nb aqj^ paAojdiua are sjuamaja ajodaAjaA\; .10

• >|< X1111.in ji s'p[aij ajodiujínnb aq; o;uo pasoduiuadns aq irea qaitjAV spjatj ajodnpo paiT?.i imI,is .\j|i!i |i!ds' .fnoj jsou! Aq pajusuoduioo aq sXmpB trea suopio^sip .iapjo-p.inj; aq;

ni.) isas aq; uu|4ia\ kAuj jo q;iad aijBuiäiiSB aq; o; 3uia\q 'ma;s As jojoafojd ju'jo; aq; jo i||oii.)| [H.io) aqi jo aSireqa aSjej « Suijquna s^uauiaja Suisnaoj Aj3uoj:;s oji> sajodnjprcnf) si.)|di.i | a|odii.i[n?nb omj jo Suijsisuoo inaisAs jopofojd ajodiup^tib 13 asodojd aA\ api!;s

-i|n si 111 pioAn oj pa;niiq AjSiioj^s si uia;sAs .lopafoid aq'j jo uoiiTOijniSBui jo aSirej ' 111 .isn.) s 1111 hi u.iAg papaau si ajodnjpçnb jT?uoi;ippi! ire mni;aads ssoj ASjaua aq; jo

himWimiii ai;mu3r;su .10} a\ojjt; oj • [g] sasuaj juuoijuaAuoa aajq1; ;si3aj it? sajmbaj suoij i.m.i.X11? ijuhis qij.n airejd 3uipjoaa.i aq; at amqd uoisjadsip aq1; ptre aunjd aSeuii aimm• • 11|.>i; .>i( i aiii’im AjaArreiuaijT; irea qanjA\ nia;sAs jopafcud y sasuaj punoj aijauStmi

".«i («i 11 Manatí in s'isisiioa sadoasoiaiui uojpaja jtmoiiuaAuoa jo uiajsAs jo;aafojd aq j

uis^sás jo^DBfojd 8t[^ jo aui^no Z

■siiiauiaja

>1.1 i.iiuitiAs \[|i!uor;t>'jo.i non ureiuoo Ajijiessaaau jsnm qaiqA\ ma^sAs SiiiSbiiii oiiBuiSrjSB m.' \(| lam aq Apio irea noijipiioa siqjL Aej.re Q33 aqj jo uoisuajxa [Iîoi'ijba aq; qa;uui s.mq aq; |i;i|i qans airejd Suipjoaai aq) ;ir uiiupads auq v. o;ui autqd uoisiadsip aq; ;t; 11111.1 laads .)i|i;uiSr;s aq; uaAiioD o; A.ressaaau osp si ;i ‘Bjaureo-QQQ aqi }« sai^isiiajtii . >'.:.i i.-| \ i ti i >1111 pioAt; ojj ;i jo ;.red ;aui;sijj v .laAO jo nm.rjaads aji^ua aq; .wao AvapjaAO in: Vïiijiirejqo .10] pire suoi;Tî;i:)xa jjaqs .iauui ;suoi;isire.i; ptrequijui put; pu^qjajui ‘suoi; i; ii.ixa uouistqd si: qans ‘mtupads ssoj ASjaua aq; jo suoiSbj apsuapBJuqa 8m;«8i;saAui

,io| A.ressaaan si A|.iado.id siqx uoijuoijiuSbui ajqüiJiïA q;iA\ amqd jopapp aq; hi uoi;iij i is,i l A'W.iana jo sso| jure snoijjoisip Ant! ;noq';iA\ ‘.laijij aq; puiqaq auüjd iioisjadsip aqi

11: pam.ioj s| qaiq.w ‘muj;aads ssoj ASjaua aqj aSBini AjaAi;i3ii.iajjt! pjnoqs ina';-sAs siq; ■ i.iao.),io|Y a kjhuI) aSximi aq; Sunaajjt! jnoq^iM noijuagiuSBUi jß^o; aq; jo saSireqo aS.rej .i|(|t!na o; apir)iuSit?ui jo japjo auo ireq; ajoui Aq ajquiJBA aq ;snui ma;sAs .io;aa(ojd aq; I" 1101 nMijmttum aq; ‘|g| uor;T?aqiu3i!in a^ipauuajui pui;sip v jb innijii;do s^.jajjij aq'; jo .i.iiii!in.io|.iad aq; aauig SMopniM A3.iaua aS.rej jo as^a aq; ni 3iii3üuji ai;i3inojqaB Aj;napg jus i: .loj a\o|jn o; jajuo in suoi;n.ijaqi3 aij^ino.iqa jjuras baeij jsnni uiajsAs siq; ‘ajdurexa io.| |¡| maisAs .io;aa['o.id aq; jo sai;jado.id aq; uo suoi'jij^uoa ji3.iaAas sasodmi adoaso.ia mi uo.riaap noissinisni!.i; i? o;ui Jaijg AS.iano uoijnjosaj qSiq n jo uoi;T?.iodjoaui aqj^

'U0I^AI^0]A[ I

ipV^SVLlVQUS', Í!) !) ■iffmiujny.unj-.mj] ‘fpvjsuuvQ ftpsjaavufi jmiuyo9X ‘soisfii^j pdijddy fo afnpjsuj

asoy -jj jure unaq.iaQ 'y\

soidoosoHom NOHxoaia moissimsmvhx oni

-iTaxiw-AOHaNa noa NOixvoiaiNOVM axavi

-uva HxiM FvaxsAS Hoxoafona aioannavrib

Page 22: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

and astigm atic im aging w ith any degree of astigm atism (length of the line image). A single quadrupole tr ip le t generally forms cither a first order d isto rted stigm at ic image or two line im ages. These non -ro ta tiona lly sym m etric first-o rder deviations are com pen­sa ted by the second quadrupole trip le t. Since the num ber of the individual qiiadrnpoles is larger th an th a t required for stigm atic and disto rtion free (first order) im aging, 1 In- p a th of rays w ith in the p rojector system can be varied even if the magnification is fixed. Owing to th is behaviour, it is possible to ad just the quadrupole streng ths in such a wa\ th a t th e chrom atic aberra tion of m agnification an d /o r the th ird order d istortion an elim inated or m inim ized, respectively.

For the recording of th e energy loss spectrum , a chrom atic aberration perpendicular to the d irection of the dispersion can be to lerated , as it only enlarges the extension of the im age lines. T he com ponent of the axial chrom atic aberra tion in the direct,ion of the dispersion m ust be elim inated by appropriately readjusting the strength of the hoxapoles w ith in th e energy filter. For recording th e filtered achrom atic im age of the object or the diffraction plane, respectively, the quadrupoles are excited in such a wa\ th a t the th ird -o rd e r d is to rtion is m inim ized. Any unduly large rem aining component of th e d is to rtion can be com pensated subsequently by an additional octupole field

D espite th e fact th a t the quadrupole pro jector system consists of a few more elem ents th a n th a t com posed of ro ta tionally sym m etric lenses, its im proved perform ance and variability outw eigh th is m inor d isadvantage by far. In addition , the d istance between the recording plane and the filter can be shortened due to the strong refraction powei of the quadrupole lenses.

References

[1] Rose, I I ., C orrection of aberrations, a prom ising m eans for im proving jjie spatial and energy resolution of energy-filtering electron microscopes, U ltram icroscopv 5<> (1994) 11-25.

| 2 | U hlem ann, S. and Rose, H., The M ANDOLINE filter a new high p e r f o r m a n c e

im aging filter for sub eV E FTE M , O ptik 96 (1994) 1G3 178.

[3] G erheim , V., B erechnung eines variablen P rojektivsystem s für ein energiefilterndes Transm issions E lektronenm ikroskop, D iplom Thesis, Fachbereich Physik. Institut für A ngew andte Physik, Technische U niversität D arm stad t (1993).

Page 23: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

PZ

•(¿661) S-inqsuoSoy‘o¡do>|soj>|iuiuouojj>p[g Jty ¿661 SunSBiJopuB[pjQ ‘jqodç y puB SBZs^pjg q ‘:>puBig s [9]

(9661) oujg ‘sondoopjjjty poS.req3 ui spuojj juoooy uo luss juj qjç ‘os o y h pire jojiojv h ‘sbzs^iojj q [ç]

(9661 ) u'iqna JoiiM JJ03[g uSuoo ung qjj j ‘osoy h Pub suzs^iaij a ‘JOIWIAI H M

(S66T ) Sizdiog ‘30a «P §un§BX LZ ‘asoy h pue «IIÍM H ‘SBZs^pjj a [£]

(Wtól ) sijbj uoijAj 'jjoojg j§uo3 jui qj£] ‘osoy h Pub sbzs^ojj q [z]

'0SČ-1 iZ (¿661) f8 JJ^dS «3313 T IB Is ¥»>d [I]

:SOOUOJOJOy

JojBJBdos ureoq oqj qSnojqj suojjoop oqj jo o§BSSBd oojj-uoisjodsip oqj si juouiuSqB

100.1.100 B joj .tojBoipui isoq oqx 'Sqo.i Suiunj oqj Xq juounsnfpB (Boujoop ub Xq Po/Aoqoj ojj

-oiuqpui n jo suoj a\oj B jo ÄoujnooB üb qjiM juouijsnfpBaid [Boureqooiu b jo sjsisuoo ojnpoocud

liioaiuSi|B oqx JojBJBdos ureoq oqj jo oouEiiuojJod oqj ojnsfioui oj ouo 0|qBUO soSucqo osoqx

OoBim oiBipoiujoiui oqj jo uoijisod puB uoijBogiuSBui oqj oSuBqo qoiqM sjuouiop SuiSbuii jbuoij

- ! ppB sB posn ojb sosuoj ppy oqj uoijBJodo jo opora siqj uj ‘(qj Sig) „06 J° uoijoogop b qjiM

jojB.redos uiBoq oqj qSnojqj ureoq uojjoop oqj jo oSBssBd o[8uts b ojbSijsoaui oa\ juosojd jy

on[BA pojBjnojBo oqj oj oso[o Xjoa si

"nl SO.Io )!UI!I uoqrqosoj painsBoui oqx 3V3S 3Ifl J° oqojd uojjoop oqj suijoj suo| siqj dnjos 1110 iq lojooyop oqj jo oobj jixo oqj jb pooBjd si qotqM [9] suoj ppq oijBjsojjoop oqj Sutjsoj joj

oiqBoqddB os¡b si juouioSubjjb oqx ’[too b Xq sojBjd-oiod oqj puB suoj OAijoofqo oqj uooMjoq

xiqi oijouSbiu oqj joj ojBSUodmoo oj (q) pire sojBjd-ojod oqj ozqouSBUiop oj (b) Xjbssooou si jt

‘uiiin|oo odoosojoiui pouoqjSuo¡ oqj jo (uiu OOT ~) J!111’! uoijrqosoj pojoipojd oqj §uiq0B0j jog ( bz ' » ¡g ) suo| OAijoofqo oqj puB uiojsXs josuopuoo oqj uooMjoq pojojuoo uooq SBq jojBJBdos uiBoq

oqj ‘odo os ojo ;uj Suiuubds 0961AISG 033 E s! qoiqA\ ‘qouoq jBoijdo-uojjoop jqo jo jsoj b sy

•( i Sig) juouijsnfpB jboujoojo jo Xjqiqissod oqj opiAOJd oj oaoojS q0B0 jo doj 110 po.oiqd ojB sjioo Suiunj jojno pus jouui [Buoijippy '[ç ‘p ‘£ ‘z] sojBjd ojod oijBjpBnb pjp-red -ouiqd OMj jo sooBjjns jouui oqj uo soaoojS ojui pooBjd ojb qoiqA\ sjojduj [too jnoj Xq po/qBO.i 0.1B sppij o|odip oqx uoijooyop-0o6 « pu^ SuiSbuii oijbuiStjs opiAOjd qoiqM spjoq opdip oijou -Sbui jo uoijBjnSquoo oujouiuiXs XjqSiq b jo sjsisuoo jj uojBJBdos ujBoq oojj-uoijBjjoqB ub jo uo|jBJodjoou| oqj sojBjissooou ojnpooojd uoijoojjoo siqx JOJJiui oijbjsojjoojo ub jo suboui Xq po)Buuu|p ojb sosuoj uojjoop oqj jo uoijBJJoqB |B3uoqds pus oijBUiojqo oqx '[i] („ssnbiuqoox Iubao[o>] |[y joj odoosojoip\[-ojj03ds(l) XHVWS oqj jo jJBd [Bijuosso ub si JojBJBdos lUBoq oqx

ÂUVWJ9Q ‘ipniSUUVQ(iXZPl)-(l '9 ^(fi>Jtspn¡3si¡30jj ‘ipvjsuunQ Ájisjantufl jnoiuif.iaj ‘sJisÁijj paijddy fo 3fvii¡su¡

osoy h pub jqods y ‘sbzs>[iojj a ‘Fjjbh y

W333/W33d asuayyoD v yo3 ao.i.vxvdas iwse v jo xssi

Page 24: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

m id sec tio n v iew I4U m in

c ro s s s e c t io n A -A

mamcoils

coils

hig. 1 - Midsection view and vertical cross section ot the beam separatui

a) Test o f the electron-optical bench b) Test of the beam separator

e le c t ro n g u n a n d c o n d e n s o r s y s te m

beam separator

field lens

electron gun and condensor system

objective cham ber o f the LEO DSM 960

field lenses

beam separator

objective chambci o f the LEO DSM 960

Fig. 2 - Test facilities for the beam separator

Page 25: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

•oijbj as;o«-o;-[BuSis aqj

.)AO.idui| o') .iap.io ni pappojd are ‘.lajndraoa (Buos.iad « ni Suissaao.id aSmui puB ‘sjuaAa

,)|äuis jo uoijB.iSaím diqa-uQ Bjaurea-flQQ ireas a\o[s pa|ooa b oj paiajsire.ij /í|p?3ijdojaqy

pire so}v>[d puireip papuasua omj Xq paij;sua|ii; 'sua| a|odn.ipBnb ji jBjsoJiaap ire Áq pau

-iiiSuui s; ujajjBd aauajajjaju; Á.reun.id aqj^ -sajniniu 05: sb 8uo| sb saunj a.msodxa oj spus]

‘(,_0I ~) pauuoj a.re sa8uuj aauajaj.iaiu; aqj aiai|A\ a|3ire áu;i aqi ojui panuua si qatqM

stioi jo 1110.1.110 aqi jo i.itíd |[BUis Xjsa aqi 'ss0[.)t||.i0A,)\; Ájuo aa.iSap j jnoqa jo .iaiauiBip

jB|iiSuB jo jods a[8u;s b oju¡ 3u;n;uja si ao.inos aqj *uoi)B.reda.id .íajjy '(i '813) lajam

-o.iaj.iaju; pire jamos uo; uaJA\jaq X|;jB.ioduiai pajjasu; si ipiq.w Maijisuajui aSmui ajB[d

puireip B jo uaajjs aqj uo pajjojjuoa aq ire.) luajjBd iioissima sji ‘uoijB.redaid Sunng

Mdjaiuo.iaj.wjui aqj ni njis-ui pa.reda.id si "xadB aqj jo a.m jba.iuj jo smpBJ jS.ibj XpA;jBp.i e

sbi| ipiqM ‘d;j uoissiuia ppy uajsSunj pajiia;.io-(j j j) b uo suiojb iiajsSunj jo .laquinu [¡buis

b jo Suiisisuoj uoisn.ijo.id u ‘'a-; ^dijjadns, aqx \j ¿¿ oj uoijB.iado Suunp UA\op papoa

‘[9] dijjadns. pajBajj X|p?pads b asn aA\ 'ajjnos uo¡ ppq aqj Áq pajjiuia siioi-+ajj jo xnjj

liia.iaqo.) aqj d'/iuiiXBUi oj .lapjo uj ‘suojpap qji.u pam.ioj.iad aq irej sjijdo jajaiuo.iaj.iaj

-111 aqj )o juauiu8i|B ajoja.iaqj ‘a;jBjso.i:pap a.re jajauio.iaj.iajui aqj jo sjuauoduioo [Baijdo

[|Y uoissiuia uo-ipap pire uo; uaaA\jaq paipjiA\s aq irej juaumjjsu; aqj ui pa}B.iod.ioaui

ajjiios uoj-ppq aqj a8ire.i uid aqj u; a.re suo; .1110 jo sqi3uapAB.u aqj •y jo ,iap.to aqj uo

sqjSuapA'BA\ qjiA\ siuuaq [Buuaqj qjiA\ 8iii>|joa\ sjajaiuojajjajui 11101« oj pa.reduioj ’aouis

jajauiojajjaju; uo; ub joj ajqBsuads;pu; aJB sa.mjBaj asaqj *¿|q«js X|p?jiuojjjap puB 'suo

-¡(BjqiA 01 aAijjSuasu; ‘pa88n.i Á'[;jnuip.ioB.iixa aq o} paAO.id sbi| ipupw ‘Igl .iajauio.iajjaiui

uo.ipjp Jilo jo adÁ) paqipoui e s; i; ‘ajuassa u¡ -paAJiipB si ajads ui s}j>piíd 3aba\ uoi

|iijjj||oj aqi jo uoii'e.redas [BJisÁqd an.ii b ÁqaiaqM uisudiq jBJijdo uoi ire Áq uoisiAip

liiojjdABM sasn j] ’('i '3i j) suo; joj .iajauio.iaj.iaiu; is.iij aqj juasa.id aA\ jadad s;qi uj

•suo.iiaap su sapii.red

jujod, ssap.1niJi1.11s joj sb aiuus aqj s; .10 ’suo; ip;j-ajnpiu}s aqj jo uiopaajj jo saajSap

[Biuajui uo spuadap spjiiuajod JopaA JijauSBUioJiaap aí| pasirea IJiqs asaqd aqj jaqjaqM

(saj [Buluj aqj piqjuoa ubj auo •}uauii.iadxa uiqog-AOiiojBqy juioi ire qi¡A\ \),iiipn,iis [tí 11

-lajui suoi aqi 01 auQ ’ppq JiiauSaiuojpap aqj 01 a[dnoa tnuo-fv p»ß.imp ‘Ä||BUo;i;ppy [{?]

AiiAiiisuas pajuapa.)a.idun qj]A\ sjosuas [Biijaui jo luauidopAap •[(;] spajp ayjauiojajjajur

a[jii.redii[iiiu ‘ÁjiAi |Bpj pire sa;uBqaaiu uinjuBub jo sjsaj [Biuaurepunj :op s.iaiauiojajjaiu;

IIIOJB sb suoiisanb (treiJodun aures aqi inoqu aA[os oj papadxa a.iaM s.iaiaiuo.iaj.iajui 1101

|Bqi JJBJ aqj jo ajids ui padopAap uaaq jou suq 11 ‘.laiaiuojajjaiu; uo; a[qBjs Á;q8iq e

jo jdaouoD jo >|,)B| aqi oj anp ‘la^ ’sjeo/Í qS ireqj ajoui joj a[qB¡;BAB uaac| suq (asaqj jo

uoi}Bpidiireai jo assa 8uipuodsa.uoj aqj i[jia\) sap;i.red paS.reip joj saijdo ¡njjaMod ‘puisq

.iaqio aqi uq 'sapijjBd [BJin.iu joj sjuauodiuoa |Baijdo [nj.iaMod dppAap 01 A'jEssaaau ÁSo]

-ouqaaj aqi jo >pB| aqj uaaq suq Áupp Suo; s;qi joj asirea auQ [(.] apBaap s;qi jo 3u;uu;Saq

aqi JB X|uo uojiB.i.Kio u; jnd ajaM s.iaiauio.iaj.iaju; iuoib is.tq aqi '/CiqBnp ap;j.red aABA\ jo

X.iaAoasip s j;[3o,if[ ap r[ jajjB Xjjjoqs [[] pazqBa.i uaaq SBq suiojb jo uo;jaT3.ijj;p a[;q ^

suot-+ájj ijjiAY A.rj,)uio.iaj.iajiii msudig • j

HumiUiQ 'uißuiqnj^ <)L()(iL~(¡ 01 >lpisu3ß.iopy .tap fny udßuiqnj^ ioftsjsaiu/) .up y/stii/j tfpuvaiäßu y jnf fnftfsu]

jarej^ a.\\: ] pire psa;\¡ p|B.iB[[ -qauqpssujj zuejj

AHXomoHajHaxiMi Wsradia-Nouxoaia qnv -noi ni saoNVAQV xNaoan

Page 26: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

In sum m ary, Fig. 2a shows diffraction a t th e edges of the biprism filam ents, and Fig. 2b shows b iprism interference fringes of He+-ions. In order to reduce noise the in­teg ra ted in tensities I n of about 50 successive lines perpendicular to th e fringe direction are given in Fig. 2a,b. No additional filtering was applied in th e diagram s on top. All bu t one of the crucial s tab ility requirem ents for ions w ith sub-pm wavelengths are m et by th e in terferom eter. T he only exception is for th e ion source whose emission site tends to move uncontro llably in la tera l direction during the long exposure tim e. Lateral cohe­rence is destroyed and, w ith it, th e fringe visibility. Im provem ent of source stab ility and brightness are the next im p o rtan t goals on the way to an ion in terferom eter as a research tool.

im age intensifier

Fig. 1: Schematical set-up of the ion interferometer

0.9 _ i i * i i n i i _ 0.9 J.' Tn V l \

i _0.6 - \ A A ” L 0.6 - /\ A A / \ A /0.3

i i i N ^ i i i0.3 V V V V v v \jv

5 10 15 20 25 30 35 5 10 15 20 25 30 35Pixel num ber Pixel num ber

0.9 _ i 1 1 1 1 A 1 _ 0.9 i —T----T 1 1 1 1 _0.6 - - A A A " /„ 0.6 \ a A A f \ f \ ~0.3

1 1 ' T ^ l 1 10.3

Iv \ J \ J V v

5 10 15 20 25 30 35 5 10 15 20 25 30 35Pixel num ber Pixel num ber

Fig. 2a: Ion-diffraction at both edges of the 2b: Biprism interference fringes of He+-ions biprism filament. Top: Original data.Bottom: Smoothed.

Page 27: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

sz

■TSI-m l(e66t)8ť v 'a3u •*%/ "W sn^I

->P>N "¿I tpeqpssEH -6W-Ÿ.W ‘(886l)T2 J3KW pasuapuoj - g -süt/j z “'3 'P«qi>>«SRH [s]

'09¿ ’(¿661)82 tm nay sKyj ‘-\e p y J3tI37 ;9ť0? ’(¿66T)8¿ 1P1 '»Kyj ‘■VW qai.ABSBM "d jaÁnog ‘qx uosabísiij) \ZL7,-Z9Z ‘(886l)lQI H votsfiyj ‘X’f iwirejo [*■]

‘(Z66I) ssajg jiiuapBjy ‘gçi ’d ‘Joijpa uBuuag >| ([ ‘.Ájpiuojajjajiq uiojy, ui ‘-j nzuiqqg [g]

£695 ‘(1661)99 tm •«»V 'sfW ‘ 3 0 P'^'PHH ‘ Vt) ajpqajnx ■‘H MO mo.i|s>|;.| ‘-¿yy-Q qi[a>[ ¡6892 ‘(l66l)99 1m aoy '*&*Id ‘T M3uA'lIA¡ ‘‘O fe]

'56 ‘(0C6l)T9 sHyd Z ”0 UI3>S ‘’I uBuuajsg [j]

saouajajay

•yBqasupuiaSsSunqasjoj aqasjnaQ aqt uiojj jjoddns Áq ajqissod apieui sbav >[Jom siqx

luaiuaSpajMoujpy

•Suiíunóaaauappuioa jsbj jo A'Sojouqaai a[qB[reAB Ájjuasajd pire japuiojajja}Ui uojpap jno qiiAi ajquAjas -qo aq pjnoqs suojpap jo SuiqaunqijuB ‘uoisnpuoa iq ureaq uo.ipap inajaqoj e ui saauappuioa uiopuBJ jo uoipnpaj aqj sasrrea siqx 'ajdpuud ¡[riEg aqj oí arip saAu.re auo puoaas ou uojpap ire jo jeauje aqi ja ye s^^oi ^sjq aq^ uiq^iM ajuis ajuj ajuappiqoa uiopuej paanpa.i fr_oi ■ I Æq h ajnseaui oí padxa 8a\ ‘Á|uo soi_ot jo uoijrqosaj e Suiaiíjj 'aun ) aauajaqoa aqi uiqjiM 3alijb suojjaap o»} ou iBqj aas ÁqEaj oi japjo ui °i aiuij aauajaqoa aq^ Áq uaAig uoi^rqosaj pajmbaj Á[fBaipjoaqj aqj ueq') ssa| apruiuSEiu jo sjapjo f Áq si qaiqA\ ‘[o£ ‘61 ‘8l]sOi-0I J° Japio aqj jo aq ||iay aauappuioa jsej aqj jo uoiirqosaj auqj aqx ’suojpap jo sauii^ |Eaijjb aqj jo saauappuioa ajnsBaut japuio.iajiajui aqj jo auE|d aauajajja^ui aq} ui sjopapp uojpap oa\j ‘luaujuadxa jno uj

• juamuadxa ssimx umojq Ájn<|ire][ |BaissBp aq i ui bicieiibab sba\ qaiqM B_0I jo reqj qi|M A[<|Kjiioabj ajinb sajeduioa pue jaSjíq apnjiuSeiu jo sjapjo oa\j Áj.iRau si S_0T • S )noq« jo ÁaBJauaSap ureaq aqt ‘À^uanbasuo^ 'aiisqeaj suiaas ¿\a>[ \ }B aAOq« usaiS adoasojaiui aqj joj se japjo a ares aqj jo ssauiqSuq « unS uoissiuia ppy apoip uoi^jjaqB moj jno q^t^

,_JS ¡._uia v „01T_JS ?_iua v S0Tg ssaujqSijg

A3 £’0A3 £'0JVA3f0IA3eOIÁSjauaQ-OI•fi9-01ÁaBjauaSap

unS uojjaap apoip

adoasojaiui uoissiuia pjaij pjBpirejs

:[o[Jrrem.iaA[ig ■<.[• [,\j oj SuipjoaaB si adoasojjiui uoj jaap uoissiuja ppg pj-epuBjs b ui uiiíaq uojjaap aqj jo y Áa-BjauaSap ui'eaq aqx

(,_JS •z_ui3-y) (As)5r?(A3)360[V.-e = 3V3(eV/^f) = xvma

[li ‘01 ‘6 ‘8 ‘¿](suoipajip uids ajisoddo qtiM suoiuijaj joj omj si |pa jad uoiiBdnoao uinmiXEUi

aqi a¡dpuud uoisnpxa sjjnBj Áq) xvmg ssaujqSijq uinuipcBUi [Bai'iajoaqi aqj oj (aauds as^qd ui

[po jad jaquinu uoijBdnoDo) ja'niuia aqj jo ssauiqSuq yen\3e aqj jo oi^bj aqj su^aui ý Áa^jauaSap

ureaq aqx '[l^uis Á|ssapdoq ajB saajnos a|qB][RA(! aqi jo sapujaiiaáap tuBaq aqj sapiynd jaiABaq

joj asnBDaq [¿j 'gj -çj ‘gl ‘glJsuoj^Dap si SuiqaunqijuB uoiiujaj aAOjd o^ ajEjipuua Á|uo aqx

4iiaun.iadxa Suiqounqpire uoipop uy Ég

Page 28: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

[6] Hanson G.R., Siegel B.M., •/. Vac. Set. Technol. 16(1979), 1875-1878; Börret R., Böhringer K., Kalbitzer S., J. Phys. D23(1990), 1271-1277.

[7] D. Gabor: Light and Information, Progress in Optics 1(1961), 109, Ed. E.Wolf, North Holland, Amsterdam.

[8] M.L.Goldberger, H.W.Lewis, Iv.M.Watson: Use of intensity correlation to determine the phase of scattering amplitude, Phys. Rev. 132(1963), 2764.

[9] E. Zeitler: Coherence in scanning transmission microscopy, SEM, Chicago (1975), 671-678.

[10] E. Zeitler: Zusammenhänge, die mit der Kohärenz Zusammenhängen, Optik 77(1987), 13.

[11] H. Rose. R. Spehr: Energy broadening in high-density electron and ion beams: The Boersch effect, Adv. in Electronics and Electron Phys. Suppl. 13C(1983), 475.

[12] M.P. Silverman: Fermion ensembles th a t show statistical bunching, Phys. Lett. A 124(1987), 27.

[13] M.P. Silverman: Distinctive quantum features of electron intensity correlation interfero­metry, II Nuovo Cimento 97B(1987), 200.

[14] M.P. Silverman: Second order temporal and spatial coherence of thermal electrons, II Nuovo Cimento 99(1987), 227-245.

[15] M.P. Silverman: On the feasibilitity of observing electron ant.ibunching in a field-emission beam, Phys. Lett. A 120(1987), 442.

[16] M.P. Silverman: Application of photon correlation technique to fermions, OSA Procee­dings on Photon Correlation Techniques and Applications 1 (1988), 26-34, Eds. J .B.Abbiss, A.E.Smart, OSA Washington DC.

[17] M.P. Silverman: Quantum interference effects on fermion clustering in a Fermion interfe­rometer, Physica fí 151(1988), 291. v' ■

[18] S. Cova, M. Ghioni, F. Zappa: Improving the performance of ultrafast microchannel- plate photomultipliers in time-correlated photon counting by pulse pre-shaping, Rev. Sei. Instrum. 61(1990), 1072.

[19] S. Cova. M. Ghioni, F. Zappa: Optimum amplification of microchannel-plate photomul­tiplier pulses for picosecond photon timing, Rev. Sei. Instrum. 62(1991), 2596.

[20] S. Cova, M. Ghioni, F. Zappa, A. Lacaita: Constant-fraction circuits for picosecond pho­ton timing with microchannel plate photomultipliers, Rev. Sei. Instrum. 64(1993), 118.

Page 29: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

(8661 03IX3JM -unoireo) t? [ IAI33I oj pajyuiqns ‘h WX pue H »IspugjOH ‘f Bufen ¿ '69 ‘¿661 loisug -pn Suiqsqqnj jqi ‘£SI on «S JucO 'S^Md 1SUI ‘L6DVW3 Ï Bufen '9

9S ‘(066l)86ZV SSX UW u¡sui PnN ‘O >IU[[3ssiA\ pue g baoousj ç6L ‘(686I)¿8

¡oui/osj[ ps JDA T TIM uosduioqx ‘HPV JSJKaqg ‘jj i8bjba\bs ‘H BJBqBse» ">[ BJBqiy p

18 ‘8861 I°1S!JH ‘ Pil 3ua|Si[qnd d0I ‘88^3)1/13 ‘H 3S0>J pue f qoBZ c

68£ ‘(ť66l)sn/fll «W WOMipy "\ >[ubj3 puB i BAOJ3[[n^ 'Z

8ť01 ‘( 1861 )61 mW PS DDA T‘fX o^sejoj ‘ yy qsaireiuuBJi ssbsj ',*aa nEA ' 1

'sj[ns3j jssq sqj s3ai§ pi 'Sij uiojj uSissp aqj jsqj psuuyuoo sba\ ji pun ‘[¿'9] IA13S 3i|l ui pajsoj puB jojoojap g§g sqj uí psjusuisjduii sjsa\ sspojjo3[3 '(apojjssp suoo psJsdBj aq; jo ssbo aqj ui Á[[BP3dss) sjuspyjaoo uoijBJJsqB 3[jjq ÁJ3A ssousrqjui (p) puB

(a) SU0ISJ9A uí ajSuB suoo Suisbsjoui ub jBqj puB (B£ Sij) jspiUBip ajnjjsdB 3uisb3joui qjiA\ sdojp juspijjsoo uoijBxiaqB [Bousqds sqj jBqj oos ubo '£ pus z ’s^xj uí UMoqs 3jb sjjnssy

S3SU3[ JO SJU3PIJJ30D UOIJRJJSqR JBOUSqds puB OlJBUIOjqO oqi JO SUOlJBjndlUOO IOJ puB P[3IJ [BIXB UB puB |BlJU3J0d [BIXB UB JO UOIJTiqUJSip B JO UOIJBnjBAS UB JOJ pasti SBM UIBjSojd sq J

[çj sjBijusjod jo uoijnqujsip b guijnduioo ,ioj poqpui juouxop ojiuij oqj uo pssBq si j¡ pssn SBAN uoqBpunoj sopdo spiJJBj ypQ sqj uioy pauiBjqo uiBjáojd (u8issq susq 3ijbjsojjos[3)

G33 3m Suqppooi [Bousainu Áq psxiuojjsd sjsav sasusj jo sJSjsuJBJBd jo suo;iB[no|B3 ■spojjosp jqSu oqj uioy 'z oouBjsip b jb psoBjd usuipsds sqj uo pssnooj 3JB Xjibuij

puB S3pOiP3|3 U33A\pq p[3IJ SuipjBpj 3qj UI S3IJ0P3fBJJ 3I|0qBJBd SuOJB 3AOUJ Á3ql JX3U 'JAJ3S nqi jo SU3J oipuSbui b Áq pssnooj ÚBUiiuipjd ‘uiBsq ju38j3auoo b sb spojpsp yo| aqj qoBSj Xoqj sspojpap ui ssjrqjsdB qSnoiqj jqSu sqj oj spis ya] sqi uioy saoui suoijosp Xjbiuijj

■psipnjs 3J3AV (p) JB3IUOD pSJSdBJ pUOD3S 3qj pUB JB[J 3UO pUB (o) JBOIU03 pU033S 3qi pUB 1B[) 3UO ‘(q) ¡B3TU03 OM1 ‘(b) S3pOip3J3 JBg OMX UMOqS 3JB UI3qi JO S3A]Bq Á|UO pUB XjpUIUI/Cs

[BUOIJBJOJ B 3ABq S3pOjp3[3 - SU3J UOISJ3UIUII UB JO S3pOjp3]3 JO SSdBqS SAAOqS [ 3-111 ol j

•p3JB§lJS3AUl SBA\

su3| 3qi jo sjuspyjaoD uoqBjjsqB uo susj uoisjsuiuii ub jo sspojpap jo sdeqs b jo sousnyu;

UB Kpms lU3S3jd 3qi U[ -JSBJJUOO [BU3JBUI pUB OiqdBjSodoj UIBjqO OJ puB SSjSuB JJ03>|BJ MO[

puB qSiq jb 'jsg jssjsp oj /íjq;qissod b ssaiS puB suojjasjs psj3jjB0S?(3Bq jo suoij33Jip jbijiui jo

3iiUEq3 JOU S30p UOIjn[OS J3JJBJ sqj '[p‘£] U3UII33dS 3qj J3A0 33Bds 33JJ-ppiJ B ŽUIAB3J pUB SU3J

3A|J33fqO 3d03S0J3IUI 3qj MO|3q SU3[ DIJBJS0JJ03[3 UOISJ3UIUJI ub SuPB|d Áq JO [g‘[] usuipsds

sqj J3AO sus] spoqjBD B Sutuuoj puB 3Sbj]oa 3AIJB83U qSiq B qjiM ustupsds sqj SuisBiq

Áq :SÁBA\ OAAJ UI 3UOp 3q UBO JI XV3S Uí p3SI[B3J 3q UBO puB 3]duiIS ÁJ3A SI UOIjrqOS J3JJB[ oqj usuipsds sqj jsao jo uuirqoo sdoosojoiui sqj uí ppij 3ijBjsojj03]3 ub Áq áSjsus a\oj oj

psjBJsposp Ápusnbasqns si uiBsq sqj pus (y\>[ 01 <) sSbjjoa qSiq Á[3A|JB|3.: jb pojBJ3do si unS sqj uoqA\ psASiqoB sq ubo juauisAOjdun sqx sun3 oiuoiuusqj qjiM psddinbs ssdoosojoiui jo

sjoj3iUBJBd 3AOjdu.ii oj spBUi Supq os[B 3.1B SJJ0JJ3 jnq ‘sunS uoissiuw-ppy jsjqSuq qsnui qjiA\ p3dd;nbo ssdoosojoiuj uí psjonpuoo ájuibuj sjb ssiSjsus uiBsq a\0[ jb suoijBAJSsqo S33bj[oa

LUBsq mo[ jb unS b qons qjiA\ psddinbs jAjgs aMl J° sjsjauiBJBd sjíBduii 133JJ3 siqj puB p3J3A\0[ s| 33bj]oa SuijBjgpooB ub usqM S3SB3J03P un8 uojjoap oiuoiuuoqj b jo sssujqSuq y

puvjoj ‘íHtipcům q¿ £-oç ‘çz o8s!ysMoijDn¡oius ‘/Gío/oul/^jj fo ¡UiSMMufi ¡wpouM 'sotunijjafAj p3i¡ddy puv aoudps ¡DustopjIo 3jniiisu[

Bufsjj f

IAIHS HOVnOA MOT 3H1>IOH >IOX3313d 3S8 3H1 NI NOIS3Ü SN3T N0IS>I3HWI NV 30 NOUVZMITdO

Page 30: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Fig. 2. Dependence o f the spherical aberration coefficient on the distance from the right electrode for lenses from Fig. 1. Parameter is the aperture diameter in (a) and the cone angle in (b) to (d)

Fig. 1. Shapes o f electrodes. Thickness of the second electrode in (a) is 0.1 mm and the aperture diameter changes from 0.1 to 1 mm. Thickness o f all other electrodes is 1mm and the aperture diameter is 1 mm. The distance between electrodes is 5 mm in (b) and 10 mm in (a), (c) and (d). Plots (a) -h (d) in Figs. 2 and 3 refer to versions (a) +(d) in this figure._______________________

z,/mm<d)

Fig. 3. Dependence o f the chromatic aberration coefficient on the distance from the right electrode for lenses from Fig. 1. Parameter is the aperture diameter in (a) and the cone angle in (b) to (d)

z, /mm

C.[mm]

Page 31: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

\0Z - eól'dd ‘SI ‘£661 ‘Supuras "1 ‘W-U "I HAorannro '[Z] p -I'dd ‘XI ‘6861 ‘Suiuubds :'3 a ‘¿of [i]

saouarajsy

Dtiqndajj qssz;;) aqj joS3DU3I3S jo Aureproy aqi jo aqj jo XouaSy jubjq sqj Xq pajjoddns si £0¿£90ZV'°N pafojd siqx

SUMOp>|Baiq pSIJJSSp JO UOIJU3A3jd 3qj pus SSlJJSdojd [BDpdo pOO§ JO JUSUJSASiqSR sqi JOJ

ssiuiojduioa v. si 3poj]33[3 papunojS pun uauipads uaaAvjaq asuBjsip uiuiç pire gj joj sSejjoa

3u|JEJ3p33E A^IOI JO 3sn 3m (PA3I U3UII33dS OJ )33dS3J aqj qiIM pSjnSBSLU SI 3[§UB JJ0-3}[BJ 3qx)

suojpap aqj jo 3[Sire jjo-a>pj aqj Xq XjjuboijiuSis paauarqjui sje g§ ub gsg qjoqjo s3uo)33Íbjj

‘su3[ apoqjBS aqj ui ppy sujaap Suojjs jo sjidssQ jbuSis sqj oj ajnqujuoo jou op puB

jojB[|ijups 3qi ui 3Joq [BJ1U33 qSnojqj sdusss ‘/\3¿ - z uaaMjaq s3i3j3us qjiA\ sgs jo uoijobjj sqx

'(P ‘£ §!3) sgs aqj ireqj sjoui qoniu uoijesjo [euSis sqj oj ajnqujuoo sgsg aqj inqj ajBjjsuouiap

SSUOpaÍBJJ UOJJ33[3 [BuSlS 3qj JO SUOIJBinUIIS OS[B SUOISUSUJip [BOTJUO JO S|U3lU3inSB3UIaqj joj p3sn sq oj pspusjui sí suaj apoqjEO y suoijbSijssaui jsqynj sqj jo psfqns sqi sq (JIM siqx 3IOJ UIBJJ33 E XB[d XiiAipnpuos >[[nq pire aoBjjns sqj lEqi 3|qEqojd si j¡ paonpaj si jsbjjuod oiqdBjSodoj aqj puE‘u33s si sjijojd uiajjBd ‘ou ib y ooj sauioaaq aSBun sqx' JEsp jou oje siqj joj SU0SB3J sqx 'suoiiEpsdxs sssqj jaaui oj qnoijjip sí ji sjsXb[ puB spuajBui amos joj jng uoijbujjojui 33Ejjns sjoui Xjjeo ppoqs sSeuji puB aqj ‘psonpaj X|je3j3 U3qi sí qjdap uoijBjjauad 3qj ‘|[buis si á3jsus g¿ 3qx XjdiBqs sjoui suopipuoD SuiSiBqouou dn ps o¡ sdpq puB suojpsp |bu8is sip spBjjxa sus[ 3poqjE3 sqj jo pprj oujoap 3uojjs sqx A30£9 sba\ gj jo XSjaua SuipuEj’ sqx suoqipuos SuiSjEqouou jspun aoBjjns jy uo ujsiiBd jsisajojoqd SAijisod sqi sMoqs z §!3

suoisnpuoo pus sjpssy

•SUOjpap [BuSlS JO S3IJ0P3ÍBJ] puB

ppij sijEjsojpsp sqi jo suoijBjnujis sqj jojpssn 3JSA\ 5[uq3SSi/\\ puBEAOsusg Xq spEui SÂSVîîX puB cng suibjSojj aIOI sea\ gj joj sSej[oa Suijbj3[3oob sqj susuipsds se PSAJSS (-op

>S ‘IV) S30EJJHS 1USJ3JJIP uo pajBoijqsj ujsuEd zO!S PUB jsisajojoqd SAijisod jo s3[dujE§ [£] ‘(j Sig ) 5(UBjg puB BAOJ3[¡ni,\ Xq psuSissp su3] spoqjBS sqi Xq psddinbs sbm p\[gs ppjauiuioo y

spoqpj/v

sj3Xe| jsisajojoqd 3qj joj Pjoui jo sjjoa psjpunq auo Xq ssnjEA zg aqj s8uBqs Suiqsp BuisEjd jo uoijEUB|duii uoi 35JTJ uoijBJsdo [EsiSopuqss] lusnbssqns sqi ‘osjy [j] ajSire j[ij uo puadap sarqEA ?g suoqipuoo 3ui3jBqsuou aqj uiejuibui Xem siqj ui pus XSjaua SuipuEj gj jo asBajoap jo 3SE3J3UI |B30| ssiiBD ssEjjns aqj ui saSjBqa 3aije33u jo aAijisod [B30[ ‘[[bujs - japEJEqs ajqEjsojnB jpqj jo asnEssq apEsijddE XjjBOipBjd ajB sanjEA Jg aqx (gj jo XSiaua aqj sa ppiX UOISSIUI3 [E)0| 3qj jo qdBjS aqj ui ‘zg jo 'g X3jaug) asEjjns usufpsds aqj jo juiod qsBa uo ‘ [ oj pnba si ssBjjns aqj uiojj uoissiuia uojjsap aqj jo ppiX uojjaap |bjoj aqj jEqj japjo ui XSjaua SuipuEj gg aqj qajEui oj XjBSsaaau si ji ‘uoissajddns 3ui3jBqs jog "saoiAap jojonpuoanuas jo soijsouSEip sqj joj jooj juBjjoduii UE si Xdossojsnu uojjoap Suiuubos SuiSjEqouofsi

uoijanpojjuj

jijqtida}! 1/332J ‘oujg P9Z19 - ZD ‘¿PI p^lodoáo¡r?j)f 'jijqnda}] ips2j aiji/o ssouBpsIo ¿wapvjy ‘sjuswnujsuj Jifjtuapg/o aimiisuj

JBjriH JE^bjo

sganiDfiyis yoiDnaNODiwas jo AdcosonoiiM oniohvhdnon

Page 32: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

LIGHTGUIDE

HOLDER (INSULATOR)

Fig. 1. Design o f the cathode lens

POLE PIECE

YAG - SCINTILLATOR

ELECTRODESPECIMENSPECIMEN ELECTRODE

Fig . 2. Image o f the positive resist pattern on A1 surface. PE landing energy 620cV

Fig. 3. The BSE trajectories . E = 500eV Fig. 4. The SE Trajectories. E = 5eVTake-off angles 30, 35, 40, 60, 82, 86 degree Take-off angles 0, 40, 50, 60 degree

Page 33: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

oqqndoy qaa'Osqj jo ssauaps jo AuiapEoy oqi jo Aoua3y juejq aqj Aq pajjoddns si £0¿£90ZV'°N pafojd siqx

jsBjjuoa sSbjioa aqj aauEqua jou ssop SuissBiq pu3 saijisoj '(p üi¿) [Bijuajod puS (y\8_ boo) saijeSsu ApqSqs Aq uinuiixBui aqj saqoBCU jj 'jsBjjuoa 3§bj]oa aqj oj Ajiaijisuss poo8 b jiqiqxa sjopopp qjog uauipsds sqj ujojj Suiiuoo n 3S Put! I3S 3lD J° ssnsasq Asiou aq uno o3blui oqj osbo siqj uj passBiq ApAijisod si puS aqj uai|A\ asEa ui saatd oyod papjoS aqj uiojj psjjiuis ni 3S J° „P3JJ3 uoijBoyi[dujB„ aqj jo suBaui Aq jojaajsp jEjnuuE ui usas aq ubs ji ‘Aa>|2 =°3 A\opg • a35(Z =°3 °1 dn paqsinSupsip aq ubd uiajsAs uz/nj oq) joj jsbjjuos [BuajBui sqx sqnj [Bjjuaa sqj oj sggg jo sdsass ssspsn aqj sssnsa sauBjsip 3ui>(jom jjbuis aqj asnsaaq jopapp jb(puub oj sjBduios ja^BaM si jbuSis aqj ‘jojoajap jBUBjd aqj joj ■(£ Sij) pauiBjqo si jsbjjuos siqdBiSodoj aqj puB jojBjjijups aqj jiq sggg ssoj mo[ aqj ‘jojoajap JBUBjd joj uiuij jo [ oj jojaajsp jbjduub joj uiuio ¡ uiojj ‘aairejsip SuppoM moi aqj Ag jsBjjuoa [BijajBUj b Ajjbd Aaqj puB pajaajjoa sjb sggg SS0I q§’q aqi ‘sauBjsip Sui^jom jaqgiq aqj Ag spoui gsg ui sjojoajop asaqj jo sireaui Aq pauiBjqo aq irea jsbjjuos aiqdBjSodoj puB fBijajBui qjog %(Z Sig) Ajisuap puS aqj uo Ajuibui spuadap pire ‘AOOZ~ o:> A 001' UI0JJ AjjBDidAj sbijba sg§ aqj jo uoijEJBdas aqj joj [Bijuass-a si qoiqM aSBjjoA pu3 aqx a3Ej[OA pu3 uo aauapuadop ui ‘sjojasjsp gs + gsg jo gS9 Jaqjp se pajEjado aq ubs qaiqA\ sjojaajap aSBjjOA mo| aqj ajE sjojaajap JBUBjd puB jBjnuuy

suoisnpuoa puB sjfnsay

ajnjijsui jiio ui je ja ?)ipiuq3 Aq padopAap vigoyax pui; xOdlA^g suiBj3ojd aqj 3u;sn pajnduioa suojjoap [eu3is jo sauojaafBjj aqj puB ppij aijEjsojjaaja aqj jo suoijBiniuis jo sjjnsaj aqj qjiM pajBpjJoa ajaM sjjnssj asaqx ssjim jpqj jo jajaureip aqj pus Ajisuap pu3 ‘gg jo A3jaua ‘sa§Ej[OA JOjEqijups puB puS se qans suopipuoa >(jom aqj uo saijsuajaBJEqo [euSis pus a§Bim aqj jo aauapuadap aqj pajsSijsaAUi a^ £Z0‘0 s! anjEA jsBjjuoa jEijajEui pajB[n3]E0 aqx ASjaua gj aqj jo juapuadapui jsouijb sjb Aaqj pus ‘ApAijaadsaj 81 £‘0 PUB 11 £‘0 sjuaiayjaoa jajjBos^joEq aqj qjiM ‘(0£ = Z) 3UÍZ PUB (6Z = Z) Jaddoa jo sajBjd uiojj apBui sba\ jsbjjuod [BuajEui aqj jo uoijBn[BAa aqj joj uauipads [Bpads y suauipads jsaj sb pasn 3J3M sssiAsp jojanpuoaixuss jo sajnjDnjjs aqx'A008" °) dn bSbjjoa SuijEjapooE spoqjEa sqj jo Suijjss [Bnuijuoa sqj Aq psddinba ‘[Ajgs iEpj3uiuio3 e uo psuuojjsd 3J3a\ sjusuiusdxg

spoqjaj^

A35II °1 dn ‘g¿ aqj jo aSuEj ASjsus mo[ sqj ui

s’sijjsdojd 3ui3euji puB suisiuBqssm SuiSbuii sqj jo Apnjs sqj joj pssn 3J3m sjojasjsp omj sssqj jo

sppoui sqx A[uo sgsg sqj Aq psjESJO si sSbuji sqj ssbo siqj uj (AOOl- B03) Ajjuspyjns psssEiq

A|3a¡jb33u si pu3 sqj ji - JojBqijups SuiSuiduii suojjasp jeu3is sqj uiojj sgs aqj ajEJEdss

oj ‘puo33s ‘suojjasjs jbuSis sqj pus gj sqj sousnjjui oj puB joje[|iju|3s sqj uiojj ppy aujosp

3uijBJ3p3SB Ajisusjui qSiq jo uoijBJjsusd sqj juaASjd oj ‘jsjig :süoijaunj omj aAEq siuajsAs jojasjsp qjoq ui spuS aqx I'Sig ui pajBjjsuouiap ajB uopaunj jpqj jo sajdiauud aqx '[Z'l]

|b ja BjEjjny Aq pasodojd sjojasjsp p\jgSA3 uoijB[|ijups sqj sjb sjojasjsp jEUE[d puB jB[nuuy

uoijsnpojjuj

jtiqnday 1/332j ‘ouug P9ZJ9 - Z3 ‘LPl vysjodoAojvjy‘Dl]qnd3}J 1/.7J2J Jo S33U3PS fo Kiuspvsy ‘SJU3UWJJSUJ 3lfl}U3pS/o 3¡mysu¡

BjEjjny Jiopny ‘JEjnn Je>[ejo

SíIOX3313ayVNVXd QNV aVJÍlNNV NI SNOÜI3333 AHVGNC03S dO NOUVMVdSS 3H1

Page 34: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

•is :Uscint;= lukg s e , e » 2-500V

5 1« 15 20 25I . . . . i . . . . I ..........,

References:[1], Autrata, R.: Scanning Microscopy, 1989,3, pp.739-763[2]. Autrata, R., Hejna, J.: Scanning ,1991, 13, pp.275-287

p o lep ie c e \

YA6 r i n g grld |-100V )'

light quide

ITO layer+10kV GRID {-100V) sp ec im e n

SPECIMEN

GUIDE

GRID HOLDER

ITO LAYER

TUBE J_

Fig. 1. The annular ( le f t ) and planar ( r ig h t) detector for low voltage operation

Fig. 2. SE trajectories in annular and planar detector with a negatively biassed grid (-100V).

Fig. 3. Topographic contrast in BSE mode. Annular detector ( le f t), planar detector (r ig h t). IC surface covered with the passivating S i0 2 APCVD layer. E0 = 2,2keV.

Fig. 4. Voltage contrast in BSE + SE mode. Annular detector. Transistor KFY 18. W ithout passivation.U BE = + 5V applied. The rest o f the circuit is grounded. Voltage contrast is visible below IV.

Page 35: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

■poAOjdiin si jsBjjuoo sSbuii oiqdBjSodoj sqi pue soejins usuipods sqi

ib sousSjsura jo S[3ur jpqj uo spusdsp X¡§uojjs suBjd uoipspp oq; ui suo.ipsp XiEpuooas jo

33UB)Sip JBIXB oq] 0SB3 Slip UJ p3A3iqOB 3q UEO SUOjp3[3 AJBpUOOSS JO J3JSUBJJ 3^1] UUOJSUBIJ

jounoj B 333[d 3jod oipuSbui sqj jo uopisod sqi puB jBpusjod uiurqoo sqj jo uoipsps jsdoid B Xq pqj UMoq si j] uiajsXs B qons jo saiysdojd pjsirejj 3qi ssXjbub oj uoijB(nuns jsjnduios

SuioBjj Xbí b pssn 3/\\ uopspp su3[-ui üb ojuo uisqj ssSbuii ji inq suojpsp XiBpuosss sp3[[03 isnj jou SU3J 3Aip3fqo INIW30/30G3W sq} .iopspp Xsjmoqx jreqjSAg ub qjiM p3JBdui03

¿udiuusq ‘uatjjo^jdqQ 9pp£¿ ‘H^D aidaqsojyttuuauojpiajg 037*

ÚUDIUU3Q 'i¡3suoq £ÇQpQ '£ ujsSmpnj ‘Suiijnsuoj uszuvf

*J31U13^ g puB U3ZUBf >J

SNOÎU3333 ÀÎIVGN033SÍIOJ SN33 3AI133faO INM30/30Q3H V JO S3IItf3dOHd NOII33I3CI JO AdOLS

Page 36: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

OUTLINE OF AN ELECTRON MONOCHROMATOR WITH SMALL BOERSCH EFFECT

F. Kahl and H. RoseInstitute o f Applied Physics, Technical University Darmstadt,Hochschulstr. 6, D-64289 Darmstadt, Germany.

The attainable information in electron microscopy and holography is ultimately limited by the chromatic aberration. For round lenses this defect can only be reduced by decreasing the energy width of the incident electron beam [1]. To push the information limit below I A at vol­tages higher than about 200 kV, the energy width must not exceed 0.2 eV. Unfortunately, the energy width of field-emission guns lies in the range between 0.6 eV and 0.8 eV for beam cur­rents required in TEM. As shown by experiments, about 30 % of the electrons have an energy deviation from the mean value smaller than 0.1 eV for an emitted beam current of a few //.A. If the remaining 70 % of the electrons could be filtered out by a monochromator, one would obtain a nearly monochromatic source with sufficient beam current. The acceleration volta­ge at the location of the monochromator should not exceed 3 - 5 kV to achieve a dispersion which is sufficiently large for filtering. Hence the monochromator must be placed immediately behind the source. Due to the high voltage to ground (a few hundred kV) in a TEM, a purely electrostatic design is mandatory. Such an electrostatic monochromator was first proposed by Plies [2], Unfortunately, his design consists o f a large number of elements and requires a large extension of the height o f the microscope. The electrostatic Si-shaped monochromator propo­sed by Rose [3] is significantly shorter. However, a common disadvantage of both designs is the formation of several stigmatic intermediate images of the source within the system. The high current density in the surrounding o f these images produces a large Boersch effect [4,51 which significantly increases the energy width of the beam.

To minimize the Boersch effect, we recently analyzed the feasibility of i2-Jhaped mo­nochromators with astigmatic and virtual stigmatic intermediate images of the source. The line-shaped astigmatic images produce a much lower current density than stigmatic images. The schematic construction of this type of monochromator is sketched in figure 1. To avoid a loss o f lateral coherence and brightness, the monochromator must be free of dispersion at the exit plane. Hence it is useful to maximize the dispersion at the symmetry plane z, and select the energy there. The line image in the energy selection plane is perpendicular to the direction of the dispersion. The dispersion shifts this image away from the axis by a distance which is proportional to the energy deviation. By properly adjusting the width of the selection slit, all electrons with too large energy deviations can be filtered out. To allow for an accurate filtering, the second-order aberrations, especially the aberrations caused by misalignment of the source, must be kept small in the direction of the dispersion. To preserve the diam eter of the source, the second-order aberrations at the final image plane z* must also be negligibly small. Owing to the symmetry of the monochromator, the aperture aberrations and the distortions vanish at this plane.

The dipole field o f each deflector curves the optic axis, focuses the electron beam in the iz -sec tio n and defocuses it in the yz-section. In order to focus the beam also in this section an additional quadrupole field must be excited within each deflector which overcompensates the defocusing refraction of the dipole field in the yz-section and reduces the focusing effect in the other section. The required quadupole field can be obtained by an appropriate curvature of

Page 37: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

ST I (KÓT) 6EI "stíHJ Z “H qosjsog ç (£861) ssay pBoy ^ d

‘Cd s3>ia\bh *qpsjips) J£¡ -jddns s.iisÁyj uaipajg puv SDíuoupajg ui ssouvApy :u¡ ‘y jqodg ‘ jj 3S0>[ 'p

56 (0661) 98 ‘WdO ‘ H asoy £(8Z.6T) OS d ‘I l°A ojuojox uotyq W0 JU0J >UI DMd ‘'3 so!ld 'Z

n I (LP61) Z ‘WdO ‘O -iszjsqss I

S33U3J3J3X

•(LUO])Oq) UOIJ33S-2/Î Sqj pUB (doj) UOpSSS

-zx sqj Suo)n psusjqSiBjjs sixb opdo siyií opdo sqj Suiuibjuos jojeui

sqi Suo|B sXbj iBjusuiEpunj sqj jo sqjBd- Z 'Old -ojqoouotu sqj jo uoipas-ssoj^ - \ ojj

oj uoijB[nuj|s opBQ-sjuojAj B iuoai3[duii 3* ‘uopippB u[ XpAisnput jopjo pjiyj aqi oj dn suo -pExisqE sqi Supnduioo joj Xobjiissb q§iq Xpuspyjns qiiM [Epusjod sqj jo ssApBAUsp [EijJEd sqj jo uo|]B|n0|B0 b ss[qBus ainpooojd siqx 'X[[BopX[EUE pssssidxs sq ubd jEpusjod Suipuodssa -jos oqj sseo siqj U| 'poujnssB si oonjjns oqi jsao Xjisusp sSjsqs psjnqujsip Ä|JBOUt[ b 3[Sueuj qni’o joj -sajSuBUi jo ssqssuj Aq sspojjosp sqj jo ssobjjus sqj SupBunxojddB Xq psjBinsjeo sjb sppy oqx 'Sjopoipp sqj jo sppy sSuuj sqj jo uoisusjys ajiuij oqj junoooB ojui s>[Ej pus uofiBoiixojddE XdODS .4° uoprqos sjqBjins b luojj jjbjs sa\ ‘uSissp spsqESj r puij ox

•pspiOAB X(3P[duiOO OJR SJ3AOSSOJDspEiuSps ‘snqx 'lEnjjiA sjb ssjnos sqj jo 3z sSriui jixs sqj puB °z sSbuii ssubjjus sqj qioq jBqj SJB3A3J 11 íi puB ax sXbj [bixb iBjusurepunj sqj jo qjRd 3qx 'SUOpEJJSqE .I0pj0- pu033s 3qi JO puB sXbj |BJU3lUBpUnj Sqj JO UOpBnjBAS [BOpX|BUB UB SMOpE qOiqM (dXODS) UOpBUIIXOjddE ppg

sSuuj jjQ-jno diBqš sqj posn sa\ uSissp srqj jo uopBjnduioo sqj joj z sjnSy ui psjjojd síb u3isop o|qisBoj b jo sXbj [Eiu3UJBpunj aqx 33-inos 3q) jo opsuapBJBqD uoissiuia punoj 3qi jo uoijBAJ3S3id sqi SUB3UI sssupunoj 3J3[ { '3UB|d psfqo 3qj JB uopBUiainpi sqj jo sssupunoj sqi S| uopipuoo q un oj sqx oupiuuiXs joxiiui sq jsnui Xej uoisjsdsip sqi jo qpd sqj ‘3UE[d jtxa aqj je qsiuBA puB 3UE[d siqj je 3nJB[ sq pjnoqs uoisjadsip sqj ssuig suE[d uopoaps sqj oj josdsai qj|A\ sujsuiujXs joxiiui dfí, pus oujsuuuiXs juiod sq jsnui nx ‘uopipuos XjjsuiluXs sqj oj 8uia\o

suE|d siqj je ssqsiuBA 'f!tí Xej Suipuodssxioo sqj jou jsX ‘°x Xej jbixe sqj ji suE|d uopos[ss sqj je psuuoj si uoisjsdsip sqj oj jEjnsipusdisd ssjnos sqj jo sSbuji suy y -sssEjjns spojjosp sqj

Page 38: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

DIFFERENT WAYS OF ADDING THE ABERRATIONS

Robert Kolařík and Michal Lenc Dept. ofTheor. Physics and Astrophys.Kotlářská 2, 611 37 Brno Czech Republic

In our paper [1] the main idea was to get a general expression for the resolution o r (when considering unavoidable axial aberrations - spherical and chromatic - and the finite source size) in terms o f wave optics. The resulting expression enables to choose an arbitrary criterion for the resolving power and to seek for the maximum resolution (optimization is being performed with respect to defocus and image aperture angle) in an analytical way. Our predictions for the resolution were compared with the results o f Mory [2] and Barth [3]. Hammel and Rose studied similar problems in [4],

The discussion in fl] did not concentrate on another result - a form of the intensity distribution function I (ct) (ct being the radial coordinate in the observation plane). This function depicts the probe profile in the observation plane. The main effort o f our present work has been directed to study the possibility o f verifying the validity o f I (a) experimentally. Basic idea was to design an appropriate optical alignment, whose optical parameters would enable us to measure the probe profile on the screen (the CCD camera is supposed as a detector). In order to get a sufficient magnification within the optical distance, where disturbing effects can be neglected, we have to work with a multi-lens system. We have considered a column with three lenses working in different modes. Using the computation program ELD [5], we were trying to design lenses suffering from very large spherical and chromatic aberration coefficients for given focal distances and magnifications. In such case we should obtain measurably wide probe spot close to the diffraction- limited situation, where our I (a) form is exact as a consequence of used approximation.

We assume that it is possible to derive similar formulae for the other experimental configurations, where only one aberration term becomes dominant.

[1] R. Kolařík, M. Lenc: An expression for the resolving power o f a simple optical system. Optik 106(1997) 135-139.

[2] C. Mory, M. Tence, C. Colliex: Theoretical study o f the characteristics o f the probe for a STF.M with a field emission gun. J. Microsc. Spectrosc. Electron. 10 (1985) 381-387.

[3] J. E. Barth, P. Kruit: Addition o f different contributions to the charged particle probe size. Optik101 (1996) 101-109.

[4] M. Hammel, H. Rose: Resolution and optimum conditions for dark-ficld STEM and CTEM imaging. Ultramicroscopy 49 (1993) 81-86.

[5] B. Lencová: Computation o f electrostatic lenses and multipoles by the first order finite element method. Nucl. Instr. Meth. A363 (1995) 190-197.

Page 39: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

(lAIVH OIA] Zl punojE Xjuo spsau uaqj uiBjSojd aqj) sojnunu oí puBsnoqj OOI PUB ‘s 0£ poou sjuiod puBsnoqj 91 qjiM soqsoui ‘3J Z[-JIA¡ 99/98t? (ojojosqo mou) uo s 8 jsnf spoou sjuiod

0008 m!M qsoui oqi ¡sojnuiui 0Z WoqB pspsau sjojnduioo XV (zhim 8) IsojsBj oqj uoqi uo 0008 jo sjuiod jo joquinu 3[qissod mnuiiXBUi aqj qjiM soqsoui ui 8861 ui 5[DBq uoijBjnduioo oqj jBqj

‘puiuioj isnf sn jog -pojdoooB A[|Rjaua3 aq ¡jim soqsoui o3.ro[ Suisn jo copt aqj roq) joodxo p[noo

3110 ‘Dd ZHJAJ 002 B uo spuooos 09 Xjuo sjsbj qsaui jBjnSoj Á[[Boi3o[odo) b ui suopBnbo OOOOOI jo uoijnjos oqi ji auij) uoijEjnduio.i jjoqs oqj jopisuoo sn jo[ jsjíg ‘juomdopAop ouios pBq seq 1! jEqj wie [3 jsnui ¡ XjjBjnjEU puB ‘joofqns ojuoabj Xiu si ‘[ajjj jopjo jsjy oq) ‘JV3.JCM

poqpui jusuiap ajm;j

•[9] UIOJJ pOOBJJ oq UBO JOUJOJUJ uo sajis

juBAopj jaqjo oj s>[ui( jsoj^ [g] dn jos sbm sopdo opijjsd joj surejSojd jo jsq ojojduioo jsoui aqj

oouonbosuoo b sy (jbuiuios juojjno oqj jo osoqj sb Xpsnbo ‘ojqBjreAB XjapiM jou si sSuipoooojg

šij) uoiun UBodojng Xq pojosuods sba\ 111^661 u! 1JJ0Q ui p[oq sbm uopBjnduioo sopdo opijred

ui POAJOAUI odojng jo |[B ujojj ajdood joqjoSoj SuiSuuq [^] doqsíjJOM juBjJoduii uy

■popouBo sbm gigs jo OdD s.jeoX siqx [£] soouojojuoo joqjo poztuESjo gidS sjt¡d()

9/oijjvj pgiijm/j OUIBU oures oqj U0A3 jo je puns Jopuft pauopuaui oq [[im ojoqj possnosip

sjoofqns oqj jo aiuog oouojojuoo oqj jb pojBjjsuouiop ojom qz JSOUIJE puB ‘jboX siqj uopuojjB

jo jojuoo oqj jb oq pjnoqs surejSojd jojnduioQ (poonpojjui ojb suoissos pjjBJBd ‘ouiij siqj

sb ‘ssa[un) o[doad joqjo oj 5([bj oj jo sojnjooj jjb oj uojsq oj qSnouo ¡[buis si Suijooui oqj jo ozis

oqj puB ‘dn Moqs joofqns siqj ui poApAUi 0[dood jsopv JJPQ ui 8661 I!JC*V ooB[d >[ooj ‘çodD

‘ouo jsb[ oqx [z\ s[BAJ3jui jboX p ui ppq ‘soouojojuoo sjíjdQ aptjuvd paSjmiJ [buoijbujoju|

oqj jb uoAiS si sopdo uojjoop joj ojbmjjos ui spuojj juojjno oqj OAjosqo oj Xjiunjjoddo uy

dnoiS siq jo joqjnB oqj Xq uojjijm jou ojom jBqj suiBjSojd

Xub suoijuoui XjpjBq ji XjojBunjJOjun ísoop ojunj^ g Xq swsisKg jvjíjdQ aptuvj paSuvyj

jo iiSissq jo/ sanbiuifos^ jnuonmndwoj uo [ JOjdsq^ sj[ spuojj ojbmjjos jo moiajoao juoooj

jsoui oqj opiAOjd pjnoqs [ j] ssojg 3>¡3 Xq poqsqqnd sopdo uojjoop uo 5)ooq jsomou oqx

U01JBUIJ0JUI JO S33jn«S

ojbmjjos Xub jo joXnq [Bpuojod jo josn ‘joqjnB Xub oouonyui oj popuojui jou os|B si )[

uoissnosip Sui>[OAOjd jo osodind oqj oajos oj Suidoq ‘poqsqodun X[[BU0IJU3JUI si jxoj oqx sppy

puB s[Bijuojod jo suoijBjnduioo oqj uo sojbjjuoouoo Mopq uoissnosip" oqx '8661 uí sjuouinjjsuj

oyijuops jo ojnjpsui oqj Xq poziuB§jo ‘uoijBjuouinjjsui soisXqg ooBjjng puB sopdo opijJBg

poŽJBq3 ui spuojx juoooy uo jbuiuios qj9 oqj joj sojou jo jos e sjuosojdoj jodBd siqx

uoipnpojjuj

oqqndoy qooz^ ‘oujg pg zi9 'LV\ p)(S[od0A0[BJ>i

oijqndoy qooz^ oqj jo soouops jo XuiopBoy ‘sjuouinjjsuj oyuuoiog jo ojnjysuj

BAOouog Bjiuinqog

SDíxdO NOHioagg hoj aavMuos ni saNanx a\jn

Page 40: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Surprisingly, it is still possible to find references to problems with the use and accuracy o f the FOFEM with small meshes (e.g. Tsuno in his chapter on magnetic lenses in [ 1 ] or Khursheed in 1997 in [3] or at C P05). The same arguments hold for the use o f graded meshes: if most users see that the axial field behaves strangely at the places where the mesh step change abruptly, the most natural solution is the use of smoothly graded meshes. Another fact that nobody uses the value o f the integral o f magnetic field along the axis and/or around the lens as a check of correctness o f the magnetic lens computation is really difficult to understand.

N ext question is that of computation accuracy. The accuracy of any ‘m esh’ method depends on the type of mesh and the number o f mesh points used. 1 will in this respect briefly mention an important but overlooked aspect of checking the accuracy of FEM computations, the extrapolation to ‘infinite number of points’; the first example of that for magnetic lenses we published already in 1994 [4], and I have discussed this in detail at C P05.

In the practical application of any program, the aspect o f user friendliness and user interface becomes important. We have devoted to this aspect a lot o f attention in Brno as well as in Delft in our software packages, that use a unified approach to magnetic and electrostatic lenses and multipoles. The computation times are reasonably short, and cheap and available personal computers are used for the computations. In the user interface graphical editing is used, the generation o f graded fine mesh is done automatically, and all results are shown or exported graphically. The program packages thus meet most requirements from a user point o f view, in spite o f leaving some space for improvements, because the interfaces were written in a pre- Windows time. The numerically obtained results are accurate enough to allow not only comput­ation of paraxial properties and aberrations from axial potentials or fields but also ray tracing.

SOFEM by Munro group was introduced 10 years ago, and it is often put as a competitor to FOFEM. This seems to be the case of their program SOURCE for calculating guns and space charge limited beams. In spite o f the considerable span of time since the introduction of SOFEM, hardly any attention is given to accuracy (an exception being the discussion of the computation accuracy of axial potential in a two-cylinder lens by Munro in [4] and later by me at C P 04 where it could be shown that the FOFEM produces competitive results). Electrostatic lens computations seem to work, although the mirror results in [1] are surprisingly inaccurate (as discussed in 1996

at this seminar). In magnetic lens computations with SOFEM no lifhit o f maximum number o f points is ever mentioned (but it is known that it is impossible to calculate on large meshes). No integral along the axis is computed, so the very basic check, if the result is correct, is missing. Some of the SOFEM results on saturated lenses look strange [7]. W hat is published by Munro on the computation of multipole components with SOFEM is even ridiculous, and the same error since [4] is in [1]. The FOFEM implemented by Munro does not work properly for the computation o f hexapole field component in deflectors, in particular with small number of points and w ith large mesh step change at the place where the field is still strong and varying (the computations in meshes where the problem is stated last less than 1 s on obsolete 486 PC), and their program does not work for 5th harmonic component at all. It does not mean that this is a problem that cannot be handled by FOFEM accurately [8]. As a summary I do not see SOFEM as the ‘com petition’ o f FOFEM , and I would like to see more accuracy tests o f the method.

Page 41: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

ZV

IAIG3 °MJ SB NOIIMIS put; XM33 ‘IM33) suiBjSojd Q£ oiJBjsojpap joj [z\ ] Xpuaoaj uosuRdiuoo b

qons 3>(bui 01 pouj aARq o,\\ jsaj oypads uoa;8 e qjiA\ ssijjnayjip aARq Xbui sondo apijjRd joj

U3JJUM KUIRjSojd U0A3 lUOSUBdlUOO JOJ 3SI1 O) SUISjqOjd JBIJAV ST UOIJSOnb jsqjouy JSBJ ÄJ3A savojS

sjsjnduioo jo pssds aqj ssnBOsq PouBjjodun uo Suisoj si juauinSjR jsbj aqx pouiRjqo aq uro

sj|ns3J aqj jsbj A\oq puE ‘sj|ns3J oypsds ii3Ai§ pS oj si ji Xssa Moq ‘uru Xaqj sjajnduioo qoiqM

uo ‘uoijEjuaiunoop jpqj ‘ssn (oj ujb3|) oj sje Xaqj Aseo A\oq ‘ajEdmoo oj jynoyjip X[[Bnj3E

oje jBqj sjoadsE uiBiSojd auios 3JE 3Jaqx spoqpui puE stUEjSojd joqio jo aouBUUOjJod aqj qjiM

ji ojEduioo oj äjj jou op Xaqj snqj puB ‘saApsuisqj podopAop Xaqj suo aqj oj Xjjsoui ‘[Eijuojod

Suijnduioo jo poqjaui usaiS b oj pajaippB sje O[doad uajjo jEqj uoissajdon Xui si ji

spoqpui .ioqjo qji v\ uosuBdiuo3

•passnosip SBAV [X l] |eu3jbui oijsuSbui sqj ui IAIG3 qiJM JM33 Suiuiqiuoo

poqjaui puqXq e çodD IV (OlJ suoijBjnduioa j3u8euj joj pasn osjb sem wga Js'Rd 3MJ uiSuijaaui siqj jB Z3UIJJBJAJ jojj oj jaqjBj j03fqns siqj joj Xjyiqisuodsaj aqj jo jsoui

3AE3[ oui jag pauiRjdxaun jo uoppiq jj3[ ‘sjoqjnB usissny qjiM jEnsn se ‘ojoa\ suia[qojd Xuejv

30BJJ3JUI UE se QV3ojny 3sn :qoBOjddE Suijsajajui ue isqjEJ uo pasBq uiBjSojd siq pojuosojd

Aourqx aouajajuoo ouies aqj jy çodD 1® pajEjjsuoiuap bjsav jadsE>¡ jo suiBjSojd jejiuiis

jo snjBjs jsajB| aqj puB ‘(jRuiuias jsbj aqj aas) SEzs^iajj Xq os[R pasn poqjaui b ^uoijEpiuiis

sSjeqa, jnoqE >[|bj 3m ‘sapojjoap apisui uappiq ajB saojnos ppy aqj ui saijuBjnSuis aqj

JI [?] PE3>I jo suiEjSojd od3 Xq pajpusq sje aSjBqo aosds jo uoisnpui aqj qjiM suoijBjnduioo

OE PUB QZ ‘(poqjaui Xjisusp aäjBqo pa[[BO uajjo si ji snqj) so;jBjsojjoap ui X[jsoui pasn

s; j| os puE ‘uoijnqujsip aojnos aqj SuijR[n0[R0 uo pasEq si i^ga u! uoijEjnduioo ppy

poqpjv )U3UI3|3 XjBpunojj

(A\o|oq aas) çodD !R pajuasa-id ajaAv spoqjaui j^ga ö£ JsuibSb Xobjhoob

sji >[oaqo oj sjduiajjy soouajajuoo OdD lEuoijBUjajui je joao sea\ sjoqjnB sji uiojj Xpoqou

‘XpjEunjjojun XjiJBjndod ui smojS asn sji ‘aoBjjajui SAvopui/^ (BoiqdRjS [njjO[Oo' b SEq ji sb puB

‘suoijEoqddE (Xdoosojjoads ssbui) uoi ui pajjEjs j[ sdajs Xq pajEuiixojddE aq oj aAEq sjoafqo aqj

qSnoqjjB ‘Q£ ui osjb 956 j aouis si ji t[ç] NOIIMIS s! WGd uo posBq UiBjSojd JEjndod y

suiBaq pajiuiq aSjBqa aosds jo suoijBjnuiis ureaq uoi ui uoijBoi|ddB sji juaAajd jou saop XpjEunjjoj siqx '3upsjj Xbj pus uoijEjodiajui ui suiajqojd jqäqs paAvoqs pRoy jo uiBjSojd iMga G£ Pub NOIIMIS JsuibSe sjsaj XoEjnooB joujs juaoaj puB ‘pado[3Aap qonui jou sba\ ji uaqj aouig qoEOjddE 3UIBS aqj p3juauia[duii SBq (jEuimas 955 j osjb aas) [6] oujg nx 1B uajjuA\ uiBjSojd [AjGrl G£ jnO sapojjosp puB ssiJBpunoq Xq jno sauq qssui jo uiajqojd aqj paAjosaj X[injssaDons osnoy [ X ] surejSojd j/^Qg Q£ S33W UT uoijejujes jnoqjiM suiajsXs oijBjsojauSBUi jo siuajsXs oijBjsojjoap ui jEjnoijjBd ui ‘suoisuauiip aajqj ojui öS oj Xbm aqj si jAJOd sqx

([ç] jaîjoag Xq pajuauiajduii os|B sbm ji uaqj aauis) jajqj juiod 5 jo saSBjuBApE aqj paquasap ([£I ui jadEd ¿661 osjb aas) [j] £0d3 lE JadsE^ suoisuauiip oavj ui juauiajdui; oj j|noyjip ajoui ajB (uoijEjnjES oijauSEUi jo soujoajaip) saiyadojd |BuajEiu qgnoqjjE ‘XsBa SuiuiBjSojd so>|eui qsaui jBjnSuEjoaj jo asn aqj se ‘auiij Suoj b joj saijdo apijjBd ui pasn si jajqj aqx

poqjaui 30U3J3JJIP ajjuij

Page 42: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

program) for three problems where analytical solutions are known: spherical analyzer, thin aperture between two regions o f constant field, and a two-cylinder lens, where computation accuracy was given against computation time. The results in 3D computation were added for the presentation at C P05. One test was actually left out, which can be used as an ultimate test o f any electrostatic program: the dipole mirror of Preikszas and Rose (see the notes for 1996 seminar).

ConclusionsEven the best software for electron optics cannot solve all problems. A ‘dedicated’ user

can produce ANY result - including often the biggest nonsense. Sometimes this is a consequencc of the usual ‘human’ approach to computers and programs: some people tend to trust any result produced by a computer if it keeps them from thinking. Are there any ways how to prevent this?

Another fact is that in the places where the actual research is done into computational methods and extreme applications of programs, nobody is actually interested in having a nice program as an output. Should the universities do more to finish the software into a commercial product? Everyone implicitly requires a full range of services (Windows interfaces, on-line help, full documentation, many options implemented in a program), but is there somebody really willing to pay for all these features? W hat should be in a good software for electron optics?

AcknowledgmentSupported by a grant o f Acad. Sci. o f the Czech Republic No. A 1065804. Software for

FEM is distributed by Delft Particle Optics foundation [5] - cooperation with G. Wisselink, M. Lene, J. Chmelik (and recently with J. Zlámal) acknowledged. F. H. Read and D. Cubric from U. M anchester were involved in the comparison o f electrosatic programs; the project was supported by a grant o f Royal Society. Let me also mention recent fruitful discussions started with R. Becker, U. Frankfurt, and G. Martinez, U. Complutense, Madrid.

References[1] Handbook of Charged Particle Optics, ed. Jon Orloff, CRC Press, 1997.

[2] Proc. o f C P 03 published in Nucí. Instr. Meth. A298(1990), C P 04 in NIM A363(1995).[3] Proceedings of SPIE 2014 (1993), 2522 (1995), 2858(1996) and 3^55(1997), respectively.[4] W orkshop on Computer Assisted Design of Particle Optics Instrumentation, Delft, June 1994.[5] http://cpo.tn.tudelft.nl/bbs/cposis.htm.[6] http://chaos.fullerton.edu/mhslinks.html.[7] K. Tsuno, Ultramicroscopy 72(1998), 31-39.[8] M. Lenc and B. Lencová, Rev. Sci. Instrum. 68(1997), 4409-4413.[9] J. Zlámal, MSc. Thesis, TU Brno 1996 (see also 1996 seminar).[10] K. J. Binns, P. J. Lawrenson and C. W. Trowbridge, The analytical and numerical

solution of electric and magnetic fields (J. W iley & Sons, 1992).111] A. von der W eth, Dissertation FB Physik, U. Frankfurt/Main (1997).[12] D. Cubric, B. Lencová and F. H. Read, Proc. EMAG97. Inst. Phys. Conf. Ser. 153, 91-94.

Page 43: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

SjaqpppH ‘8e[J3a jsSuuds ‘qd[opn>[ q ‘qrmquifi -g ‘iqBunps o ‘suraiqx T : SP3 ‘Adoosojoiiuojpadg puB Xdoosojoij^

ábj~x :u! psqsqqnd sq oj jsrrag g pire ‘jpiunps 3X ‘joizo^i j ‘dure^praijig 'O [£]102 (¿661) tS usqd

|3y •asojjosds uojp3|g f ‘jpiuiqos qx pire dure^uoqiq q ‘|oizo>| 3 ‘jgnBg -g [z]S68 (17661) ¿S soisAqj 'Sojj da>j ‘janeg g [[]

spoui JAIHH1 ui uopnjossj ou\\ y\9ui g ireqj jsjpq - ‘uopnfossj XSJ9U3 A9UI00t7 jnoqe -

(m^I‘AflA uoijbjioxs) apoui uoissiura /Crepuooas sip ui uoijrqosaj jBtjBds uiu gz -

:si jej os paurejqo uoijnjosoj sqx

uirl 1 se [jeius se spafqo

iuojj (sujajjBd uoipBJjjip uojpapojoqd § a) stusuBd uoipBjjjip jo uopisinboB -

IS3J3JUT JO B3JE p3p3[3S B JO Lünjpods Á3i3U3 UB JO UOIJISITlbOB |3[[BJBd -

:a|qissod mou ojb sopoui jaqynj ujgjjBd uoipBjjjip aqi jo SuiSbuii puB

■3u¡3euii pruo)[ij X8j3U3 ‘Adoosojoiui-jouiui ‘p[oqsojqi jbsu Ádonsojoiiu uoissiuraojoqd

"suojpap pojoiiEos .<([(boiisb|3 jo SuiSbuit :uoi)BJ3do jo sspoiu uMOiDj oqi sapissg

■3UB[d 3AISJ0dS|p

3ip 8ui3euji jo Xjqiqissod aqj puB ‘(sinyadE ms|a jo p[3ij) 3[dixiES oqi uo lS3J3ju¡ jo B3JB ue Suip3|3s jo Ajqiqissod oqj ‘uoijrqosai ASjsua paxy b jb uoissiuisubji posiujijdo ‘Aa/mrl oí/ jnoqB jo uoisjsdsip X3í3U3 psAOjdun :sje jsijij mou sqj uiojj siysusq oqj

V»11313jo 3ui]uiE3q 3SBqd sb3 oqi ib iqSq-AflA Hl!M uopBuiumu; Jopun p3A3iqoE uooq OABq

sqnsojí jsjij puB paijBjsui uooq ssq 3[3ue uoipagap o081 lP!'v' jaH!í psAOjdun ue Ápusooy

\Cz\ u! psqsqqnd uosq 3ABq jsqy aqj jo uoisjsa opBjsojpap 0Q6 o|duqs b qj¡A\ sqnsoj

1SJj .[ suojpop P3J3JJB3S ,<[[B3USB[3U¡ JO SUOJp3j0-J03ny ‘SUQjpSpOJOqd JO SuiSbUJI

í(q OOUEJSU] JOJ JSBJJUOD 3ld03S0jp3dS dtl SU3do J31JIJ A3iOUO OIJEJSOJpSp uy [ [] Ul

■3 3 paqu3S3p U33q OABq ([AIH33) sdoosoJoqAI uojj33¡g áSjsuv] A\og b jo ssijqiqBdBO sqj

ÑnU ‘3)saux ZIOPÍ 'ozziAOSvg ‘g £gj uo¡ f¡ss ‘9)S9UJ 3uouiomu/(s 'VV11313 £ oissny ‘ÜjnqsjaiBj ¡S £01861 'U0i¡0iu3uinu}suj potiúpuy uof 3injiisu¡

KunwjaQ pppajpz-pmsnou s¿98£ O > Msziuqw7 ‘¡oifisnDU []£ usp miisuj ssi/jsum/isfyj ¡

,J3nBg -g puB ^ouuj >[ ^o^usqojEs s VP!1111!3^ 31 ‘,diuB>(U3qr] q

HdODSOyDM

NO>ll.3333 AO»3N3 M()3 HH1 H1IAV ONIOVWI 3IdODSOH133dS

Page 44: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

OPTIMAL SYNTHESIS OF CHARGED BEAM FOCUSING SYSTEMS

G Martinez(a), A D Dymnikov<b) and A H. Azbaid(J>(a)Dept. Física Aplicada III, Fac. de Física, Universidad Complutens, E-2H040 Madrid, Spain ^ C.I.KM.A.T., Avda. Complutense 22, E2H040Madrid, Spain

One o f the main characteristics o f contemporary Science is a quick creation o f knowledge that is frequently associated to the appearance o f new or more refined measurements There has been a continuous improvement o f the existent instrumentation and a development o f sophisticated new devices that has made possible this outstanding progress.To go on this tendency we need to prepare appropriate tools: mathematical and physical models to simulate the behaviour o f a system and the way in which this behaviour can be optimized. In this talk I will present a scheme o f work that we are applying to the optimal design o f electrostatic lenses. Even if this is a small area in Charged Particle Optics the scheme could be extended to other beam guide systems

The direct method for finding the optimal design would be to compute simultaneously the field and trajectories o f the particles through the quadruplet, but these trial and error tests demand a huge amount o f computing time that is not possible to do in practise To overcome this problem we use two models: an analytical model and a numerical field model The first one utilises analytical functions for the axial electrostatic potential and its partial derivatives W ith these functions it is possible to obtain the analytical solution in matrix form up to the desired order approximation, in our case up to third order. In the analytical model the initial approximate differential equations are replaced by the linear equations in the space o f the phase moments with the same approximation accuracy. Thus we can use all the advantages o f linear differential equations over non-linear ones, including the independence o f the matrizant o f the choice o f the initial point o f the phase space [ 1],

An interesting finding is that placing two slits at the appropriate place before entering the lens allows to shape optimally the initial beam and to obtain the minimum spot size aM he target By this way it is possible to find the optimal parameters o f the system with minimum computing time

At the second stage we apply an accurate version o f the boundary element method which simulates the geometry o f the real system and performs a very precise calculation o f the field In fixing the initial conditions for ray tracing, we use the information provided by the analytical model Thus, the combination o f both techniques allows tfle synthesis o f the best lens in a straightforward way.

As a first example let us consider the optimization o f electrostatic axisymmetric lenses consisting o f multiple coaxial cylinders [2], A new analytical model o f the axial potential distribution is applied which corresponds to realistic multiple cylinder systems. Using the version o f BEM described in reference [3] to solve Laplace’s equation we obtain the parameters o f the physical model that has the same axial potential distribution as the analytical model The parameters o f the physical model are lengths and radii o f the cylinders, the gaps between them, and the applied potentials. Figure 1 shows the computed axial potential for a 3-cylinder lens and the corresponding analytical function The coincidence between the two profiles allows matching the focal distance and the demagnification within at least three digits.

To analyse the beam spot size we find the matrizant (or transfer matrix function) for the linear and nonlinear equations o f motion using the effective recursive computational method

Page 45: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

L661 ‘vsn ‘o83!a UBS ‘¿6<3MS scud ‘zsuijjbw o ‘AOJjiuuiXa Q V ‘PjeqzV H V [?]

mi (S96I) 6 (vsn) soisAqd qosx sAqd ao$ Moaba ba S Pue ao^uuiAq q V 0]

l d ‘1661 ‘V0 A M3N ‘sssjj oiurapBoy

18 |OA ‘ sAq(| uojjosjg pus uojjosjg Apy ‘( pa) S3))mbh d :u! ‘oqouBS 1M ‘zsuijjbjaj o [£]

£61 (8661) £01? V qPIM PUB Jjsui pnjsi ‘piBqzy h V ‘zauljjBw 9 ‘ao^uuiAq q y [z] ÍZZ (£661) 0££ V P^ -Usui pn^ ‘&ioq|pH y ‘aothuuiAq y [[]

S30N'H>IHJ3>I

siusjsás Suisnooj jo sisaqjuAs [Buiijdo sqj joj |ooi juapijjs ub aq ubo jaqjaSoj spoqjaiu qjog ppoui ¡BDuauinu aqj ui punoj azís jods jsaq aqj qjiA\ oouaptouioo pooS Ajsa b pBq ppoui |B3iiA|BUB aqj ui psumjqo szis jods [Buiudo aqj ‘sssbo psipnjs oa\j aqj joj ‘uoisnpuoo u[

saouBjjiiua qStq joj UBqj ssaj si spoj jo jajauiBip uinunjdo aqj ssoubjjiuis aao|

joj jBqj A\oqs sqnssj jno jods uiBsq |Buij sqj uo ‘so|odrupBnb aqj jo ajnjjsds usaiS b joj ‘spoj aqj jo aouanyui aqj psjbSijssaui puE ssoubjjiuis jusjsjjip joj uoijorujsuoa [Bunjdo 3qj punoj 3ABq a,\\ [g] uo;sj3a pV30 sjBjnooB ub paqddB 3M uoijtqos |B0iJ3Ujnu sqj joj aAijEAuap puooas sjí puB juaipBjS ppij oijBjsojjoaja jbixb aqj joj uoipunj ajjq-dajs b pasn aA\ Suqjapoiu |boijA|bub aqj u] pasn Ajuouiuioo jsoui aqj bjb spoj jo suoipas jo spoy saujauioaS juajajjip aABq ubo sppij a|odnjpBnb SuipiAOjd s3pojp3[g [p] p|dnjpBnb usissn-y pajBJEdas v Suiuijoj

sajodnjpBnb oijBjsojjoaja jnoj jo Suijsisuoo aqojdojoiui b japisuoo sm a|dujExa puooas b sy

sojBuipjooo asBqd aqj jo AjqBjoj ajoqM aqj jbao uoijouty uoijnqujsip aqj jo sjuauioui aqj jo xujbui aqj Suisn uiBaq aqj jo snipsj aSBjaAB aqj auiuuajap 3av uoij

(hl zMiauafaj utojf uayvj) /ofjuafod ¡vnuautnu aiji jqfst aut/ pai/svp 'ppom poiirnuaijimu o/// .10/ v/ ,?//// xnonuituoj 'xuaj japiii/Xs-f d joJ pa/n/ni/na so ¡miusiod jvixy 7 puniíiq

(ui)z

087. SL L 0L L S9 L 097

-Bzimijdo sqj joj uoijBjSajui [Bouaujnu aqj jo dajs qosa jb paAjssuoo A|jotjjs 3q ubo lusaq aqj

jo 3uin|OA ssBqd sqj poqjsui siqj SuiA|ddy [1] jsdsd siqj jo sjoqjnB sqj jo suo Aq pssodojd

Page 46: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

THE MICROANALYTIC PROSPECTS OF A HIGH RESOLUTION PEEM

M .M erkel(1), M .Escher(l>, O.Schmidt<2), Ch.Ziethen(2), G.Schönhense<2)

(,):Focus GmbH, Am Birkhecker Berg 20, D655I0 Hünstetten-Görsroth, Germany (2>: Universität Mainz, Institut fü r Physik, Staudinger Weg 7, D55099 Mainz, Germany

Using synchrotron radiation at BESSY or a Mercury lamp we perform microspectroscopy experiments with a photoelectron microscope (FOCUS IS-PEEM) equipped with an electron energy analyser (FOCUS MICRO-ESCA). In this arrangement we are able to determine the chemical composition o f solid surfaces with a high lateral resolution down to appr. 250 nm.

Multi Channel Plate Fluorescent Screen

Imaging DeviceHuman Eye, Foto, Video o r Slow Scan CCD Camera

Channeltron J | 0

Samplex/y adjustable via piezo drives

| Objective

Contrast aperturesize and X/Y adjustable via piezo drives

Stigmator/Deflector

Iris Aperturesize adjustable (mech. feedthr. )

First Projective

Second Projective

Energy Analyser

Figure 1: FOCUS IS-PEEM equipped with the H-ESCA energy analyser

The experimental set-up is shown in F ig .l: The PEEM is used to get a lateral image o f the chosen sample region with a resolution o f today down to about 20..25nm. To get chemical information o f a certain feature this region o f interest is centred in respect to the actual field o f view by means o f the piezo driven x-y sample stage. Now the field o f view is to be limited using the iris aperture located at the first image plane o f the microscope objective lens. The iris aperture can be closed giving an effective field o f view o f down to about 250nm depending on the actual total magnification o f the PEEM. The deflecting potentials o f the analyser have to be switched on and choosing a suitable pass energy the energy spectrum of the selected region can be taken. More detailed information is given elsewhere [1 j,[2 J .For demonstration o f the recent performance we show in Fig.2 an example: This PEliM micrograph was taken with a photon energy o f 95 eV at BESSY I (Undulator IJ2 combined to a multilayer optics). The sample consists o f 20x20|im Pt-Co-Pt multilayer squares deposited onto a silicon substrate. There are plotted three valence band spectra taken at different p-spot

Page 47: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

91WIÏ ■ (¿661) W°d3ÍI ÀSS3H ; tóUHOSJí^-f ‘japiauips’WD ‘s3[[|o r ‘J31uiqjj >i ‘asuaquoqos’O ‘1P™H°S'0 ‘U3MJ3!Z'HD tlJ

(8661) ssaid ui iqjoj^nsuj'pn)^ PsuoquoqogQ ‘uuBuizupHTl‘Bfnqva ‘3jaqaupixn ‘a>[uaiAia ‘U3qj3i'/ q3 ‘jpiunpso Mauds'H [£]

686-E86 i (8661)16^88 uaqd pH MdSïa'f

; jouqosii'xf ‘qoBjpuno H ‘qoaiMSM ‘ouBuisuunj Q ‘p[SM05[Bpz.ir)}i ‘jappsp^jajuiaij^i ‘asuaquoqos'Q ‘jappuqosjA['3 ‘J3lP3JHO ‘jpiunpso ‘uoqjaizq;) [z\

ťl0I-600l ; (SóóOTFM usiU iayosdS iaT iasuaquoqoso ‘uuBuizupHTl ‘3jaqaup|>in ‘awa ‘wqosg ^ ‘p>[J3JAm ‘Mqoaj HO ‘uaqpxz’qD ‘jpiuiqoso [l]

:S90U3J3J3^

■(2VIA[niS9S0 put: ¿vwnmso) aawe A'q papunj ajaM sjuauiuadxa oqj

sajdurexa ouios jwoqs jjia\ sm qoBOjdde siqj joj osjy ’XSiauo uojoqd jq3u

oqj ojuo pounj aq oj Xjuo SBq jojBiuoiqoouoiu ouq lUBoq uojjoiqouXs aqj sjuauiap aqj jo

so3pa uoijdJosqB Xbj-x JO aauasajd aqj 3u;sn („SuiddBiu [Bjiqao,,) iajOBJBqo 9uipuiq jpqj puB

sjuauiap |BoiLuaqo aqj uo uoijbuuojui jaAipp oj a[qB si [Ajyyj aqj juauidmba puoijippB aub

jtioqjiyW :[^]anbiuqaoj pjBpuBjs b XpBaip si uoijbuuojui poiuiaqo jo3 oj Xjijiqissod a|ijBSJ3A y

[£] UA\oqs aq |[im sjjnsaj jsjij

auiog („Xdoosojoiuioxjoads,,) SuiddBui

|BJU3UI3p |BJ3JB[ JO ppij aqj SJ3JJ0 JBqAVsa3niui j^aad oiJBiuoiqoououi isEnb jaS

OJ ajqB ,<pB3J[B 3J3AV 3A\ puBq joqjo aqj uo suoiSaj ajdures uibjjoo jo BJjoads

X3joua oijX[BUBOJOtai jb[iuiis puBq suo

je ja3 oj poqjaui jq8i(j-jo-auiij aqj jo

sScjuBApB >jooj 3AV („saqounqj saojnos

jq3i| uojjoiqouXs jo ajnjorujs auiij

aqj 3uiqsi[duioooB Xy rpajjodaj X|jjoqs

OS[B Sl l^aad B sisXjbubojoiiu

poiuiaqo jo3 oj qoBOjddE puooas y

UA\oqs aq |[im sjrejap poiuqoaj puB sajdurexa ajoui auiog

■y\aiuoo l A\opq jpM aq oj uiajsXs

aqj jo uoijrqosaj X3jouo ub JSB3[ jb S3JBJJSU0U13P „o,, puB „q„ uaaMjaq jjiqs XSjaua [puis pajpqE] aq j apnjiu3Biu S|qj jo aouaiajjip uoijaunj îjioav

b Xq pajajdiajui sq oj SBq /\0£ jnoqB jo „q„ puB „Bu uoowjoq yiqs X3jaua a3nq aq I Bjjoads aaiqj jBqj jo jjo jno X3j3U3

a\o) 3qj 3u¡Moqs J0|d puooas 3qj Xq

U3A|3 SI 33U3J3JJIP OAIJEJI[Enb B OJ JUiq jsqjjnj y suoijisod juajajjip oa\j 3saqj

JB UsSXxO JO UOIJBJJU30UOO 3AIJ03dS3J

sqj sq oj suiaas aouajajjip uibui

sq i ujsjsXs jsXBjijjnui pnjisodap aures

aqj jo qjoq jsisuoo ppioqs sboib siqj SBajoqM uqu pire „b„ suoiSaj jo uoijisoduioo poiuiaqo

aqj ui saouaaajjip juboijiu3is SAvoqs uosuBduioo jsiij y ajduiBS aqj jo suoijisod (uirl [xpjddB)

suoiSai ojoiui p3|[aqE| jo Bjpsds X§J3U3 qjiM jaqjaSoj uoDqis ojuo pajisodap ajBnbs

W-OD-ld alrl OZXOZ B JO qdEjSojDmi j^aad -Z 3Jn§!i

(A3) Äßjsug U0JP8I3 (A3) a8A!jB|ay

Page 48: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

A COHERENCE FUNCTION APPROACH TO MULTISLICE THEORYH. Müller and H. RoseInstitute of Applied Physics, Technical University Darmstadt,Hochschulstrafie 6, D-64%89 Darmstadt, Germany.

The simulation of high-resolution electron micrographs is a valuable tool for determining the atomic structure of objects by means of electron microscopical techniques. Although a number of different simulation methods have been proven useful, a quantitative correspondence between HREM simulations and experimental images has not yet been reached.To take the step from qualitative to quantitative HREM image simulation, a theory of image formation which is solely based on the propagation of the stationary wave function of the scattered electron proves to be insufficient. To avoid this shortcoming, we have proposed a theory of image simulation based on the propagation of the stationary m utual coherence function [1 ]

T c(p,p',t) = {'¡/{p,t)'¡>,(p',t-T))T . ( 1 )

Here 1 is the electron wave function and (.. denotes the time average over the recording tim e T of the micrograph; p, p' are 2-dimensional coordinate vectors perpendicular to tin- optical axis. The recorded intensity in the image plane is given by I(p) = Tc(p, p' = p ,r = 0) — (l 'í 'íp ,i ) |2)r- The coherence function approach correctly accounts for the partially coherent nature of the electron optical imaging process and the quasi-elastic and inelastic scattering processes w ithin the object. The propagation of the coherence function through the object can be calculated efficiently by a generalized multislice formalism [1,2]. In this formulation the scattering properties of each thin object slice are approximately described by the mutual transmission function

M (p ,p ',r) = exp (i(p i(p ) - Pi(p')) ~ g ( M p) + M p ') ) + Pn(p, p \ r )) ■ (2)

This transmission function depends only on the first and second stochastical momenta of the projected slice potential considered as a tim e-dependent stochastic process. This approach considers the fact th a t for weak objects the ideal inelastic image represents the variance of the projected potential [3]. The terms in the exponent are explicitly given by

p\{p) = (x (p,*))t , M p) = Mil (P,ff — PiT — 0),(3)

pn(p,p!,r) = ((x(p, t) - pi{p))(x(p', t - t) - px(p')))T ■

The second relation ensures th a t our formulation does not violate tKS optical theorem as it, is the case for the conventional multislice theory which uses an absorption potential to account for inelastic scattering. The information about the stochastical measures pi, p-¿, and p.\ \ can be calculated from simple analytical models describing the elementary quasi-elastic and inelastic scattering processes w ith a sufficient degree of accuracy. Currently we employ the Einstein model of lattice dynamics for therm al diffuse scattering and a modified Raman Compton ap­proximation for inelastic electron scattering resulting in electronic excitations [1 ,2].To dem onstrate the feasibility of our calculation method we have simulated unfiltered diffrac­tion patterns of Si (110) for different crystal thicknesses. The calculation considers the influence of elastic, quasi-elastic, and inelastic scattering processes within the object. The results are compared w ith experimental diffraction patterns of specimens of comparable thickness. The

Page 49: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

OS

uoipmunmmo'j yfvaud ‘japo/l-inj>]irej¿ ‘jjjj ‘iapuBAupgj pire niay; Q',\\ k\•(^86x) SI MoDsoMiutvjpß ‘ascry C

(S66l) 09 ädoosouotuivjfjß ‘asoy y pan saSuiQ Q ‘.laSjay y g (8661) ‘061 fi-dojsoMiffl fo prunof ‘ipsjoipgy pm; asoy y ‘«lUM h I

:S30N3H33aE

|)uno.iS>[:H;q uouoijd pa^nuns :p¡íh.í mo'ffoq ‘ajqisiA puncuSspBq uouoijd tpi.w u.iav)Kd utH'j.nMjjip pniiauiuadxa papeosaj .7/3; uiotfoq ‘uwjiBd uoip-ejjjip pajBjnuiis pajaqguQ :fyßu do'l ‘u.iavjtîd uorprujjip [f;')Tiaun.iadxa pajaqguß .7/3; rfoj; uiu OOC °? OSI uaa^aq ssaujpiq:} i|)iA\ (on) !S Io stua^ßd uoipBjjjip pajxqiunis pire p;jaaunjadxa jo uost.n;dmoQ ajnSij

[{?] áutíulioq ‘japo/îJn}5(ux!jj ui soisa'ij j jcypnpuoo -¡11 i.>s .1° annijs’U] at[4 iiiojj japtreAupg y pin; trey Q'M ■'■(1 pauuojjad uaaq 8At:q s^uauiuadxa

Page 50: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

VARIABLE MODE RETARDING FIELD ELEMENT FOR LOW ENERGY S E M

I.Miillerová, L. Frank and E. Weimer*Institute o f Scientific Instruments AS CR, Královopolská 147, 612 64 Brno, Czech Republic LEO Elektronenmikroskopie GmbH, 73446 Oberkochen, Germany

Today's trend toward low electron energies in a SEM is motivated by reasons connected solely with the specimen itself. At low energy electron impact, the interaction volume diminishes so that the information is better localized, the total electron yield is generally higher and the specimen charging-up can be suppressed, and moreover many new types o f contrast appear. Contrary to this, although significant progress has been made in designing low voltage guns and electron optical columns, principal needs for keeping the beam energy at least at few keV throughout the column cannot be avoided. These include suppression o f influences o f both the external stray fields and the mutual interactions o f the beam electrons, and extraction o f a sufficient current from the cathode. Using the SEM designs employing variable electron energy along their trajectory between the gun final anode and the specimen can combine both demands.

One important possibility is to use an integrated beam accelerator or booster [1,2] which holds the beam, between the gun extractor and the objective lens, at an energy higher than the landing one, which is given by the cathode potential with respect to the earthed specimen. An immersion electrostatic lens, combined with a normal objective lens, closes the booster. The combination lowers the aberrations and they even decrease with the increasing immersion ratio or decreasing landing energy. Alternative is to apply a high negative bias to the specimen and to lower the beam energy immediately above the specimen surface with the help o f a cathode lens [3,4]. This combination is capable o f preserving a nearly constant image resolution throughout the energy scale and even commercial SEMs can be adapted to this mode, provided a special detector is fitted [5,6].

The operation o f the booster is limited by a maximum reasonable immersion ratio o f its closing lens - otherwise it becomes too strong to form the probe [7], For a 4wo-aperture lens with the aperture distance D and "sharp" field transitions in electrodes, we get, from a simple analytical calculation [8], the lower focal point lying at the distance D below the lower aperture already at an immersion ratio o f 7. Computer simulation [9] brings the ratio o f 36 for both aperture diam eters equal to D while the field strength on the specimen reaches already 5% o f the full value. The focusing power is further increased by the magnetic lens so that one can consider this principle viable down to electron landing energies p f 200-500 eV only. I his energy range brings already most o f the advantages mentioned above. Nevertheless, principally new contrasts appear below 50 eV where the electron reflection yield acquires a vector character, dependent on the specimen crystallinity, and wave-optical contrasts become possible. In addition, the probing depth starts to increase again, weakening the vacuum demands. This range can be reached only with a cathode lens with the full field strength on the specimen surface and difficulties connected with the specimen biasing.

A booster equipped SEM column (Fig. la) offers a very efficient way o f combining both described methods. W hen insulating even the lower immersion lens electrode from the column body, one can simply switch the retarding field to the cathode lens mode but with the advantage o f the specimen earthed (Fig. lb ) - in-lens detector is then available only. Furthermore, an insulated specimen holder enables one to use also a highly efficient (retractable) anode/detector assembly (Fig. lc).

The variable mode arrangement makes the full energy scale accessible with the possibility to adjust the electric field on the specimen.

Page 51: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

ZS

■LIL ‘£661 ejuEuv ‘soidoxP°MIV Pub Ajjsuiojjoads ssb^ uo juo3 SWSV pj£fr 'IWYO !0'9 uoisjsa q£ NOIPMIS [6]

'68§ ‘2£6l isSuuds ‘>|ndou3uojppi3 Jap uoSeipuruQ ussbjo m [8] OIS ‘¿661 ss3Jd ‘(0°P0T P3) sojjdo spjWEj psSjBqojo îjooqpuBH ui ‘BAOOUSTa [¿]

'68£ ‘£1l/H I (ť66l) BPV iuigooj>[iiAj q ‘BAOJsnnwi [9] £61 ‘£1 (£661) SuiuuEog ^ubjj i fAorannwi [g]

'6£I ‘£t- (3661) AdoosoJDiuiEJijß ‘?Aoran0WI ‘au^TN [ť] £¿1 ‘21 [ iddns] (2661) EPV iuiipoj5(!JAl ‘oimtw ‘BAOJ3nnpMi [£]

¿9 ‘I ÏOA ‘ť66l sP«d ‘£1 N33I ‘uiyewd'f ‘wuipAV H [2] ÍP ‘82 (W>6l) sisÄpuy puB Xdoosojsijrç jng ‘oiUBqs ‘uaisoij f ‘J3iui3/v\y ‘uiyEjMjf [1]

pasEiq usuipsds qjiM puB jjo psipji/AS jojsooq sqj qjiM opoui suo| opoqjE3 -d

psqyES (usiupsds)

III3 MJ'M III3 Pub na uasMiaq pauuoj suo| spoqjEO ‘uoipauuoo jjg aqj 8uiipjiA\s Xq psuiEjqo apoui sus] 3poi]iB3 -q

SU3[

UOISjaiUUII 3L|1 UUOJ 113 puB 13 !p3}B3ipu;

spijusjod psjiddB qjiM uuinioo j^jgs

paddinba jsjsooq b jo suisips pdpuuj *B

I Slj

^ (ueiupeds)

1"A

S

(ueimoeds) / III 3

II 3

(japooq) 13

, jopejep Ajeiijxne

I “■J. 1-

_X-zn_‘A

n-

x jopBjpce

jossejddns

epoqjeo

Page 52: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

SHORT NOTE ON LOW -ENERGY S E M CONFIGURATIONS

I.M üllerová and L. FrankInstitute o f Scientific Instruments AS CR, Královopolská 147, 612 64 Brno, Czech Republic

There are good acknowledged reasons to lower the landing energy o f primary electrons incident onto a specimen in the SEM down to hundreds and even tens and units o f eV. But there are equally good reasons to produce the primary electron beam at a high energy o f tens o f keV. To satisfy both, SEM designs are desirable in which fast primary electrons are decelerated somewhere in front o f the specimen surface.

M odifications o f this general principle, proved to date, can be divided according to where the deceleration field is applied. It can simply be between two bored electrodes o f an electrostatic immersion lens fitted into the magnetic objective lens so that the fields overlap. Another alternative is to replace the final electrode with the specimen, i.e. to use the cathode lens. Both approaches differ mainly in the electric field intensity on the specimen surface. A higher field causes a more effective collimating o f the emitted electron toward the axis, which affects the detection conditions. On the other hand, the specimen geometry, tilt and surface quality become more critical. Some specimens can be even intolerant to a high electric field. The main difference is that the aberration coefficients keep proportionally decreasing down to the lowest energies for the cathode lens [ 1 ] while for the immersion lens, it falls only down to values similar to its working distance [2,3].

Both versions can be treated in the dependence on the working distance w o f the electrostatic immersion lens, so that the cathode lens is for w=0; this is similar to the systematic approach in [4]. Fig. 1 shows the electric field on the specimen surface, as a function o f w/D, where D is both the diameter and distance o f the electrodes. Obviously, the surface field can easily range in tens o f per cent o f the maximum while the aberration coefficients still remain in tenths o f w while for the cathode lens they are roughly equal to D divided by the immersion ratio. This speaks in favor o f the cathode lens whenever it is applicable.

A further aspect is that for a compound lens composed o f electrostatic and magnetic lenses, both aberration contributions are generally comparable. For a cathode lens, the focusing lens influence diminishes at very low energies and the resolution is mainly governed by the axial electric field (see Fig. 2). Consequently, if a cathode lens can be fitted into an existing SEM, good results can be obtained irrespectively o f the original SEM performance. Furthermore, the effect o f such an adaptation is enhanced due to the favorable property shown in Fig. 3. I f the beam aperture is kept constant at a value aligned for a certain landing energy, the image resolution remains acceptable and moderately offset from the ultimate value throughout the energy scale.

From the practical point o f view, the landing energy is defined by a (small) potential difference between the gun cathode and specimen while the (high) column energy can be reached either by biasing both negatively or by biasing positively the whole microscope column. The second case is discussed elsewhere in this book [5], the first [6] can be even applied to commercial SEMs. In a cathode lens, the full electron emission is, in the anode plane, collimated to within a diameter o f 4w(k-l)',/2 where k= Ep/EL is the ratio o f primary and landing energies. This enables one to employ, for the cathode lens based configurations, both the EDOL-type in-lens detection [7] with electrons passing through the anode opening, and an anode/detector combination with a very small central bore (made e.g. from the YAG crystal). The latter type has a very high efficiency but needs a working distance o f 8 mm at least. Doubts have been many times expressed as regards restrictions, put onto the specimen surface properties when the specimen serves as the cathode in a cathode lens. Particularly, the

Page 53: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

'682 ‘(9661) El hddnS] Bl3V luupoj^iiAj ‘BAOjanny\n ‘jizBjpBZIM [8]18 ‘I 1°A ‘8861 ‘£6 ‘°N ’«S Juo3 s¿Hd lsuI ‘3S0>I'H ‘«P^ZÍ [¿]

£61 ‘(£661) SI SmuuBOS ‘>[uejji ‘BAOjannjM‘1 [9] sSuipaaoojj asaqi ‘jauipA\g ‘>]UEJjq ‘BAOjannp\n [ç]

'6¿I ‘(S661) 001 WdO ‘asoy'II ‘sBzsJipjja MçjdBqo

‘¿661 ssojj 3>io ‘(jjopo'f pa) soijdo apiUBj paSjBio jo >poqpuBH ui ‘BAOOuaqe [e]I £ ‘(2661) 26 ^!ldO ‘sBzs>jpjja ‘aso-gH [2]

6SI ‘(2661) Sf XdoosojoiuiEJim ‘eaojohtiw I ‘™q'W [l]

IXe] Aßjeue

■saiSjauapapaps auios joj uinuiqdo sanjEA oj paxy si ji uai[M jo (z Sy ui sb) auo uinuipdo aqi laqiia

si ajnjjadB ureaq aqi uaqM (uiui01 sjuapyjaoo uopBxiaqB joj) Z 'Sij ui sb uoijrqosaj aqx '£ Sy

<7 jajauiBtp ajoq apouB aqi pus M aauBjsip apouE/apoqjBD aqi Xq jajjip saAjna ‘jaqynj uiui 00l °J puB (sauq jaipiqi) uiui oi oi qioq pnba sua[ Suisnooj aqi jo siuap -tjjaoa uoiiBjjaqe oiiEuiojqo puB pauaqds aqi joj ‘suaj Suisnooj B qiiM uouEuiquioo ui suaj apoqiBO aqi jo uoiinjosay j Siq

aouBisip puB jaiauiBip apojpap ([Enba XiiBninui) aqi jo siiun ui pajnsBaui aouBjsip Suijjjom aqi uo aouapuadap aqi ui ‘sapojioap aqi uaaMpq ati|BA uinuiixBui aqi oj XpAi)Bpj passajdxa ‘aoBjms uaujjoods aqi uo ppy oupap pixB aqi jo Xitsuaiu[ • [ -Sy

A3 01 Mopq oj UMop paŽBUii |pM oje uirl g 01 dn qidap b jo sdais aoBjjns uaAa iBqi paiBJisuouiap siuauiuadxa iuaoa>| aAijisod X[]nj si [s] aoiAap paddinba sua| apoqiBO b ui pauuojjad p'JHS SuiSjBqouou aqi qiiM aouauadxa aqi ‘ssajaqijaAaf^ passajpps ajaM suauipads qioouisun puB aAipnpuoouou jo sasBO

Page 54: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

A STUDY OF WAYS OF IMPROVING THE SPEED AND ACCURACY OF COM PUTING FIELDS, TRAJECTORIES AND ABERRATIONS IN ELECTRON OPTICS

E. Munro, X. Zhu, J. Rouse and H. LiuMunro s Electron Beam Software Ltd, 14 Cornwall Gardens, London SW7 4AN, England.Tel. & Fax: (+44) 171 581 4479 e-mail: [email protected]

The main objective in the computer simulation o f electron optical systems is usually to predict as accurately as possible the image blurring and distortions o f an imaging or probe-forming system. This essentially involves computing fields, trajectories and aberrations. The traditional way o f doing this is to compute the electrostatic and/or magnetic field distribution along the system axis and then evaluate the primary aberration coefficients with a set o f aberration integrals involving the paraxial rays, axial fields and their axial derivatives.

Although this traditional method has served electron optical designers well, the design o f some o f the latest instruments is straining the capabilities o f the standard simulation methods. Examples that are hard to simulate by traditional methods include LEEM systems, aberration correctors, electron mirrors, curved axis systems for beam separators, Wien filters, etc. In LEEM systems, images are formed with electrons emitted from the sample surface with low energies and large angles. At such low energies and large angles, conventional aberration analysis may become inadequate, the energy spread can dominate the initial energy, and the concept o f chromatic aberration coefficients may become almost meaningless. In aberration correctors, analysis o f high-order and asymmetry aberrations may be needed, and this is very complicated using conventional aberration analysis methods. In mirror systems, conventional aberration formulations break down near the reversal point, and very involved theoretical treatments are needed unless direct ray-tracing is used. For curved axis systems and Wien filters, the expansion o f field functions, paraxial rays and aberrations o f various orders about a general curved optical axis involves great complexity and enormous scope for mistakes.

To help address such problems, the aim o f this paper is to investigate methods for improving the speed and accuracy o f numerical field analysis and direct electron ray-tracing. The aim is to identify areas where improvements can be made in the simulation techniques. In particular, we aim to try to compute field distributions very accurately (off-axis as well as on the axis), and to see how fast and accurately we can directly compute rays through these fields, without resorting to aberration theories. We then compare the results o f these simulations with conventional aberration results and try to assess the relative merits o f the various approaches.

The most difficult task, by far, in most electron optical simulations, is accurate field analysis, since if the fields are known accurately the trajectories can be computed with negligible truncation errors, using high-order Runge-Kutta or Bulirsch-Stoer methods [1|. For high accuracy field analysis o f structures with rotational or multipolar symmetry, second order finite elem ent method (SOFEM) [2] is in principle an attractive candidate. Isoparametric second order finite elements use biquadratic basis functions for both the element geometry and the potential. The biquadratic element geometry allows the elements to be curved, thus allowing accurate geometrical modelling o f structures with curved cathodes, electrodes, polepieces, grids, etc. The biquadratic potential functions allow a closer fit to real potential distributions than linear basis functions do, for a given number o f grid points.

Page 55: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

psjnduios oq ubs sppy oqj ‘jsasmoh sjuiod-qssui jusuisp sjiuy sqi jb spijusjod 3i|) jo SupUSJSJJip |B3U3lUnU Xq psjnduios ssoq) qjiM 90I Ul JJBd [ UBqj JSJJSq OJ SSjSB ‘S[EIUIOUX[Od uo|]B|odj3iu! 3i|j qjiM psjnduios ‘uoiSsj sqj jnoqSnojqj sjusuoduios p|3ij [EipBj sqj jEqj Moqs sjss1 ’XsBjnssE q3iq b oj suoijsunj XjBjusuisp Xq psjjy XpjS|dui0S sje ‘jssjsjui jo uoiSsj sjijus sqj jnoqSnojqj (sjusuoduios p|3ij puB) pijusjod sqj ‘subsuj siqj Xg uoijssjip z sqj ui sjij suqds sijumb jo siqns Suisn ‘uoipsjip (z) [bixb sqj ui ‘s|BiuiouX]od [BipBj sqj jsqjsSoj jy 3M USqj 3UB|d (z) |BIXE q3B3 JB Siqj Op 3,/\\ U0;jB|0djSJUI sSUBjSBq SuiSn ‘UOIJDSIip (j) (BipBJ sqj u; jy |BiiuouX[od b qons sjnduios 3/\ '(,.N)ZJ ssjSsp jo 3q |Jim jy [BiuiouX|od sqj ui uusj ssjSsp jssqSiq sqj snqj pus ‘XjjsuiuiXs (BUoijejoj sqj jo asmîooq ‘psjinbsj sjb u jo SJSMod usas X|U() sjuiod ,v sssqj qSnojqj V jo sjsMod ui ‘[BiuiouX[od b jy sm pus ‘y = u oj o = •< iuojj sSuej sqj Sumusds ‘(9 * j\[ X]|BsidXj) uoijssjip |BipEJ sqj ui sjuiod yy 1B s|Bijusjod psjnduios sqj s>(bj sm •" suB|d qsES jb usqj (ssuojssfBjj sqj sjnduios oj qsiM jsjb[ |[im sm qsiqM inqjjM sn;pBj isoujjsjno sqj Supq y) sixb sqj punojB y snipEj jo uoiSsj |Boupu}iXo jejjuss b 111 \iuE|d (rz) sqj u; jEpSuEjssj sjinb jnoXBj qssui sqj qjiM '[AIHJOS Suisn uoijnqujsip ppy sqj sjnduios jsjij s^ suoijsunj sijXjbub Suisn sixb [Boijdo sqj jbsu sjusuoduios p|sy puB |B|jusjod sqj Suijusssjdsj joj spoqjsai SuijeSijssaui ussq SABq sm ‘uisjqojd siqj suiosjsao oj

aupBjj-XBj jssjip Xq uoijbuuojui uoijBjjsqs sjBjnssB uiBjqo oj pspssu sq Xbuj ssuojssIbjj jo spuBsnoqj jo susj sjsqM ‘suisjsXs W331 jo uSjssp sqj joj mo]s X|qBjdsssEun sq Xbui siqx

),] pssBq-uinijusj zpjN OSl B uo 11111 01 J° XoEjnsoE ub oj sjnduios oj spuosss £0 jnoqE a>|Ej ues Xjojssîejj suo ‘poqjsui siqj Xq psjnduios sjb ssuojssIbjj uoq a,\ mo|s si poqjsui sqj ■jsasmoh ()01 u! JJBd [ oj psuiBjqo sq ubs sjusuoduios ppy - sjBjnssB si poqjsui siqj SMoqs sj[nssj |spoui s;jX|bub sqj qj|A\ u0SiJEdui03 (sjuiod puS (,p Suiajoaui) sjusuisp §uipunojjns jnoj jo sspou je [Eijusjod sqj puE jusuis|s sjiuy sqj uiqjiM sspou je spijusjod sqj uas.wjsq suisqos uoijE|odjsjui ub Xq psuiBjqo sq ubs sjusuoduios pjsy sqj ‘jusuisp sjiuy b uiqji^V ■pspssu SJE SJUjod SIXB-JJO JE SJUSUOdlUOS P[SIJ sqj JO SSnjBA SJBJnSSE ‘3upBJJ-\EJ JSSJip JOJ

ssuBjsip sjiuy b jb ssuBpunoq Xq psjBuiuusj si U0ijB|ns]B0 ppy sqj usq w poqjsui jusiusp sjiuij sqj ui pssnpojjui sjojjs uoijbsuüjj sqj Xpspsjd sssssb oj sn ssjqBus siqj (|bj3sjui psssg-jsunoj b §uisn) uoijssjip [bixb sqj ui Xjiuyu; oj o3 Xsqj sjaqM puB (ssuss psssg-jsunoj sjsjssip b Suisn) ssuBjsip sjiuy jb sjbuiuusj sjb sspojjssp sus[ sqj sjsqA\ ssbs sqj qjoq X|jsexs sjpuBq ubs ppouj siqj sixb sqj uo sb ]pM sb sixb-jjo ‘sppy psjnduios sqj jo XsBjnssB sqj >psqs oj sus] [Bijusjodiq b joj ppoui sijXjbub ub pssn SABq Sy\\ psjusssjd sq |[|m sjusuisAOjduii sssqj qjiM psuiBjqo sjpssy Xem psyiun e ui jsajos suies sqj Xq psjpuEq sq oj (jEijusjod jojssa sqj joj ssuBpunoq jsiqsiJiQ puB (Eijusjod jejess sqj joj ssiJBpunoq iiuBiunssj S s) sixb sqj je suoijipuos XiEpunoq snouBA puE ssuB|d XjjsuiuiXs sjqEus oj •ssjqBUEA siqissod sb ‘sspou XiBpunoq ]|B Suipnisui ‘sspou sqj ||E §uijbsjj (j) puB ‘XsBjnssB jo sso| jnoqjiA\ pssds uoijEjnduios ssbsjsui XjjubsijiuSis oj suiciuios ||B qsiqM ‘suoijejsji jo jsquinu psjinbsj sqj puB ‘uoijEnbs jsd suusj jo jsquinu sqj sssnpsj puB '%çz Aq suoijBnbs jo jsqiunu sqj sssnpsj siqj - jusuisjs jspjo-puosss qsES ui sspou jbujsjui sqj jo uoijBuiuiip -sjd ( | ) spnpui sssqx suisiqojd sssqj sujosjsao oj jsa|os 0301 JspJO-puosss jno ui sî(bui oj SuiXjj sjb sm sjusuiSAOjduii suios ssnssip sm ‘jsdEd s;qj uj suiij uojjnssxs puB Xjouisui qjoq u; jsos qSiq ssa|oaui qsiqM ‘uoijBu;uiqs UBissnBQ Suisn ussq ||ijs SABq sm ‘sssbs qsns u| [(E jb jou jo X]mo|s psSjsauos ssuiijsuios SEq ji sjsqM ‘(sjinsjp sijsuSbuj sus] sijsuSbui joj) sisX|bub |Eijusjod jojssa sijsuSbui qjiM ssij[nsyjip suios psjsjunosus SEq jnq ‘(|Eijusjod je|ess susuSeui Xq sisXpuB sssidsjod sus| sijsuSbui puE sssusj sijbjsojjss|s) suisjqojd |BIJUSJod JB|BSS SIJJSUIUIXS X|[EUOjJBJOJ qjiM |[SM S>|JOM JSA[0S 9331 jspjo-puosss jno [Aj;-|-lOJ M1!M injsssssns os psAOjd SEq qsiqM ‘poqjsui 0031 ol|l SE M3ns sjsa[os uoijEnbs jsbj Suisn ui ssij|nsyj;p sjoui ussq SABq sjsqj puE ‘(JAJ3JO.-I) poqjsui jusuisp sjiuy jspjo jsjij uBqj uiBjSojd oj psjBSi|dui0S sjoui qsnui s(ji jsqj si PV3JOS Xqnsyjip uieui sqx

Page 56: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

much faster with the interpolation polynomials. The field computation and the resulting direct ray-tracing are both speeded up by at least a factor o f 20, for the same accuracy. A typical trajectory can be computed in about 0.016 seconds with less than 10 nm truncation error. This enables 10,000 trajectories for a LEEM system to be computed, and the results plotted, all in < 3 minutes. Results illustrating the technique will be presented.

In general, using the above method, the potential near the axis o f a round lens is expressed in the form:

O ( r ,z ) = c„(z) + c2(z)r2 + c4(z ) r4 + . . . + c2</v-i>(z ) ''2t^ l)

c'o(z) represents the axial potential, cifz) is related to the second radial derivative at the axis, C4(z) to the fourth radial derivative, and so on. These functions have been plotted as functions o f z and are very smooth, well-behaved functions. Assuming the potential obeys Laplace's equation, both the radial and axial derivatives o f the potential, at the axis, can be directly derived from these functions:

Radial derivatives at r=0: d^O/dr2 = 2co cf<t>/drA = 2Acn db<S>ldrb = 12()ch etc.

Axial derivatives at r=0: c^íVdz2 = -4co d4<I>/3z4 = 64c4 56<t>/3z6 = -2304c(, etc.

These functions can all be obtained directly from the radial polynomial fits. Since the axial derivatives are exactly the functions needed for computing aberrations by the ordinary integral methods, these functions can be used to evaluate the aberration integrals directly, without any need for integrations by parts, which greatly simplifies the formulae and their programming. The aberration coefficients up to fifth order, or possibly even seventh order, should be able to be computed accurately in this way. We are in the process o f comparing the aberration integral results with direct ray-tracing, for ordinary imaging systems, and hope to present results o f this at the meeting.

Techniques for improving the speed and accuracy o f the direct ray-tracing itself are also being investigated. Instead o f using a standard fourth-order Runge-Kutta formula, we are evaluating a fifth-order Runge-Kutta formula due to Cash and Karp [5], which involves six field evaluations per step. This formula is accurate to fifth-order terms in the Taylor series expansion, but simultaneously also allows an estimation o f truncation error on each step, using an embedded fourth-order Runge-Kutta formula. This can be incorporated into an adaptive step-size control algorithm, that optimizes the step size to produce a fast ray-trace with the truncation errors contained below a specified threshold. This typically enables < 10 nm cumulative truncation error over an entire trajectory in < 100 steps.

We are also trying to apply the above techniques to the analysis o f multipole and curved axis systems and hope to also present some initial results for these cases at the meeting.

References:

[1] W.H. Press et al., “Numerical Recipes in C”, 2nd Ed., Cambridge University Press, 1992, 707-732.

[2] X. Zhu and E. Munro, Journal o f Microscopy 179 (1995) 170-180.[3] B. Lencova and M. Lenc, Scanning Electron Microscopy 86/111 (1986) 897.[4] B. Lencova, Nucl. Instr. and Meth. In Phys. Res. A 363 (1995) 190-197.[5] J.R. Cash and A.H. Karp, ACM Transactions Mathematical Software 16 (1990) 201-222.

Page 57: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

■OSZ-IZZ (¿661) t>8 jpsds JP3IH T IB P >P!J [¿]

(9661) oujg ‘sondoopnjnj po&iRiQ ui spuojj juoooy uo uios juj qjg ‘asoy j[ pire ‘_io[[niAl H ‘snzs^io.y q [9]

(9661) u!iqna '-»IN J§uo3 jng qi 11 ‘asoy h Pur ‘JaiiniAI ‘H ‘SBZs>[pJd q [g]

(S66I) Sizdpq ‘goa J3P SunSex ¿j ‘asoy h Pur ‘JOIIDIAJ H ‘sBzs^pjj q ItO

(17661) SUBJ joijai ujoojg j3uo3 pj qiei ‘oy h P™ sezs^ojj a [£]

6-1 (¿661) I '*>M JPaia f ‘ssoy h PUE SBZs^pjj Q ÍZ\

Sie-ioe (S66l) £9£ V spoqpw uinjjsui -pn^ ‘sezs^ojj q puB osoy h [[]

:soouojojoy

uoTjBjjoqB pouoqds oqj puE oijEiuojqo oqi jo uoijESuoduioo oqj ajnjjsuouiop o] ajqissod oq pjnoqs ]| oseo siqj u[ XjqEJopisuoo poSusqo oq ueo uoijeoijiuSeui oinipouuojui oq) ‘suoj OAijoolqo oqj puE jopo[pp oqi uooMjoq oqojd oqj jo o3euii ub SupEjd A51 po/;uujdo oq ueo jojoojjoo ojoqM oqj jo juouijsnfpn oqj ‘suoijBjjoqB juEuiuiop oqj soonp -o.id jojjiui opojjoj oqj juouioSuejje siqj ui oouig 'pojsnfpE jojnjndos uiEoq aqj qSnojqj uiBoq popoyoj oqj jo oSESSEd puoijippB oqj puB poppB oq [jim jojjiui uojjoop oqj dojs puooos aqj u]

uojBJBdos ureoq oqj jo oouEiujojjod aqj ajnsBaui 01 pin; oinpooojd jiiouiuSip oqj dopAap oj ajqB ajE 3« ‘joaoojojaj 'XpjBjnooB pouiuuojop oq uno jojooyop oqj jo soijjodojd oqj qnsoj e sy ’odoosojoiui Suiuubos oqj jo suoijBjjoqB oqj qjiM poJBduioo oSjej oje jojoogop aqj jo suoijBjjoqB oqj Xy VIAIS 3lP 111 asno oqj oq |[ia\ ji se ‘suoj oaij -oafqo oqj uiqjiM suojjoop aqj ajEJapaap jou soop 096KSQ 3LH a:)u!S ’o06 J° uopooyop e qji.w jojnjndos ureoq oqj q3nojqj uinoq uojjoop oqj jo o3nsssd 0|8uis b ojbSijsoaui om dojs jsjg oqj uj

•jojoojjoo jojjiui aqj jo sjuouiojinboj pondo uojjoap oqj oj odoosojoiui

3uiuueos oqj jdBpB oj posn oje sosuoj osoqj jsoj jno uj -sAej jo qjsd oijjouiuiAs b 3uijsnfpB

joj jojoogap siqj jo saonj jixa pire ooubjjuo oqj je paoBjd oje sosuoj ppy oijEjsojjoojg suoj

aAijaal'qo aqj pun tuajsÁs josuapuoo oqj uaoMjoq paoEjd si JOjBJEdos ureoq oqx qouoq poijdo

—uojjoop ue se odoosojoiui 3uiuueos 096IAlSa 033 B 3Sn 3AV ‘jojjiui oqj Suijsoj joj -Apjbje -dos pojsoj oje sjuouiop pnpiAipui oqj ‘odoosojoiui pojoojjoo oqj jo Ajixo|duioó oqj oj 3uimo

•[¿] SUOJJ

-oop pojjiuio-uoSjuoy joj odoosojoiui-ojjoads pojoajjoo b jo uoijonjjsuoo oqj qjiM poujoouoo si qoii|A\ (^sanbiuqoax juEAopy [jy joj odoosojoijAj-ojjood^^ j joofojd-xyVIAIS SLIJ J° )JBd jbjuoui

-Epunj b osp si jojoojjoo jojjiui oqx '[9 ‘£ ‘p ‘£| Xjsnouojd pouqjno uoaq XpBOjp OABq sjuourop juojojjip oqj jo [z ‘ [ ] sojnpooojd uoijepo|eo pun sojnjnoj aqj pus ucJpaojjoa oqj jo jdoouoo oqx uo|joo[jop-006 m]A\ JOjBJBdos ureoq e jo sueoui Xq odoosojoiui uojjoop ue jo uuirqoo oqj ojui

pajuouio|dui| si jojoojjoo siqx sosuo[ uojjoop jo uoijBJJoqB pouoqds oqj puB oijnuiojqo oqj joj X|snoauEj|nuiis SuijEsuaduioo jo ojqEdBO si qoiq v. pou3isap uaaq ssq jojjiui oijejsojjoop uy

i(uviuj3Q '¡pnisuunQ(i8ZP9~(l 9 9^bJtsjntfDsif30jj ‘jpviswuvQ faisjíMUf] ¡n3¡uy.~i3ji ‘sjistyj pai/ddy Jo ainjpsuj

asoy h P«b Jqads y ‘pjjeh d ‘snzs^pjj a

HOlDHHyOD>IO»>IIlAI V 0NUS31 HOd HDN39 lV3IldO-NOÍI13313 NV 30 NOUDfiyXSNOO

Page 58: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

ULTIMATE RESOLUTION: WHAT ARE THE NEEDS FOR FUTURE MICROSCOPES?

Harald RoseInstitute of Applied Physics, Technichal University Darmstadt, D-64289 Darmstadt, Germany

To fully understand the properties of solid objects, a detailed knowledge of the atomic structure, the chemical composition and the local electronic states is necessary. The atomic stucture of nonperiodic details can be determined in principle by means of tomography provided that the resolution limit can be lowered to about 0.06nm. In order to achieve quantitative information, a high-performance imaging energy filter with an energy resolution of at least 0.2 eV at a voltage of 200 kV is mandatory. If such a filter is incorporated in a combined STEM-TEM, it will become possible to elucidate the bonding of segregant atoms and the local distribution of electonic states near interfaces or defects.

For achieving sub-angstrom and sub-ev resolution, an entirely new generation of electron microscopes must be developed. The ideal future microscope will be a combined STEM-TEM operating at voltages between 150 and 300kV. It will consist of a field emission gun followed by a monochromator yielding an energy width below 0.2 eV. The condenser system must provide genuine Koehler illumination for the TEM mode and a spot size of about ,2nm for the STEM mode. This system also enables selected-area diffraction with variable cone angle if the diameter of the illuminated area is large compared to the diffraction-limited spot size. The spherically corrected aplanatic objective lens will consist of coma-free round lens and an integrated hexapole corrector. The formation of a spatially extended energy loss spectrum is performed by the highly dispersive aberration-free MANDOLINE-filter which has by far the highest transmissivity and the best overall performance of all filters proposed so far. The filtered intermediate image or the energy loss spectum are imaged onto a CCD array by means of an aberration-free projector system consisting of several lenses. For obtaining sub-angstroem resolution it is a "conditio sine qua non" that the incoherent defects resulting from parasitic mechanical and electromagnetic instabilities are reduced to such an extent that the information limit is pushed below 0.06 nm. The realization of this ambitious task is by

far the most difficult problem encountered on the route towards sub-angstrom resolution.

Page 59: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

sjjAJcI IBUOIJU3AUOO joj 3|qBjnoABjun si siqi ‘Xjejjuoo aqj uo 'aXa uBUinq aqj joj ajqBjnoAEj Xjoa s| siqj put: ‘uoiSaj uinjjaads MOjpX aqj ui jqSlj sjíuia ji ‘spjsXja a[3urs pajE§ijsaAUi jaqjo a^ijun 'uoiiBAJOsqo pojip joj suaajas 33 joj ajqEjms si jRqj [BJsXjd ajguis X[uo aqj si 33:0V A 3MX

uoiSaj uinjjaads oabm jjoqs aqj ui xiMd jo Xjiaijisuss |EJja3ds M0[ 3qi S3SI1B3 JEqj MOpUIM 30UEJJU3 ssb[3 aqj jnq jpsji apoqjBaojoqd sqj jou siIl MopuiAV aauEjjua zjjEnb aqj qjiM xWd 3lH Suisn Xq pasEajoui X|pa5[JBUi aq pjnoa a3:dVA jo SuiqajBiu jej pads aqj ‘jbasmojj 'pasn xWd 02 S olH °l ‘XpAijaadsaj ‘SuiqajEin pujoads bsjom aqi put; ]saq aqj Moqs sjbjsXjd 3[Suis 33:<JVA Pur n3:‘jR3 aqj lRqi ajqEj aqj ui pozuBuiums s]|nsaj aqi uiojj smojjoj jj j 3]qEX u’ usaiS 3jt> ‘ jj s oj se j[3m sb ‘pasn apoqjBoojoqd02 S 3I0 oj SuiqajBui [Bjjaads aqj jo anjEA aqj qjiM jaqjaSoj (i^HAVá) uinuiixEui j[Bq aqj jo qjpiM Iinj aqj jo anjBA aqj puE puEq uoissiuia aqj jo uinuiixBiu aqj jo uotjisod aqj ‘[bjsXjo ajSuis qoBa joj a|qissoduii saijisuajut jo uosuBduioa aqj saífBiu auiij auiBS aqj jb jnq spuEq uoissiuia aqj jo uoijisod aqj jnoqE uoijbuijojui jajjaq ssaiS siqx anjBA uinuiixBui sjí oj pjEŽaj qjiM pazipuuou si qoEa puB pasn jjajj aqj jo XjiAijisuas [Bjjaads aqj joj pajaajjoa ajB Bjjaads uoissiuia aqx 2 Sij u| pajuasajd ajB pasn sapoqjsaojoqd 02 S PUB II S J° saijiAijtsuas [Bjjaads aqj pire ‘j '3;j ui UMoqs ajB s[BJsXjo ajSuis ng:zjt>3 puB i\,¿ ‘33:dVA ‘°3:OVA J° EJjaads uoissiuia X3 aqx

ejpads uoissuuji

saixaadoad sxvxsahd aaoNis xo asahíis

aisBg puB jbdsej oqjnx sa§Bn§UE[ SuiuiurejSojd ui uajjuAv sem suiqjuoSiB uoijaajjoa pauiBjuoa qaiqM sjbmjjos Suissaoojd pus SuunsBOiu aqx Jajnduioa [Buosjade Xq pajjojjuoa sem

snjBjEddB SuunsBaui aqj puE ‘(881^3331 ‘gidO) sncI aaEjjaju; asodind [EjauaS aqj oj pajaauuoo ajOM sjuauinjjsui jBnpiAipui aqx JajauiJiOAOireu ui->po[ e Suisn pajnssaui puB ‘jojBuiojqaououi siqj jo jijs jndjno aqj je xi^Jd B dn papid ‘JojBuiojqoououi jojjiui b Xq pasoduioaap X[[Ejjaads sem jbuSis o aqj ‘juauiajnsEatu jBjjoads joj [i] snjEJEddE 33 pajsxssB jajnduioa b Suisn pajnsEaui ajaM pajESijsaAui sjojE[jijups aqj jo saijjadojd (33) juaosauiuinjopoqjB3 -suoijEai|ddE IA13(X)S JOJ s3uo Suijsajajui jsoui aqj sb uasoqa aja/A (+íng:zjE3) apuony uinpjBO pajEAijoB uinidojna puB '(LPd Joqdsoqd japMod aqj oj spuodsajjoa XjiEOiuiaqa qa;qM ‘+£a3:sO!SzA) ajBaqis uinujjX pajBAijas tunuaa ‘(+í33:tOIVA - 33:dVA) aji^SAOjad uinuiuiniB uinujjX pajBAijaE tunuaa ‘(+t33:ílOíIV£A ' 33:OVA) 10ujb3 uinuiuinjE uinujjX pajBAijOE uinuaa jo sjBjsXia a[§uis ‘asaqjjo pajnsEaiu ojom sjEijajEui 33 jejsXjd ajSuis juajajjipjo suaj auios ‘XjojBJoqEj jno jy

XNaiMaoNvanv xvxvaiMHadxa ony sivxsahd aalvoixsaANi

(XlMd) 3t|nl Jaqdijinuiojoqd aqj oj SuiqojEui jBjjoads aqj joj aijsuajaBJBqa juBjJoduii ue si uinjjaads uoiss;iua aqj puB ‘(HÖa) XouapijjauinjuEnb aAijaajap qStq b joj aijsuajaEJEqo aAisiaap aqj si auiij XEaap jojEj[ijups aqj ‘Xauapyja jojBijijups aqj sapisag 33 jo sisXjbub paisXqd aqj joj os|e jnq IM3(X)S u! uoijsaqddB sjejsXjo ajSuis aqj jo Xji|iqEjins jo uoijBuiijsa aqj joj X[uo jou juEjjoduii ajB Xaqx 'W3(X)S - adoasojaiui uojjaap uoissiuisubjj SúTuubos e jo/puE adoasojaiui uojjaaja Suiuueds b joj jojaajap uoijE[[ijups e jo sjajaurejEd jojE[[ijups aisBq aajqj ajB auiij Xt:oap puB ‘(Xjisuajui uoissiuia) Xauapyja 73 ‘uinjjaads uoissiuia (33) juaasiuiuiniopoqjEa aqx

NOixanaoaxNí

(23 oiuqm@u¡3d) Jtjqnday ‘oiug pg ng -23 '¿Pl vysjodoAojpjy‘:>tiqn(by at/j fo ssouaps /o Kwapvoy ‘siudiurujsuj oißiusps fo ainjijsui

BjEjjny d P1"3 JanBqag j

SHOX33xaaiMa(x)s aoa sivxsahd xionis jo saixaadOHd XNaDsaNiixrmoaoHXVD

Page 60: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Table I Spectral properties o f single crystals for S(T)EM

single crystal maximum"

(nm)

FW H M '

(nm)

spectral characteristic

S20 PM T

matching'"’ (%)

S l l PM T

m atching'"“ (%)

Y AG:Ce 560 122 73 45

YA P:Ce 366 52 60 58

P47 420 77 85 80

CaF2:Eu 426 30 92 88

‘position o f the m axim um o f the main emission band.

"fu ll w idth o f the half m axim um o f the main em ission band ’“ m atching to the spectral response o f S20 photocathode

“ "m atch ing to the spectral response o f S 11 photocathode

with alkali photocathodes. In the case of YAG:Ce, it is necessary to use the S 20 photocathode (its long wave spectrum region differs from that o f S 11). All other single crystals investigated can also w ork with the S 11 photocathode. In addition to the characteristic broad yellow emission band with a m aximum at 560 nm, the YAG:Ce shows a very weak emission in the blue, violet and UV spectrum regions. This weak emission which is more marked for specimens with a low activator concentration has a sharp maximum at 400 nm which is superimposed on the broad emission band with a maximum in the UV region, i.e. beyond the capabilities of the measuring device used.

EfficiencyFor all applications in S(T)EM, high CL efficiency is required. The relative CL efficiency of

the investigated single crystals is shown in T able H The values of this quantity are always related to the corrected value of the YAG.Ce single crystal. The as measured integral (spectrally non­decomposed) efficiency includes the influence of the PMT photocathode spectral sensitivity. This quantity is interesting from the viewpoint o f application in scintillation detectors where the

Figure 1 Norm alized cathodolum inescent spectra o f single crystal scintillators fo r S(T)EM .

of PMT PhotocathodesEmission Spectra of Single Crystal Scintillators for S(T)EM

450 500 550 600

wavelength (nm)

Figure 2 N orm alized spectral response o f the sensitivity o f the photocathodes used.

400 450 500 550 GOO 650 700

wavelength (nm)

Page 61: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

su ç,p X[uo si amp Xsasp psjnsBsui sqj ‘33:<JVA J0d '% Z °1 sjunoure (uoijBjpxs jo pua sqj jsjje

srl ç psjnsESUi) avojSjsjje sqj putî su oí I si 33:0VA J° 3UIP P paJtisuam sqx -XpAijosdsaj ‘sri z'I pire su \p jo ssuiij Xnosp poinsBoui qjiAv ‘ssajüd XEoap [Bijuauodxa ajSuis 3AEq sjbjsXjo sjSuis ng:zjB3 puB LPA ‘puBq jaqjo aqj uo ssijsuajOBJEqo Xsasp [Bijusuodxsijjnui 3ABq (33:dVA pue 33:qvA) sjbjsXjs 3[3uis ajEuiuirqE uinujjX qjog srl oi seav uoijEjnp ssjnd uoijEjpxs [ESldXj 3qx n 3[QBX UI U3Al8 3JE M0[§J3IJB pUE 3UIIJ XS33p 3qj JO S3tI[BA 3qX £ '§!X UI UAVOqS

3JB sjbjsXjdsjSuis ng:zjB3 pus LPd ‘30:dVA ‘a3:0VA -PI sopsuapBJBqo XBSsp 13 (BoidXxaUIIJ ÂB.13f[

srl 01 uofiEjnp asjnd uoneipvg weQJS aq) Joj sjejsXjs ajSuis jo saijsuajcrBJBqa Xb33(J £ ajnïilj

(si!) oui!)

‘SOEjd5(001 U0I)BpBJ§3p [BUOIJippE OU pUB ‘pSUIEjqO 3J3AV ‘pousd ami} jayoqs b uiqjiAv jnq ‘sjjnssj JBJIUIIS ‘J3JBJ p3JB3d3J SBAV )U3UI3JI1SE3UI 3qj U3qAV ‘OS 'JU3JX3 JE3JŽ B OJ [EJOdlUSJ X[UO SBAV 3SB3J33pXouapijja aqx g 3[qBX jo uuirqoo isb[ sqj uiojj

JU3pIA3 SE %£ UBqj SS3J SEAV XoU3piJJ3 UI 3SB3JD3p sqj ‘sjnoq asjqj jsjy sqj SuunQ psAJSsqoSBAV p3JtlSB3UI SJEJSXJO 3[§UIS [(B JO XsUSpiJJS

3qj jo Suiuuoj sqj ‘z.ui3V 8-01 xt7 J° ^Jisusp juauno b pire /\3>( oí jo XSjsus ue qjiAv suojjospjog A\0[ XJ3A SBAV XsUSpiJJS JO UOIJBpBjSap aqj ‘SJBU3JBUI X3 jbjsXjd 3[Suis ¡[B 10g

n aiq^ljop uuirqoo ui UAVoqs SB ‘apoqjBsojoqd jsqjo auios jo uoijEoqddB ub qjiAV uoijssuuos ui psjssdxs SSSuEqS JO U0IJBUIIJS3 SAVOIE JI pUB ‘AV3IA JO JUIodjB3isXqd sqj uiojj Suijsajajui si pasn apoqjBsojoqd 0Z S jo XjiAijisuas [Bjjoads sqj joj pajoajjoo Xouapyja sqj ‘siqj oj jsejjuod uj -pspioAE 3q JOUUB3 3p0qjB30J0qd XWd JO SJ33JJ3

'(3n[EA |BI)TUI sqj O) P3JE|3J) 3U11) U3AI§ Suünp 3uiSB3J03p X3U3I3IJ J3........

pasn 3J3AV 3pOq)t!DO)Oqd J [ s slf) J! p3)BLU!)53_ ^

jo )JE)s aq) J31JB unu 0£ painsEsm tpasn apoq)BOO)oqd OZS 3lJ) J° asuodsaj [Ejjaads aqj joj p3)03JJ03un>><

pasn 3p0qjB30)0qd o^S 3lP J° asuodsaj |Ejpads aqi joj pajoauoo^

33:OVÀ J° anpA pajoajjoa oq) oj po)B|3j_

VISU0ZIl£lnaXd®D

80101¿019ZILPd

ZI£8S8zn33:dVÂ

8ZSfrÍL001330VA

(%)(iWd IIS)ClWd OZS)XWd “j

sjnoq £ jnijB>>>ip3jEuipsa^psjnsBsuj se__p3)33JJOO|BJsXj3 3|ŽUIS

Suiuijoj^auaprjja 3aijb|3j

WH(l)S “J sjbjsXjo ajSuis jo Xouaioijjg jj ajqcx

Page 62: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Table III Decay properties o f single crystals for S(T)EM

single crystal decay time"

(ns)

time characteristic

corrected decay tim e"

(ns)

afterglow ” '

(%)

YA G :Ce 110 103 2

Y AP:Ce 45 38 0.5

P47 41 34 unm easurable

C aF2:Eu 1200 1200 1.3

'uncorrected for the tim e response o f the m easuring equipment

"correc ted for the time response o f the m easuring equipm ent

" 'in ten sity m easured 5 p s after the end o f excitation

and the afterglow amounts to less than 1 %. In fact, with respect to the fall time of the pulse of the excitation electron beam (5 ns) and the fall time o f PMT (2 ns), the short-term decay component must be corrected by subtracting approximately 7 ns of the fall time of the measuring equipment. The short-term component o f the CL decay o f both yttrium alumínate single crystals depends only negligibly on the duration of excitation. On the contrary, the long-term component o f the CL decay depends strongly on the duration of excitation, so that for a very short excitation the afterglow of YAG:Ce and YAP:Ce can be one order and at least two orders lower, respectively. This is advantageous for applications in S(T)EM electron detectors operating at the TV rate, because the images with a rich topographic content can be of higher quality.

CONCLUSIONUnfortunately, all single crystals that have their CL decay time shorter than 100 ns (which

is the condition when the TV scan frequency is used) contain oxygen and just thiS*group o f single crystals belongs to those with the least efficiency [2,3]. This means that calcium fluoride, which is the most efficient o f the four chosen, has only limited applicability because its decay time constant is 1.2 ps. The greatest advantage o f YAP:Ce single crystals and P47 is that they are the fastest (38 ns and 34 ns, respectively). Especially, they have no such a marked component o f long persistent luminescence as the YAG:Ce single crystals have. The only disadvantage o f YAG:Ce single crystals is their speed which can be behind the limit for the'TV rate in some cases. It is therefore necessary to search for a way to shorten the decay time of YAGtCe scintillators.

REFERENCES[1] Schauer, P.; Autrata, R.: Inquiry of Detector Components for Electron Microscopy., Fine

Mechanics and Optics, 42 (1997), 340-342.[2] Robbins, D.J.: On Predicting the M aximum Efficiency of Phosphor Systems Excited by

Ionizing Radiation. J. Electorchem. Soc., 127 (1980), 2694-2702.[3] Lempicki, A .; W ojtowicz, A.J.; Berman, E .: Fundamental Limits o f Scintillator Performance.

Nucl. Instrum. Meth. Phys. Res. A, 333 (1993), 304-311.

Page 63: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

sua] piinoj v. jo ppg oujonioiÄs A[|i¡u()('4t;'4().i agi ojuo ppg ajodip paimoj XpíBudoiddu ire sasodumadns gaigM (isua[ sixi;-.)|(|iu.n;A., puioiiuaAuoa agi u-eg; sixe agi jo sjuauiaaeidsip jaSjB] sajq^ua ma^sXs agi iu,)in,)3mu.re agi jo ÆjauiraXs jçiioi:(i3[sire:i:} agi oj Suimq 'ppg suaj Suisnaoj agi pire

sixn ag i jo ijigs aiureuXp îsiy v. aajire.renS s^uauodmoa ppg alapap Xpmd agjL 'p94jii|s si sm; agi uagM paA.iasnoa si SuiSbuii ai^iuStis jegj Xbav b gans ut uasoga si sapojpap ai|'i ¡o siioqiBjpxa agx 'sixb pijtui ag; o; .repaipuadiad uoipajip e ui sapoipap agi jo |iiauiaïiire.i.re aipouad t: Áojdraa 8M asodjnd sigj ioj uorpanp auo ui sixt: agj jo yigs A.n;.i)i<|n> m; smojji; gaïq/A pasodoid si Usuaj spce-a]qi2i.reA„ apBjsojpap pa^aijsigdos y

ipv;suuv(j esgŸg■<) .iifmpjnipKipofj ‘ipvfSuuriQ Jo fyisj,gn,iuß jvDiuyoaj, ‘soisâyj paijddy fo

aso-y -fj pire piuigag j

NOIXOaHia 3NO MI SIXV 3HX jo xjihs ahvhxishv HxiM SNiaa sixv-aisvravA v jo aNiaxno

Page 64: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

SPECTRO SCO PIC X-PEEM WITH EMPHASIS ON MAGNETIC CONTRAST

G. SchönhenseInstitut für Physik, Johannes Gutenberg-Universität, D - 55099 Mainz

Structural tayloring o f magnetic films is a rapidly growing field o f research and development because it offers additional parameters for the control o f magnetic properties. Vertical heterostructures (multilayers) offer a wide range o f technical applications e g. in magnetic sensor technology (read heads, position sensors) because o f the giant magnetoresistance (GMR) effect. Horizontal patterning is crucial for novel devices such as magnetic tunnel junctions for spin transistors being the basic units o f future non-volatile magnetic storage elements (MRAM). Also high-capacity hard discs require the controlled creation o f well- defined magnetic domains with lateral dimensions down to the 100 nm range.

For all these systems there is an increasing demand o f powerful microanalytical tools in the sub-micron range. For patterned structures a resolution o f several 10 nm is desirable, for multilayers it would be advantageous to view "buried layers", i. e. to look through a non­magnetic coating. M ost o f the above-mentioned materials are composed o f several chemical elements or intermetallic compounds. Since the constituents contribute differently to the magnetic behavior, it is necessary to distinguish the various magnetically active components in a system. Consequently, an appropriate magnetic imaging technique must combine magnetic sensitivity with element specificity.

The pioneering w ork o f Stöhr et al. [1] has demonstrated that Synchrotron-based photoelectron emission microscopy in the soft X-ray range (X-PEEM) is a highly promising technique to attack these problems. I f the magnetic X-ray circular dichroism (M XCD) as investigated by Schütz et al. [2] is exploited by using circularly polarised Synchrotron radiation, the magnetic contrast o f a selected element becomes visible.

This contribution will give an introduction into the technique [3] and illustrate its performance by means o f several typical examples. Technical problems like the chromatic aberration due to the energy distribution will be addressed. The base resolution o f our instrument (FOCUS IS- PEEM ) is less than 20 nm, visible in threshold photoemission at hv = 4.9 eV [4] Operation in the soft X-ray regime results in an effective energy distribution o f the imaged secondary electrons with a width o f 5-10 eV. This width has been confirmed by spectroscopy using the M icro-ESCA analyser [5], The energy width leads to a significant chromatical aberration yielding a total resolution o f 120 nm. Approaches to improve the resolution e g means o f a novel Time-Of-Flight mode o f operation [6] will be discussed.

Typical results [7,8] are shown in Figure 1 Micro-patterned layers o f permalloy (left), a Co/Pt multilayer (middle) and an epitaxial Co-film on Cu(100) (right) have been viewed by means o f the magnetic circular dichroism contrast at the iron and cobalt L-edges. Despite o f their similar dimensions, the three structures exhibit completely different domain patterns The permalloy squares show a simple flux closure structure with very few exceptions (like the defect-induced distortion near the centre o f the left image). This general behavior reflects the small magneto crystalline anisotropy and the tendency to minimize the magnetic stray field. The Co/Pt multilayer o f 7 periods (2.1nm Pt / 2.5nm Co) shows a complicated domain pattern ("magnetisation ripple") being indicative o f its high intrinsic anisotropy and the polycrystalline

Page 65: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

(sjajjaq pue SMSiAay aoEjjns ui jBsddB oj) jauqosji^ f pire qoaiMg /y\ ‘asusquoqos 9 ‘Jappuips jv 3 ‘u3qi3|Z 43 ‘uubuijjbh a <S3!I!D T ‘Jajuiojj y ‘iptr* m [8]

(¿661) I8£ “ŠZF ooj>d UJ^S °°S ss-a 'Wt -Jauqosji^ f ‘osusquoqos 9 ‘sa^oojg g n ‘qoaiMg /y\ ‘usqisiZ M3 ‘JSluJQjj y ‘jsppuqos TV 3 [¿]

(8661 ) ‘ssajd ui ‘y qja^V JJSUI PnN ‘ssusquoqss 9 ‘mreuizupH f] ‘P^IAI IAI ‘Efnqv 3 y ‘3j3qauio|>[ Q ‘3)(U3jaj a ‘usqjaiz M3 ‘iPW>S O ‘Ja>(33!dS H [9]

doqsj[jOM siqj uo uounqujuoo Jajsoj ‘|B J3 [S>(astAI IAI 39S [s] (866I) SS3jd u! ‘ u^Md P’S JPsds JJ03|3 f -P* 13 uaqpiz M3 |>]

(¿661) [¿I >8 U3i[d py pue Jj33ds U0JJ33I3 f IjsuqosjjX f puB ‘J3JU10J3 y ‘jsppuqos TV3 ‘|>|SM05(B[3ZJI3 X ‘ssuaquoqog 9 ‘jpiuiqos o ‘usqisiZ M3 ‘J3M33J H O ‘M33!MS AV [e]

(¿861) LZL ‘8S IP! ^ sXqd ^[jsjbjai 9 puB ‘uiqBjj s ‘J3[|3Z >1 ‘31U3DI d ‘“JPMHM M ‘J3u8bav m ‘zWM3S O ÍZ]

(£661) 8S9 ‘6SZ aousps íjsuuoi ¿ g PUB ‘uiBqunQ a ‘BpuBjox s ‘djEH 9 ‘J3I3ujsiuj3h a g ‘lUBUiBS 9 [AI ‘nyW A ‘JM9JS f tl]

:S33UdJ3fo}¡

SJU3UIU3dx3 3qj UI JU3UI38b8U3 jpqj JOJ [8] PUE [¿] SJ3-JJ JO SJOqinB-OO [[E 5JUBql

I 3IPH ‘>IisAqdjnj3(njjsoi5(r^ jnj jnjpsujopuBij-xBjAi sqj qjiM uoijBjoqBjjoo b ui (ajqouajg) 3NS3 PUB (u!IJ3g) ASS3H S33Jnos uopEipEj uojjojq3uX§ aqj jb jno psuJEO puB (ç VH3t>W 50 puB z VW! 129 SO) 3Ë0M9 P3PunJ 3J3m siusiuusdxs aqx :stU3waSpajáioUiioy

sojenbsSuunoqqSpu uosMjaq guqdnoo dijsuSbui b jo uoijBoipui ou si 3J3qx unooo spA9| XbjS omj A|uo ‘33uappui uojoqd jo XijduiuiXs 3qj oj Suimq SMOJJB uo[;bsi;3uSeui 3qj Xq psiBOipui SB S3XB <01 L> XSB3 3ql JO 3UO 8uO[B U0I1BSI13U§BUI uuojiun B 3IBtlbs qOB3 JOJ SJB3A3J (!N uiu S'I Xq pajEOO Xj|BnpB) uiu sssujpiqj ‘(00l)n3 u0 °3 [ep^EJlda sqi ‘Xjjbuij sjnpnjjs

(jqSu) ujtI 8 X mW 8puB (3|pp;ui puB ys[) uiri QZ X uiri qz 3JE sajEnbs aqj jo S3zi§ (jqSu 0} y3| ujojj) (OOl)n3/°3 puB j3ÀB[ii[nui Jd/03 ‘Xo||Buu3d psujsjjBd-ojoiui jo sjnjotujs uiBuiop ousuSb^ ¡ ajttSij

Page 66: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

THREE DIM ENSIONAL SCANNING ELECTRON MICROSCOPY

W. SlowkoInstitute o f Microsystem Technology, Wroclaw University o f Technology, ul. Janiszewskiego11, 50-327 Wroclaw, Poland

IntroductionHumans and all higher animals are two-eyed so three-dimensional viewing the surface

topography should be an expected standard for most electron optical instruments. The subject has also very practical meaning. Quantitative characterisation o f surface micro-topography is one o f most essential problems in many fields o f science and technology, as for instance: microelectronics, micromechanics or tribology o f magnetic media. Scanning electron microscopy (SEM ) is a very important tool for inspection and measurements o f geometrical issues o f semiconductor structures (e.g. critical dimensions). Apart from its high lateral resolution, main advantages o f SEM are that it imagines the surface topography in the way preferred by human eyes and is very operative to find out some subtle peculiarities in large surface areas. However, it still gives limited information about the third dimension o f the surface objects and to measure their elevation and side slopes it is necessary to make cross- sections o f the sample. Current investigations on the problem are focused on tw o groups o f methods [ 1 , 2]: those based on principles o f stereoscopy or making use o f the specific angular distribution o f back scattered and secondary electrons (BSE & SE). Unfortunately, each method shows some deficiencies and disadvantages, so three dimensional imaging still is not a very popular technique.

Stereoscopic methodsThe utility o f a stereoscopic view o f the world to communicate depth information

resulted in the use o f stereo cameras to produce “stereopticon” slides for viewing. The stereoscopic methods o f a quantitative characterisation o f the surface topography are based on the same rules but they apply strict analysis o f the relations between two images registered from tw o points o f view. The idea can be explained on the example showed in Fig. I , where different images can be obtained by shifting the sample or viewpoint. In this case, the elevation difference H between the tw o points, A&B, results from the parallax (cl/ - d2), i.e. from the distance o f the tw o points measured in the horizontal direction:

H - Wd (d, - d2)/S , ^ ( 1 )where S is the shift distance and Wd is the working distance.

Fig. 1. Characteristic dimensions used to estimate the vertical height of objects when the tilt or shift of the viewpoints is applied

Much greater displacement o f the viewpoints can be achieved when it is obtained by changing inclination angles o f the view directions rather than by their parallel shift For instance, the sample stage may be tilted by angle P between the two images to change the view directions (as in Fig. 1). This time, the

Page 67: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

Suiuubos uaaMjaq deS aqj ||ij oj si j^gs p-£ aqj ji jBijuassa si qoiqM ‘uoijnjosaj pooS apiAOjd

jou UEO pue soBds s3jb[ A[3aije[3j ui pajBjauaS si ¡buSis uojjo3[3 pajajjBos >pEq aqj ‘sapisag

uaqj i| ajBjSajui oj puB dd> a [Sue ado|s aoBjjns aqj oj joadsaj qjiM uoijEnba aqj aAjos oj ÄsBa

luaas 10u saop j] X 8y u! pauiB|dxa uaaq aABq Bjnuuoj aqj ui jnooo jEqj sa|8ue oijsuajOBJBq3

(£) ^soa rfiAuis /^uis + dd>soo /soo + [

uoissajdxa aqj qjiM pajBuiixojddB aq ubo

uoijnqujsip aqj ‘[ç] ejbjiijaj oj Suipjoooy uoijnqujsip jqSq aqj oj Ajjbjiujis ‘sajBqs uoijoayaj

puE uoisnyip suibjuoo ji puB jE|nSajji jsqjBj si uoijnqujsip jEjnSuB jiaqj ‘jaAaMOjq saigjaua

qSiq .iraqt oj s^uBqj sauojoafejj jqSiBjjs jsoui|B Suo|B oS ubo jEqj suojjoap poJSjjBOS )pEq

joj jsaisBa suiaas uoijoajap [Buoijoajip aqj ‘jqSq

uiojj jjBdy sado[S aqj jo uoijBjSajui Aq pauiBjqo

aq ubo aoBjjns aqj jo ajijojd b puB Ajisuajui [euS|s aqj s¡ ado[S apis aqj jo ajnsBaui aqj ‘ajan

ssjSue uoijoajop UOJJOO[3 - V0\7 'Vd>\7 ‘S3[SuE uoijisod JOJDSJSp -VQ'Vd) ‘s3|8ue pqos UOIJ33J3p U0jj03|0 - O'O'ffVy 'JOJOOA AjioopA JEIJIU1 - rt

'3|Sue uojssuua uojjoap - X ‘ajStre odo|S soBjjns - dd>•aoBjjns 0|dures aqj oj |euuou jojooa - u ‘ureaq uojjosp AjEuiud - gj ‘sjojosjsp - Q‘3‘a'V :ui3}sAs jopojop paijqduiis E ui S3|8ue oijsuojOEjeq;) j'Sij

2 Sij ui uMoqsuaaq SBq ji sb ‘suiajsAs jojoajap-ij[nui ui pasqeaj A[|Ensn ‘uoynqujsjp jBjnguB umouí) b qjiM aoBjjns aqj uiojj pajBjauaS |buSis aqj jo uoijoajap |Buoijoajip ui sjsisuoo poqjaui aqj ‘A[|Bjauar)

IVťZi saijauBA jo moj b ui j/\¡gs ojui paonpojjui sbm ji ‘jajBq uoijBuiuinj|i apis b jb ua>[Bj suiBjS-ojoqd uo uoijnqujsip ssaujqSuq e jo sisBq aqj uo pajEiuijsa sjoa\ sjoafqo oiqdBiSodoj

jo sad0|s apis puB suoijBAap ajaqM AjjaoiEjSojoqd ui paqddE sba\ poqjaui aqj ‘A[ijbuiuj

uoijnqujsip pmSis uiojj 3di;i|§

s|qBOi|ddE 3J0UI uiaas ‘„uoijnqujsip

[BuS|s uiojj adBqs,, jajjaq jo „Suipuqs uiojj adBqs,, pa[|BO spoqjaui ‘asBO siqj u[ Su;SuBqo

auojououi ajB suoijba3[o [boo[ ajaqM saoBjjns qjoouis Aj3a jb [¡bj Abui Asqx uoyBoyijuapi o|jEuiojnB aqj joj sjoafqo pooS ajE jEqj saSpu puB syu ‘saSpa jo |[ry ‘saoBjjns qSnoj Aj3a joj 3[qB0||ddB jsoiu uiaas spoqjaui oidoosoajajs aqj ‘ABAvAuy >[sbj aqj joj paqddB suiajsAs jajnduioo aqj joj uia[qojd b qijs s; sjosfqo ooBjjns 3qj jo uoijBOijijuapi a[qi||Bjui pue aAipajja

üb qSnoqj|B ‘asn |BoijoBjd ui ajB spoqjauj oidoosoajajs sqj uoijBjuasajd EjBp jo sanbiuqoaj

3[qissod Aubui jo asn qjiM ‘juaj b a>jq sjoafqo pajB[no|BO aqj uo paqojojjs A||Bnsn si aoBjjns

3[duiES aqj jo jsaj ajoqM aqx JiBd-oajajs Suijnjijsuoo saSBuii qjoq aqj jb A|snonS;quiBun

payijuspi 3q oj qSnoua djBqs oq p|noqs sjosfqo sqx OAoqE paqijosap sajnj aqj oj SuipjoooB

sjoafqo oiqdBjSodoj jEjnoijjBd jo suoijBAap aqj SuijB|n0|B0 u; sjsisuoo AqdejSodoj aoBjjns

3qj jo uoijonjjsuooaj |Buoisuauiip-aajqj aqj oj qoBOjddE ojdoosoajajs aqj ‘A[[Bjaua£)sjoafqo aoBjjns aqj jo sapis daajs oj juaoBfpB suoiSaj auios jo SuiMopBqs piOAB

oj aSjE| ooj aq jou p|noqs sjU|odM3iA aqj jo j[ij aqj jo yiqs aqj ‘sasBO passnosip omj aqj uj

(Z) uts/ fp - fj sod ip) = h:sb pajB[n0|B0 sq ubo ‘joafqo aqj jo q 3 [Sub ado[S aqj puB ¡~¡ jqSiaq

soo + Isoo A

átósoodé soo y = — = /

1 IP

Page 68: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

probe microscopy (SPM) and confocal microscopy (SCLM). In this field better results can be expected when the secondary electron signal is applied.

Secondary electrons are generated with Lambert’s distribution, so the current collected by one o f the detectors shown in Fig.2 can be written in the simple form [6, 7]:

/ / i = | iocosy sec cppdSl , (4)n<

where: ig is a maximum angle density o f the secondary current, proportional to the e-beam current and secondary electron yield 50After proper operations the expression for the d e tec to r^ current takes the form:

Ia = io\d-tg(pp-co^®A - 0 P)+cJ , (5)

that leads to the following eq. for the relative difference o f signals o f the detector A and B Ia - 1 b dz

(6)for 0 = 0 and a-A

c/d

dx + Q (7)

Ia + Ib dx ’where c and d are coefficients o f material and topographic contrast respectively. They depend

on the detector geometry, as it has been shown in Fig.3. Finally, an integral o f the expression represents the surface profile along x axis, i.e.:

where: x x - are co-ordinates o f the beginning and end o f the scan line, Q -is an integral constant equal with the surface profile height at the beginning o f each scan line (numbered /). For the tw o detector system all lines have to start from the same level. A fully three dimensional image can be obtained when the second pair o f detectors (C, D) is used to provide information about surface slopes in yz plane. Then, the final expression defining the surface topography along successive scan lines takes the following shape :

z(x ,y t) = a jI a + Ib

dx +st

«JIc - I n )

■ I c + I Jd y + c n ( 8 )

The second integral reconstructs the surface profile in t h e / direction (beginning with the initial altitude Cr) along start points o f all lines (x -Xq), as it has been shown in Fig. 4.

d ./c f

Figure 3. Quotient of the detector geometry coefficients against the detector declination angle ( -4- O.lrad, -9 - 0.3rad, -0 - lrad).

S'. 'V y=v,tFig.4. Scheme of the three-dimensional reconstruction of the surface geometry

The formulas for signal processing, (7) and (8), can be realised both in analog and com puter systems . Analog systems seem more suitable for the reconstruction o f the surface topography in a shape o f profiles which is a form o f two dimensional representation and can be

Page 69: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

O L

I IOIO a 11XX'°N Juej8 '(NH>[) i[ojeoso>] oijijuapg joj oojjiuiuio^ nqi Xq pajjoddns ajaM qojEosoj jno (9661) ¿6 uvdmtvz ‘ spH°S osojoif^¡3fuojXI ‘o>|MO|S M [¿]*

(9661) ZZÏ ‘81 'SumuDOS ‘o>jmo|s M ‘!>(s^oj|d3z3 x [9] (9¿6l) ¿61 9£ V ‘!P!1°S mvts ‘bjejiijaj y [ç]

(¿861) £96 ‘£H‘ osouofwutx>s ‘issaQ a Pub J3[Suog ~a ‘jaunay q [t?j(6¿6l) 0£2 t ‘Suiuuvog ‘^IFPSiqai f [£]

(2661) t’LZ >11 'Smv^ojx ‘ ib jo b5|bubx h [ti (0661) ssajj iunus|d %doosouoitupsistssvuamdiuoj ‘ssny f [[]

S)3U3J3J3]{

suopeaqdde Xueui ui XqdBjgodoj aoBjjns aqj jo uo¡ibii|ba3 aApsjpuBnb joj aApaajja aq Xeui poqjoui „uopnqujsip |BuS;s uiojj odsqs,, aqj ‘sjqnop Xubui os jo ajids u¡

puajxa amos oj paqjnjsip oq jjijs Xbui uopoajap [Buopoajip hs 3lll snqj mo¡j sapijjBd paSjsqo o>|buj oj sppij oujoap auios X|dun suopnps qjoq aqj 'J3aoa\oj¡ suoi aAijisod jo uopoBjjjB jb|iuiis Xq pajBsuaduioo oq uso sagjBqo oaijbSou bsbo puooos oqj ui puB uiaqj Xq pajOEJjjB suojjoap XjBpuooos Xq posi|Bjjnau X[jjBd oq ubo saSjcqo aoBjjns OAijisod asBo jsjij aqj uj [AI3S ajnssajd aiqBUBA aqj jo y\[gs oSejjoa MOj aq; Xq pajBajo ‘saSjsqo ooBjjns aq; jo uopEsuaduioo jo sopipqissod ouios ojb ajaqj uopnjosaj [BpBds jood b puB uopnqujsip pauyap XpjBjnaoBui qjiM |eu8is >)E3m e se soSBjuBApBSip aqj [[B qjiM ‘suojpap pajauBOS >peq oj padsaj qjiM ojBqs SuisBOJOop jpqj oj spBO[ ‘saouEqjnisip oujoap 01 oaijisuos jsoui 9jb jBqj suojpap Xgjaua A\o¡ aqi jo uopBuiuiqg sjojoajap oj a\o[j jpqj Suiqjnjsip ‘suojpap joayap ujaqi Xq pajBjauag sppij o|jpajg saoBjjns oujoopip uo uiBaq-a Xq paonpui soSjBqo oujoap Xq pasneo ajB suojpap XjBpuooas jo uopoajap [Buopoajip aq) Sutujaouoo suia[qojd [Bpuassa XjjBay

uopoajap aqj jo Xouapijja paonpaj b qjiM pauiosuBj si qoiqM ‘sjopapp aqj jo azis ¡¡buis pus uopisod qjiuaz saqdun ji ‘£ 8y u| sniBJoBip oj Suipjoooy sarqBA uinui[XBUj mEjjB ‘p/ o =0 sjuaioijjaoo [BoujauioaS jpqj jBqj os paSuEjjB ajB sjred jopapp aqj uaqM paonpaj X[[Bpuassa aq ubo sjojja SuiMopBqs Jojoapp oqj MopBqs ubo XqdBjgodoj aoEjjns aqj jo sjuauiap os[B ‘auB|d juaguBj aqj Xq 3uiA\opeqs aqi paqBO aq Xeui jBqj guiMopBqs jo pui>( XjBjuauiap s¡qj uiojj jJBdy suojjoap XjBpuooas joa||oo oj a(qB s¡ puB juiod juauiaSuiduii aqj ui aoBjjns a|duiBS aqj oj juaSuBj auB|d aqj jaAo ||ijs si (o<—V*v) Jojoajap juiod b qoiqM je JéSt jo an|BA uinuiixBui aqj si p/o jBqj suBaui jBqx (o06>^) 1SOLU aqj JE aoBjjns ajduiBS aqj oj juaguBj aq ubo suojjoap pajjiuia a’tjj jo saijtoopA

[E|j|u; jBqj joej aqj ujojj sj|nsaj uoijbjiuii| aqx Joajja SuiMopBqs aqj Xq papBaq ‘uoijoajap |BuS|s |Buo;joajip aqj jo sj|nBj a[q¡ssod Xueui ujojj j[nsaj QSS j0J suoijbj¡uii| jsojaí

QSS pajonjjsuooaj aq p|noA\aoBjjns aqj jo jsaj oqj pus X(Boidoosoajajs paqsqqBjsa aq p|noM saSpa [|B jo sapnjiJiB ajaq/vv poqiaiu pax|ui e aq Xbui uia[qojd aqj jo uoijnjos uy Xjinupuoosip qoBa jayB paqsqqBjsa aq p[noqs (apnjjj[B [B|jiui Mau e) jubjsuoo uoijBjgajui Mau b asiMjaqjo ‘sdBO| puB sí(objo jnoqjiM ‘qjooujs XpAijBpj a i ‘saoBjjns snonupuoo jb pasqBaj aq ubo (g) puB (¿) S|Bj8ajui aqj ‘|]B

jo jsjij uopn|os uinuipdo joj jibm jBqj suopBjiuiq snojauinu sjaaui ]jps ji j3A3a\oh a[qBoi[ddB X|isBa puB 3|dujis XpApBpj SUI33S ‘(oss) „uoljnquisip |bu8is uiojj sdBqs,, poqjaui sqx

suoijBjiuiiq

josssoojd |buSis |BjiS;p b qjiM psddinba si ujsjsXs jsjnduioo sqj uaqM „auip |Baj„ b ui passsoojd sq os|B ubo ‘jojoajap sjdrupBnb aqj Uiojj

s|bu8|s jnoj oqj ‘oseo siqj u[ jojiuoui jsjnduioo oqj uo a|qiss300B X[iSB3 ‘SuiSbuji oijjsujouoxb

jo pu¡>( suios saqduii aoBjjns aqj jo uoponjjsuooaj |Buoisuauiip asjqj X[|ry y usajos aqj uo XpjBipouiuii uass jojEJsdo sqj jo sjjojja ijb ssjjbui qoiqM ‘„sujp |Baj„ b u| Suissaoojd IBuSis apiAOjd suisjsXs 8o|bub a|duiis XpApBpj ‘sapisag jojiuoui Sojbub aqj uo paXB|dsip

Page 70: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

OX T H E T H E O R E T IC A L U ND ERSTANDING O F T H E W IEN FIL T ER IN AN ELEC TR O N B IPR ISM IN T E R FE R O M E T E R

P eter Sonnentag, H arald Kiesel, and Franz Hasselbach Institut fü r Angewandte Physik der Universität Tübingen A u f der Morgenstelle 10, D-72076 Tübingen, Germany

In recent years, A. A. M ichelson’s visibility spectroscopy [1] has been realized suc­cessfully w ith electron waves instead of light waves [2], For th is, an electron biprism is used, and as a coun te rpart o f th e different p a th lengths of the interfering beam s in light interferom etry, a W ien filter in its com pensated s ta te is employed (see Fig. 1). A Wien filter consists of a crossed electric and m agnetic field, b o th being perpendicular to the optical axis. I t is said to be in its com pensated or m atched s ta te if the electric and m a­gnetic force for the m ain energy com ponent of the electron beam cancel each other. From the decrease in fringe con trast w ith increasing excitation of the W ien filter, the energy w idth of the source can be determ ined, and even the form of the energy d is tribu tion can be obtained in case that, it is sym m etrical to its centre.

If the in itia l s ta te o f th e electron is a pure s ta te , i.e. all electrons form identical wave packets, then th e action of th e W ien filter is to in troduce a longitudinal shift between the two partia l wave packets com ing from opposite sides of the biprism filam ent. R eduction of con trast of the interference fringes can then be explained by the lack of overlap bet­ween the two packets. T he longitudinal shift is caused by th e different group velocities inside the W ien filter being due to a different electric potential. If, on th e contrary, the electron beam is m ade up of a s ta tis tica l ensemble of electrons being in different energy eigenstates, then - a t least for narrow energy d is tribu tions - the loss of contrast, is the sam e as for a pure s ta te w ith the sam e energy spread, b u t in th is case it is caused by the displacem ent of th e incoherently superim posed interference p a tte rn s relative to each other. T his comes from th e fact th a t for electrons w ith an energy differing from the one for which the m atch ing condition is fulfilled there is a resu ltan t force and therefore also a phase shift. B u t in reality, we have neither a pure sta te of the electrons nor a mixed s ta te which is d iagonal w ith respect to the energy eigenstates, so th a t bo th mechanisms of th e reduction of con trast will be involved.

W hereas th e A haronov-B ohm effects yield phase shifts w ithout affecting the centres of the wave packets, and th e Sagnac effect or a homogeneous electric or m agnetic field in an electron in terferom eter lead to bo th a shift of the fringes and of their contrast, the W ien filter in its com pensated s ta te produces a wave packet shift without a phase shift so th a t in th e m iddle of the fringe p a tte rn there is always a m axim um and this is also a difference to Fourier spectroscopy w ith light. Because of th is special feature of th e W ien filter it seem ed w orthw hile to do the calculation of the biprism interferom eter w ith W ien filter for th e case of a wave packet explicitly. T his was done by using a form of the sem iclassical approx im ation of the Feynm an p a th integral for strongly localized wave, packets [3].

For monochromatic waves and consequently also for incoherently superim posed mo­nochrom atic waves - th e electron-optical biprism can be replaced by two v irtua l sources

Page 71: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

ZL‘,)jn)s pa4Bsnadmoa s»i ui jajjg uai^\ all'í P™ suoiinqujsip ÁSjaua auujbu ¿isa joj

sauiuijspp qoiqM

qind ju.ujti:) ,M[| tu:({4 sixb jeapdo ai[4 04 jasop [jb a.re qatqM pasn si -iajjg tI8!A\ aq4 ut sij ji'd 4iiaiajjip jo uoissaaans b ¿y jo uoijBuiuija4ap aqj joj 4«q4 43Bj aqj uio.ij sasuB siqj[ -pj saSuuj jo .laqiiinu aq4 Áq ubaiS 4jiqs 01(4 uBq4 jaSiBj ‘suoi4aa.i.ioa japjo jaqSiq asaqi 4unoaaB

04111 <Jui>¡B4 ‘si <ImjV 4Jiqs 485pBd babaa aqx '(.K>4aBj aures aqj 4noqB sppiÁ [g] uot4B|na|ea ajK.inaaw ajoui «) i jo J040BJ b Aq -lajjtp dMjV PUB M J° suu;mj jap.10 pnip aq4 jBqj 33140^1

-0,9 , os $• .1' ¡3 V + 3 t 55 a 30 JV

os ‘SinpBds aSuuj aqj 04 [Bu014.10d0.1d ÁpsjaAui si qatqAA (cj j 'Sij) fj aauaS.iaAuoo jo a[3ireai[4 04 pm014.10d0.1d A[.ieau si ,ia4jB[ ai(jj '.K>4|g aqj ui sqjBd aqi jo uonií.redas ]Bia4B] aq; 04

pin; yj p|aq .¡t.naaja aq'4 jo q4SuaJ4S ai]4 04 iBu014.10d0.1d Á[34Btiiixo.iddB si ldMj\/ ‘q48ua[8ABM

.)i(4 jo S41T111 111 jaqjo qaBa 04 aAi4B]ai S4a>ped aABM ai{4 jo 4jiqs ]BUipn)i3iiO] ag4 ‘ptreg

.iaq'40 aqt u() « ¡fp a°f 30 N ‘uoiíBjSa^ui ub Áq jyy atpj jsaoiior4i!iiiuins aq4 SupBjdaj pire 04 puioi'ijodojd -- uoituiinxoJddB pooS ájba b 04 si

uoiiaajjap oi|j jBqi innoaaB 04UI 3up]ex s SupBds aSiiuj aqj Xq papiAip ‘gy Xq paonpui11014.>aj}ap ai(4 Áq uoaiS si yy qaeg -yy aq; jo uins ai{4 si ajiipaaoad stq4 Suunp apis auo04 p.>||iqs uaaq sbij aSuiij aap.10 qjojoz aq4 qoiqAV Áq saSuuj jo .iaquinu jejo? aqx

•siBaddBsip 1SBJ4U0.1 {ijiin paiBadoj bjb sda4s asaqx

•pap.ioaaa si ii,i,)) jBd aSuuj aq4 puB ‘a4B4s pa4BSuadiuoa S41 04U1 >[;)Bq 4iid si Jajjif uai.\\ oq;

‘iiibiÍb a|ppiui aq4 ni si aSuuj japjo qjojaz aq) ¡141111 pjai| .)I48uSbui aq4 SuiSBajaiii Áq ‘uaqj^sq4piA\ aSni.ij f\[\¿ ‘ábs ‘Áq pajaajjap aiB saSuuj aaaajaj.iaiui aq4 ‘Á(4iianbasiioQ Áq

]iasBa.i.)iii si Ápio p¡ag au4aaja ai(4 ‘dajs 4sjg b uj o.idr/ a.ie sp[ag at49nSBUi pire apiaaja

,)i|4 ‘4s.ig 4y :[g] sMogoj sb 4no pai.i.rea si íuauiamsBam aidoasojjaads-jaunoj agx

'sixb ogj spiBM04 pajoagap aiB sdabav

ai|4 pire 'Á[4;)Bxa uoijipuoa SuiqajBiu aqj giqnj 40U op q.)|i|A\ sappojaA aABg sixb [Bai4do

ai|4 jo apisB ia4jg aq4 q.§nojq4 jaABJi ipiqM sáb.i 4Bq4 ;obj ai{4 uioij Siiisijb ja^g uaiy\\ aq4

jo 11014:)« Suisuaoj tiMou>|-jjaM ag4 04 anp si siqx qjSua.iis ppg aupap agí si 3 aiaqAv

— o.v as k 04 SuipjoaoB ‘J34|g ag4 jo uoi4B4pxa StiisBaJoui g}iAV J8M0J.ibii sauioaoq sSuiaBds aSuuj ai{4 sb sasi.re uopBagdmoa b ‘Ádoasojjaads .iaunoj qi|A\ SuqBap naqA'V

'4jiqs 4.)a.i.io:)yi arnvs aq4 ;aS

s(a>[:)B(I aABM q joq aiojaaaq4 pire ‘uisudiq aqj jo aSBSSBd jo apis aq4 uo .10 sixb jBai4do aq4

04 .re|ii.)ipiiad.iad uoijisod aq4 110 pnadap 40U iioijBuiixojddB pooS b 04 saop uch sb

4iino:K)B 04111 najjB4 aq 4lupaati V'-Ad> aseqd {«uopippe aqi ‘buiixbiii 3154 .ioj SuiipjBas uaqi

pire noi4;)iiiij aABM aq4 8ui4Bjna|Ba 4Sjg Áq apBui si iag4() tpBa 04 0Ar)B[0,i sja>]aBd sabm

ai(4 jo 4Jiqs iBiiipii4iSuo[ aq4 jo iioi4Biiiuna4ap ai[4 ji 4Bq4 paoi4ou aq p]noqs 41 4ng jaqjo

qana 04 p;uoi4.iodo.id 40U ,m; íqSig jo aum pire asBgd sbabai *.)44Bui .ioj jbijj i;jbj aq4 jo

a.manbasuoa a4Bq)auiun ub si siq4 ¡saajnos jbiijjia aq4 Siiisn pa4B|na]Ba aq 40UUBD - jjiqs

ia>pBd aABM aq4 aunujaíap 04 asn ppioa auo qaiqM puB ‘(a:>J"osj _ ui siajua gaigA\

■411B4SI11 HIB4J33 b ib jag40 gasa q4iM Suuajia4ui S4uauodmo.> ÁSjaua aq4 aunuja4ap 04 pasn

si qaiqM 4q3ig jo aun ) aq4 ‘Ájqjjnoj 'luautap 4xau aq4 s.ia4ua uo.naap aq4 uaqA\ % sauiij

4iia.iagq) aq jB.iauaS ui jjim aiaq4 sb ‘pa^iituo aq uea qati[A\ jo^aBj asBqd uouiuioa b 04 dn

‘a:.uiios ag4 jo uopiqoAa auii4 agj g4iA\ pairea .iaSnoj ou saop rnsudiq aq4

Á(( postre:) asBqd aq4 ut (»“"«j _ j) uiJ84 aq4 ‘pisudit) aq4 3iiia\0]]0J S4uauiap jBai4do

,iat]40 q4iM ja4aiu0.iajja4ui ub joj ‘Á[p.iiqja uo^aunj 3aba\ jaauoa aq4 jaS 04 spaMdf¥ 04

pappB a<| 04 sbij iJ!A¿6 asBqd 4uapuadap-Á3jaua [BuoptppB ub ‘Ájpuoaag ^uauodmoa ÁSjaua

q.n;a .ioj ttiaiajpp si sixb jBapdo aq4 uiojj saainos [BnjjtA aq4 jo aauBjsip ai[4 ‘asinoa jo

‘Ájjs.iij ajBa pire suor4Bagtpoui araos spireuiap ¡apoui siq4 ‘jaAaAvog ‘s4a>{aBd babm 103 -[f»]

Page 72: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

the phase difference Atp(k) of th e two interfering p a rts of an energy com ponent m ay be approxim ated by the first order term in the deviation 8k of the wave num ber from its m ain value ka. T hen, the phase shift caused by the W ien filter is equivalent to a difference in the geom etrical p a th length in vacuum , so th a t is p roportional to 7Vwp.

Fourier-transform spectroscopy dem ands a variable proportional to ¿¿r-'>k> ■ There­fore, neither E nor N - which has been used so far [2] - is suitable if the high precision of visibility spectroscopy shall be fully exploited. Because iVwp cannot be m easured directly, we propose to use j as th e transform ation variable, where s is taken from the recorded fringe patterns.

For the case of a wave packet, th e decrease in fringe con trast w ith increasing excitation of the W ien filter can also be in terp re ted as being due to the increasing (possibility of get­ting) “welcher Weg” (w hich-path) inform ation available from the difference in arrival tim e between th e two packets. A nother way how com plem entarity, in particu lar wave-particle duality, m ay be enforced in “welcher Weg” experim ents is entanglem ent w ith orthogonal sta tes e ither w ith th e environm ent (e.g., m easurem ent device) or w ith an in ternal degree of freedom (e.g., spin). T he effect of the W ien filter can, loosely speaking, as well be seen as a kind of entanglem ent: If we w rite the ordinary s ta te space of the partic le as a tensor product of the s ta te space of positions on the detection screen and of th e s ta te space Z of positions orthogonal to th a t screen (i.e., along the optical axis 2), then because of the longitudinal d istance A z of the positions of th e m axim a of the p artia l wave packets we have entanglem ent w ith respect to the space Z .

Helpful discussions w ith R ichard N eutze and Tomáš Tyc are thankfully acknowledged.

a) b)

Fig. 1

Page 73: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

¿661 ‘uaSuiqnx rglis-.lOAiiifl lap >[isÁi]j ar4pu«Aia3uy inj ínii}su¡ lípqj«uio]diQ \ia,4auio.iaj.io|U]-Tiuisndig

-uouoj^ajg niauto ui jaytj-uoi^w uinz uaSumpnMaíUfj arpsijajoaqx Seiuauuog ja^aj [g]

£¿61 SIZ-Z02 OZ 1VPV mt}d() uisiidiq jriB^sojjaaja ire Áq paanpoid aniajajjajui uojjaaja joj [apoui oip jo uoiísagtjsnf -«AoqaBjA g pu« «>|Sjino>[ [• [{7]

S86I 'OCLGSC 19 ^Disfiyj udapo^ ¡o stnaiagy saxng aijauSBniojjDap jo siaajja umjmmb aqj^ -nosadoj nz^AOj [ pu« m.re[Q -g [g]

S66I %£Z~Z£Z :S9£ 'V yo-ivasay soisüyj m vpoyi'jffl puv sjujiuiufsuj j,mpnpj (Ádoasoipads-jaunoj) «ipads app-red paSjeip jo 4uauiajns«aui :)i.r;auio.iaj.ia4ii[ Maj_iopuaq:)K:\\ ¡j pu« '.iojï;ipg y ‘ip«qpss«H j [g]

'I68T QMHJCE :I£ ‘auizvEvytf pjii/dosojyqj j-'S4uauia.msBa]/\[ ndoaso.rjaadg 04 spoq'4ap^-aaua.iajja;iii jo uoi4«ai|ddy aqi uq uospipip^ -y jjaqjy [x]

ssauaiajay

Page 74: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

VARIABLE AXIS LENS WITH AN EXTREMELY LARGE SCANNING AREA IN ONE DIRECTIONR. Spehr

Institute of Applied Physics, Technical University Darmstadt, Hochschulstrafie 6, D-6^289 Darm­stadt, Germany

In order to obtain a large writing area on a single line, we have developed an electron lens design [lj quite different to tha t of usual variable axis lenses based on a round lens. The electrodes and the polepieces are formed by three parallel slits which in the x-direction are extending infinitely, at least in principle. Thus the geometry of the lens is translation invariant with respect to the x-axis as it is customary for a cylinder lens. For stigmatic focussing we combine two different fields, both fields being consistent with this geometry. Using a negative (or a positive) potential on the middle slit, we get a retarding (or an accelerating) electrostatic cylinder lens focussing in the yz-section [2J. In addition we superimpose a magnetic quadrupole field, which is oriented in such a way that focussing in the xz-section is achieved. This field is produced by fabricating the three slits out of magnetic material ( p.r » 105 ) and by placing windings on both halves of the middle slit, which carry constant current density. In this three-dimensional arrangement the magnetic scalar potential is given by

Umag = <3 X F (y ,z) . (1)

The function F (y, z) depends on the geometry of the slit in the yz-section and can be calculated by a suitable charge simulation procedure, which only needs to be two-dimensional. From eq.(1; we 6ee that the form of the magnetic potential does not change when moving into the x-direction, while its value increases linearly. In practice the slits must have a final length. Then the magnetic material should enclose the opening of the slit and we need two additional coils situated at both ends of the middle slit which carry the opposite Ampere windings as the polepigces do.

The magnetic quadrupole field focusses in the xz-section, but defocusses in the yz-section. To obtain stigmatic focussing, the electrostatic cylinder lens needs twice the refractive power as the quadrupole. When the axis of the quadrupole field lies within the xz-section, this axis coincides with the lens axis of the whole arrangement. The axis of the quadrupole field can be shifted over the whole length of the slit into the x-direction simply by transfering some current from the coil at one end of the slit to the coil at the other end. Thus our lens„acts as a variable axis lens. In principle the displacement of the axis with respect to the x-direction can be infinite without changing the imaging properties of the lens.

Like a round lens this lens does not show any aberrations lower than of third order due to its high symmetry. Furthermore there is no need for a separate stigmator as stigmatic focussing is achieved by balancing its cylinder lens field against its quadrupole field. Different to round lenses we have to distinguish between the x- and the y-direction when looking at its aberration coefficients. For instance the spherical aberration is given by three coefficients Caoca , Cppp and Ca0/3 = Ca<x0 j where a and /3 are the angles of convergence with respect to the xz- and the yz-section respectively.

Page 75: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

'¿661 ip™™ ‘?p«isuiji3fi »¡mpsipoH aipsiuijjoj ‘sisoq; Binojdip ‘¿foqj[ja){ -g [gj

(e¿6i) 6ťoE n!ido ‘3soH h [el S9SÊ n 961 aa ?a:>)M ,JM3dS H [l]

BODUyJOJOTJ

•uoipas-zX aq) pire -zx aq) uiqq.-A sauopaPej) uojpajg :x OJnSij

•paAaitpe aq ubd o = mx>Q sb 3>?.re[ sjrab aq jqSiui uoipas-zx

aq) ut ajSuB Suipuodsajjoa aq) jaAa/Aoq qp?uis aq o) siaq uoipas-zX aq) ui ajSTO uoi)«uiimqi;

aqj títídj jo anpjA a8je[ aq) o) aiiQ -ureaq aq) jo ajSu« pqos ajqusn aq) no spuadap paads Sui)UjY\.

•saop q)Sua[ [B30J aq) os pire

jajfip suoipas q)oq ui sauq [tidpuud aq) suoi)3as q)oq ut )uiod [ijjoj oures aq) ifli/w ■sauo)aaj'Bj) aj[q-A ut s)[nsaj sua[ japuqXz 3t)e)soj)3ap aq) jo pjag SutpjB)aj aq) uoi)aas-Zjí aqtuj qodnjpTOb ai)auSuui aq) jo uot)3i2 aq) Aq six« aq) pjimo) )uaq Â[q)oouis aro sauo)-jafi;j) aq) uot)3as-zx aq) ui -sua[ aq) Áq passnaoj Suiaq sixtí Dijdo aq) o) p[[i;ii>d sauo)3afet) uoj)3op SAvoqs j'Sij

(■ppg a¡0dn)30 )u«)suo3 -eq)uvt aaq)aSo) q)8uaj)s a[q«UBA jo pjag ajodii)xas « uiojj paure)qo aq irea ppy. a[odn)ao Suiaoui y) -Suiaoui si six« suaj aq) uaqm ppij a[odnjp«nb aq) q)iM X]snoauu)[mut9 payiqs aq o) s«q pjag ajodn)ao siqj, X[)ui23ijiu§is dd°Q pire 0ddQ SutSu^qa )noq)iM o = **>”q joj )aajjoa o) ajqissod si )i ‘ppg o[odiupT;nb aq) o) pasodrauadns ppq a|odn)oo 3i)au8«ni >p2a*i [«uoi)ipp« ire Snisfj

(£) -UIUI6&-H- = “H| ZV Puv minore- = *■H\ *V

■sua[ aq)

jo auiqd ajppiui aq) o) iCpAirepj sauq a[dpui.id aq) jo ñH| zy pu« 'H\ zy )jtqs aq) ure)qo osje um 3M souo)3af«j) asaq) uioy x'äq ui uaas aq ui23 suoipas q)oq ui sauopafsj) Sui)[nsaa aqx

(Z) '“¿{'‘0= 00aD : “81 = 000D ■ mIS0‘0 = x”°’°O

a)«in3[B3 SM uimQO 1 = z au«[d

aq) uo Suissnsoj 3i)«iuSi)9 joj pu« [g] )p«)suu,BQ u; )]inq aABq 3m suai aq) jo jtj)auioaS aq) joj

Page 76: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

DISTRIBUTED MONTE CARLO: SMART WAY FOR COMPUTING COMPLEX PROBLEM

R. Stekly, L. Frank and I. MullerováInstitute o f Scientific Instruments AS CR, Královopolská 147, 612 64 Brno, Czech Republic

The aim o f this work was to create an engine for the distribution o f an computation task in the TCT/IP network, to verify its operation and to achieve a low-cost great-volume computation power for simulations o f electron scattering using the Monte Carlo method [1-3].

The available PC 's have a sufficiently high computation output not only for office work but also for simpler scientific computations. The computation output o f the best PC 's is comparable w ith that o f the cheaper series o f the RISC workstation but their purchase cost is ha lf that or less. M odem offices are being equipped with PC 's w ith the operating system W in95 connected to the LAN network, which is often connected to the Internet.

At interactive work, the processor is operated noncontinously and there are long inactive periods. Typical examples are text and graphic editors, table calculators and Internet browsers. On average, for a sufficiently long period, the processor is never used 100%. Therefore it has been decided to write a program that will make use o f the time-outs for its own activity, will receive simple tasks via the network, make computation and send back the results [4], Operating systems with pre-emptive multitasking can effectively work with priorities o f processes and they are mostly equipped with the mechanism that allows the action o f programs during the inactive period o f the computer. The chosen platform Win95/NT implements this mechanism relatively well. The only problem is the back compatibility when the 16-bit programs (DOS, W in3.11) are being started using the computer emulator with the given operating system that causes the mechanism to stop because W 95/NT are not capable o f determining the state o f the application with no implemented mechanism o f communication w ith the given operating system.

The written computation program has very low demands on the operating memory, typically 2.7M B compared with the 30MB text editor, is easy to control, provides maximum information about its state, and works automatically without any intervention o f the user. A fter starting, the program becomes connected to the computer that distributes the task, receives the data and starts computation. After finishing the computer work, the user makes the shutdown o f the operating system, the program becomes logout from the computation process, sends the computed part o f the task and becomes ended. The program is used as resident but the user can end it manually. The task distribution is carried out from one computer, which is determined in advance. This computer serves for data collection and recording o f the current state o f computation.

The operation o f the engine was tested in the internal network o f the Institute o f Scientific Instruments. The test task was a simple computation o f electron scattering in Au specimen at electron energy o f 1 keV. The entire task is divided into subtasks. The maximum num ber o f trajectories is limited so that all computers end the whole task at the same time. The computation process was running on the background, the test was made during the normal working time, the users were asked not to change their working habits.

The following formulas were used for statistically processing the operation:

mean value x =S trajectories

varianceI time n

standard deviation ô = VZ>, variation factor5

Page 77: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

/j3up3jnqujsipA\MM//:djjq ‘jsupsjnqujsip |>]

'9661 ‘WISVDOW aSejpBj 3JEMyos aqj o} [EnuBjAJ pus uoijnpojjuj ‘uoistyjia uojpajg jo uoijBjnuus ojjeq ajuo[Aj ‘jauua>j 3 [g]

1061 ‘(8861) Z osojoijaí SuiuuBas ‘¿of j a ‘onq s lz] £6 ‘(9661) 81 SurauBDS ‘nziunqs "H ‘Su!d T*Z [l]

S33U3J3J3)|

•Xbm siqj pajnqujsip sq ubo qaiqM s>¡sej jo ssdÁj

jo uoijoujssj n[qRjap|Suon b subsuj ipii|M ‘ji oj psjoauuoo jojndiuoo aq; jo jndjno uoijEjnduios aqj puB >[jomj3u mvt aqj jo uoissiuisubjj BjBp sqj uaoMjaq uoijjodoidsip a3jE[ e si poqjsui siqj jo sSBjuEApBSip aqx a|qBjyojd jou si jsajss uoijBjnduioo sjBJBdss e jo asEqajnd aqj puB ‘uajjo npBiu jou 3jb jsqj suoijBjnduioo aAisuajxa joj poqjaui Supsajajui Ajba b si Aem paquosap 3AoqB aqj ui jajnduioa aaijjo aqj uo jno paiueo uoijBjnduioo aqj jBqj pajEjs aq ubo j[

ajAqjj pg usqj ssa| azis a§EJ3AB ub aABq Aaqj puB ‘BjBp uoijBaiunuiuioa aqj jo Moy aqj Josjjb jou pjnoa Áaqj jBqj os Ájuoud j3mo| b qjiM A|snouojqauAsB >[3Bq JU3S 3J3M BJEp p3JBtlJBA3 Oqj SUIUIBJUOD SJ35JOBJ 3JÁq gH SBAV J3}[3Bd gUIUIjap

->|SBjqns aqj jo azis aqx sdg i‘p\ oj Suipuodssxioa Ájuoud jssqSiq aqj qjiA\ Moy EjBp sSbjsae ub si qoiqM ‘sSbjsae uo spuoaas qz\ Xjsas pajnqujsip bjsm sj3>[0Bd ‘uoijBoijddE jno u[ jssj sqj joj pasn aj3M sXEp 8u;>jjoav omj joj ‘jayojjuoa gQ¡ ‘pjBoquiEiu J3J ‘003 ÍNtVH‘OOÜHd x?^0 DdD uoijBjngguoo ui g puE y sjajndiuoa jBaijuapi XjajBUiixojddE omj

68‘9zVzv[%] jojobj uoijeueAosSS'Ofr19 'Z¿Uuojsjsdsjp

801.1.8[t s] X

001oeioei.[j.sr^x

0000100001>|sej jad ssuojosfeji

00009LZOOOOWt'sguojosfeji

OSl915QZssoos[s] sujjj >jsex

aVjejndoioQ

sjjnssj SAijEjijUBnf) : [ aiqexOOZ

san|EA x jo aauajjnaoo jo ajEy \ Sij(er^íá)

%£8 °J psjunouiB ji ‘pa>paqa Ajsnonuijuoa sem ireui-3 uaqM ‘pio^ ui ?¡jom jo asBa aqj uj (VI '81 j) Jajndujoo aqj jo jndjno uoijBjnduioa jejoj aqj jo %Z9 oj pajunouiB punoj§>(OBq aqj

uo uní ssaaojd aqj spjBSaj se jndjno uoijejnduioa agBjaAB aqj uaqj ‘saSEd A\MM SuiqqBjS jo

UEUI-3 t¡ui>paqa A[snonu;juoa sem pus lHdl3Q ui SuiuiuiEjSojd sem jo jurejojoqj puB mejq

|3J03 ‘jaoxg ‘pjO/W sjaj suiBjSojd qjiM Sui>(jom sem guiuuru sem uoijBjnduios aqj pun0jS5(0Bq ssoqM uo jsjnduioo sqj jo jasn aq; j¡ :sMoyoj sb sje sjjnssj SAijEjijuBnb sqx

•5[sej sqj |]E Suunp suiij jo jiun sqj joj psjBinuiis ssuojasfBjj jo jaqumu aqj si x puB ‘>¡SEjqns suo Suunp suiij jo jiun sqj joj psjBjnuiis ssuojosIbjj jo jaquinu 3qj si x ajaqM

Page 78: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

AN E+B+E BEAM SEPARATOR FOR DETECTING

SECONDARY ELECTRONS IN LOW VOLTAGE SEM

Katsu Tsuno, Nobuo Handa and Sunao MatsumotoJEOL Ltd., 1-2, Musashino 3-chome, Akishima, Tokyo 196-8558, Japan tsuno(a)jeol.co.jp

1. INTRODUCTIONAmong various proposals o f the objective lens for high resolution low voltage scanning

electron microscope (LVSEM), an immersion magnetic lens called Snorkel lens [1,2] and a combined electric and magnetic field lens[3] are now widely used. We classified various objective lenses for LVSEM and compared their electron optical performances [4—6]. For designing the optical system o f SEM, not only spherical and chromatic aberration coefficients o f the objective lens for the incident beam but also efficiency o f collecting secondary electrons are important. In the strong magnetic field region just above the specimen, secondary electrons are spiral up into the bore o f the objective lens when the Snorkel lens is used. However, once the electrons come up inside the bore, secondary electrons spread out and hit the wall o f the lens, because there are no magnetic field. It is useful to apply a magnetic field along the optical axis to bring up those electrons to the top o f the objective lens. A weak electro-static field is effective to pull up the electrons emitted with high angles.

In this investigation, we further show electron trajectories from the top o f the objective lens to the detector. We use an usual Everhart-Thomley detector, which is inserted from the side o f the optical column.High voltage 10 kV is applied to the detector. In the in­lens SEM with accelerating voltage o f 20 -50 kV, high voltage applied to the detector captures the secondary electrons w ithout influencing the primary beam.However, in LVSEM, the detector must be set far behind the optical axis o f the primary beam. In such the case, it is necessary to introduce a beam separator to deflect secondary electrons towards the direction o f the detector. Sato[l] used the Wien filter as the beam separator. In this investigation, we propose a new beam separator, which is similar but not the same as the Wien filter. Recently, Philips announced a new beam separator with 3 stage electrode system[7].

2. ELECTRON TRAJECTORY CALCULATION IN THE SEPARATOR.

As shown in Fig. 1, the new beam separator consists o f the first electrodes, the magnet and the second electrodes. The length o f the magnet is equal to the sum o f the length o f two electrodes. The electro-static and magnetic fields are calculated using E 03D and M 03D and the electron trajectories are calculated using C 03D [8].

Fig. 2. Electro-static field distribution on xz plane and the primary beam trajectory

Page 79: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

6¿W-18S-I¿-W+ :XBd/Pl PU sJBMyos uresg uojjos[g s.ojunpM jBnuBjM d£03 ssnoy f -g ■qasi Aiun upa ‘(8661) W'd ‘PEjjsqv (soijdo apiJJBJ psáreqo 81103 jui qyij)

SOdD ‘M!PullD f y ‘ufux 'WD'd’W d ‘Jsbw p A">i ‘jsoojx z» ‘wjsush V 'LS¿l-£Hdd uojey Boog ‘¿661 SS3Jd 333 ‘iWO T P» „soijdo

spijJBj psSjBq;),, ui 14Xdoosojoiui uojpsp jqj sosus¡ oijsuSeui uojjjosjg,, ‘ounsx >[ 9ZSZ'ÍPZdd soqdo spijjBd psâreq3

8S8S' IOA 3IdS \<P\'HS Of?Bi[OA MO) ui suojjosp XjEpuooss jo uoijBiuqjoo pus sssüsj sAijosfqo uoisjsuiuii jo sojjjodojd |Boijdo„ ‘iuieSo[aj y pire ojoumsjEjAj 'S ‘BpuBjj M ‘ounsx '» S

'S66l‘SS2-£t'Zdd ‘salido opilad psäreq3 ZZÍZ PA g[JS \dA1333 puB |/\jgs sSbjjoa mo[ joj sosus] uoisjoujuj],, ‘ojouinsiB[Aj s puB BpuBH 'K ‘ounsj y¡ -p

6861 ‘¿¿8I"fr¿8Idd ‘(Zl/ll)¿a puqosx ‘PS '™A f ‘„suoijBoqddB sSbjioa-MO[ JOJ S3SU3| OlJBJS-OJJOSp pUB OIJSuSbIH pUnodUK>3„ ‘jsSuy » puB S3I[d g ‘U3ISOJJ f £

S66I ‘S8fr-l781?dd VS1N aojj ‘„jojosjsp uojjosp XjEpuooss ui-jinq qjiM su3[ p[3ij oijsuSeui Suojjs qjiM 303£9'IMSf ‘íM3S“3d sd^> sus|-ui -¡lúas uo|jn|os3j qSiq-Bjj|Q„ ‘usspqsjN ’3 puB bmeSe^e^ ■§ ‘uoainzB» h ‘bmbîjoXijaj 'S 'Z

£661 ‘£2-¿ldd‘sondo opiyej psSlBq3 PIIZ [OA gjjs ‘„SUOJJOSp ÁJEpUOOOS guiJOSJSp JOJ PJ31J a SSOJOg qjiM sus] sAijosfqo [boiuoo sdXj |3^jou^¡ y„ ‘buibXsSb;>[ y puB ojo^opox H ‘°1BS PM 3

Sá3ÑlH33TO

suresq ¡bixe-jjo sqj joj Jojosjsp sqj jo pspj oijejs -ojjosjs sqj ui jno pEOjds si Xjojosíejj oqj JOjBJBdss sqj ui jjBq jsjjej sqj jb P3JJ3 Sui&SAip

Sqj puiui OU p33U 3AA ‘3JOJ3J3qX SUOIJOSp SSSqj 3§J3AUOO OJ SSjnqiJJUOO j\^ 01 JO 38eJ|0A qSiq sqx uopopp sqj Xq psjnjdBO 3q UBO JOjBJBdss 3qj UIOJJ JIXS SUOjp3[3 psSjSAlQ £ ‘SlJ Ul SE JOJBJBdSS 3UIBS 3qj ui XjopalBJi uiBsq XjBUiud sqj qjlM JSqpSoj S3Uop3¡BJl U0jp3|3 /Crepuooas 3qj SMoqs f 3JnSi¿

•OíllOAip U3qj puB 3pOJp3|3 pU003S sqj 3AoqB snooj b 3ABq sixb [Boijdo 3qj oj |3||EjBd uiojjoq sqj uiojj dn âuiuioo SU0JJ03J3 XjBpUOOSS •jqSiBJjs X[JB3U SI XJOJ33ÍEJJ UIEOq XjBUIljd 3ip ‘z 'Sij uiojj psonpsj /Í[o3jb| sjb jojBJBdss sqj jo suo;jBjpx3 sqj ssnBosg XiojosfEjj uiBsq ÁJBiuud 3qj qjiM jsqjsSoj souojosIejj uojjos|s XjBpuooss sqj SMoqs £ ojnSij

SU0JJ3S[3 jo uoijosysp sqj ájiuSeui oj suoijipuoo Suia\o|[oj sqj uBqj jsSuojjs ssuiij £ [ qjSusjjs p[sij sqj jspun UMBjp sjb sjsq UA\oqs ssuojosfBjj sqx uiBsq jndui sqj sb suies sqj si sixb jBoijdo [euij sqj puB jsjpj eSsuio sqj oj jB|iuiis sjb suojjosjs sqj jo qjBd sqx 'Z '813 ui UMOqs sb sspojjosjs puooss sqj Xq uoijosjip jsj¡j sqj oj psjosysp usqj puB ‘ppij oijsuSbui sqj Xq uoijosjip sjisoddo sqj ui jnq uieSb psjos|jsp ‘sspojjss(s jsjij sqj Xq psjosysp si unS sqj uiojj uresq XjBuiud sqx

•JOJBJBdaS 31J1 OJUI áuiJ3JU3 3JOJ9q y\9 001 °J P91BJ3J30DB

9JB SU0J)03[3 /CjBpUOOaS pSLUÜSSB dfa SJnSlJ3i|j jo doj sip uiojj sJíbis ipiqM ‘Xiopsfejj lUBsq XjBuiud

sqj qiTM jaqpgoi ‘uioijoq aip uioí| s*re}s qoiqM ‘JOjBJBdas

lusq 3+g+H uj S9U0J09ÍBJ1 uoijoaja XjBpuooss £ Sij

jopapp oj p3i[ddB a5! 01 J°PJ3IJ Diijoap aqj Kq suoijoaja XjBpuooss §uijBun¡[03 p Sij

Page 80: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

ANTIBUNCHING OF ELECTRONS AS A CONSEQUENCE OF THE

INDISTINGUISHABLENESS OF FERMIONS

Tomáš TycDept, o f Theor. Physics and Astrophysics Kotlářská 2, 611 37 Brno Czech Republic

The principal indistinguishableness of identical particles has a fundam en­tal significance in quantum mechanics. One of its most im portant conse­quences for fermions is the Pauli principle. Another consequence of the quantum indistinguishableness is the difference of the statistics of arrival times of coherent particles em itted from a therm al source to a detector, with respect to the statistics of classical particles. This phenomenon is called bunching in the case of bosons due to the fact th a t bosons come more likely in groups of two, three etc. ( “bunches” ) than alone. In the case of fermions we deal with antibunching because the fermions avoid each other, i.e., do not come to a detector even in pairs.

Bunching of bosons was predicted theoretically [1] and proved experi­m entally [2] with photons already over 40 years ago. The theory describing this phenom enon is richly developed (e.g. [3]). On the contrary, the theory of antibunching (e.g. [4, 5]) is quite incomplete and there are still many problems to be solved. Moreover, the antibunching of fermions has not been experim entally proved until now.

In the talk will be given a brief introduction to the theory oPímti bunching for electrons and its application to an interesting case of an electrostatic biprism interferom eter.

[1] E. Purcell, Nature 178 (1956), 1449[2] R. Hanbury Brown, R. Q. Twiss, Proc. Roy. Sac. London 242 (1957), 300[3] L. Mandel, E. Wolf: Optical Coherence and Q uantum Optics, Cambridge University Press, 1995[4] M. P. Silverman, 11 Nuovo Cimenlo 97B (1987), 200[5] S. Saito, J. Endo, T. Kodama, A. Tonomura, A. Fukuhara, K. Ohbayashi, Phys. Lett. A 162 (1992), 442 - 448

Page 81: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

ZS

ssay ui ‘(8661) ‘»W v3jwii{Mj^p\i ‘p.BEsy -y pue ijraiOQ-ia IA[ [£] (9661)683 ‘£1 ÎIddnS] ‘m3VmrumMJWi ‘BAOjannpj i pire [izrnpBZ 'IM 1 ÍZ\

(¿861) ‘W -IS ‘¿M I0A 'idoDsojMW f ‘Xof j <j [I]:s30uarapy

paueapun - ny - paueap - ny-

paueapun - us - o - paueap - us o

paueapun - no -• paueap - no —

paueapun - paueap ■

OOSfr OOOfr 00S€

(Aa) A9H3N3

000C 0053 0003

z'3y

saigjaua mo[ jb sanjBA U sji paiaMOj jBqj aaujms

sji uo uqg appro uiqj b oabi| Xbui qoiqM 113 jo uopdaaxa

aqj qjiM ‘%oi oj dn jo saauarajjip Moqs asaqj, U3AÖ are (sauij pips) suoi

uoâiB aijaSjaua oj pajaafqns njis-ui uaaq aABq jBqj asoqj pire (saun psMop) saaejjns payasui-st? aqj ttioij bjbq •sjuauiap moj joj dg XSjaua uoijaap juappui aqj snsjaA juapijjaoa li aqj jo jo[d

B si ‘z §H ‘ L pamsBaui aqj jo an[BA aqj jajp ubo jBqj suojjaap Xrepuoaas jo uopaajpa aqj aanpai oj sjob osjb 11 ‘uSisap jasduioa b qans joj suoijBijauad ppij Suianpai oj uoijippc ui jBqj punoj aABq 3/W pug 3uo Xjuo jo pBajsui sspojjasp pug omj SBq jojaajap juasaid aqj jBqj ui uSisap laijiea ub may siajjip ji [£] jaipBa payodai jBqj jo UOISJ3A psijipoui b si qoiqM ‘[gig ui pajaidap XpaijBuiaqas si jojaajap pasn sjuBuiuiBjuoD aaBjins aAOuiai oj Q uiay ^oi J° su0! jy A05) z) suoi Dijagjouo Xq paireap ai3M jBqj saaBjjns a[dures uiojj

puB ‘jBqui oi J° J3pJ° aqi ui suopipuoa umnoBA japun jno paures

aiaAV sjuauiamsB3jM 'Qd pue ny ‘jj ‘m ‘JH ‘PO ‘uS ‘P3 ‘§V ‘opv ‘qN ‘JZ ‘30 ‘«Z ‘no ‘!N ‘33 ‘O ‘A ‘!I ‘!S ‘IV ‘D ^™d 666 66 jo sa[dures asaqj joj AW g oj A3 OSS 3§®J XSjau3 aqj ui pamsBaui uaaq aABq sjuapyjaoo (g) uoijcep Xrepuoaas puB (li) SuuajjBjSipeq aqx

IM3SAT J° uopBoijpirenb 3qj spreMoj pauire si pire suoijipuoo uauiiaads pasuajaBJBqa-ipM japun li pire 9 jo Xpnjs e si aiaq pajiodai >poA\ aqx 'W3S 3qi ui juauiuoiiAua uauipads jouba b sb [[3/a sb

suojjaap Xgj3U3 a\o[ joj sjuapijjaoa (U) paiajjBssjpBq puB (g) Xrepuoaas aqj jo sjuaiuamsBaui juapijjnsui oj anp si siqx amjBu ui SAijBjipnb uaaq jbj os SBq snbiuqasj aqj ‘i^HSAT J° soijiadojd paiisap [[B are 3S3qj 3[iq/j\ [g] SUOIJBJJU30U03 puajBui mo[ SuijDsjap jo Xjqiqissod aqj puB ‘sjCJBjajre sgps paiqdßjgodoj jo (uoijBsiunuiui jo) uopanpai b ‘[z] Xgjaus uresq juoppu; sqj jo aapqa [tyarea sqj qjiA\ s[bu3jbui SuijB[nsui gupasdsui jo Xjqiqissod aqj ‘aAijisuas ocmjjns aiorn anbiuqaaj aqj S35[bui jBqj aumjoA uopoEiajui -pips uojjaap psnnpsj b ‘[[] suojjoap XSiaua moj aqj joj ppiX uoijaap Xrepuoaas qgiq b :apnpur asaqx suosBai pjaAas joj uoijBjado Xdoasoiaiui uojjaap jo apoui snoaSBjuBApB ub si /\3>[ç ireqj ssa[ si Xgjaua uoijaap juappui aqj qaiqM ui ‘(JMHSAT) Xdoasojaiui uojjaap Suiuueos agBjpA mítj

ZJ ‘oiug P9Z19 ‘¿PI rnjs/odoAojpj}/ ‘yj $y ‘ jisuj oifijwpsp amysui :ssajppn lusumiuaj^ Nil 'GCIS [0A VoA lJOA Io fotsj3t\iu[) ‘s jiuojj.jajg fo jurnupnda(]

pmuoo-H 'JM Pue *\WWZ W

aONVa ÄOHHN3 Men AHHA HRL NI SlN3DIdd30D NOÍLL33T3 CIřTa:-UJ.V3S>I3V9 ONV AW0M033S 3HL 30 SiK3IAI3>inSV3IN

Page 82: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

IMAGING OF NON-CONDUCTING SPECIMENS BY NONCHARGING SCANNING ELECTRON MICROSCOPY WITH METHOD FOR AUTOMATICALLY ADJUSTED CRITICAL ENERGIES

M. Zadražil, L. Frank, J. NorrisInstitute o f Scientific Instruments AS CR, Královopolská 147, 612 64 Brno, Czech Republic

The total emitted electron current in the SEM is normally lower than the primary beam current so that some negative charge is dissipated into the specimen. In the case of a non-conductive specimen, the charge stays localised at the surface. It creates a unipolar electric field which deflects the primary beam and influences the trajectories of the signal electrons before their detection, and can also cause discharges, etc. Thus, non-conductors cannot be observed at normal energies. Between the critical primary energies at, say, 0.5 to 4 keV, the total electron yield exceeds the unity level and the positive surface charge attracts back a part of slow secondaries so that a balance is established with a potential of a few volts only.

The non-charging microscopy method [2,3] consequentially utilises the critical energies to avoid any charge dissipation. The difficult task to determine a critical energy at absolute minimum surface charge-up (see [4]), is solved by quick acquisition of the signal development in time after a pixel is illuminated for the first time. The method was realised in a cathode lens equipped SEM which enables one to adjust easily the electron landing energy and even to roughly align the SEM at a different energy. The drawback is that the cathode lens extracts the secondaries off the surface so that also the positive charging- up fully develops. The final step in the method development consisted in closing an automated loop formed by the following steps:

I: measurement of the signal vs. time curve in series of pixels not illuminated before;2: smoothing of the curves by using the polynomial rms fitting method;3: curve integration with respect to its asymptotic level;4: stepwise discarding of the curves most differing from the average;5: determination of the average integral as the total charge measure;6: determination of the next suitable value of the cathode lens excitation, i.e. the electron landing energy;7: adjustment of the specimen bias by the electronically controlled HV supply and approximate automatic

prefocusing based on tabulated data (this step is not ready yet, such that partly manual control is necessary).

The loop is preceded by definitions of pixels prescribed for the critical energy measurements and determination of the working distance, it is closed when a total charge rtieasure falls below a pre-selected limit, and finally, a single-shoot picture at the critical energy is taken from the unused part of the view field.

The method was tested on two different ceramics materials. For both of them, signal vs. time curves were taken, and the curve integral was calculated. The sample (a) embodies only one critical energy (see Fig. 1), which means that the sample is compact of materials with close values of critical energies. There was no problem in observing this sample with the SEM’s landing energy set to the calculated value (1.6keV). On the contrary, we found two mutually distant critical energies on the sample(b) (Fig. 1). Under the latter circumstances, the method presented here cannot produce truly noncharged micrographs; a specimen of this kind of heterogeneity consists of domains, parts of which charge-up at any electron energy selected.

Page 83: Recent Trends · 3SU3i/uoi^3g Q ‘uaijiaif ijj 'jpiunps o 'Mifos^ '/y pqudffl et? surajsKs Suisnsoj uresq paSjBqo jo sisoqjuXs jeuipdo pwqzy //y ‘xoyimutiQ (J'V D Z3ui}uop\¡ t-t-

■£LÍ (¿661 ) SWía ‘'ÍEnbjol ■sv»j}sqyjo yoog ‘smi dot^joM '-'«7 £ ‘'^-U 1 ‘Iizsjpez JAT LSI•frl (3661) 26 "Wd0 I® » Jaunay q [fr]

'683 (9661 ) £1 ‘[jddns] moy iwyxuDifl ‘BAOiannpv ^ j ‘jizRjpt>2 yyj ‘jprey q [g] 6ř I (^661 ) ‘ I IoA sP®d '3S0J31W13 jSuoj -tu/ JEI °°ud ‘P-'cuann^j 7 pue jprejj 1 Izl

8It?I (9861) 6S ‘afyd lckIV T ‘xrrezto j- [[]:S’33U3J3(3y

(b) joj sem ji sb (q) joj pap3jno[B3 aq oj qqB lou sbm XSjouo Suipunj puijsip b ‘uoseai srqj joj (b) ui jsrea jou op ipiqM (q) ojdures in sapprajduioo jBiiopisoduioo jo jpisai b si soSbuii sip ui souarajjip aqx XpApsadsai ‘(q) A35I VZ P1™ («) A°>I 91 saiárauaSuipUEJ UOJIDap )E U35(BJ S[BU3JBUI S3IUIBJ9D JO S9|dUJBS JUaiSJJip OM1 JO OTEJjnS Sip JO SqdEjSOEHUI - 1 -gy

oX>IDOzo

(as) À9H3N3 9NIQNV1 OOOť oooe 0002 0001. O ------------------------------------------------------------------------------ 008-

009-

oot?-

002-

oczJD<

003o33>

OOfr