research article legendre polynomials operational matrix...

10
Research Article Legendre Polynomials Operational Matrix Method for Solving Fractional Partial Differential Equations with Variable Coefficients Yongqiang Yang, Yunpeng Ma, and Lifeng Wang School of Aeronautic Science and Technology, Beihang University, Beijing 100191, China Correspondence should be addressed to Yunpeng Ma; [email protected] Received 27 January 2015; Accepted 4 May 2015 Academic Editor: Francesco Pesavento Copyright © 2015 Yongqiang Yang et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A numerical method for solving a class of fractional partial differential equations with variable coefficients based on Legendre polynomials is proposed. A fractional order operational matrix of Legendre polynomials is also derived. e initial equations are transformed into the products of several matrixes by using the operational matrix. A system of linear equations is obtained by dispersing the coefficients and the products of matrixes. Only a small number of Legendre polynomials are needed to acquire a satisfactory result. Results obtained using the scheme presented here show that the numerical method is very effective and convenient for solving fractional partial differential equations with variable coefficients. 1. Introduction e subject of factional calculus was found over 300 years ago. e theory of integrals and derivatives of noninteger order goes back to Leibnitz, Liouville, and Letnikov. In recent years, fractional derivative and fractional differential equations have played a very significant role in many areas in fluid flow, physics, mechanics, and other applications. A lot of practical problems can be elegantly modeled with the help of the fractional derivative [15]. Fractional derivatives provide an excellent instrument for the description of memory and here- ditary properties of various materials and processes. Due to the increasing applications, a lot of attention has been paid to numerical and exact solution of fractional differential equa- tions and fractional partial equations. e analytical solutions of fractional differential equations are still in a preliminary stage. Except in a limited number of these equations, we have difficulty in seeking their analytical as well as numerical solu- tions. us there have been attempts to develop the methods for getting analytical and numerical solutions of fractional differential equations. Recently, some methods have drawn attention, such as Adomian decomposition method (ADM) [6, 7], variational iteration method (VIM) [8], generalized differential transform method (GDTM) [911], finite differ- ence method (FDM) [12], and wavelet method [13, 14]. In this paper, our study focuses on a class of fractional partial differential equations as follows: () (, ) + () (, ) = (, ) , (1) such that the initial conditions (, 0) = () , (0, ) = ℎ () , (2) where (, )/ and (, )/ are fractional deriva- tives of Caputo sense, 0 < , ≤ 1, (, ), (), and () are the known and (, ) is the unknown. ere have been several methods for solving the frac- tional partial differential equation. Doha et al. used Jacobi tau approximation to solve the numerical solution of the space fractional diffusion equation [15]. Yi et al. [16] applied block pulse functions method to obtain the fractional partial equa- tions. Podlubny [17] obtained the numerical solution of the fractional partial differential equations with constant coeffi- cients by using Laplace transform method. Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2015, Article ID 915195, 9 pages http://dx.doi.org/10.1155/2015/915195

Upload: others

Post on 11-Aug-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

Research ArticleLegendre Polynomials Operational MatrixMethod for Solving Fractional Partial DifferentialEquations with Variable Coefficients

Yongqiang Yang Yunpeng Ma and Lifeng Wang

School of Aeronautic Science and Technology Beihang University Beijing 100191 China

Correspondence should be addressed to Yunpeng Ma mayunpeng088163com

Received 27 January 2015 Accepted 4 May 2015

Academic Editor Francesco Pesavento

Copyright copy 2015 Yongqiang Yang et alThis is an open access article distributed under theCreative CommonsAttribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

A numerical method for solving a class of fractional partial differential equations with variable coefficients based on Legendrepolynomials is proposed A fractional order operational matrix of Legendre polynomials is also derived The initial equations aretransformed into the products of several matrixes by using the operational matrix A system of linear equations is obtained bydispersing the coefficients and the products of matrixes Only a small number of Legendre polynomials are needed to acquirea satisfactory result Results obtained using the scheme presented here show that the numerical method is very effective andconvenient for solving fractional partial differential equations with variable coefficients

1 Introduction

Thesubject of factional calculuswas found over 300 years agoThe theory of integrals and derivatives of noninteger ordergoes back to Leibnitz Liouville and Letnikov In recent yearsfractional derivative and fractional differential equationshave played a very significant role in many areas in fluid flowphysics mechanics and other applications A lot of practicalproblems can be elegantly modeled with the help of thefractional derivative [1ndash5] Fractional derivatives provide anexcellent instrument for the description ofmemory and here-ditary properties of various materials and processes Due tothe increasing applications a lot of attention has been paid tonumerical and exact solution of fractional differential equa-tions and fractional partial equationsThe analytical solutionsof fractional differential equations are still in a preliminarystage Except in a limited number of these equations we havedifficulty in seeking their analytical as well as numerical solu-tions Thus there have been attempts to develop the methodsfor getting analytical and numerical solutions of fractionaldifferential equations Recently some methods have drawnattention such as Adomian decomposition method (ADM)[6 7] variational iteration method (VIM) [8] generalized

differential transform method (GDTM) [9ndash11] finite differ-ence method (FDM) [12] and wavelet method [13 14]

In this paper our study focuses on a class of fractionalpartial differential equations as follows

119886 (119909)

120597120572

119906 (119909 119905)

120597119909120572

+ 119887 (119909)

120597120573

119906 (119909 119905)

120597119905120573

= 119891 (119909 119905) (1)

such that the initial conditions119906 (119909 0) = 119892 (119909)

119906 (0 119905) = ℎ (119905)

(2)

where 120597120572

119906(119909 119905)120597119909120572 and 120597

120573

119906(119909 119905)120597119905120573 are fractional deriva-

tives of Caputo sense 0 lt 120572 120573 le 1 119891(119909 119905) 119886(119909) and 119887(119909) arethe known and 119906(119909 119905) is the unknown

There have been several methods for solving the frac-tional partial differential equation Doha et al used Jacobi tauapproximation to solve the numerical solution of the spacefractional diffusion equation [15] Yi et al [16] applied blockpulse functions method to obtain the fractional partial equa-tions Podlubny [17] obtained the numerical solution of thefractional partial differential equations with constant coeffi-cients by using Laplace transform method

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2015 Article ID 915195 9 pageshttpdxdoiorg1011552015915195

2 Mathematical Problems in Engineering

2 Definitions of FractionalDerivatives and Integrals

Definition 1 Riemann-Liouville fractional integral of order120572 (120572 ge 0) is defined as follows [17]

119868120572

119906 (119905) =

1Γ (120572)

int

119905

0(119905 minus 120591)

120572minus1119906 (120591) 119889120591 119905 gt 0

1198680119906 (119905) = 119906 (119905)

(3)

where Γ(120572) = int

infin

0 119905120572minus1

119890minus119905

119889119905 is the gamma functionThe Riemann-Liouville fractional integral satisfies the

following properties

119868120572

119868120573

119906 (119905) = 119868120573

119868120572

119906 (119905)

119868120572

119868120573

119906 (119905) = 119868120572+120573

119906 (119905)

119868120572

119905119903

=

Γ (119903 + 1)

Γ (120572 + 119903 + 1)

119905120572+119903

(4)

Definition 2 Caputorsquos fractional derivative of order120572 (120572 ge 0)is defined as follows [17]

119863120572

lowast119906 (119905) =

1Γ (119903 minus 120572)

int

119905

0

119906119903

(120591)

(119905 minus 120591)120572minus119903+1 119889120591

0 le 119903 minus 1 lt 120572 lt 119903

(5)

Particularly the operator119863120572lowastsatisfies the following properties

(119888 is a constant)

119863120572

lowast119888 = 0

119863120572

lowast119905120573

=

0 120573 isin N0 120573 lt lceil120572rceil

Γ (120573 + 1)

Γ (120573 + 1 minus 120572)

119905120573minus120572

120573 isin N0 120573 ge lceil120572rceil 120573 notin N 120573 gt lfloor120572rfloor

119863120572

lowast119868120572

119906 (119905) = 119906 (119905)

119868120572

119863120572

lowast119906 (119905) = 119906 (119905) minus

119903minus1

sum

119896=0

119906(119896)

(0+

)

119905119896

119896

119905 gt 0

119863120572

lowast(120582119891 (119905) + 120583119892 (119905)) = 120582119863

120572

lowast(119891 (119905)) + 120583119863

120572

lowast(119892 (119905))

(6)

3 Legendre Polynomials and Some ofTheir Properties

TheLegendre basis polynomials of degree 119899 in [0 1] (see [18])are defined by

119875119894+1 (119905) =

(2119894 + 1) (2119905 minus 1)(119894 + 1)

119875119894(119905) minus

119894

119894 minus 1119875119894minus1 (119905)

119894 = 1 2 (7)

where 1198750(119905) = 1 119875

1(119905) = 2119905minus1 The Legendre polynomials of

degree 119894 can be also written as

119875119894(119905) =

119894

sum

119896=0(minus1)119894+119896 (119894 + 119896)

(119894 minus 119896)

119905119896

(119896)2 (8)

Let

Φ (119905) = [1198750 (119905) 1198751 (119905) 119875119899 (119905)]119879

(9)

The Legendre polynomials given by (7) can be expressed inthe matrix form

Φ (119905) = AT119899(119905) (10)

where

A

=

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 sdot sdot sdot 0

minus1 (minus1)2 2 0 sdot sdot sdot 0

(minus1)2 (minus1)3 31

(minus1)4 42

sdot sdot sdot 0

d

(minus1)119899 (minus1)119899+1 (119899 + 1)(119899 minus 1)

(minus1)119899+1 (119899 + 2)(119899 minus 2)2

sdot sdot sdot (minus1)2119899 (2119899)119899

]

]

]

]

]

]

]

]

]

]

]

]

]

T119899(119905) = [1 119905 119905

119899

]119879

(11)

Obviously

T119899(119905) = Aminus1Φ (119905) (12)

A function 119906(119905) isin 1198712

(0 1) can be expressed in terms of theLegendre basis In practice only the first (119899 + 1) term ofLegendre polynomials is considered Hence

119906 (119905) cong

119899

sum

119894=0119888119894119875119894(119905) = c119879Φ (119905) (13)

where c = [1198880 1198881 119888

119899]119879

119888119894(119894 = 0 1 2 119899) are called

Legendre coefficientsWe extend the notion to two-dimensional space and

define two-dimensional Legendre polynomials of order =

119899 + 1 as a product function of two Legendre polynomials

119875Π(119909 119905) = 119875

119886(119909) 119875119887(119905)

Π = 119886 + 119887 + 1 119886 119887 = 0 1 2 119899(14)

For the function 119906(119909 119905) isin 1198712

([0 1] times [0 1]) we can also getits approximation by using Legendre polynomials

119906 (119909 119905) cong

119899

sum

119894=0

119899

sum

119895=0119906119894119895119875119894(119909) 119875119895(119905) = Φ

119879

(119909)UΦ (119905) (15)

Mathematical Problems in Engineering 3

where

U =

[

[

[

[

[

[

[

[

[

11990600 11990601 sdot sdot sdot 1199060119899

11990610 11990611 sdot sdot sdot 1199061119899

d

1199061198990 1199061198991 sdot sdot sdot 119906

119899119899

]

]

]

]

]

]

]

]

]

(16)

Theorem 3 (see [19]) If a continuous function 119906(119909 119905) definedon [0 1] times [0 1] has bounded mixed fourth partial derivative1205974

119906(119909 119905)1205972

1199091205971199052 then the Legendre expansion of the function

converges uniformly to the functionFor sufficiently smooth function 119906(119909 119905) on [0 1]times[0 1] the

error of the approximation is given by

1003817100381710038171003817119906 (119909 119905) minus 119875

Π(119909 119905)

10038171003817100381710038172 le (1198621 +1198622 +1198623

1+1 )

1+1 (17)

where

1198621=

1

4

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

120597+1

119906 (119909 119905)

120597119909+1

100381610038161003816100381610038161003816100381610038161003816

1198622=

1

4

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

120597+1

119906 (119909 119905)

120597119905+1

100381610038161003816100381610038161003816100381610038161003816

1198623=

1

16

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

1205972+2

119906 (119909 119905)

120597119909+1

120597119905+1

100381610038161003816100381610038161003816100381610038161003816

(18)

We refer the reader to [20] for the proof of the above result

4 Numerical Solution of the Fractional PartialDifferential Equation

Consider the fractional partial differential equationwith vari-able coefficients equation (1) If we approximate the function119906(119909 119905) with the Legendre polynomials it can be written as(15) Then we have

120597120572

119906 (119909 119905)

120597119909120572

120597120572

(Φ119879

(119909)UΦ (119905))

120597119909120572

= (

120597120572

Φ (119909)

120597119909120572

)

119879

UΦ (119905) = (

120597120572T119899(119909)

120597119909120572

)

119879

A119879UΦ (119905)

= [0

Γ (2)

Γ (2 minus 120572)

1199091minus120572

Γ (3)

Γ (3 minus 120572)

1199092minus120572

sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120572)

119909119899minus120572

]A119879UΦ (119905)

=

[

[

[

[

[

[

[

[

[

[

[

1

119909

1199092

119909119899

]

]

]

]

]

]

]

]

]

]

]

119879

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120572)

119909minus120572

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120572)

119909minus120572

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120572)

119909minus120572

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

A119879UΦ (119905) = Φ119879

(119909) (Aminus1)119879

MA119879UΦ (119905)

120597120573

119906 (119909 119905)

120597119905120573

120597120573

(Φ119879

(119909)UΦ (119905))

120597119905120573

= Φ119879

(119909)U120597120573

Φ (119905)

120597119905120573

= Φ119879

(119909)UA120597120573T119899(119905)

120597119905120573

= Φ119879

(119909)UA [0

Γ (2)

Γ (2 minus 120573)

1199051minus120573

Γ (3)

Γ (3 minus 120573)

1199052minus120573

sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905119899minus120573

]

119879

= Φ119879

(119909)UA

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120573)

119905minus120573

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120573)

119905minus120573

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905minus120573

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

T119899(119905) = Φ

119879

(119909)UANAminus1Φ (119905)

(19)

4 Mathematical Problems in Engineering

Let

M

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0 Γ (2)Γ (2 minus 120572)

119909minus120572 0 sdot sdot sdot 0

0 0 Γ (3)Γ (3 minus 120572)

119909minus120572

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)Γ (119899 + 1 minus 120572)

119909minus120572

]

]

]

]

]

]

]

]

]

]

]

]

]

]

N

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120573)

119905minus120573

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120573)

119905minus120573

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905minus120573

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(20)

Substituting (19) into (1) we have

119886 (119909)Φ119879

(119909) (Aminus1)119879

MA119879UΦ (119905)

+ 119887 (119909)Φ119879

(119909)UANAminus1Φ (119905) = 119891 (119909 119905)

(21)

Dispersing (21) by the points (119909119894 119905119895) (119894 = 1 2 119899

119909 119895 =

1 2 119899119905) we can obtain U which is unknown

5 Error Analysis

In this part in order to illustrate the effectiveness of120597120572

119906(119909 119910)120597119909120572

cong Φ119879

(119909)UΦ(119910) we have given the followingtheorem Let 120597120572119906

119899(119909 119910)120597119909

120572 be the following approximationof 120597120572119906(119909 119910)120597119909

120572

120597120572

119906119899(119909 119910)

120597119909120572

=

119899

sum

119894=1

119899

sum

119895=1

119906119894119895119875119894(119909) 119875119895(119910) (22)

Then we have

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

=

infin

sum

119894=119899+1

infin

sum

119895=119899+1119906119894119895119875119894(119909) 119875119895(119910) (23)

Theorem4 Suppose that the function 120597120572

119906119899(119909 119910)120597119909

120572 obtain-ed by using Legendre polynomials is the approximation of120597120572

119906(119909 119910)120597119909120572 and 119906(119909 119910) has bounded mixed fractional

partial derivative |1205974+120572+120573

119906(119909 119910)1205971199092+120572

1205971199102+120573

| le then wehave the following upper bound of error

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8

(

Γ1015840

(119899 minus 05)

Γ (119899 minus 05)

)

101584010158401015840

(24)

where 119906(119909 119910)119864= (int

1

minus1

int

1

minus1

1199062

(119909 119910)119889119909 119889119910)12 and

119906119894119895

= (

2119894 + 12

)(

2119895 + 12

)

sdot int

1

minus1int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

119875119894(119909) 119875119895(119910) 119889119909 119889119910

(25)

Proof Theproperty of the sequence 119875119894(119909) on [minus1 1] implies

that

int

1

minus1119875119894(119909) 119875119895(119909) 119889119909 =

22119894 + 1

119894 = 119895

0 119894 = 119895

(26)

then100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

= int

1

minus1int

1

minus1[

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

]

2

119889119909 119889119910

= int

1

minus1int

1

minus1[

[

infin

sum

119894=119899+1

infin

sum

119895=119899+1119906119894119895119875119894(119909) 119875119895(119910)

]

]

2

119889119909 119889119910

= int

1

minus1int

1

minus1

infin

sum

119894=119899+1

infin

sum

119895=119899+111990621198941198951198752119894(119909) 119875

2119895(119910) 119889119909 119889119910

=

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895int

1

minus11198752119894(119909) 119889119909int

1

minus11198752119895(119910) 119889119910

=

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

(27)

The Legendre polynomials coefficients of function 120597120572

119906(119909 119910)

120597119909120572 are given by

119906119894119895

= (

2119894 + 12

)(

2119895 + 12

)

sdot int

1

minus1int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

119875119894(119909) 119875119895(119910) 119889119909 119889119910

(28)

Therefore we obtain

119906119894119895

=

2119895 + 14

int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

[119875119894+1 (119909) minus119875

119894minus1 (119909)]

sdot 119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910minus

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [119875

119894+1 (119909) minus 119875119894minus1 (119909)] 119875119895 (119910) 119889119909 119889119910

= minus

2119895 + 14

int

1

minus1int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [119875

119894+1 (119909)

minus 119875119894minus1 (119909)] 119875119895 (119910) 119889119909 119889119910 = minus

2119895 + 14

Mathematical Problems in Engineering 5

sdot int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910+

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910 =

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910

(29)

Now let 120591119894(119909) = (2119894minus1)119875

119894+2(119909)minus2(2119894+1)119875119894(119909)+(2119894+3)119875119894minus2(119909)

then we have

119906119894119895

=

2119895 + 1

4 (2119894 minus 1) (2119894 + 3)

sdot int

1

minus1

int

1

minus1

1205972+120572

119906 (119909 119910)

1205971199092+120572

120591119894(119909) 119875119895(119910) 119889119909 119889119910

(30)

By solving this equation we have

119906119894119895

=

1

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

int

1

minus1

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

120591119894(119909) 120591119895(119910) 119889119909 119889119910

(31)

So we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

14 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1int

1

minus1

1003816100381610038161003816100381610038161003816100381610038161003816

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

1003816100381610038161003816100381610038161003816100381610038161003816

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119909 119889119910

le

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816119889119909int

1

minus1

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119910

(32)

Moreover it was easily obtained that

int

1

minus1

1003816100381610038161003816120591119898

(119905)1003816100381610038161003816119889119905 le radic24 2119894 + 3

radic2119894 minus 3 (33)

thus we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

244 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

(2119894 + 3)radic2119894 minus 3

sdot

(2119895 + 3)radic2119895 minus 3

le

6(2119894 minus 3)32 (2119895 minus 3)32

(34)

Namely

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816

2le

362

(2119894 minus 3)3 (2119895 minus 3)3 (35)

Therefore we have

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

le

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)3 (2119895 minus 3)3 (2119894 + 1) (2119895 + 1)

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)4 (2119895 minus 3)4

= [

infin

sum

119894=119899+1

12(2119894 minus 3)4

]

2

= [

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

]

2

(36)

thus

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

(37)

This completes the proof

6 Numerical Examples

Example 1 Consider the following nonhomogeneous partialdifferential equation

11990913 120597

12119906 (119909 119905)

12059711990912 +119909

12 12059712

119906 (119909 119905)

12059711990512 = 119891 (119909 119905)

(119909 119905) isin [0 1] times [0 1] 119906 (119909 0) = 101199092

(1 minus 119909) 119906 (0 119905) = 119906 (1 119905) = 0

(38)

where 119891(119909 119905) = minus40radic119905(3 + 2119905)(minus1 + 119909)11990973

3radic120587 minus 16(1 +

119905)2

1199092

(minus5 + 6119909)3radic120587 The exact solution of this equation is119906(119909 119905) = 10119909

2

(1 minus 119909)(1 + 119905)2 Tables 1ndash3 show the absolute

errors for 119905 = 14119904 119905 = 12119904 and 119905 = 34119904 of different 119899

6 Mathematical Problems in Engineering

Table 1 Absolute error for t = 14 s and different values of 119899

119909 n = 2 n = 3 n = 401 03246 32831e minus 015 33582e minus 01602 02351 42734e minus 015 52745e minus 01503 04820 41237e minus 015 56521e minus 01504 03274 57320e minus 015 62742e minus 01605 08231 47381e minus 015 71640e minus 01606 09127 73722e minus 015 32356e minus 01607 12188 63276e minus 015 42745e minus 01508 15181 12374e minus 014 37224e minus 01509 08364 31744e minus 015 88874e minus 015

Table 2 Absolute error for t = 12 s and different values of 119899

119909 n = 2 n = 3 n = 401 02821 42137e minus 015 34325e minus 01602 04375 58711e minus 015 65332e minus 01603 01021 42210e minus 015 52435e minus 01604 02387 31016e minus 016 49722e minus 01605 08277 34762e minus 016 53478e minus 01506 09322 53265e minus 015 13241e minus 01607 13846 47632e minus 015 92371e minus 01608 16654 42346e minus 016 84812e minus 01509 09144 20437e minus 016 63273e minus 016

Table 3 Absolute error for t = 34 s and different values of 119899

119909 n = 2 n = 3 n = 401 03126 50832e minus 016 53281e minus 01602 08978 41845e minus 016 23258e minus 01503 02374 23448e minus 016 40112e minus 01604 02951 32155e minus 016 51223e minus 01605 03327 55518e minus 015 63274e minus 01506 13267 62440e minus 016 57421e minus 01507 08723 35220e minus 016 52871e minus 01608 09229 42301e minus 016 48810e minus 01609 11327 52310e minus 015 61138e minus 016

From Tables 1ndash3 we can see that the absolute error is verysmall when 119899 ge 3 Also when 119899 is fixed the more pointswe take the more accurate numerical solutions we obtainFigures 1ndash3 show the fact that 119899

119909119905is the number of 119909

119894 119905119895

Example 2 Consider the following fractional partial differ-ential equation

119909

12059714

119906 (119909 119905)

12059711990914 +119909

23 12059713

119906 (119909 119905)

12059711990513 = 119891 (119909 119905)

119906 (119909 0) = 119909 (119909 minus 1) (1199092

+ 1) 119906 (0 119905) = 0

(39)

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 1 Numerical solution of 119899119909119905

= 3

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 2 Numerical solution of 119899119909119905

= 6

0

05

1

00204

06081

0

2

4

6

t

x

u(xt)

Figure 3 Exact solution

where

119891 (119909 119905) =

311990523 (55 + 66119905 + 811199053) (minus1 + 119909) 1199092(1 + 119909

2)

110Γ (23)

+

4 (1 + 119905 + 1199052+ 119905

4) 119909

1712[minus385 + 8119909 (55 minus 60119909 + 641199092

)]

1155Γ (34)

(40)

Mathematical Problems in Engineering 7

0020406081 005

1

0

x t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 4 The numerical solutions for Example 2 when 119899 = 4

00204060810

051

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 5 The numerical solutions for Example 2 when 119899 = 5

The exact solution is 119906(119909 119905) = 119909(119909minus 1)(1199092

+1)(1 + 119905 + 1199052

+ 1199054

)The numerical solutions for 119899 = 4 119899 = 5 are displayed inFigures 4 and 5 and the exact solution is shown in Figure 6

Example 3 Consider this equation

11990912

12059713

119906 (119909 119905)

12059711990913

+11990923

12059713

119906 (119909 119905)

12059711990513

= 119891 (119909 119905)

119906 (119909 0) = 1199092

minus 1 119906 (0 119905) = minus1 minus (119905 minus 1)2

minus (119905 minus 1)3

(41)

where119891 (119909 119905)

=

9 (1 + 119905 minus 21199052 + 1199053) 119909

136

5Γ (23)

+

311990523 (minus2 + 3119905) (minus10 + 9119905) (minus1 + 1199092) 119909

23

40Γ (23)

(42)

The exact solution is 119906(119909 119905) = (1199092

minus 1)[1 + (119905 minus 1)2

+ (119905 minus 1)3

]The numerical solutions for 119899 = 3 119899 = 4 are displayed inFigures 7 and 8 The absolute errors are shown in Figures 9and 10 when 119899 = 3 and 119899 = 4

00204060810

05

1

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 6 Exact solution for Example 2

0 02 04 06 08 1

0

05

1

0

u(xt)

x

t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

Figure 7 The numerical solutions for Example 3 when 119899 = 3

0 02 04 06 08 1

0

05

1

0

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

xt

Figure 8 The numerical solutions for Example 3 when 119899 = 4

From Examples 1ndash3 we can see that the method in thispaper can be effectively used to solve the numerical solutionof fractional partial differential equation with variable coeffi-cients From the above results the absolute errors between

8 Mathematical Problems in Engineering

002

0406

081 0

05

10020406081

12

tx

times10minus14

u(xt)

Figure 9 The absolute errors for Example 3 when 119899 = 3

002

0406

081 0

0204

0608

10

020406081

12

tx

times10minus15

u(xt)

Figure 10 The absolute errors for Example 3 when 119899 = 4

the numerical solutions and the exact solution are rathersmall What is more due to the absolute error in this paperis about 10minus15 the Legendre polynomials method can reachhigher degree of accuracy by comparing the approximationsobtained by block pulse method [16]

7 Conclusion

In this paper we use the Legendre polynomials method tosolve a class of fractional partial differential equations withvariable coefficients The Legendre polynomials operationalmatrix of fractional differentiation is derived from the prop-erty of Legendre polynomials The initial equation is trans-lated into the product of some relevant matrixes which canalso be regarded as the system of linear equations The erroranalysis of Legendre polynomials is also given The numer-ical results show that numerical solutions obtained by ourmethod are in very good agreement with the exact solution

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] R L Bagley and R A Calico ldquoFractional order state equationsfor the control of viscoelastically damped structuresrdquo Journalof Guidance Control and Dynamics vol 14 no 2 pp 304ndash3111991

[2] Z C Li and J S Luo Wavelet Analysis and Its ApplicationElectronic Industrial Publication Beijing China 2005

[3] J H Chen ldquoAnalysis of stability and convergence of numeri-cal approximation for the Riesz fractional reaction-dispersionequationrdquo Journal of Xiamen University (Natural Science) vol46 no 5 pp 616ndash619 2007

[4] D Delbosco and L Rodino ldquoExistence and uniqueness for anonlinear fractional differential equationrdquo Journal of Mathe-matical Analysis and Applications vol 204 no 2 pp 609ndash6251996

[5] Y Ryabov and A Puzenko ldquoA damped oscillations in view ofthe fraction oscillator equationrdquo Physics Review B vol 66 pp184ndash201 2002

[6] A M El-Sayed ldquoNonlinear functional-differential equationsof arbitrary ordersrdquo Nonlinear Analysis Theory Methods ampApplications vol 33 no 2 pp 181ndash186 1998

[7] I L El-Kalla ldquoError estimate of the series solution to a class ofnonlinear fractional differential equationsrdquo Communications inNonlinear Science and Numerical Simulation vol 16 no 3 pp1408ndash1413 2011

[8] Z M Odibat ldquoA study on the convergence of variationaliteration methodrdquo Mathematical and Computer Modelling vol51 no 9-10 pp 1181ndash1192 2010

[9] SMomani ZOdibat andV S Erturk ldquoGeneralized differentialtransform method for solving a space- and time-fractionaldiffusion-wave equationrdquo Physics Letters A vol 370 no 5-6 pp379ndash387 2007

[10] ZOdibat SMomani andV S Erturk ldquoGeneralized differentialtransform method application to differential equations offractional orderrdquo Applied Mathematics and Computation vol197 no 2 pp 467ndash477 2008

[11] Z Odibat and S Momani ldquoA generalized differential transformmethod for linear partial differential equations of fractionalorderrdquo Applied Mathematics Letters vol 21 no 2 pp 194ndash1992008

[12] Y Zhang ldquoA finite difference method for fractional partialdifferential equationrdquo Applied Mathematics and Computationvol 215 no 2 pp 524ndash529 2009

[13] Y X Wang and Q B Fan ldquoThe second kind Chebyshev waveletmethod for solving fractional differential equationsrdquo AppliedMathematics and Computation vol 218 no 17 pp 8592ndash86012012

[14] M X Yi and Y M Chen ldquoHaar wavelet operational matrixmethod for solving fractional partial differential equationsrdquoComputer Modeling in Engineering amp Sciences vol 88 no 3 pp229ndash244 2012

[15] EHDohaAH BhrawyD Baleanu and S S Ezz-Eldien ldquoTheoperational matrix formulation of the Jacobi tau approximationfor space fractional diffusion equationrdquo Advances in DifferenceEquations vol 231 pp 1687ndash1847 2014

[16] M X Yi J Huang and J X Wei ldquoBlock pulse operationalmatrix method for solving fractional partial differential equa-tionrdquo Applied Mathematics and Computation vol 221 pp 121ndash131 2013

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

2 Mathematical Problems in Engineering

2 Definitions of FractionalDerivatives and Integrals

Definition 1 Riemann-Liouville fractional integral of order120572 (120572 ge 0) is defined as follows [17]

119868120572

119906 (119905) =

1Γ (120572)

int

119905

0(119905 minus 120591)

120572minus1119906 (120591) 119889120591 119905 gt 0

1198680119906 (119905) = 119906 (119905)

(3)

where Γ(120572) = int

infin

0 119905120572minus1

119890minus119905

119889119905 is the gamma functionThe Riemann-Liouville fractional integral satisfies the

following properties

119868120572

119868120573

119906 (119905) = 119868120573

119868120572

119906 (119905)

119868120572

119868120573

119906 (119905) = 119868120572+120573

119906 (119905)

119868120572

119905119903

=

Γ (119903 + 1)

Γ (120572 + 119903 + 1)

119905120572+119903

(4)

Definition 2 Caputorsquos fractional derivative of order120572 (120572 ge 0)is defined as follows [17]

119863120572

lowast119906 (119905) =

1Γ (119903 minus 120572)

int

119905

0

119906119903

(120591)

(119905 minus 120591)120572minus119903+1 119889120591

0 le 119903 minus 1 lt 120572 lt 119903

(5)

Particularly the operator119863120572lowastsatisfies the following properties

(119888 is a constant)

119863120572

lowast119888 = 0

119863120572

lowast119905120573

=

0 120573 isin N0 120573 lt lceil120572rceil

Γ (120573 + 1)

Γ (120573 + 1 minus 120572)

119905120573minus120572

120573 isin N0 120573 ge lceil120572rceil 120573 notin N 120573 gt lfloor120572rfloor

119863120572

lowast119868120572

119906 (119905) = 119906 (119905)

119868120572

119863120572

lowast119906 (119905) = 119906 (119905) minus

119903minus1

sum

119896=0

119906(119896)

(0+

)

119905119896

119896

119905 gt 0

119863120572

lowast(120582119891 (119905) + 120583119892 (119905)) = 120582119863

120572

lowast(119891 (119905)) + 120583119863

120572

lowast(119892 (119905))

(6)

3 Legendre Polynomials and Some ofTheir Properties

TheLegendre basis polynomials of degree 119899 in [0 1] (see [18])are defined by

119875119894+1 (119905) =

(2119894 + 1) (2119905 minus 1)(119894 + 1)

119875119894(119905) minus

119894

119894 minus 1119875119894minus1 (119905)

119894 = 1 2 (7)

where 1198750(119905) = 1 119875

1(119905) = 2119905minus1 The Legendre polynomials of

degree 119894 can be also written as

119875119894(119905) =

119894

sum

119896=0(minus1)119894+119896 (119894 + 119896)

(119894 minus 119896)

119905119896

(119896)2 (8)

Let

Φ (119905) = [1198750 (119905) 1198751 (119905) 119875119899 (119905)]119879

(9)

The Legendre polynomials given by (7) can be expressed inthe matrix form

Φ (119905) = AT119899(119905) (10)

where

A

=

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 sdot sdot sdot 0

minus1 (minus1)2 2 0 sdot sdot sdot 0

(minus1)2 (minus1)3 31

(minus1)4 42

sdot sdot sdot 0

d

(minus1)119899 (minus1)119899+1 (119899 + 1)(119899 minus 1)

(minus1)119899+1 (119899 + 2)(119899 minus 2)2

sdot sdot sdot (minus1)2119899 (2119899)119899

]

]

]

]

]

]

]

]

]

]

]

]

]

T119899(119905) = [1 119905 119905

119899

]119879

(11)

Obviously

T119899(119905) = Aminus1Φ (119905) (12)

A function 119906(119905) isin 1198712

(0 1) can be expressed in terms of theLegendre basis In practice only the first (119899 + 1) term ofLegendre polynomials is considered Hence

119906 (119905) cong

119899

sum

119894=0119888119894119875119894(119905) = c119879Φ (119905) (13)

where c = [1198880 1198881 119888

119899]119879

119888119894(119894 = 0 1 2 119899) are called

Legendre coefficientsWe extend the notion to two-dimensional space and

define two-dimensional Legendre polynomials of order =

119899 + 1 as a product function of two Legendre polynomials

119875Π(119909 119905) = 119875

119886(119909) 119875119887(119905)

Π = 119886 + 119887 + 1 119886 119887 = 0 1 2 119899(14)

For the function 119906(119909 119905) isin 1198712

([0 1] times [0 1]) we can also getits approximation by using Legendre polynomials

119906 (119909 119905) cong

119899

sum

119894=0

119899

sum

119895=0119906119894119895119875119894(119909) 119875119895(119905) = Φ

119879

(119909)UΦ (119905) (15)

Mathematical Problems in Engineering 3

where

U =

[

[

[

[

[

[

[

[

[

11990600 11990601 sdot sdot sdot 1199060119899

11990610 11990611 sdot sdot sdot 1199061119899

d

1199061198990 1199061198991 sdot sdot sdot 119906

119899119899

]

]

]

]

]

]

]

]

]

(16)

Theorem 3 (see [19]) If a continuous function 119906(119909 119905) definedon [0 1] times [0 1] has bounded mixed fourth partial derivative1205974

119906(119909 119905)1205972

1199091205971199052 then the Legendre expansion of the function

converges uniformly to the functionFor sufficiently smooth function 119906(119909 119905) on [0 1]times[0 1] the

error of the approximation is given by

1003817100381710038171003817119906 (119909 119905) minus 119875

Π(119909 119905)

10038171003817100381710038172 le (1198621 +1198622 +1198623

1+1 )

1+1 (17)

where

1198621=

1

4

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

120597+1

119906 (119909 119905)

120597119909+1

100381610038161003816100381610038161003816100381610038161003816

1198622=

1

4

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

120597+1

119906 (119909 119905)

120597119905+1

100381610038161003816100381610038161003816100381610038161003816

1198623=

1

16

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

1205972+2

119906 (119909 119905)

120597119909+1

120597119905+1

100381610038161003816100381610038161003816100381610038161003816

(18)

We refer the reader to [20] for the proof of the above result

4 Numerical Solution of the Fractional PartialDifferential Equation

Consider the fractional partial differential equationwith vari-able coefficients equation (1) If we approximate the function119906(119909 119905) with the Legendre polynomials it can be written as(15) Then we have

120597120572

119906 (119909 119905)

120597119909120572

120597120572

(Φ119879

(119909)UΦ (119905))

120597119909120572

= (

120597120572

Φ (119909)

120597119909120572

)

119879

UΦ (119905) = (

120597120572T119899(119909)

120597119909120572

)

119879

A119879UΦ (119905)

= [0

Γ (2)

Γ (2 minus 120572)

1199091minus120572

Γ (3)

Γ (3 minus 120572)

1199092minus120572

sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120572)

119909119899minus120572

]A119879UΦ (119905)

=

[

[

[

[

[

[

[

[

[

[

[

1

119909

1199092

119909119899

]

]

]

]

]

]

]

]

]

]

]

119879

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120572)

119909minus120572

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120572)

119909minus120572

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120572)

119909minus120572

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

A119879UΦ (119905) = Φ119879

(119909) (Aminus1)119879

MA119879UΦ (119905)

120597120573

119906 (119909 119905)

120597119905120573

120597120573

(Φ119879

(119909)UΦ (119905))

120597119905120573

= Φ119879

(119909)U120597120573

Φ (119905)

120597119905120573

= Φ119879

(119909)UA120597120573T119899(119905)

120597119905120573

= Φ119879

(119909)UA [0

Γ (2)

Γ (2 minus 120573)

1199051minus120573

Γ (3)

Γ (3 minus 120573)

1199052minus120573

sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905119899minus120573

]

119879

= Φ119879

(119909)UA

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120573)

119905minus120573

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120573)

119905minus120573

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905minus120573

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

T119899(119905) = Φ

119879

(119909)UANAminus1Φ (119905)

(19)

4 Mathematical Problems in Engineering

Let

M

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0 Γ (2)Γ (2 minus 120572)

119909minus120572 0 sdot sdot sdot 0

0 0 Γ (3)Γ (3 minus 120572)

119909minus120572

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)Γ (119899 + 1 minus 120572)

119909minus120572

]

]

]

]

]

]

]

]

]

]

]

]

]

]

N

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120573)

119905minus120573

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120573)

119905minus120573

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905minus120573

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(20)

Substituting (19) into (1) we have

119886 (119909)Φ119879

(119909) (Aminus1)119879

MA119879UΦ (119905)

+ 119887 (119909)Φ119879

(119909)UANAminus1Φ (119905) = 119891 (119909 119905)

(21)

Dispersing (21) by the points (119909119894 119905119895) (119894 = 1 2 119899

119909 119895 =

1 2 119899119905) we can obtain U which is unknown

5 Error Analysis

In this part in order to illustrate the effectiveness of120597120572

119906(119909 119910)120597119909120572

cong Φ119879

(119909)UΦ(119910) we have given the followingtheorem Let 120597120572119906

119899(119909 119910)120597119909

120572 be the following approximationof 120597120572119906(119909 119910)120597119909

120572

120597120572

119906119899(119909 119910)

120597119909120572

=

119899

sum

119894=1

119899

sum

119895=1

119906119894119895119875119894(119909) 119875119895(119910) (22)

Then we have

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

=

infin

sum

119894=119899+1

infin

sum

119895=119899+1119906119894119895119875119894(119909) 119875119895(119910) (23)

Theorem4 Suppose that the function 120597120572

119906119899(119909 119910)120597119909

120572 obtain-ed by using Legendre polynomials is the approximation of120597120572

119906(119909 119910)120597119909120572 and 119906(119909 119910) has bounded mixed fractional

partial derivative |1205974+120572+120573

119906(119909 119910)1205971199092+120572

1205971199102+120573

| le then wehave the following upper bound of error

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8

(

Γ1015840

(119899 minus 05)

Γ (119899 minus 05)

)

101584010158401015840

(24)

where 119906(119909 119910)119864= (int

1

minus1

int

1

minus1

1199062

(119909 119910)119889119909 119889119910)12 and

119906119894119895

= (

2119894 + 12

)(

2119895 + 12

)

sdot int

1

minus1int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

119875119894(119909) 119875119895(119910) 119889119909 119889119910

(25)

Proof Theproperty of the sequence 119875119894(119909) on [minus1 1] implies

that

int

1

minus1119875119894(119909) 119875119895(119909) 119889119909 =

22119894 + 1

119894 = 119895

0 119894 = 119895

(26)

then100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

= int

1

minus1int

1

minus1[

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

]

2

119889119909 119889119910

= int

1

minus1int

1

minus1[

[

infin

sum

119894=119899+1

infin

sum

119895=119899+1119906119894119895119875119894(119909) 119875119895(119910)

]

]

2

119889119909 119889119910

= int

1

minus1int

1

minus1

infin

sum

119894=119899+1

infin

sum

119895=119899+111990621198941198951198752119894(119909) 119875

2119895(119910) 119889119909 119889119910

=

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895int

1

minus11198752119894(119909) 119889119909int

1

minus11198752119895(119910) 119889119910

=

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

(27)

The Legendre polynomials coefficients of function 120597120572

119906(119909 119910)

120597119909120572 are given by

119906119894119895

= (

2119894 + 12

)(

2119895 + 12

)

sdot int

1

minus1int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

119875119894(119909) 119875119895(119910) 119889119909 119889119910

(28)

Therefore we obtain

119906119894119895

=

2119895 + 14

int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

[119875119894+1 (119909) minus119875

119894minus1 (119909)]

sdot 119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910minus

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [119875

119894+1 (119909) minus 119875119894minus1 (119909)] 119875119895 (119910) 119889119909 119889119910

= minus

2119895 + 14

int

1

minus1int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [119875

119894+1 (119909)

minus 119875119894minus1 (119909)] 119875119895 (119910) 119889119909 119889119910 = minus

2119895 + 14

Mathematical Problems in Engineering 5

sdot int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910+

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910 =

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910

(29)

Now let 120591119894(119909) = (2119894minus1)119875

119894+2(119909)minus2(2119894+1)119875119894(119909)+(2119894+3)119875119894minus2(119909)

then we have

119906119894119895

=

2119895 + 1

4 (2119894 minus 1) (2119894 + 3)

sdot int

1

minus1

int

1

minus1

1205972+120572

119906 (119909 119910)

1205971199092+120572

120591119894(119909) 119875119895(119910) 119889119909 119889119910

(30)

By solving this equation we have

119906119894119895

=

1

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

int

1

minus1

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

120591119894(119909) 120591119895(119910) 119889119909 119889119910

(31)

So we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

14 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1int

1

minus1

1003816100381610038161003816100381610038161003816100381610038161003816

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

1003816100381610038161003816100381610038161003816100381610038161003816

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119909 119889119910

le

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816119889119909int

1

minus1

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119910

(32)

Moreover it was easily obtained that

int

1

minus1

1003816100381610038161003816120591119898

(119905)1003816100381610038161003816119889119905 le radic24 2119894 + 3

radic2119894 minus 3 (33)

thus we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

244 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

(2119894 + 3)radic2119894 minus 3

sdot

(2119895 + 3)radic2119895 minus 3

le

6(2119894 minus 3)32 (2119895 minus 3)32

(34)

Namely

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816

2le

362

(2119894 minus 3)3 (2119895 minus 3)3 (35)

Therefore we have

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

le

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)3 (2119895 minus 3)3 (2119894 + 1) (2119895 + 1)

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)4 (2119895 minus 3)4

= [

infin

sum

119894=119899+1

12(2119894 minus 3)4

]

2

= [

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

]

2

(36)

thus

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

(37)

This completes the proof

6 Numerical Examples

Example 1 Consider the following nonhomogeneous partialdifferential equation

11990913 120597

12119906 (119909 119905)

12059711990912 +119909

12 12059712

119906 (119909 119905)

12059711990512 = 119891 (119909 119905)

(119909 119905) isin [0 1] times [0 1] 119906 (119909 0) = 101199092

(1 minus 119909) 119906 (0 119905) = 119906 (1 119905) = 0

(38)

where 119891(119909 119905) = minus40radic119905(3 + 2119905)(minus1 + 119909)11990973

3radic120587 minus 16(1 +

119905)2

1199092

(minus5 + 6119909)3radic120587 The exact solution of this equation is119906(119909 119905) = 10119909

2

(1 minus 119909)(1 + 119905)2 Tables 1ndash3 show the absolute

errors for 119905 = 14119904 119905 = 12119904 and 119905 = 34119904 of different 119899

6 Mathematical Problems in Engineering

Table 1 Absolute error for t = 14 s and different values of 119899

119909 n = 2 n = 3 n = 401 03246 32831e minus 015 33582e minus 01602 02351 42734e minus 015 52745e minus 01503 04820 41237e minus 015 56521e minus 01504 03274 57320e minus 015 62742e minus 01605 08231 47381e minus 015 71640e minus 01606 09127 73722e minus 015 32356e minus 01607 12188 63276e minus 015 42745e minus 01508 15181 12374e minus 014 37224e minus 01509 08364 31744e minus 015 88874e minus 015

Table 2 Absolute error for t = 12 s and different values of 119899

119909 n = 2 n = 3 n = 401 02821 42137e minus 015 34325e minus 01602 04375 58711e minus 015 65332e minus 01603 01021 42210e minus 015 52435e minus 01604 02387 31016e minus 016 49722e minus 01605 08277 34762e minus 016 53478e minus 01506 09322 53265e minus 015 13241e minus 01607 13846 47632e minus 015 92371e minus 01608 16654 42346e minus 016 84812e minus 01509 09144 20437e minus 016 63273e minus 016

Table 3 Absolute error for t = 34 s and different values of 119899

119909 n = 2 n = 3 n = 401 03126 50832e minus 016 53281e minus 01602 08978 41845e minus 016 23258e minus 01503 02374 23448e minus 016 40112e minus 01604 02951 32155e minus 016 51223e minus 01605 03327 55518e minus 015 63274e minus 01506 13267 62440e minus 016 57421e minus 01507 08723 35220e minus 016 52871e minus 01608 09229 42301e minus 016 48810e minus 01609 11327 52310e minus 015 61138e minus 016

From Tables 1ndash3 we can see that the absolute error is verysmall when 119899 ge 3 Also when 119899 is fixed the more pointswe take the more accurate numerical solutions we obtainFigures 1ndash3 show the fact that 119899

119909119905is the number of 119909

119894 119905119895

Example 2 Consider the following fractional partial differ-ential equation

119909

12059714

119906 (119909 119905)

12059711990914 +119909

23 12059713

119906 (119909 119905)

12059711990513 = 119891 (119909 119905)

119906 (119909 0) = 119909 (119909 minus 1) (1199092

+ 1) 119906 (0 119905) = 0

(39)

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 1 Numerical solution of 119899119909119905

= 3

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 2 Numerical solution of 119899119909119905

= 6

0

05

1

00204

06081

0

2

4

6

t

x

u(xt)

Figure 3 Exact solution

where

119891 (119909 119905) =

311990523 (55 + 66119905 + 811199053) (minus1 + 119909) 1199092(1 + 119909

2)

110Γ (23)

+

4 (1 + 119905 + 1199052+ 119905

4) 119909

1712[minus385 + 8119909 (55 minus 60119909 + 641199092

)]

1155Γ (34)

(40)

Mathematical Problems in Engineering 7

0020406081 005

1

0

x t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 4 The numerical solutions for Example 2 when 119899 = 4

00204060810

051

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 5 The numerical solutions for Example 2 when 119899 = 5

The exact solution is 119906(119909 119905) = 119909(119909minus 1)(1199092

+1)(1 + 119905 + 1199052

+ 1199054

)The numerical solutions for 119899 = 4 119899 = 5 are displayed inFigures 4 and 5 and the exact solution is shown in Figure 6

Example 3 Consider this equation

11990912

12059713

119906 (119909 119905)

12059711990913

+11990923

12059713

119906 (119909 119905)

12059711990513

= 119891 (119909 119905)

119906 (119909 0) = 1199092

minus 1 119906 (0 119905) = minus1 minus (119905 minus 1)2

minus (119905 minus 1)3

(41)

where119891 (119909 119905)

=

9 (1 + 119905 minus 21199052 + 1199053) 119909

136

5Γ (23)

+

311990523 (minus2 + 3119905) (minus10 + 9119905) (minus1 + 1199092) 119909

23

40Γ (23)

(42)

The exact solution is 119906(119909 119905) = (1199092

minus 1)[1 + (119905 minus 1)2

+ (119905 minus 1)3

]The numerical solutions for 119899 = 3 119899 = 4 are displayed inFigures 7 and 8 The absolute errors are shown in Figures 9and 10 when 119899 = 3 and 119899 = 4

00204060810

05

1

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 6 Exact solution for Example 2

0 02 04 06 08 1

0

05

1

0

u(xt)

x

t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

Figure 7 The numerical solutions for Example 3 when 119899 = 3

0 02 04 06 08 1

0

05

1

0

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

xt

Figure 8 The numerical solutions for Example 3 when 119899 = 4

From Examples 1ndash3 we can see that the method in thispaper can be effectively used to solve the numerical solutionof fractional partial differential equation with variable coeffi-cients From the above results the absolute errors between

8 Mathematical Problems in Engineering

002

0406

081 0

05

10020406081

12

tx

times10minus14

u(xt)

Figure 9 The absolute errors for Example 3 when 119899 = 3

002

0406

081 0

0204

0608

10

020406081

12

tx

times10minus15

u(xt)

Figure 10 The absolute errors for Example 3 when 119899 = 4

the numerical solutions and the exact solution are rathersmall What is more due to the absolute error in this paperis about 10minus15 the Legendre polynomials method can reachhigher degree of accuracy by comparing the approximationsobtained by block pulse method [16]

7 Conclusion

In this paper we use the Legendre polynomials method tosolve a class of fractional partial differential equations withvariable coefficients The Legendre polynomials operationalmatrix of fractional differentiation is derived from the prop-erty of Legendre polynomials The initial equation is trans-lated into the product of some relevant matrixes which canalso be regarded as the system of linear equations The erroranalysis of Legendre polynomials is also given The numer-ical results show that numerical solutions obtained by ourmethod are in very good agreement with the exact solution

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] R L Bagley and R A Calico ldquoFractional order state equationsfor the control of viscoelastically damped structuresrdquo Journalof Guidance Control and Dynamics vol 14 no 2 pp 304ndash3111991

[2] Z C Li and J S Luo Wavelet Analysis and Its ApplicationElectronic Industrial Publication Beijing China 2005

[3] J H Chen ldquoAnalysis of stability and convergence of numeri-cal approximation for the Riesz fractional reaction-dispersionequationrdquo Journal of Xiamen University (Natural Science) vol46 no 5 pp 616ndash619 2007

[4] D Delbosco and L Rodino ldquoExistence and uniqueness for anonlinear fractional differential equationrdquo Journal of Mathe-matical Analysis and Applications vol 204 no 2 pp 609ndash6251996

[5] Y Ryabov and A Puzenko ldquoA damped oscillations in view ofthe fraction oscillator equationrdquo Physics Review B vol 66 pp184ndash201 2002

[6] A M El-Sayed ldquoNonlinear functional-differential equationsof arbitrary ordersrdquo Nonlinear Analysis Theory Methods ampApplications vol 33 no 2 pp 181ndash186 1998

[7] I L El-Kalla ldquoError estimate of the series solution to a class ofnonlinear fractional differential equationsrdquo Communications inNonlinear Science and Numerical Simulation vol 16 no 3 pp1408ndash1413 2011

[8] Z M Odibat ldquoA study on the convergence of variationaliteration methodrdquo Mathematical and Computer Modelling vol51 no 9-10 pp 1181ndash1192 2010

[9] SMomani ZOdibat andV S Erturk ldquoGeneralized differentialtransform method for solving a space- and time-fractionaldiffusion-wave equationrdquo Physics Letters A vol 370 no 5-6 pp379ndash387 2007

[10] ZOdibat SMomani andV S Erturk ldquoGeneralized differentialtransform method application to differential equations offractional orderrdquo Applied Mathematics and Computation vol197 no 2 pp 467ndash477 2008

[11] Z Odibat and S Momani ldquoA generalized differential transformmethod for linear partial differential equations of fractionalorderrdquo Applied Mathematics Letters vol 21 no 2 pp 194ndash1992008

[12] Y Zhang ldquoA finite difference method for fractional partialdifferential equationrdquo Applied Mathematics and Computationvol 215 no 2 pp 524ndash529 2009

[13] Y X Wang and Q B Fan ldquoThe second kind Chebyshev waveletmethod for solving fractional differential equationsrdquo AppliedMathematics and Computation vol 218 no 17 pp 8592ndash86012012

[14] M X Yi and Y M Chen ldquoHaar wavelet operational matrixmethod for solving fractional partial differential equationsrdquoComputer Modeling in Engineering amp Sciences vol 88 no 3 pp229ndash244 2012

[15] EHDohaAH BhrawyD Baleanu and S S Ezz-Eldien ldquoTheoperational matrix formulation of the Jacobi tau approximationfor space fractional diffusion equationrdquo Advances in DifferenceEquations vol 231 pp 1687ndash1847 2014

[16] M X Yi J Huang and J X Wei ldquoBlock pulse operationalmatrix method for solving fractional partial differential equa-tionrdquo Applied Mathematics and Computation vol 221 pp 121ndash131 2013

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

Mathematical Problems in Engineering 3

where

U =

[

[

[

[

[

[

[

[

[

11990600 11990601 sdot sdot sdot 1199060119899

11990610 11990611 sdot sdot sdot 1199061119899

d

1199061198990 1199061198991 sdot sdot sdot 119906

119899119899

]

]

]

]

]

]

]

]

]

(16)

Theorem 3 (see [19]) If a continuous function 119906(119909 119905) definedon [0 1] times [0 1] has bounded mixed fourth partial derivative1205974

119906(119909 119905)1205972

1199091205971199052 then the Legendre expansion of the function

converges uniformly to the functionFor sufficiently smooth function 119906(119909 119905) on [0 1]times[0 1] the

error of the approximation is given by

1003817100381710038171003817119906 (119909 119905) minus 119875

Π(119909 119905)

10038171003817100381710038172 le (1198621 +1198622 +1198623

1+1 )

1+1 (17)

where

1198621=

1

4

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

120597+1

119906 (119909 119905)

120597119909+1

100381610038161003816100381610038161003816100381610038161003816

1198622=

1

4

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

120597+1

119906 (119909 119905)

120597119905+1

100381610038161003816100381610038161003816100381610038161003816

1198623=

1

16

max(119909119905)isin[01]times[01]

100381610038161003816100381610038161003816100381610038161003816

1205972+2

119906 (119909 119905)

120597119909+1

120597119905+1

100381610038161003816100381610038161003816100381610038161003816

(18)

We refer the reader to [20] for the proof of the above result

4 Numerical Solution of the Fractional PartialDifferential Equation

Consider the fractional partial differential equationwith vari-able coefficients equation (1) If we approximate the function119906(119909 119905) with the Legendre polynomials it can be written as(15) Then we have

120597120572

119906 (119909 119905)

120597119909120572

120597120572

(Φ119879

(119909)UΦ (119905))

120597119909120572

= (

120597120572

Φ (119909)

120597119909120572

)

119879

UΦ (119905) = (

120597120572T119899(119909)

120597119909120572

)

119879

A119879UΦ (119905)

= [0

Γ (2)

Γ (2 minus 120572)

1199091minus120572

Γ (3)

Γ (3 minus 120572)

1199092minus120572

sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120572)

119909119899minus120572

]A119879UΦ (119905)

=

[

[

[

[

[

[

[

[

[

[

[

1

119909

1199092

119909119899

]

]

]

]

]

]

]

]

]

]

]

119879

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120572)

119909minus120572

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120572)

119909minus120572

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120572)

119909minus120572

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

A119879UΦ (119905) = Φ119879

(119909) (Aminus1)119879

MA119879UΦ (119905)

120597120573

119906 (119909 119905)

120597119905120573

120597120573

(Φ119879

(119909)UΦ (119905))

120597119905120573

= Φ119879

(119909)U120597120573

Φ (119905)

120597119905120573

= Φ119879

(119909)UA120597120573T119899(119905)

120597119905120573

= Φ119879

(119909)UA [0

Γ (2)

Γ (2 minus 120573)

1199051minus120573

Γ (3)

Γ (3 minus 120573)

1199052minus120573

sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905119899minus120573

]

119879

= Φ119879

(119909)UA

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120573)

119905minus120573

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120573)

119905minus120573

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905minus120573

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

T119899(119905) = Φ

119879

(119909)UANAminus1Φ (119905)

(19)

4 Mathematical Problems in Engineering

Let

M

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0 Γ (2)Γ (2 minus 120572)

119909minus120572 0 sdot sdot sdot 0

0 0 Γ (3)Γ (3 minus 120572)

119909minus120572

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)Γ (119899 + 1 minus 120572)

119909minus120572

]

]

]

]

]

]

]

]

]

]

]

]

]

]

N

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120573)

119905minus120573

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120573)

119905minus120573

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905minus120573

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(20)

Substituting (19) into (1) we have

119886 (119909)Φ119879

(119909) (Aminus1)119879

MA119879UΦ (119905)

+ 119887 (119909)Φ119879

(119909)UANAminus1Φ (119905) = 119891 (119909 119905)

(21)

Dispersing (21) by the points (119909119894 119905119895) (119894 = 1 2 119899

119909 119895 =

1 2 119899119905) we can obtain U which is unknown

5 Error Analysis

In this part in order to illustrate the effectiveness of120597120572

119906(119909 119910)120597119909120572

cong Φ119879

(119909)UΦ(119910) we have given the followingtheorem Let 120597120572119906

119899(119909 119910)120597119909

120572 be the following approximationof 120597120572119906(119909 119910)120597119909

120572

120597120572

119906119899(119909 119910)

120597119909120572

=

119899

sum

119894=1

119899

sum

119895=1

119906119894119895119875119894(119909) 119875119895(119910) (22)

Then we have

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

=

infin

sum

119894=119899+1

infin

sum

119895=119899+1119906119894119895119875119894(119909) 119875119895(119910) (23)

Theorem4 Suppose that the function 120597120572

119906119899(119909 119910)120597119909

120572 obtain-ed by using Legendre polynomials is the approximation of120597120572

119906(119909 119910)120597119909120572 and 119906(119909 119910) has bounded mixed fractional

partial derivative |1205974+120572+120573

119906(119909 119910)1205971199092+120572

1205971199102+120573

| le then wehave the following upper bound of error

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8

(

Γ1015840

(119899 minus 05)

Γ (119899 minus 05)

)

101584010158401015840

(24)

where 119906(119909 119910)119864= (int

1

minus1

int

1

minus1

1199062

(119909 119910)119889119909 119889119910)12 and

119906119894119895

= (

2119894 + 12

)(

2119895 + 12

)

sdot int

1

minus1int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

119875119894(119909) 119875119895(119910) 119889119909 119889119910

(25)

Proof Theproperty of the sequence 119875119894(119909) on [minus1 1] implies

that

int

1

minus1119875119894(119909) 119875119895(119909) 119889119909 =

22119894 + 1

119894 = 119895

0 119894 = 119895

(26)

then100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

= int

1

minus1int

1

minus1[

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

]

2

119889119909 119889119910

= int

1

minus1int

1

minus1[

[

infin

sum

119894=119899+1

infin

sum

119895=119899+1119906119894119895119875119894(119909) 119875119895(119910)

]

]

2

119889119909 119889119910

= int

1

minus1int

1

minus1

infin

sum

119894=119899+1

infin

sum

119895=119899+111990621198941198951198752119894(119909) 119875

2119895(119910) 119889119909 119889119910

=

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895int

1

minus11198752119894(119909) 119889119909int

1

minus11198752119895(119910) 119889119910

=

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

(27)

The Legendre polynomials coefficients of function 120597120572

119906(119909 119910)

120597119909120572 are given by

119906119894119895

= (

2119894 + 12

)(

2119895 + 12

)

sdot int

1

minus1int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

119875119894(119909) 119875119895(119910) 119889119909 119889119910

(28)

Therefore we obtain

119906119894119895

=

2119895 + 14

int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

[119875119894+1 (119909) minus119875

119894minus1 (119909)]

sdot 119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910minus

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [119875

119894+1 (119909) minus 119875119894minus1 (119909)] 119875119895 (119910) 119889119909 119889119910

= minus

2119895 + 14

int

1

minus1int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [119875

119894+1 (119909)

minus 119875119894minus1 (119909)] 119875119895 (119910) 119889119909 119889119910 = minus

2119895 + 14

Mathematical Problems in Engineering 5

sdot int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910+

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910 =

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910

(29)

Now let 120591119894(119909) = (2119894minus1)119875

119894+2(119909)minus2(2119894+1)119875119894(119909)+(2119894+3)119875119894minus2(119909)

then we have

119906119894119895

=

2119895 + 1

4 (2119894 minus 1) (2119894 + 3)

sdot int

1

minus1

int

1

minus1

1205972+120572

119906 (119909 119910)

1205971199092+120572

120591119894(119909) 119875119895(119910) 119889119909 119889119910

(30)

By solving this equation we have

119906119894119895

=

1

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

int

1

minus1

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

120591119894(119909) 120591119895(119910) 119889119909 119889119910

(31)

So we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

14 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1int

1

minus1

1003816100381610038161003816100381610038161003816100381610038161003816

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

1003816100381610038161003816100381610038161003816100381610038161003816

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119909 119889119910

le

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816119889119909int

1

minus1

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119910

(32)

Moreover it was easily obtained that

int

1

minus1

1003816100381610038161003816120591119898

(119905)1003816100381610038161003816119889119905 le radic24 2119894 + 3

radic2119894 minus 3 (33)

thus we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

244 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

(2119894 + 3)radic2119894 minus 3

sdot

(2119895 + 3)radic2119895 minus 3

le

6(2119894 minus 3)32 (2119895 minus 3)32

(34)

Namely

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816

2le

362

(2119894 minus 3)3 (2119895 minus 3)3 (35)

Therefore we have

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

le

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)3 (2119895 minus 3)3 (2119894 + 1) (2119895 + 1)

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)4 (2119895 minus 3)4

= [

infin

sum

119894=119899+1

12(2119894 minus 3)4

]

2

= [

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

]

2

(36)

thus

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

(37)

This completes the proof

6 Numerical Examples

Example 1 Consider the following nonhomogeneous partialdifferential equation

11990913 120597

12119906 (119909 119905)

12059711990912 +119909

12 12059712

119906 (119909 119905)

12059711990512 = 119891 (119909 119905)

(119909 119905) isin [0 1] times [0 1] 119906 (119909 0) = 101199092

(1 minus 119909) 119906 (0 119905) = 119906 (1 119905) = 0

(38)

where 119891(119909 119905) = minus40radic119905(3 + 2119905)(minus1 + 119909)11990973

3radic120587 minus 16(1 +

119905)2

1199092

(minus5 + 6119909)3radic120587 The exact solution of this equation is119906(119909 119905) = 10119909

2

(1 minus 119909)(1 + 119905)2 Tables 1ndash3 show the absolute

errors for 119905 = 14119904 119905 = 12119904 and 119905 = 34119904 of different 119899

6 Mathematical Problems in Engineering

Table 1 Absolute error for t = 14 s and different values of 119899

119909 n = 2 n = 3 n = 401 03246 32831e minus 015 33582e minus 01602 02351 42734e minus 015 52745e minus 01503 04820 41237e minus 015 56521e minus 01504 03274 57320e minus 015 62742e minus 01605 08231 47381e minus 015 71640e minus 01606 09127 73722e minus 015 32356e minus 01607 12188 63276e minus 015 42745e minus 01508 15181 12374e minus 014 37224e minus 01509 08364 31744e minus 015 88874e minus 015

Table 2 Absolute error for t = 12 s and different values of 119899

119909 n = 2 n = 3 n = 401 02821 42137e minus 015 34325e minus 01602 04375 58711e minus 015 65332e minus 01603 01021 42210e minus 015 52435e minus 01604 02387 31016e minus 016 49722e minus 01605 08277 34762e minus 016 53478e minus 01506 09322 53265e minus 015 13241e minus 01607 13846 47632e minus 015 92371e minus 01608 16654 42346e minus 016 84812e minus 01509 09144 20437e minus 016 63273e minus 016

Table 3 Absolute error for t = 34 s and different values of 119899

119909 n = 2 n = 3 n = 401 03126 50832e minus 016 53281e minus 01602 08978 41845e minus 016 23258e minus 01503 02374 23448e minus 016 40112e minus 01604 02951 32155e minus 016 51223e minus 01605 03327 55518e minus 015 63274e minus 01506 13267 62440e minus 016 57421e minus 01507 08723 35220e minus 016 52871e minus 01608 09229 42301e minus 016 48810e minus 01609 11327 52310e minus 015 61138e minus 016

From Tables 1ndash3 we can see that the absolute error is verysmall when 119899 ge 3 Also when 119899 is fixed the more pointswe take the more accurate numerical solutions we obtainFigures 1ndash3 show the fact that 119899

119909119905is the number of 119909

119894 119905119895

Example 2 Consider the following fractional partial differ-ential equation

119909

12059714

119906 (119909 119905)

12059711990914 +119909

23 12059713

119906 (119909 119905)

12059711990513 = 119891 (119909 119905)

119906 (119909 0) = 119909 (119909 minus 1) (1199092

+ 1) 119906 (0 119905) = 0

(39)

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 1 Numerical solution of 119899119909119905

= 3

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 2 Numerical solution of 119899119909119905

= 6

0

05

1

00204

06081

0

2

4

6

t

x

u(xt)

Figure 3 Exact solution

where

119891 (119909 119905) =

311990523 (55 + 66119905 + 811199053) (minus1 + 119909) 1199092(1 + 119909

2)

110Γ (23)

+

4 (1 + 119905 + 1199052+ 119905

4) 119909

1712[minus385 + 8119909 (55 minus 60119909 + 641199092

)]

1155Γ (34)

(40)

Mathematical Problems in Engineering 7

0020406081 005

1

0

x t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 4 The numerical solutions for Example 2 when 119899 = 4

00204060810

051

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 5 The numerical solutions for Example 2 when 119899 = 5

The exact solution is 119906(119909 119905) = 119909(119909minus 1)(1199092

+1)(1 + 119905 + 1199052

+ 1199054

)The numerical solutions for 119899 = 4 119899 = 5 are displayed inFigures 4 and 5 and the exact solution is shown in Figure 6

Example 3 Consider this equation

11990912

12059713

119906 (119909 119905)

12059711990913

+11990923

12059713

119906 (119909 119905)

12059711990513

= 119891 (119909 119905)

119906 (119909 0) = 1199092

minus 1 119906 (0 119905) = minus1 minus (119905 minus 1)2

minus (119905 minus 1)3

(41)

where119891 (119909 119905)

=

9 (1 + 119905 minus 21199052 + 1199053) 119909

136

5Γ (23)

+

311990523 (minus2 + 3119905) (minus10 + 9119905) (minus1 + 1199092) 119909

23

40Γ (23)

(42)

The exact solution is 119906(119909 119905) = (1199092

minus 1)[1 + (119905 minus 1)2

+ (119905 minus 1)3

]The numerical solutions for 119899 = 3 119899 = 4 are displayed inFigures 7 and 8 The absolute errors are shown in Figures 9and 10 when 119899 = 3 and 119899 = 4

00204060810

05

1

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 6 Exact solution for Example 2

0 02 04 06 08 1

0

05

1

0

u(xt)

x

t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

Figure 7 The numerical solutions for Example 3 when 119899 = 3

0 02 04 06 08 1

0

05

1

0

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

xt

Figure 8 The numerical solutions for Example 3 when 119899 = 4

From Examples 1ndash3 we can see that the method in thispaper can be effectively used to solve the numerical solutionof fractional partial differential equation with variable coeffi-cients From the above results the absolute errors between

8 Mathematical Problems in Engineering

002

0406

081 0

05

10020406081

12

tx

times10minus14

u(xt)

Figure 9 The absolute errors for Example 3 when 119899 = 3

002

0406

081 0

0204

0608

10

020406081

12

tx

times10minus15

u(xt)

Figure 10 The absolute errors for Example 3 when 119899 = 4

the numerical solutions and the exact solution are rathersmall What is more due to the absolute error in this paperis about 10minus15 the Legendre polynomials method can reachhigher degree of accuracy by comparing the approximationsobtained by block pulse method [16]

7 Conclusion

In this paper we use the Legendre polynomials method tosolve a class of fractional partial differential equations withvariable coefficients The Legendre polynomials operationalmatrix of fractional differentiation is derived from the prop-erty of Legendre polynomials The initial equation is trans-lated into the product of some relevant matrixes which canalso be regarded as the system of linear equations The erroranalysis of Legendre polynomials is also given The numer-ical results show that numerical solutions obtained by ourmethod are in very good agreement with the exact solution

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] R L Bagley and R A Calico ldquoFractional order state equationsfor the control of viscoelastically damped structuresrdquo Journalof Guidance Control and Dynamics vol 14 no 2 pp 304ndash3111991

[2] Z C Li and J S Luo Wavelet Analysis and Its ApplicationElectronic Industrial Publication Beijing China 2005

[3] J H Chen ldquoAnalysis of stability and convergence of numeri-cal approximation for the Riesz fractional reaction-dispersionequationrdquo Journal of Xiamen University (Natural Science) vol46 no 5 pp 616ndash619 2007

[4] D Delbosco and L Rodino ldquoExistence and uniqueness for anonlinear fractional differential equationrdquo Journal of Mathe-matical Analysis and Applications vol 204 no 2 pp 609ndash6251996

[5] Y Ryabov and A Puzenko ldquoA damped oscillations in view ofthe fraction oscillator equationrdquo Physics Review B vol 66 pp184ndash201 2002

[6] A M El-Sayed ldquoNonlinear functional-differential equationsof arbitrary ordersrdquo Nonlinear Analysis Theory Methods ampApplications vol 33 no 2 pp 181ndash186 1998

[7] I L El-Kalla ldquoError estimate of the series solution to a class ofnonlinear fractional differential equationsrdquo Communications inNonlinear Science and Numerical Simulation vol 16 no 3 pp1408ndash1413 2011

[8] Z M Odibat ldquoA study on the convergence of variationaliteration methodrdquo Mathematical and Computer Modelling vol51 no 9-10 pp 1181ndash1192 2010

[9] SMomani ZOdibat andV S Erturk ldquoGeneralized differentialtransform method for solving a space- and time-fractionaldiffusion-wave equationrdquo Physics Letters A vol 370 no 5-6 pp379ndash387 2007

[10] ZOdibat SMomani andV S Erturk ldquoGeneralized differentialtransform method application to differential equations offractional orderrdquo Applied Mathematics and Computation vol197 no 2 pp 467ndash477 2008

[11] Z Odibat and S Momani ldquoA generalized differential transformmethod for linear partial differential equations of fractionalorderrdquo Applied Mathematics Letters vol 21 no 2 pp 194ndash1992008

[12] Y Zhang ldquoA finite difference method for fractional partialdifferential equationrdquo Applied Mathematics and Computationvol 215 no 2 pp 524ndash529 2009

[13] Y X Wang and Q B Fan ldquoThe second kind Chebyshev waveletmethod for solving fractional differential equationsrdquo AppliedMathematics and Computation vol 218 no 17 pp 8592ndash86012012

[14] M X Yi and Y M Chen ldquoHaar wavelet operational matrixmethod for solving fractional partial differential equationsrdquoComputer Modeling in Engineering amp Sciences vol 88 no 3 pp229ndash244 2012

[15] EHDohaAH BhrawyD Baleanu and S S Ezz-Eldien ldquoTheoperational matrix formulation of the Jacobi tau approximationfor space fractional diffusion equationrdquo Advances in DifferenceEquations vol 231 pp 1687ndash1847 2014

[16] M X Yi J Huang and J X Wei ldquoBlock pulse operationalmatrix method for solving fractional partial differential equa-tionrdquo Applied Mathematics and Computation vol 221 pp 121ndash131 2013

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

4 Mathematical Problems in Engineering

Let

M

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0 Γ (2)Γ (2 minus 120572)

119909minus120572 0 sdot sdot sdot 0

0 0 Γ (3)Γ (3 minus 120572)

119909minus120572

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)Γ (119899 + 1 minus 120572)

119909minus120572

]

]

]

]

]

]

]

]

]

]

]

]

]

]

N

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 sdot sdot sdot 0

0

Γ (2)

Γ (2 minus 120573)

119905minus120573

0 sdot sdot sdot 0

0 0

Γ (3)

Γ (3 minus 120573)

119905minus120573

sdot sdot sdot 0

d 0

0 0 0 sdot sdot sdot

Γ (119899 + 1)

Γ (119899 + 1 minus 120573)

119905minus120573

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(20)

Substituting (19) into (1) we have

119886 (119909)Φ119879

(119909) (Aminus1)119879

MA119879UΦ (119905)

+ 119887 (119909)Φ119879

(119909)UANAminus1Φ (119905) = 119891 (119909 119905)

(21)

Dispersing (21) by the points (119909119894 119905119895) (119894 = 1 2 119899

119909 119895 =

1 2 119899119905) we can obtain U which is unknown

5 Error Analysis

In this part in order to illustrate the effectiveness of120597120572

119906(119909 119910)120597119909120572

cong Φ119879

(119909)UΦ(119910) we have given the followingtheorem Let 120597120572119906

119899(119909 119910)120597119909

120572 be the following approximationof 120597120572119906(119909 119910)120597119909

120572

120597120572

119906119899(119909 119910)

120597119909120572

=

119899

sum

119894=1

119899

sum

119895=1

119906119894119895119875119894(119909) 119875119895(119910) (22)

Then we have

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

=

infin

sum

119894=119899+1

infin

sum

119895=119899+1119906119894119895119875119894(119909) 119875119895(119910) (23)

Theorem4 Suppose that the function 120597120572

119906119899(119909 119910)120597119909

120572 obtain-ed by using Legendre polynomials is the approximation of120597120572

119906(119909 119910)120597119909120572 and 119906(119909 119910) has bounded mixed fractional

partial derivative |1205974+120572+120573

119906(119909 119910)1205971199092+120572

1205971199102+120573

| le then wehave the following upper bound of error

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8

(

Γ1015840

(119899 minus 05)

Γ (119899 minus 05)

)

101584010158401015840

(24)

where 119906(119909 119910)119864= (int

1

minus1

int

1

minus1

1199062

(119909 119910)119889119909 119889119910)12 and

119906119894119895

= (

2119894 + 12

)(

2119895 + 12

)

sdot int

1

minus1int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

119875119894(119909) 119875119895(119910) 119889119909 119889119910

(25)

Proof Theproperty of the sequence 119875119894(119909) on [minus1 1] implies

that

int

1

minus1119875119894(119909) 119875119895(119909) 119889119909 =

22119894 + 1

119894 = 119895

0 119894 = 119895

(26)

then100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

= int

1

minus1int

1

minus1[

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

]

2

119889119909 119889119910

= int

1

minus1int

1

minus1[

[

infin

sum

119894=119899+1

infin

sum

119895=119899+1119906119894119895119875119894(119909) 119875119895(119910)

]

]

2

119889119909 119889119910

= int

1

minus1int

1

minus1

infin

sum

119894=119899+1

infin

sum

119895=119899+111990621198941198951198752119894(119909) 119875

2119895(119910) 119889119909 119889119910

=

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895int

1

minus11198752119894(119909) 119889119909int

1

minus11198752119895(119910) 119889119910

=

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

(27)

The Legendre polynomials coefficients of function 120597120572

119906(119909 119910)

120597119909120572 are given by

119906119894119895

= (

2119894 + 12

)(

2119895 + 12

)

sdot int

1

minus1int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

119875119894(119909) 119875119895(119910) 119889119909 119889119910

(28)

Therefore we obtain

119906119894119895

=

2119895 + 14

int

1

minus1

120597120572

119906 (119909 119910)

120597119909120572

[119875119894+1 (119909) minus119875

119894minus1 (119909)]

sdot 119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910minus

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [119875

119894+1 (119909) minus 119875119894minus1 (119909)] 119875119895 (119910) 119889119909 119889119910

= minus

2119895 + 14

int

1

minus1int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [119875

119894+1 (119909)

minus 119875119894minus1 (119909)] 119875119895 (119910) 119889119909 119889119910 = minus

2119895 + 14

Mathematical Problems in Engineering 5

sdot int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910+

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910 =

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910

(29)

Now let 120591119894(119909) = (2119894minus1)119875

119894+2(119909)minus2(2119894+1)119875119894(119909)+(2119894+3)119875119894minus2(119909)

then we have

119906119894119895

=

2119895 + 1

4 (2119894 minus 1) (2119894 + 3)

sdot int

1

minus1

int

1

minus1

1205972+120572

119906 (119909 119910)

1205971199092+120572

120591119894(119909) 119875119895(119910) 119889119909 119889119910

(30)

By solving this equation we have

119906119894119895

=

1

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

int

1

minus1

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

120591119894(119909) 120591119895(119910) 119889119909 119889119910

(31)

So we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

14 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1int

1

minus1

1003816100381610038161003816100381610038161003816100381610038161003816

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

1003816100381610038161003816100381610038161003816100381610038161003816

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119909 119889119910

le

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816119889119909int

1

minus1

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119910

(32)

Moreover it was easily obtained that

int

1

minus1

1003816100381610038161003816120591119898

(119905)1003816100381610038161003816119889119905 le radic24 2119894 + 3

radic2119894 minus 3 (33)

thus we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

244 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

(2119894 + 3)radic2119894 minus 3

sdot

(2119895 + 3)radic2119895 minus 3

le

6(2119894 minus 3)32 (2119895 minus 3)32

(34)

Namely

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816

2le

362

(2119894 minus 3)3 (2119895 minus 3)3 (35)

Therefore we have

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

le

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)3 (2119895 minus 3)3 (2119894 + 1) (2119895 + 1)

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)4 (2119895 minus 3)4

= [

infin

sum

119894=119899+1

12(2119894 minus 3)4

]

2

= [

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

]

2

(36)

thus

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

(37)

This completes the proof

6 Numerical Examples

Example 1 Consider the following nonhomogeneous partialdifferential equation

11990913 120597

12119906 (119909 119905)

12059711990912 +119909

12 12059712

119906 (119909 119905)

12059711990512 = 119891 (119909 119905)

(119909 119905) isin [0 1] times [0 1] 119906 (119909 0) = 101199092

(1 minus 119909) 119906 (0 119905) = 119906 (1 119905) = 0

(38)

where 119891(119909 119905) = minus40radic119905(3 + 2119905)(minus1 + 119909)11990973

3radic120587 minus 16(1 +

119905)2

1199092

(minus5 + 6119909)3radic120587 The exact solution of this equation is119906(119909 119905) = 10119909

2

(1 minus 119909)(1 + 119905)2 Tables 1ndash3 show the absolute

errors for 119905 = 14119904 119905 = 12119904 and 119905 = 34119904 of different 119899

6 Mathematical Problems in Engineering

Table 1 Absolute error for t = 14 s and different values of 119899

119909 n = 2 n = 3 n = 401 03246 32831e minus 015 33582e minus 01602 02351 42734e minus 015 52745e minus 01503 04820 41237e minus 015 56521e minus 01504 03274 57320e minus 015 62742e minus 01605 08231 47381e minus 015 71640e minus 01606 09127 73722e minus 015 32356e minus 01607 12188 63276e minus 015 42745e minus 01508 15181 12374e minus 014 37224e minus 01509 08364 31744e minus 015 88874e minus 015

Table 2 Absolute error for t = 12 s and different values of 119899

119909 n = 2 n = 3 n = 401 02821 42137e minus 015 34325e minus 01602 04375 58711e minus 015 65332e minus 01603 01021 42210e minus 015 52435e minus 01604 02387 31016e minus 016 49722e minus 01605 08277 34762e minus 016 53478e minus 01506 09322 53265e minus 015 13241e minus 01607 13846 47632e minus 015 92371e minus 01608 16654 42346e minus 016 84812e minus 01509 09144 20437e minus 016 63273e minus 016

Table 3 Absolute error for t = 34 s and different values of 119899

119909 n = 2 n = 3 n = 401 03126 50832e minus 016 53281e minus 01602 08978 41845e minus 016 23258e minus 01503 02374 23448e minus 016 40112e minus 01604 02951 32155e minus 016 51223e minus 01605 03327 55518e minus 015 63274e minus 01506 13267 62440e minus 016 57421e minus 01507 08723 35220e minus 016 52871e minus 01608 09229 42301e minus 016 48810e minus 01609 11327 52310e minus 015 61138e minus 016

From Tables 1ndash3 we can see that the absolute error is verysmall when 119899 ge 3 Also when 119899 is fixed the more pointswe take the more accurate numerical solutions we obtainFigures 1ndash3 show the fact that 119899

119909119905is the number of 119909

119894 119905119895

Example 2 Consider the following fractional partial differ-ential equation

119909

12059714

119906 (119909 119905)

12059711990914 +119909

23 12059713

119906 (119909 119905)

12059711990513 = 119891 (119909 119905)

119906 (119909 0) = 119909 (119909 minus 1) (1199092

+ 1) 119906 (0 119905) = 0

(39)

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 1 Numerical solution of 119899119909119905

= 3

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 2 Numerical solution of 119899119909119905

= 6

0

05

1

00204

06081

0

2

4

6

t

x

u(xt)

Figure 3 Exact solution

where

119891 (119909 119905) =

311990523 (55 + 66119905 + 811199053) (minus1 + 119909) 1199092(1 + 119909

2)

110Γ (23)

+

4 (1 + 119905 + 1199052+ 119905

4) 119909

1712[minus385 + 8119909 (55 minus 60119909 + 641199092

)]

1155Γ (34)

(40)

Mathematical Problems in Engineering 7

0020406081 005

1

0

x t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 4 The numerical solutions for Example 2 when 119899 = 4

00204060810

051

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 5 The numerical solutions for Example 2 when 119899 = 5

The exact solution is 119906(119909 119905) = 119909(119909minus 1)(1199092

+1)(1 + 119905 + 1199052

+ 1199054

)The numerical solutions for 119899 = 4 119899 = 5 are displayed inFigures 4 and 5 and the exact solution is shown in Figure 6

Example 3 Consider this equation

11990912

12059713

119906 (119909 119905)

12059711990913

+11990923

12059713

119906 (119909 119905)

12059711990513

= 119891 (119909 119905)

119906 (119909 0) = 1199092

minus 1 119906 (0 119905) = minus1 minus (119905 minus 1)2

minus (119905 minus 1)3

(41)

where119891 (119909 119905)

=

9 (1 + 119905 minus 21199052 + 1199053) 119909

136

5Γ (23)

+

311990523 (minus2 + 3119905) (minus10 + 9119905) (minus1 + 1199092) 119909

23

40Γ (23)

(42)

The exact solution is 119906(119909 119905) = (1199092

minus 1)[1 + (119905 minus 1)2

+ (119905 minus 1)3

]The numerical solutions for 119899 = 3 119899 = 4 are displayed inFigures 7 and 8 The absolute errors are shown in Figures 9and 10 when 119899 = 3 and 119899 = 4

00204060810

05

1

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 6 Exact solution for Example 2

0 02 04 06 08 1

0

05

1

0

u(xt)

x

t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

Figure 7 The numerical solutions for Example 3 when 119899 = 3

0 02 04 06 08 1

0

05

1

0

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

xt

Figure 8 The numerical solutions for Example 3 when 119899 = 4

From Examples 1ndash3 we can see that the method in thispaper can be effectively used to solve the numerical solutionof fractional partial differential equation with variable coeffi-cients From the above results the absolute errors between

8 Mathematical Problems in Engineering

002

0406

081 0

05

10020406081

12

tx

times10minus14

u(xt)

Figure 9 The absolute errors for Example 3 when 119899 = 3

002

0406

081 0

0204

0608

10

020406081

12

tx

times10minus15

u(xt)

Figure 10 The absolute errors for Example 3 when 119899 = 4

the numerical solutions and the exact solution are rathersmall What is more due to the absolute error in this paperis about 10minus15 the Legendre polynomials method can reachhigher degree of accuracy by comparing the approximationsobtained by block pulse method [16]

7 Conclusion

In this paper we use the Legendre polynomials method tosolve a class of fractional partial differential equations withvariable coefficients The Legendre polynomials operationalmatrix of fractional differentiation is derived from the prop-erty of Legendre polynomials The initial equation is trans-lated into the product of some relevant matrixes which canalso be regarded as the system of linear equations The erroranalysis of Legendre polynomials is also given The numer-ical results show that numerical solutions obtained by ourmethod are in very good agreement with the exact solution

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] R L Bagley and R A Calico ldquoFractional order state equationsfor the control of viscoelastically damped structuresrdquo Journalof Guidance Control and Dynamics vol 14 no 2 pp 304ndash3111991

[2] Z C Li and J S Luo Wavelet Analysis and Its ApplicationElectronic Industrial Publication Beijing China 2005

[3] J H Chen ldquoAnalysis of stability and convergence of numeri-cal approximation for the Riesz fractional reaction-dispersionequationrdquo Journal of Xiamen University (Natural Science) vol46 no 5 pp 616ndash619 2007

[4] D Delbosco and L Rodino ldquoExistence and uniqueness for anonlinear fractional differential equationrdquo Journal of Mathe-matical Analysis and Applications vol 204 no 2 pp 609ndash6251996

[5] Y Ryabov and A Puzenko ldquoA damped oscillations in view ofthe fraction oscillator equationrdquo Physics Review B vol 66 pp184ndash201 2002

[6] A M El-Sayed ldquoNonlinear functional-differential equationsof arbitrary ordersrdquo Nonlinear Analysis Theory Methods ampApplications vol 33 no 2 pp 181ndash186 1998

[7] I L El-Kalla ldquoError estimate of the series solution to a class ofnonlinear fractional differential equationsrdquo Communications inNonlinear Science and Numerical Simulation vol 16 no 3 pp1408ndash1413 2011

[8] Z M Odibat ldquoA study on the convergence of variationaliteration methodrdquo Mathematical and Computer Modelling vol51 no 9-10 pp 1181ndash1192 2010

[9] SMomani ZOdibat andV S Erturk ldquoGeneralized differentialtransform method for solving a space- and time-fractionaldiffusion-wave equationrdquo Physics Letters A vol 370 no 5-6 pp379ndash387 2007

[10] ZOdibat SMomani andV S Erturk ldquoGeneralized differentialtransform method application to differential equations offractional orderrdquo Applied Mathematics and Computation vol197 no 2 pp 467ndash477 2008

[11] Z Odibat and S Momani ldquoA generalized differential transformmethod for linear partial differential equations of fractionalorderrdquo Applied Mathematics Letters vol 21 no 2 pp 194ndash1992008

[12] Y Zhang ldquoA finite difference method for fractional partialdifferential equationrdquo Applied Mathematics and Computationvol 215 no 2 pp 524ndash529 2009

[13] Y X Wang and Q B Fan ldquoThe second kind Chebyshev waveletmethod for solving fractional differential equationsrdquo AppliedMathematics and Computation vol 218 no 17 pp 8592ndash86012012

[14] M X Yi and Y M Chen ldquoHaar wavelet operational matrixmethod for solving fractional partial differential equationsrdquoComputer Modeling in Engineering amp Sciences vol 88 no 3 pp229ndash244 2012

[15] EHDohaAH BhrawyD Baleanu and S S Ezz-Eldien ldquoTheoperational matrix formulation of the Jacobi tau approximationfor space fractional diffusion equationrdquo Advances in DifferenceEquations vol 231 pp 1687ndash1847 2014

[16] M X Yi J Huang and J X Wei ldquoBlock pulse operationalmatrix method for solving fractional partial differential equa-tionrdquo Applied Mathematics and Computation vol 221 pp 121ndash131 2013

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

Mathematical Problems in Engineering 5

sdot int

1

minus1

120597120572+1

119906 (119909 119910)

120597119909120572+1 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910)

100381610038161003816100381610038161003816100381610038161003816

1

minus1119889119910+

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910 =

2119895 + 14

sdot int

1

minus1int

1

minus1

120597120572+2

119906 (119909 119910)

120597119909120572+2 [

119875119894+2 (119909) minus 119875

119894(119909)

2119894 + 3

minus

119875119894(119909) minus 119875

119894minus2 (119909)

2119894 minus 1]119875119895(119910) 119889119909 119889119910

(29)

Now let 120591119894(119909) = (2119894minus1)119875

119894+2(119909)minus2(2119894+1)119875119894(119909)+(2119894+3)119875119894minus2(119909)

then we have

119906119894119895

=

2119895 + 1

4 (2119894 minus 1) (2119894 + 3)

sdot int

1

minus1

int

1

minus1

1205972+120572

119906 (119909 119910)

1205971199092+120572

120591119894(119909) 119875119895(119910) 119889119909 119889119910

(30)

By solving this equation we have

119906119894119895

=

1

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

int

1

minus1

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

120591119894(119909) 120591119895(119910) 119889119909 119889119910

(31)

So we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

14 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1int

1

minus1

1003816100381610038161003816100381610038161003816100381610038161003816

1205974+120572+120573

119906 (119909 119910)

1205971199092+120572

1205971199102+120573

1003816100381610038161003816100381610038161003816100381610038161003816

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119909 119889119910

le

4 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

sdot int

1

minus1

1003816100381610038161003816120591119894(119909)

1003816100381610038161003816119889119909int

1

minus1

10038161003816100381610038161003816120591119895(119910)

10038161003816100381610038161003816119889119910

(32)

Moreover it was easily obtained that

int

1

minus1

1003816100381610038161003816120591119898

(119905)1003816100381610038161003816119889119905 le radic24 2119894 + 3

radic2119894 minus 3 (33)

thus we have

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816le

244 (2119894 minus 1) (2119894 + 3) (2119895 minus 1) (2119895 + 3)

(2119894 + 3)radic2119894 minus 3

sdot

(2119895 + 3)radic2119895 minus 3

le

6(2119894 minus 3)32 (2119895 minus 3)32

(34)

Namely

10038161003816100381610038161003816119906119894119895

10038161003816100381610038161003816

2le

362

(2119894 minus 3)3 (2119895 minus 3)3 (35)

Therefore we have

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817

2

119864

le

infin

sum

119894=119899+1

infin

sum

119895=119899+11199062119894119895

22119894 + 1

22119895 + 1

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)3 (2119895 minus 3)3 (2119894 + 1) (2119895 + 1)

le

infin

sum

119894=119899+1

infin

sum

119895=119899+1

1442

(2119894 minus 3)4 (2119895 minus 3)4

= [

infin

sum

119894=119899+1

12(2119894 minus 3)4

]

2

= [

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

]

2

(36)

thus

100381710038171003817100381710038171003817100381710038171003817

120597120572

119906 (119909 119910)

120597119909120572

minus

120597120572

119906119899(119909 119910)

120597119909120572

100381710038171003817100381710038171003817100381710038171003817119864

le

8(

Γ1015840

(119899 minus 05)Γ (119899 minus 05)

)

101584010158401015840

(37)

This completes the proof

6 Numerical Examples

Example 1 Consider the following nonhomogeneous partialdifferential equation

11990913 120597

12119906 (119909 119905)

12059711990912 +119909

12 12059712

119906 (119909 119905)

12059711990512 = 119891 (119909 119905)

(119909 119905) isin [0 1] times [0 1] 119906 (119909 0) = 101199092

(1 minus 119909) 119906 (0 119905) = 119906 (1 119905) = 0

(38)

where 119891(119909 119905) = minus40radic119905(3 + 2119905)(minus1 + 119909)11990973

3radic120587 minus 16(1 +

119905)2

1199092

(minus5 + 6119909)3radic120587 The exact solution of this equation is119906(119909 119905) = 10119909

2

(1 minus 119909)(1 + 119905)2 Tables 1ndash3 show the absolute

errors for 119905 = 14119904 119905 = 12119904 and 119905 = 34119904 of different 119899

6 Mathematical Problems in Engineering

Table 1 Absolute error for t = 14 s and different values of 119899

119909 n = 2 n = 3 n = 401 03246 32831e minus 015 33582e minus 01602 02351 42734e minus 015 52745e minus 01503 04820 41237e minus 015 56521e minus 01504 03274 57320e minus 015 62742e minus 01605 08231 47381e minus 015 71640e minus 01606 09127 73722e minus 015 32356e minus 01607 12188 63276e minus 015 42745e minus 01508 15181 12374e minus 014 37224e minus 01509 08364 31744e minus 015 88874e minus 015

Table 2 Absolute error for t = 12 s and different values of 119899

119909 n = 2 n = 3 n = 401 02821 42137e minus 015 34325e minus 01602 04375 58711e minus 015 65332e minus 01603 01021 42210e minus 015 52435e minus 01604 02387 31016e minus 016 49722e minus 01605 08277 34762e minus 016 53478e minus 01506 09322 53265e minus 015 13241e minus 01607 13846 47632e minus 015 92371e minus 01608 16654 42346e minus 016 84812e minus 01509 09144 20437e minus 016 63273e minus 016

Table 3 Absolute error for t = 34 s and different values of 119899

119909 n = 2 n = 3 n = 401 03126 50832e minus 016 53281e minus 01602 08978 41845e minus 016 23258e minus 01503 02374 23448e minus 016 40112e minus 01604 02951 32155e minus 016 51223e minus 01605 03327 55518e minus 015 63274e minus 01506 13267 62440e minus 016 57421e minus 01507 08723 35220e minus 016 52871e minus 01608 09229 42301e minus 016 48810e minus 01609 11327 52310e minus 015 61138e minus 016

From Tables 1ndash3 we can see that the absolute error is verysmall when 119899 ge 3 Also when 119899 is fixed the more pointswe take the more accurate numerical solutions we obtainFigures 1ndash3 show the fact that 119899

119909119905is the number of 119909

119894 119905119895

Example 2 Consider the following fractional partial differ-ential equation

119909

12059714

119906 (119909 119905)

12059711990914 +119909

23 12059713

119906 (119909 119905)

12059711990513 = 119891 (119909 119905)

119906 (119909 0) = 119909 (119909 minus 1) (1199092

+ 1) 119906 (0 119905) = 0

(39)

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 1 Numerical solution of 119899119909119905

= 3

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 2 Numerical solution of 119899119909119905

= 6

0

05

1

00204

06081

0

2

4

6

t

x

u(xt)

Figure 3 Exact solution

where

119891 (119909 119905) =

311990523 (55 + 66119905 + 811199053) (minus1 + 119909) 1199092(1 + 119909

2)

110Γ (23)

+

4 (1 + 119905 + 1199052+ 119905

4) 119909

1712[minus385 + 8119909 (55 minus 60119909 + 641199092

)]

1155Γ (34)

(40)

Mathematical Problems in Engineering 7

0020406081 005

1

0

x t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 4 The numerical solutions for Example 2 when 119899 = 4

00204060810

051

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 5 The numerical solutions for Example 2 when 119899 = 5

The exact solution is 119906(119909 119905) = 119909(119909minus 1)(1199092

+1)(1 + 119905 + 1199052

+ 1199054

)The numerical solutions for 119899 = 4 119899 = 5 are displayed inFigures 4 and 5 and the exact solution is shown in Figure 6

Example 3 Consider this equation

11990912

12059713

119906 (119909 119905)

12059711990913

+11990923

12059713

119906 (119909 119905)

12059711990513

= 119891 (119909 119905)

119906 (119909 0) = 1199092

minus 1 119906 (0 119905) = minus1 minus (119905 minus 1)2

minus (119905 minus 1)3

(41)

where119891 (119909 119905)

=

9 (1 + 119905 minus 21199052 + 1199053) 119909

136

5Γ (23)

+

311990523 (minus2 + 3119905) (minus10 + 9119905) (minus1 + 1199092) 119909

23

40Γ (23)

(42)

The exact solution is 119906(119909 119905) = (1199092

minus 1)[1 + (119905 minus 1)2

+ (119905 minus 1)3

]The numerical solutions for 119899 = 3 119899 = 4 are displayed inFigures 7 and 8 The absolute errors are shown in Figures 9and 10 when 119899 = 3 and 119899 = 4

00204060810

05

1

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 6 Exact solution for Example 2

0 02 04 06 08 1

0

05

1

0

u(xt)

x

t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

Figure 7 The numerical solutions for Example 3 when 119899 = 3

0 02 04 06 08 1

0

05

1

0

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

xt

Figure 8 The numerical solutions for Example 3 when 119899 = 4

From Examples 1ndash3 we can see that the method in thispaper can be effectively used to solve the numerical solutionof fractional partial differential equation with variable coeffi-cients From the above results the absolute errors between

8 Mathematical Problems in Engineering

002

0406

081 0

05

10020406081

12

tx

times10minus14

u(xt)

Figure 9 The absolute errors for Example 3 when 119899 = 3

002

0406

081 0

0204

0608

10

020406081

12

tx

times10minus15

u(xt)

Figure 10 The absolute errors for Example 3 when 119899 = 4

the numerical solutions and the exact solution are rathersmall What is more due to the absolute error in this paperis about 10minus15 the Legendre polynomials method can reachhigher degree of accuracy by comparing the approximationsobtained by block pulse method [16]

7 Conclusion

In this paper we use the Legendre polynomials method tosolve a class of fractional partial differential equations withvariable coefficients The Legendre polynomials operationalmatrix of fractional differentiation is derived from the prop-erty of Legendre polynomials The initial equation is trans-lated into the product of some relevant matrixes which canalso be regarded as the system of linear equations The erroranalysis of Legendre polynomials is also given The numer-ical results show that numerical solutions obtained by ourmethod are in very good agreement with the exact solution

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] R L Bagley and R A Calico ldquoFractional order state equationsfor the control of viscoelastically damped structuresrdquo Journalof Guidance Control and Dynamics vol 14 no 2 pp 304ndash3111991

[2] Z C Li and J S Luo Wavelet Analysis and Its ApplicationElectronic Industrial Publication Beijing China 2005

[3] J H Chen ldquoAnalysis of stability and convergence of numeri-cal approximation for the Riesz fractional reaction-dispersionequationrdquo Journal of Xiamen University (Natural Science) vol46 no 5 pp 616ndash619 2007

[4] D Delbosco and L Rodino ldquoExistence and uniqueness for anonlinear fractional differential equationrdquo Journal of Mathe-matical Analysis and Applications vol 204 no 2 pp 609ndash6251996

[5] Y Ryabov and A Puzenko ldquoA damped oscillations in view ofthe fraction oscillator equationrdquo Physics Review B vol 66 pp184ndash201 2002

[6] A M El-Sayed ldquoNonlinear functional-differential equationsof arbitrary ordersrdquo Nonlinear Analysis Theory Methods ampApplications vol 33 no 2 pp 181ndash186 1998

[7] I L El-Kalla ldquoError estimate of the series solution to a class ofnonlinear fractional differential equationsrdquo Communications inNonlinear Science and Numerical Simulation vol 16 no 3 pp1408ndash1413 2011

[8] Z M Odibat ldquoA study on the convergence of variationaliteration methodrdquo Mathematical and Computer Modelling vol51 no 9-10 pp 1181ndash1192 2010

[9] SMomani ZOdibat andV S Erturk ldquoGeneralized differentialtransform method for solving a space- and time-fractionaldiffusion-wave equationrdquo Physics Letters A vol 370 no 5-6 pp379ndash387 2007

[10] ZOdibat SMomani andV S Erturk ldquoGeneralized differentialtransform method application to differential equations offractional orderrdquo Applied Mathematics and Computation vol197 no 2 pp 467ndash477 2008

[11] Z Odibat and S Momani ldquoA generalized differential transformmethod for linear partial differential equations of fractionalorderrdquo Applied Mathematics Letters vol 21 no 2 pp 194ndash1992008

[12] Y Zhang ldquoA finite difference method for fractional partialdifferential equationrdquo Applied Mathematics and Computationvol 215 no 2 pp 524ndash529 2009

[13] Y X Wang and Q B Fan ldquoThe second kind Chebyshev waveletmethod for solving fractional differential equationsrdquo AppliedMathematics and Computation vol 218 no 17 pp 8592ndash86012012

[14] M X Yi and Y M Chen ldquoHaar wavelet operational matrixmethod for solving fractional partial differential equationsrdquoComputer Modeling in Engineering amp Sciences vol 88 no 3 pp229ndash244 2012

[15] EHDohaAH BhrawyD Baleanu and S S Ezz-Eldien ldquoTheoperational matrix formulation of the Jacobi tau approximationfor space fractional diffusion equationrdquo Advances in DifferenceEquations vol 231 pp 1687ndash1847 2014

[16] M X Yi J Huang and J X Wei ldquoBlock pulse operationalmatrix method for solving fractional partial differential equa-tionrdquo Applied Mathematics and Computation vol 221 pp 121ndash131 2013

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

6 Mathematical Problems in Engineering

Table 1 Absolute error for t = 14 s and different values of 119899

119909 n = 2 n = 3 n = 401 03246 32831e minus 015 33582e minus 01602 02351 42734e minus 015 52745e minus 01503 04820 41237e minus 015 56521e minus 01504 03274 57320e minus 015 62742e minus 01605 08231 47381e minus 015 71640e minus 01606 09127 73722e minus 015 32356e minus 01607 12188 63276e minus 015 42745e minus 01508 15181 12374e minus 014 37224e minus 01509 08364 31744e minus 015 88874e minus 015

Table 2 Absolute error for t = 12 s and different values of 119899

119909 n = 2 n = 3 n = 401 02821 42137e minus 015 34325e minus 01602 04375 58711e minus 015 65332e minus 01603 01021 42210e minus 015 52435e minus 01604 02387 31016e minus 016 49722e minus 01605 08277 34762e minus 016 53478e minus 01506 09322 53265e minus 015 13241e minus 01607 13846 47632e minus 015 92371e minus 01608 16654 42346e minus 016 84812e minus 01509 09144 20437e minus 016 63273e minus 016

Table 3 Absolute error for t = 34 s and different values of 119899

119909 n = 2 n = 3 n = 401 03126 50832e minus 016 53281e minus 01602 08978 41845e minus 016 23258e minus 01503 02374 23448e minus 016 40112e minus 01604 02951 32155e minus 016 51223e minus 01605 03327 55518e minus 015 63274e minus 01506 13267 62440e minus 016 57421e minus 01507 08723 35220e minus 016 52871e minus 01608 09229 42301e minus 016 48810e minus 01609 11327 52310e minus 015 61138e minus 016

From Tables 1ndash3 we can see that the absolute error is verysmall when 119899 ge 3 Also when 119899 is fixed the more pointswe take the more accurate numerical solutions we obtainFigures 1ndash3 show the fact that 119899

119909119905is the number of 119909

119894 119905119895

Example 2 Consider the following fractional partial differ-ential equation

119909

12059714

119906 (119909 119905)

12059711990914 +119909

23 12059713

119906 (119909 119905)

12059711990513 = 119891 (119909 119905)

119906 (119909 0) = 119909 (119909 minus 1) (1199092

+ 1) 119906 (0 119905) = 0

(39)

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 1 Numerical solution of 119899119909119905

= 3

0

2

4

6

002

0406

081

t0

0204

0608

1

x

u(xt)

Figure 2 Numerical solution of 119899119909119905

= 6

0

05

1

00204

06081

0

2

4

6

t

x

u(xt)

Figure 3 Exact solution

where

119891 (119909 119905) =

311990523 (55 + 66119905 + 811199053) (minus1 + 119909) 1199092(1 + 119909

2)

110Γ (23)

+

4 (1 + 119905 + 1199052+ 119905

4) 119909

1712[minus385 + 8119909 (55 minus 60119909 + 641199092

)]

1155Γ (34)

(40)

Mathematical Problems in Engineering 7

0020406081 005

1

0

x t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 4 The numerical solutions for Example 2 when 119899 = 4

00204060810

051

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 5 The numerical solutions for Example 2 when 119899 = 5

The exact solution is 119906(119909 119905) = 119909(119909minus 1)(1199092

+1)(1 + 119905 + 1199052

+ 1199054

)The numerical solutions for 119899 = 4 119899 = 5 are displayed inFigures 4 and 5 and the exact solution is shown in Figure 6

Example 3 Consider this equation

11990912

12059713

119906 (119909 119905)

12059711990913

+11990923

12059713

119906 (119909 119905)

12059711990513

= 119891 (119909 119905)

119906 (119909 0) = 1199092

minus 1 119906 (0 119905) = minus1 minus (119905 minus 1)2

minus (119905 minus 1)3

(41)

where119891 (119909 119905)

=

9 (1 + 119905 minus 21199052 + 1199053) 119909

136

5Γ (23)

+

311990523 (minus2 + 3119905) (minus10 + 9119905) (minus1 + 1199092) 119909

23

40Γ (23)

(42)

The exact solution is 119906(119909 119905) = (1199092

minus 1)[1 + (119905 minus 1)2

+ (119905 minus 1)3

]The numerical solutions for 119899 = 3 119899 = 4 are displayed inFigures 7 and 8 The absolute errors are shown in Figures 9and 10 when 119899 = 3 and 119899 = 4

00204060810

05

1

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 6 Exact solution for Example 2

0 02 04 06 08 1

0

05

1

0

u(xt)

x

t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

Figure 7 The numerical solutions for Example 3 when 119899 = 3

0 02 04 06 08 1

0

05

1

0

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

xt

Figure 8 The numerical solutions for Example 3 when 119899 = 4

From Examples 1ndash3 we can see that the method in thispaper can be effectively used to solve the numerical solutionof fractional partial differential equation with variable coeffi-cients From the above results the absolute errors between

8 Mathematical Problems in Engineering

002

0406

081 0

05

10020406081

12

tx

times10minus14

u(xt)

Figure 9 The absolute errors for Example 3 when 119899 = 3

002

0406

081 0

0204

0608

10

020406081

12

tx

times10minus15

u(xt)

Figure 10 The absolute errors for Example 3 when 119899 = 4

the numerical solutions and the exact solution are rathersmall What is more due to the absolute error in this paperis about 10minus15 the Legendre polynomials method can reachhigher degree of accuracy by comparing the approximationsobtained by block pulse method [16]

7 Conclusion

In this paper we use the Legendre polynomials method tosolve a class of fractional partial differential equations withvariable coefficients The Legendre polynomials operationalmatrix of fractional differentiation is derived from the prop-erty of Legendre polynomials The initial equation is trans-lated into the product of some relevant matrixes which canalso be regarded as the system of linear equations The erroranalysis of Legendre polynomials is also given The numer-ical results show that numerical solutions obtained by ourmethod are in very good agreement with the exact solution

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] R L Bagley and R A Calico ldquoFractional order state equationsfor the control of viscoelastically damped structuresrdquo Journalof Guidance Control and Dynamics vol 14 no 2 pp 304ndash3111991

[2] Z C Li and J S Luo Wavelet Analysis and Its ApplicationElectronic Industrial Publication Beijing China 2005

[3] J H Chen ldquoAnalysis of stability and convergence of numeri-cal approximation for the Riesz fractional reaction-dispersionequationrdquo Journal of Xiamen University (Natural Science) vol46 no 5 pp 616ndash619 2007

[4] D Delbosco and L Rodino ldquoExistence and uniqueness for anonlinear fractional differential equationrdquo Journal of Mathe-matical Analysis and Applications vol 204 no 2 pp 609ndash6251996

[5] Y Ryabov and A Puzenko ldquoA damped oscillations in view ofthe fraction oscillator equationrdquo Physics Review B vol 66 pp184ndash201 2002

[6] A M El-Sayed ldquoNonlinear functional-differential equationsof arbitrary ordersrdquo Nonlinear Analysis Theory Methods ampApplications vol 33 no 2 pp 181ndash186 1998

[7] I L El-Kalla ldquoError estimate of the series solution to a class ofnonlinear fractional differential equationsrdquo Communications inNonlinear Science and Numerical Simulation vol 16 no 3 pp1408ndash1413 2011

[8] Z M Odibat ldquoA study on the convergence of variationaliteration methodrdquo Mathematical and Computer Modelling vol51 no 9-10 pp 1181ndash1192 2010

[9] SMomani ZOdibat andV S Erturk ldquoGeneralized differentialtransform method for solving a space- and time-fractionaldiffusion-wave equationrdquo Physics Letters A vol 370 no 5-6 pp379ndash387 2007

[10] ZOdibat SMomani andV S Erturk ldquoGeneralized differentialtransform method application to differential equations offractional orderrdquo Applied Mathematics and Computation vol197 no 2 pp 467ndash477 2008

[11] Z Odibat and S Momani ldquoA generalized differential transformmethod for linear partial differential equations of fractionalorderrdquo Applied Mathematics Letters vol 21 no 2 pp 194ndash1992008

[12] Y Zhang ldquoA finite difference method for fractional partialdifferential equationrdquo Applied Mathematics and Computationvol 215 no 2 pp 524ndash529 2009

[13] Y X Wang and Q B Fan ldquoThe second kind Chebyshev waveletmethod for solving fractional differential equationsrdquo AppliedMathematics and Computation vol 218 no 17 pp 8592ndash86012012

[14] M X Yi and Y M Chen ldquoHaar wavelet operational matrixmethod for solving fractional partial differential equationsrdquoComputer Modeling in Engineering amp Sciences vol 88 no 3 pp229ndash244 2012

[15] EHDohaAH BhrawyD Baleanu and S S Ezz-Eldien ldquoTheoperational matrix formulation of the Jacobi tau approximationfor space fractional diffusion equationrdquo Advances in DifferenceEquations vol 231 pp 1687ndash1847 2014

[16] M X Yi J Huang and J X Wei ldquoBlock pulse operationalmatrix method for solving fractional partial differential equa-tionrdquo Applied Mathematics and Computation vol 221 pp 121ndash131 2013

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

Mathematical Problems in Engineering 7

0020406081 005

1

0

x t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 4 The numerical solutions for Example 2 when 119899 = 4

00204060810

051

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 5 The numerical solutions for Example 2 when 119899 = 5

The exact solution is 119906(119909 119905) = 119909(119909minus 1)(1199092

+1)(1 + 119905 + 1199052

+ 1199054

)The numerical solutions for 119899 = 4 119899 = 5 are displayed inFigures 4 and 5 and the exact solution is shown in Figure 6

Example 3 Consider this equation

11990912

12059713

119906 (119909 119905)

12059711990913

+11990923

12059713

119906 (119909 119905)

12059711990513

= 119891 (119909 119905)

119906 (119909 0) = 1199092

minus 1 119906 (0 119905) = minus1 minus (119905 minus 1)2

minus (119905 minus 1)3

(41)

where119891 (119909 119905)

=

9 (1 + 119905 minus 21199052 + 1199053) 119909

136

5Γ (23)

+

311990523 (minus2 + 3119905) (minus10 + 9119905) (minus1 + 1199092) 119909

23

40Γ (23)

(42)

The exact solution is 119906(119909 119905) = (1199092

minus 1)[1 + (119905 minus 1)2

+ (119905 minus 1)3

]The numerical solutions for 119899 = 3 119899 = 4 are displayed inFigures 7 and 8 The absolute errors are shown in Figures 9and 10 when 119899 = 3 and 119899 = 4

00204060810

05

1

0

xt

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

Figure 6 Exact solution for Example 2

0 02 04 06 08 1

0

05

1

0

u(xt)

x

t

minus02

minus04

minus06

minus08

minus1

minus12

minus14

Figure 7 The numerical solutions for Example 3 when 119899 = 3

0 02 04 06 08 1

0

05

1

0

minus02

minus04

minus06

minus08

minus1

minus12

minus14

u(xt)

xt

Figure 8 The numerical solutions for Example 3 when 119899 = 4

From Examples 1ndash3 we can see that the method in thispaper can be effectively used to solve the numerical solutionof fractional partial differential equation with variable coeffi-cients From the above results the absolute errors between

8 Mathematical Problems in Engineering

002

0406

081 0

05

10020406081

12

tx

times10minus14

u(xt)

Figure 9 The absolute errors for Example 3 when 119899 = 3

002

0406

081 0

0204

0608

10

020406081

12

tx

times10minus15

u(xt)

Figure 10 The absolute errors for Example 3 when 119899 = 4

the numerical solutions and the exact solution are rathersmall What is more due to the absolute error in this paperis about 10minus15 the Legendre polynomials method can reachhigher degree of accuracy by comparing the approximationsobtained by block pulse method [16]

7 Conclusion

In this paper we use the Legendre polynomials method tosolve a class of fractional partial differential equations withvariable coefficients The Legendre polynomials operationalmatrix of fractional differentiation is derived from the prop-erty of Legendre polynomials The initial equation is trans-lated into the product of some relevant matrixes which canalso be regarded as the system of linear equations The erroranalysis of Legendre polynomials is also given The numer-ical results show that numerical solutions obtained by ourmethod are in very good agreement with the exact solution

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] R L Bagley and R A Calico ldquoFractional order state equationsfor the control of viscoelastically damped structuresrdquo Journalof Guidance Control and Dynamics vol 14 no 2 pp 304ndash3111991

[2] Z C Li and J S Luo Wavelet Analysis and Its ApplicationElectronic Industrial Publication Beijing China 2005

[3] J H Chen ldquoAnalysis of stability and convergence of numeri-cal approximation for the Riesz fractional reaction-dispersionequationrdquo Journal of Xiamen University (Natural Science) vol46 no 5 pp 616ndash619 2007

[4] D Delbosco and L Rodino ldquoExistence and uniqueness for anonlinear fractional differential equationrdquo Journal of Mathe-matical Analysis and Applications vol 204 no 2 pp 609ndash6251996

[5] Y Ryabov and A Puzenko ldquoA damped oscillations in view ofthe fraction oscillator equationrdquo Physics Review B vol 66 pp184ndash201 2002

[6] A M El-Sayed ldquoNonlinear functional-differential equationsof arbitrary ordersrdquo Nonlinear Analysis Theory Methods ampApplications vol 33 no 2 pp 181ndash186 1998

[7] I L El-Kalla ldquoError estimate of the series solution to a class ofnonlinear fractional differential equationsrdquo Communications inNonlinear Science and Numerical Simulation vol 16 no 3 pp1408ndash1413 2011

[8] Z M Odibat ldquoA study on the convergence of variationaliteration methodrdquo Mathematical and Computer Modelling vol51 no 9-10 pp 1181ndash1192 2010

[9] SMomani ZOdibat andV S Erturk ldquoGeneralized differentialtransform method for solving a space- and time-fractionaldiffusion-wave equationrdquo Physics Letters A vol 370 no 5-6 pp379ndash387 2007

[10] ZOdibat SMomani andV S Erturk ldquoGeneralized differentialtransform method application to differential equations offractional orderrdquo Applied Mathematics and Computation vol197 no 2 pp 467ndash477 2008

[11] Z Odibat and S Momani ldquoA generalized differential transformmethod for linear partial differential equations of fractionalorderrdquo Applied Mathematics Letters vol 21 no 2 pp 194ndash1992008

[12] Y Zhang ldquoA finite difference method for fractional partialdifferential equationrdquo Applied Mathematics and Computationvol 215 no 2 pp 524ndash529 2009

[13] Y X Wang and Q B Fan ldquoThe second kind Chebyshev waveletmethod for solving fractional differential equationsrdquo AppliedMathematics and Computation vol 218 no 17 pp 8592ndash86012012

[14] M X Yi and Y M Chen ldquoHaar wavelet operational matrixmethod for solving fractional partial differential equationsrdquoComputer Modeling in Engineering amp Sciences vol 88 no 3 pp229ndash244 2012

[15] EHDohaAH BhrawyD Baleanu and S S Ezz-Eldien ldquoTheoperational matrix formulation of the Jacobi tau approximationfor space fractional diffusion equationrdquo Advances in DifferenceEquations vol 231 pp 1687ndash1847 2014

[16] M X Yi J Huang and J X Wei ldquoBlock pulse operationalmatrix method for solving fractional partial differential equa-tionrdquo Applied Mathematics and Computation vol 221 pp 121ndash131 2013

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

8 Mathematical Problems in Engineering

002

0406

081 0

05

10020406081

12

tx

times10minus14

u(xt)

Figure 9 The absolute errors for Example 3 when 119899 = 3

002

0406

081 0

0204

0608

10

020406081

12

tx

times10minus15

u(xt)

Figure 10 The absolute errors for Example 3 when 119899 = 4

the numerical solutions and the exact solution are rathersmall What is more due to the absolute error in this paperis about 10minus15 the Legendre polynomials method can reachhigher degree of accuracy by comparing the approximationsobtained by block pulse method [16]

7 Conclusion

In this paper we use the Legendre polynomials method tosolve a class of fractional partial differential equations withvariable coefficients The Legendre polynomials operationalmatrix of fractional differentiation is derived from the prop-erty of Legendre polynomials The initial equation is trans-lated into the product of some relevant matrixes which canalso be regarded as the system of linear equations The erroranalysis of Legendre polynomials is also given The numer-ical results show that numerical solutions obtained by ourmethod are in very good agreement with the exact solution

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] R L Bagley and R A Calico ldquoFractional order state equationsfor the control of viscoelastically damped structuresrdquo Journalof Guidance Control and Dynamics vol 14 no 2 pp 304ndash3111991

[2] Z C Li and J S Luo Wavelet Analysis and Its ApplicationElectronic Industrial Publication Beijing China 2005

[3] J H Chen ldquoAnalysis of stability and convergence of numeri-cal approximation for the Riesz fractional reaction-dispersionequationrdquo Journal of Xiamen University (Natural Science) vol46 no 5 pp 616ndash619 2007

[4] D Delbosco and L Rodino ldquoExistence and uniqueness for anonlinear fractional differential equationrdquo Journal of Mathe-matical Analysis and Applications vol 204 no 2 pp 609ndash6251996

[5] Y Ryabov and A Puzenko ldquoA damped oscillations in view ofthe fraction oscillator equationrdquo Physics Review B vol 66 pp184ndash201 2002

[6] A M El-Sayed ldquoNonlinear functional-differential equationsof arbitrary ordersrdquo Nonlinear Analysis Theory Methods ampApplications vol 33 no 2 pp 181ndash186 1998

[7] I L El-Kalla ldquoError estimate of the series solution to a class ofnonlinear fractional differential equationsrdquo Communications inNonlinear Science and Numerical Simulation vol 16 no 3 pp1408ndash1413 2011

[8] Z M Odibat ldquoA study on the convergence of variationaliteration methodrdquo Mathematical and Computer Modelling vol51 no 9-10 pp 1181ndash1192 2010

[9] SMomani ZOdibat andV S Erturk ldquoGeneralized differentialtransform method for solving a space- and time-fractionaldiffusion-wave equationrdquo Physics Letters A vol 370 no 5-6 pp379ndash387 2007

[10] ZOdibat SMomani andV S Erturk ldquoGeneralized differentialtransform method application to differential equations offractional orderrdquo Applied Mathematics and Computation vol197 no 2 pp 467ndash477 2008

[11] Z Odibat and S Momani ldquoA generalized differential transformmethod for linear partial differential equations of fractionalorderrdquo Applied Mathematics Letters vol 21 no 2 pp 194ndash1992008

[12] Y Zhang ldquoA finite difference method for fractional partialdifferential equationrdquo Applied Mathematics and Computationvol 215 no 2 pp 524ndash529 2009

[13] Y X Wang and Q B Fan ldquoThe second kind Chebyshev waveletmethod for solving fractional differential equationsrdquo AppliedMathematics and Computation vol 218 no 17 pp 8592ndash86012012

[14] M X Yi and Y M Chen ldquoHaar wavelet operational matrixmethod for solving fractional partial differential equationsrdquoComputer Modeling in Engineering amp Sciences vol 88 no 3 pp229ndash244 2012

[15] EHDohaAH BhrawyD Baleanu and S S Ezz-Eldien ldquoTheoperational matrix formulation of the Jacobi tau approximationfor space fractional diffusion equationrdquo Advances in DifferenceEquations vol 231 pp 1687ndash1847 2014

[16] M X Yi J Huang and J X Wei ldquoBlock pulse operationalmatrix method for solving fractional partial differential equa-tionrdquo Applied Mathematics and Computation vol 221 pp 121ndash131 2013

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

Mathematical Problems in Engineering 9

[17] I Podlubny Fractional Differential Equations vol 198 ofMath-ematics in Science and Engineering Academic Press New YorkNY USA 1999

[18] A Saadatmandi and M Dehghan ldquoA new operational matrixfor solving fractional-order differential equationsrdquo ComputersandMathematics with Applications vol 59 no 3 pp 1326ndash13362010

[19] N Liu and E-B Lin ldquoLegendre wavelet method for numericalsolutions of partial differential equationsrdquo Numerical Methodsfor Partial Differential Equations vol 26 no 1 pp 81ndash94 2010

[20] S Nemati and Y Ordokhani ldquoLegendre expansion methodsfor the numerical solution of nonlinear 2D Fredholm integralequations of the second kindrdquo Journal of Applied Mathematicsamp Informatics vol 31 no 5-6 pp 609ndash621 2013

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Legendre Polynomials Operational Matrix ...downloads.hindawi.com/journals/mpe/2015/915195.pdf · A numerical method for solving a class of fractional partial di erential

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of