sequence myc that - pnas · 2005. 4. 23. · proc. natl. acad. sci. usa85 (1988) 3053...

5
Proc. Nati. Acad. Sci. USA Vol. 85, pp. 3052-3056, May 1988 Genetics Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;qll) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered SHELDON N. FINVER*, KAZUKO NISHIKURA*, LAWRENCE R. FINGER*, FRANK G. HALUSKA*, JANET FINANt, PETER C. NOWELLt, AND CARLO M. CROCE** *The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104; and tDepartment of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Contributed by Peter C. Nowell, December 31, 1987 ABSTRACT We have cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8;14)(q24;qll) translocation, and deter- mined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experi- ments ut g a MYC first exon probe demonstrated Hnscrip- tional deregulation of the MYC gene asated with the T-cell receptor a locus on the 8q + chromosome of SKW-3 cells. Nudeotide sequence analysis of the translocation-aociated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. TheMYC first exon sequence was germ line in both alleles. These results demonstrate that alter- ations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor a locus to a germ-line MYC oncogene results in MYC deregulation. Many human tumors, in particular leukemias and lym- phomas, are characterized by nonrandom cytogenetic abnor- malities (1-3). Recent experimental evidence indicates that genes located at recurring chromosomal breakpoints are directly involved in tumor pathogenesis (3). In Burkitt lym- phoma, three distinct translocations [t(8;14), t(2;8), t(8;22)] are observed that involve juxtaposition of the MYC locus at 8q24 with an immunoglobulin gene (4-6). Similarly, human follicular lymphomas often harbor a t(14;18) translocation, in which the BCL-2 oncogene rearranges with the human heavy chain locus (7). As a consequence of these translocations in B-cell malignancies, expression of the involved oncogene is deregulated (5, 7-9). Many human T-cell neoplasms also carry specific cytoge- netic abnormalities, predominantly translocations and inver- sions (10-12). These rearrangements frequently involve chro- mosome 14 at band qil, the locus of the T-cell receptor (TCR) a-chain gene (13, 14). In cases of T-cell acute lymphocytic leukemia with a t(11;14)(p13;qll) translocation, the TCRa locus is split, with variable region genes (V.) proximal to the breakpoint remaining on chromosome 14q -, whereas the constant region (C.) translocates to chromosome 11 (14). Similarly, the SKW-3 T-cell leukemia line, derived from an adult patient with T-cell leukemia, contains a t(8;14)(q24;qll) translocation that results in juxtaposition of C, sequences to a region 3' of the MYC oncogene (15, 16). A consistent consequence of chromosomal translocations in Burkitt lymphoma is alteration of MYC regulation. Anal- ysis of somatic cell hybrids between Burkitt lymphoma cells and other B cells has indicated that the untranslocated MYC allele responds to normal transcriptional control signals, whereas the MYC oncogene juxtaposed to an immunoglob- ulin gene fails to respond to these controls and is transcribed constitutively at elevated levels (8). MYC activation has been attributed to diverse perturbations in MYC regulatory ele- ments: alteration/truncation of negative control regions within exon 1 and flanking regions (6, 17, 18), loss of trans- acting factors (17), changes in posttranscriptional stability (19), transcriptional enhancement (20), blockage of transcript elongation (21), and sequence mutations (17, 22, 23). Alter- natively, we have proposed that de novo MYC association with cis-acting positive regulatory elements in the activated immunoglobulin locus can lead to transcriptional deregula- tion (24). In this model, the activated MYC allele remains structurally intact, without significant sequence alteration within regulatory regions, as reported for the translocation- associated MYC allele of an endemic Burkitt lymphoma, BL-2 (24). To understand the mechanism(s) of oncogene activation in T cells, we have analyzed the MYC oncogene in the SKW-3 leukemia T-cell line. Characterization of somatic cell hybrids derived from mouse leukemia T cells and DeF, a human T-cell leukemia with the same t(8;14)(q24;qll) translocation, has demonstrated elevated levels of human MYC expression specific to the translocation-associated MYC allele (15). T- cell leukemias with this t(8;14) translocation, which places the TCRa gene 3' of the MYC locus, may represent a mechanism of oncogene activation similar to variant trans- locations in Burkitt lymphoma (5). Therefore, deregulation of MYC due to trans-operative mechanisms or disrupted regu- latory signals should be reflected in alterations and mutations within MYC coding sequences; conversely, cis-activation is consistent with an intact, germ-line configuration. We have therefore sequenced the MYC first exon and flanking regions from the translocation-associated and homologous normal MYC alleles of SKW-3 leukemia T cells to elucidate their potential role in MYC deregulation.§ MATERIALS AND METHODS Nucleotide Sequences. Nucleotide sequences were deter- mined by the dideoxy chain-termination method of Sanger et al. (25) using the Clontech M13 sequencing primer and synthetic oligonucleotide primers derived from the nucleo- tide sequence (35). Sequencing templates were constructed by inserting MYC 5' HindIII/Xba I and Sal I/Xba I fragments (Fig. 2) into phage M13mpl8 or M13mpl9 (26). Abbreviations: TCR, T-cell receptor; V, variable; C, constant; J, joining. ITo whom reprint requests should be addressed. §This sequence is being deposited in the EMBL/GenBank data base (Intelligenetics, Mountain View, CA, and Eur. Mol. Biol. Lab., Heidelberg) (accession no. J03253). 3052 The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact. Downloaded by guest on July 23, 2021

Upload: others

Post on 26-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sequence MYC that - PNAS · 2005. 4. 23. · Proc. Natl. Acad. Sci. USA85 (1988) 3053 GenomicDNALibraries.ThegenomicDNAlibraries used to isolate the MYCregions were prepared from

Proc. Nati. Acad. Sci. USAVol. 85, pp. 3052-3056, May 1988Genetics

Sequence analysis of the MYC oncogene involved in thet(8;14)(q24;qll) chromosome translocation in a human leukemiaT-cell line indicates that putative regulatory regions are not alteredSHELDON N. FINVER*, KAZUKO NISHIKURA*, LAWRENCE R. FINGER*, FRANK G. HALUSKA*, JANET FINANt,PETER C. NOWELLt, AND CARLO M. CROCE***The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104; and tDepartment of Pathology and Laboratory Medicine, University of Pennsylvania Schoolof Medicine, Philadelphia, PA 19104

Contributed by Peter C. Nowell, December 31, 1987

ABSTRACT We have cloned the translocation-associatedand homologous normalMYC alleles from SKW-3, a leukemiaT-cell line with the t(8;14)(q24;qll) translocation, and deter-mined the sequence oftheMYConcogene first exon and flanking5' putative regulatory regions. S1 nuclease protection experi-ments ut g a MYC first exon probe demonstrated Hnscrip-tional deregulation of the MYC gene asated with the T-cellreceptor a locus on the 8q+ chromosome of SKW-3 cells.Nudeotide sequence analysis of the translocation-aociated(8q +)MYC allele identified a single base substitution within theupstream flanking region; the homologous nontranslocatedallele contained an additional substitution and a two-basedeletion. None of the deletions or substitutions localized toputative 5' regulatory regions. TheMYC first exon sequence wasgerm line in both alleles. These results demonstrate that alter-ations within the putative 5' MYC regulatory regions are notnecessarily involved in MYC deregulation in T-cell leukemias,and they show that juxtaposition of the T-cell receptor a locusto a germ-line MYC oncogene results in MYC deregulation.

Many human tumors, in particular leukemias and lym-phomas, are characterized by nonrandom cytogenetic abnor-malities (1-3). Recent experimental evidence indicates thatgenes located at recurring chromosomal breakpoints aredirectly involved in tumor pathogenesis (3). In Burkitt lym-phoma, three distinct translocations [t(8;14), t(2;8), t(8;22)]are observed that involve juxtaposition of the MYC locus at8q24 with an immunoglobulin gene (4-6). Similarly, humanfollicular lymphomas often harbor a t(14;18) translocation, inwhich the BCL-2 oncogene rearranges with the human heavychain locus (7). As a consequence of these translocations inB-cell malignancies, expression of the involved oncogene isderegulated (5, 7-9).Many human T-cell neoplasms also carry specific cytoge-

netic abnormalities, predominantly translocations and inver-sions (10-12). These rearrangements frequently involve chro-mosome 14 at band qil, the locus ofthe T-cell receptor (TCR)a-chain gene (13, 14). In cases of T-cell acute lymphocyticleukemia with a t(11;14)(p13;qll) translocation, the TCRalocus is split, with variable region genes (V.) proximal to thebreakpoint remaining on chromosome 14q -, whereas theconstant region (C.) translocates to chromosome 11 (14).Similarly, the SKW-3 T-cell leukemia line, derived from anadult patient with T-cell leukemia, contains a t(8;14)(q24;qll)translocation that results in juxtaposition of C, sequences toa region 3' of the MYC oncogene (15, 16).A consistent consequence of chromosomal translocations

in Burkitt lymphoma is alteration of MYC regulation. Anal-ysis of somatic cell hybrids between Burkitt lymphoma cells

and other B cells has indicated that the untranslocated MYCallele responds to normal transcriptional control signals,whereas the MYC oncogene juxtaposed to an immunoglob-ulin gene fails to respond to these controls and is transcribedconstitutively at elevated levels (8). MYC activation has beenattributed to diverse perturbations in MYC regulatory ele-ments: alteration/truncation of negative control regionswithin exon 1 and flanking regions (6, 17, 18), loss of trans-acting factors (17), changes in posttranscriptional stability(19), transcriptional enhancement (20), blockage oftranscriptelongation (21), and sequence mutations (17, 22, 23). Alter-natively, we have proposed that de novo MYC associationwith cis-acting positive regulatory elements in the activatedimmunoglobulin locus can lead to transcriptional deregula-tion (24). In this model, the activated MYC allele remainsstructurally intact, without significant sequence alterationwithin regulatory regions, as reported for the translocation-associated MYC allele of an endemic Burkitt lymphoma,BL-2 (24).To understand the mechanism(s) of oncogene activation in

T cells, we have analyzed the MYC oncogene in the SKW-3leukemia T-cell line. Characterization of somatic cell hybridsderived from mouse leukemia T cells and DeF, a humanT-cell leukemia with the same t(8;14)(q24;qll) translocation,has demonstrated elevated levels of human MYC expressionspecific to the translocation-associated MYC allele (15). T-cell leukemias with this t(8;14) translocation, which placesthe TCRa gene 3' of the MYC locus, may represent amechanism of oncogene activation similar to variant trans-locations in Burkitt lymphoma (5). Therefore, deregulation ofMYC due to trans-operative mechanisms or disrupted regu-latory signals should be reflected in alterations and mutationswithin MYC coding sequences; conversely, cis-activation isconsistent with an intact, germ-line configuration. We havetherefore sequenced the MYC first exon and flanking regionsfrom the translocation-associated and homologous normalMYC alleles of SKW-3 leukemia T cells to elucidate theirpotential role in MYC deregulation.§

MATERIALS AND METHODSNucleotide Sequences. Nucleotide sequences were deter-

mined by the dideoxy chain-termination method of Sanger etal. (25) using the Clontech M13 sequencing primer andsynthetic oligonucleotide primers derived from the nucleo-tide sequence (35). Sequencing templates were constructedby insertingMYC 5' HindIII/Xba I and Sal I/Xba I fragments(Fig. 2) into phage M13mpl8 or M13mpl9 (26).

Abbreviations: TCR, T-cell receptor; V, variable; C, constant; J,joining.ITo whom reprint requests should be addressed.§This sequence is being deposited in the EMBL/GenBank data base(Intelligenetics, Mountain View, CA, and Eur. Mol. Biol. Lab.,Heidelberg) (accession no. J03253).

3052

The publication costs of this article were defrayed in part by page chargepayment. This article must therefore be hereby marked "advertisement"in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Dow

nloa

ded

by g

uest

on

July

23,

202

1

Page 2: Sequence MYC that - PNAS · 2005. 4. 23. · Proc. Natl. Acad. Sci. USA85 (1988) 3053 GenomicDNALibraries.ThegenomicDNAlibraries used to isolate the MYCregions were prepared from

Proc. Natl. Acad. Sci. USA 85 (1988) 3053

Genomic DNA Libraries. The genomic DNA libraries usedto isolate the MYC regions were prepared from a Sau3Apartial digest of high molecular weight SKW-3 DNA, withappropriate pooled fractions [15-23 kilobases (kb)] purifiedfrom sucrose gradients and cloned into bacteriophage Avector EMBL3A (27). Libraries were screened with the 3'MYC probe pCA1.7S (28), derived from a region 2 kb 3' ofMYC (Fig. 2A), and pRyc7.4, a cDNA clone that codes forhuman MYC exon 3 and part of exon 2 (29).

S1 Nuclease Analysis. RNA was analyzed by the S1 nucle-ase mapping procedure (30). Uniformly labeled DNA probeencompassing a part of the first exon and 5' flanking region(31) was prepared according to Ley et al. (32). Twenty micro-grams of cytoplasmic RNAs was used for each assay. The32P-labeled DNA probe was heat-denatured, hybridized in80% formamide to cytoplasmic RNAs at 560C for 10 hr,digested with 80 units of S1 nuclease, and analyzed byelectrophoresis on a 7 M urea/4% polyacrylamide gel (33).Chromosome Analysis. Parental and hybrid cell chromo-

somes were studied by the trypsin/Giemsa-banding methodand G-11 technique as described (5).

RESULTSS1 Nuclease Protection Analysis ofMYC Exon 1. Transcrip-

tional deregulation specific to the translocation-associatedc-myc allele has been shown in Burkitt lymphomas carryingt(8;14), t(8;22), or t(2;8) translocations (5, 8, 32) and a T-cellleukemia with a t(8;14)(q24;qll) chromosome translocation(15). In view of the postulated role for MYC exon 1 intranscriptional and translational regulation of MYC expres-sion (17-19, 21-23), we have analyzed MYC transcript levelsin the SKW-3 human T-cell leukemia line and in somatichybrids between SKW-3 and the mouse T-cell leukemia lineBW5147. In SKW-3 cells, S1 nuclease protection analysisusing a human MYC exon 1 probe (33) detected two frag-ments, 515 and 350 nucleotides in length (Fig. 1A, lane 2).This result is consistent with previous S1 nuclease protectionexperiments using normal RNA derived from varioussources, where identical 515- and 350-nucleotide bands weredetected, corresponding to MYC exon 1 transcripts initiatingfrom promoters P1 and P2, respectively (33). Thus, protec-

A M 1 2 3 4 5 6 7

..

-5 '

A1234567:

FIG. 1. (A) S1 nuclease protection analysis ofMYC exon 1 RNAexpressed in parental and hybrid cells. The 0.8-kb MYC exon 1 probe(31) was digested with Pvu II, 5' end-labeled with 32P, and used asa probe as described (30, 33). Two fragments of515 and 350 base pairs(bp) are protected. MYC expression was observed in lane 2 (SKW-3),lane 3 (hybrid H3, which contains an 8q + chromosome), and lane 6(hybrid 1H9). Lane 7, BW5147 mouse T-cell leukemia line. Lane 1,no RNA. No MYC exon 1 expression was detected in hybrids iF1and 1F9 (lanes 4 and 5). Lane M, molecular size markers. (B) Portionofa trypsin/Giemsa-banded metaphase from hybrid H3 that retaineda human 8q + chromosome (arrow) but not a normal 8 or the 14q -chromosome.

tion experiments did not detect any qualitative change in theexpressed MYC gene of SKW-3.

In mouse-human hybrids, human MYC transcripts arereadily distinguished from mouse RNA in S1 nuclease anal-ysis (8). As shown in Fig. 1A, hybrid 1H9 (lane 6) expressedhuman MYC-encoded RNA, as did hybrid H3 (lane 3), showncytogenetically to contain an 8q + chromosome in -50% ofits cells but not a normal 8 chromosome (Fig. 1B). Bothhybrids were shown to contain 8q + chromosomes and tohave lost the normal 8 chromosome by Southern blottinganalysis (data not shown) using a probe, pSKW1.4X (Fig.2A), immediately 3' to the c-myc oncogene (15, 34). How-ever, hybrid 1H9 contained much less c-myc DNA thanhybrid 1H3 and, in fact, expressed much lower levels ofMYCexon 1 transcripts (Fig. 1A, lane 6). Hybrids iF1 and 1F9have lost the 8q + chromosome as demonstrated by Southernblotting. We have previously shown that, in hybrids betweenDeF human leukemia T cells with the t(8;14)(q24;qll) chro-mosome translocation and mouse BW5147 cells, only theMYC gene on the 8q + chromosome is transcriptionallyactive, whereas the c-myc gene on normal chromosome 8 istranscriptionally silent (15). These results are thereforeconsistent with the interpretation that the MYC gene on the8q + chromosome of SKW-3 is transcriptionally deregulated.

Molecular Cloning and Characterization of MYC Alleles.The germ-line and translocation-associated MYC alleles ofSKW-3 were cloned by screening -500,000 plaques from anonamplified SKW-3 genomic DNA library in bacteriophageA vector EMBL3A (34). By using probes pRyc7.4 (29) andpCA1.7S (28), a 3' flanking region probe shown previously todetect SKW-3 DNA rearrangements 3' to theMYC third exon(15, 34), a series of overlapping clones covering the MYClocus was obtained (34). Physical mapping of recombinantclones allowed their separation into two distinct groups (Fig.2A). Restriction sites on A SKW13 are in the germ-lineconfiguration, co-linear with the physical map ofMYC and 3'

A

ASKW-1 3

ASKW-22

B

H X E X H H1 2 3

II m II IpCA 1.75

X_

L J2 Kb

E X BX XE H B HEB X H H2 3 VI l( V ILJ IIJ IL

pSKW 1.4X

0H P

5'K P Pv Xh Pv

3510Xb

1,

730 12950

.- ,- _.-*

FIG. 2. (A) Restriction mapping of SKW-3 clones containing thetranslocation-associated and germ-line MYC alleles. Top, A SKW13,germ-line MYC allele on chromosome 8 (28). Bottom, A SKW22, witha rearranged MYC locus derived from chromosome 8q + (34). MYCexons are indicated by numbered boxes 1, 2, and 3. The chromo-somal breakpoint on A SKW22 is indicated by an arrowhead. Clearbar, chromosome 8 regions; dark bar, region derived from 5' J,,region on chromosome 14. C.. coding exons are located 27 kbdownstream from the HindIII site at the right end of A SKW22. E,EcoRI; B, BamHI; H, HindIII; X, Xba I. (B) Sequencing strategy forMYC exon 1 and adjacent flanking regions. MYC exon 1 and flankingsequences on the HindIII-Xba I and Sal I-Xba I restriction frag-ments of A SKW13 and A SKW22, respectively, were subcloned intoM13mpl8 and M13mpl9. H, HindIII; P. Pst I; K, Kpn I; Pv, Pvu II;Xh, Xho I; Xb, Xba I; S, Sau3A; pl and p2, promoters. The blackbar denotes MYC exon 1. Nucleotide sequences were determined byprimer extension from synthetic oligonucleotide primers (24) derivedfrom a germ-line 5' MYC sequence (35).

-1=

Genetics: Finver et al.

Dow

nloa

ded

by g

uest

on

July

23,

202

1

Page 3: Sequence MYC that - PNAS · 2005. 4. 23. · Proc. Natl. Acad. Sci. USA85 (1988) 3053 GenomicDNALibraries.ThegenomicDNAlibraries used to isolate the MYCregions were prepared from

3054 Genetics: Finver et al. Proc. Natl. Acad. Sci. USA 85 (1988)

730 800SKW13 CAAGGATGAGAAGAATGTTTTTTGTTT TTCATGCCGTGGAATAACACAAAATAAAAAATCCCGACGGAATASKW22 CAAGGATGAGAAGAATGTTTTTTGTTTTTCATGCCGTGGAATAACACAAAATAAAAAATCCCGAGGGAATAMYC CAAGGATGAGAAGAATGTTTTTTGTTTTTCATGCCGTGGAATAACACAAAATAAAAAATCCCGAGGGAATABL-2 CAAGGATGAGAAGAATGTTTTTTGTTTT TCATGCCGTGGAATAACACAAAATAAAAAATCCCGAGGGAATA

C-IIl 950SKW1 3 TACAT TATATATTAAATATAGATCAT TTCAGGGAGCAAACAAA TCATGTGTGGGGCTGGGCAACTAGCTGAT GCGAAGCGTAAATAAAATGTGAATACACGT TTGCGGGT TACATACAGTGCACT TTCACTAGTAT TCAGAAAMAAT TGTSKW2 2 TACATTATATATTAAATATAGATCAT TTCAGGGAGCAAACAAA TCA TGT GTGGGGCTGGGCAAC TAGCTGATGCGAAGCGTAAATAAAATGT GAATACAC GT TTGCGGGT TACATACAGTGCACT T TCACTAGTA T TCAGAAAAAA TTG TMYC TACATTATATAT TAAATATAGATCAT TTCAGGGAGCAAACAAATCATGTGTGGGGCTGGGCAACTAGCTGATGCGAAGCGTAMATAAAATGTGAATACACGTTTGCGGGT TACATACAGTGCACTT TCACTAGTAT TCAGAAAAAAT TGTBL -2 TACAT TATA TAT TAAATATAGATCAT TTCAGGGAGCAAACAAATCA TGTGTGGGGCTGGGCAACTAGCTAAGTCGAAGCGTAAATAAAATGTGAATACACGT TTGCGGGT TACATACAGTGCAC T TTCACTAGTAT TCAGAAAAAAT TGT

.1100SKW13 GAGTCAGTGAAC TAGG.AAAT TAATGCCTGGAAGGCAGCCAAAT T TTAAT TAGC TCAAGACTC.-6CCCCCCCCCCAAAAAAAGGCACGGAAGTAATAC TCCTCTCCTC TTCT TTGAT CAGAATCGATGCAT TT T TTGTGCATGACCGCAT TSKW22 GAGTCAGTGAAC TAGGAAATTAATGCCTGGAAGGCAGCCAAATT T TAA T TAGCTCAAGACTCOCCCCCCCCCCAAAAAAAGGCACGGAAGTAATAC TCCTCTCCTCTTCT T TGATCAGAATCGA TGCA TT TT TTGTGCAT GACCGCAT TMYC GAGTCAGTGAACTAGGAAAT TAATGCC TGGAAGGCAGCCAAAT T TTAAT TAGCTCAAGACTOW CCCCCCCCCAAAAAAAGGCACGGAAGTAATACTCC TCTCCTC TTCT TTGATCAGAATCGATGCATT TT T TGT GCATGACCGCAT TBL -2 GAGTCAGTGAAC TAGGAAA T TAA TGCCTGGAAGGCAGCCAAA TT T TAA T TAGCTCAAGAC TCCN-'CCCCCCCCCCAAAAAAAGGCACGGAAGTAA TAC TCCTCTCCTC TTCT T TGATCAGAATCGAT GCAT TT TT TGTGCATGACCGCAT T

1S250SKW13 TCCAATAATAAAAGGGGAAAGAGGACC TGGAAAGGAA TTAAACGTCCGGT T TGTCCGGGGAGGAAAGAG TTAACGGT TT T T TTCACAAGGGTC TC TGCTGACTCCCCCGGC TCGGTCCACAAGC TCTCCAC T TGCCCCT T TTAGGAAG TCSKW22 TCCAATAATAAAAGGGGAAAGAGGACC TGGAAAGGAAT TAAACGTCCGG T TTGTCCGGGGAGGAAAGAGT TAACGGT TT TT T TCACAAGGGTC TCTGCTGACTCCCCCGGC TCGGTCCACAAGC TCTCCAC T TGCCCCT T TTAGGAAGT CMYC TCCAATAATAAAAGGGGAAAGAGGACCTGGAAAGGAAT TAAACGT CCGGTT TGTCCGGGGAGGAAAGAG TTAACGGT TT TT T TCACAAGGGT CTCTGCTGACTCCCCCGGC TCGGTCCACAAGC TCTCCAC T TGCCCCT T TTAGGAAGT CBL -2 TCCAATAATAAAAGGGGAAAGAGGACCTGGAAAGGAAT TAAACGTCCGGT TTGTCCGGGGAGGAAAGAGT TAACGGTT TT T TTCACAAGGGTCTC TGC TGACTCCCCCGGCTCGGTCCACAAGCTCTCCACTT'uCCCCT T TTAGGAAGT C

15400SKW1 3 CGGTCCCGCGGT TCGGGTACCCCC TGCCCCTCCCA TAT TCTCCCG TC TAGCACC T TTGAT TTCTCCCAAACCCGGCAGCCCGAGAC TGT TGCAAACCGGCGCCACAGGGCGCAAAGGGGAT TTGTC TCT TC TGAAACC TGGCTGAGAAA TSKW22 CGGTCCCGCGG TTCGGGTACCCCCTGCCCCTCCCA TAT TCTCCCG TC TAGCACCT TTGAT TTCTCCCAAACCCGGCAGCCCGAGAC TGT TGCAAACCGGCGCCACAGGGCGCAAAGGGGA T TTGTC TC TTCTGAAACC TGGCTGAGAAA TMYC CGGTCCCGCGG TTCGGGTACCCCCT GCCCCTCCCATATTCTCCCGT CTAGCACC T TTGAT TTCTCCCAAACCCGGCAGCCCGAGAC TG T TGCAAACCGGCGCCACAGGGCGCAAAGGGGAT T TGTC TC TTCTGAAACC TGGC TGAGAAATBL -2 .CGGTCCCGCGGT TCGGGTACCCCC TGCCCCTCCCATA TTCTCCCGTCTAGCACCT TTGAT TTCTCCCAAACCCGGCAGCCCGAGACTGT TGCAAACCGGCGCCACAGGGCGCAAAGGGGAT TTGT CTCT TC TGAAACCT GGCT GAGAAA T

.1550SKW1 3SKW22MYCBL-2

SKW1 3SKW22MYCBL-2

SKW1 3SKW22MYCBL-2

SKW1 3SKW22MYCBL-2

SKW1 3SKW22MYCBL-2

SKW1 3SKW22MYCBL-2

T GGGAAC TCCG.TGTGGGAGGCG TGGGGGTGGGACGGT GGGG TACAGACTGGCAGAGAGCAGGCAACC TCCCTC TCGCCC TAGCCCAGC TCTGGAACAGGCAGACACATCTCAGGGC TAAACAGACGCC TCCCGCACGGGGCCCCACGGAATGGGAACTCCGTGTGGGAGGCG TGGGGGTGGGACGG TGGGGTACAGAC TGGCAGAGAGCAGGCAACC TCCCTCTCGCCC TAGCCCAGC TCTGGAACAGGCAGACACAT C TCAGGGC TAAACAGACGCC TCCCGCACGGGGCCCCACGGAATGGGAAC TCCG TGTGGGAGGCG TGGGGGTGGGACGG TGGGG TACAGACTGGCAGAGAGCAGGCAACC TCCC TCTCGCCCTAGCCCAGCTCTGGAACAGGCAGACACATCTCAGGGCTAAACAGACGCC TCCCGCACGGGGCCCCACGGAATGGGAACTCCGTG TGGGAGGCG TGGGGG TGGGACGG TGGGG TACAGACTGGCAGAGAGCAGGCAACC TCCCTCTCGCCC TAGCCCAGC TCTGGAACAGGC AGACACATC TCAGGGC TAAACAGACGCC TCCCGCACGGGGCCCCACGGAA

*-II2__GCCTGAGCAGGCGGGGCAGGAGGGGCGGTATCTGCTGCTTTGGCAGCAAATTGGGGGACTCAGTCTGGGTGGAAGGTATCCAATCCAGATAGCTGTGCATACATAATGCATAATACATGACTCCCCCCAACAAATGCAATGGGAGTTTATGCC TGAGCAGGCGGGGCAGGAGGGGCGGT ATCTGCTGCT TTGGCAGCAAA TTGGGGGACTCAGTCTGGGTGGAAGGTA TCCAATCCAGATAGCTGTGCA TACATAA TGCATAATACATGACTCCCCCCAACAAATGCAATGGGAG TT TATrGCCTGAGCAGGCGGGGCAGGAGGGGCGGTATCTGCTCT T TGGCAGCAAATTGGGGGACTCAGTCTGGGTGGAAGGTATCCAATCCAGATAGCTGTGCATACATAATGCATAATACATGACTCCCCCCAACAAATGCAATGGGAGTTTATGCCTGAGCAGGCGGGGCAGGAGGGGCGGTATCTGCTGCTTTGGCAGCAAATTGGGGGACTCAGTCTGGGTGGAAGGTATCCAATCCAGATAGCTTGCATACATAATGCATAATACATGAC TCCCCCCAACAAATGCAATGGGAGTTAT

1700

1850TCATAACGCGCTCTCCAAGTATACGTGGCAATGCG T TGC TGGGT TAT T TTAATCAT TCTAGGCATCGT T TTCCTCCT TATGCC TCTATCAT TCCTCCC TATCTACACTAACATCCCACGC [CTGAACGCGCGCCCAT TAATACCCT TCT TTCATAACGCGCTCTCCAAGTATACGTGGCAATGCGT TGCTGGGT TAT T TTAATCAT TCTAGGCATCGT T TTCCTCCT TATGCCTCTATCAT TCC TCCCTA TCTACACTAACATCCCACGC TCTGAACGCGCGCCCAT TAATACCCT TCT TTCATAACGCGCTCTCCAAGTAT ACGTGGCAATGCGT TGCTGGGT TAT T TTAATCAT TCTAGGCATCGT T TTCCTCCT TATGCCTCTATCAT TCCTCCC TATCTACACTAACATCCCACGC TCTGAACGCGCGCCCAT TAATACCCT TCT TTCATAACGCGCTCTCCAAGTATACGTGGCAATGCGT TGCTGGGT TAT T TTAATCAT TCTAGGCATCGT T TTCCTCCT TAT GCCTCTATCAT TCC TCCC TA TCTACACTAACATCCCACGC TCTGAACGCGCGCCCAT TAATACCCT TCT T

TCCTCCACTCTCCCTGGGACTCTATGATCAAAGCGCGGCCCTTTCCCCAGC CTTAGCGAGGCGCCCTGCAGCCTGGTACGCGCGTGGCGTGGCGGTGGGCGCGCAGTGCGTTCTCGGTGTGGAGGGCAGCTGT TCCGCCTGCGATGAT T T AT CCTCCACTCTCCCTGGGAC TCT TGATCAAAGCGCGGCCC T T TCCCCAGC C TTAGCGAGGCGCCC TGCAGCCTGGTACGCGCGTGGCGT GGCGGTGGGCGCGCAGTGCG T TCTCT:GTGTGGAGGGCAGCT GT TCCGCCTGCGATGA r T T AT CCTCCACTCTCCCTGGGACTCT TGATCAAAGCGCGGCCCT TTCCCCAGC CT TAGCGAGGCGCCCTGCAGCCTGGTGCGCGCGTGGCGTGGCGGTGGGCGCGCAGTGCGT TCT CIGTGT GGAGGGCAGC TGT TCCGCCTGCGA TGAT T TATCCTCCACTCTCCCTGGGACTCT TGATCAAAGCGCGGCCCTT TCCCCAGC CT TAGCGAGGCGCCCTGCAGCCTGGTACGCGCGTGGCGCTGGCGGCTGGGCGCGCAGTGCGT TCTCGGTGTGGAGGGCAGCTGT TCCGCCTGCGATGA T T TA

TACTCACAGGACAAGGATGCGGT TTGTCAAACAGTAC TGCTACGGAGGAGCAGCAGAGAAAGGGAGAGGGT TTGAGAGGGAGCAAAAGAAAA TGGTAGGC GCGCGTAGT TAAT TCATGCGGCTCTCT TAC TCTT TTACATCC TAGAGC TTACTCACAGGACAAGGATGCGGT TTGTCAAACAGTACTGC TACGGAGGAGCAGCAGAGAAAGGGAGAGGGT TTGAGAGGGAGCAAAAGAAAA TGGTAGGC GCGCGTAGT TAAT TCATGCGGCTCTC TTACTCTT T TACATCC TAGAGC TTACTCACAGGACAAGGATGCGGT TTGTCAAACAGT ACTGCTACGGAGGAGCAGCAGAGAAAGGGAGAGGGT T TGAGAGGGAGCAAAAGAAAA TGGTAGGC GCGCGTAGT TAATTCATGCGGC TCTC T TACT CT¢.T T TACATCCTAGAGC TT.ACTCACAGGACAAGGATGCGGT TTGTCAAACAGTAC TGCTACGGAGG.AGCAGCAGAGAAAGGGAGAGGGT T TGAGAGGGAGCAAAAGAAAA TGGTAGGC GCGCGTAG T TAATTCATGCGGC TCTCT TAC TCTCTT T.ACA TCCTAGAGC T

*_IIIJ .

AGAGTGCTCGGCTGCCCGGCTGAGTCTCCTCCCCACC T TCCCCACCCTCCCCCACCC TCCCCATAAGCGCCCCTCCCGGGT TCCCAAAGCAGAGGGCG TGGGGGAAAAGAAAAAAGAT CCTCTCTCGC TAATCTCCGCCCACCGGCCCT TAGAGTGCTCGGCTGCCCGGC TGAGTC TCCTCCCCACC T TCCCCACCCTCCCCCACCC TCCCCATAAGCGCCCCTCCCGGGT TCCCAAAGCAGAGGGCGTGGGGGAAAAGAAAAAAGATCC TCTCTCGCTAA TCTCCGCCCACCGGCCCT TAGAGTGCTCGGCTGCCCGGC TGAGTCTCCTCCCCACC TTCCCCACCCTCCCCCACCCTCCCCATAAGCGCCCCTCCCGGGT TCCCAAAGCAGAGGGCGT GGGGGAAAAGAAAAAAGA TCCTC TCTCGCTAA TCTCCGCCCACCGGCCCT TAGAGTGCTCGGCTGCCCGGC TGAGTCTCCTCCCCACCT TCCCCACCCTCCCCCACCCTCCCCATAAGCGCCCC TCCCGGGTTCCCAAAGCAGAGGGCGTGGGGGAAAAGAAAAAAGATCC TCTCTCGCTAATCTCCGCCCACCGGCCCT T

2000

2150

2300

*P1 Xho I 2412SKW13 TATA ATG CGA GGG TCT GGA CGG CTG AGG ACC CCC GAG CTG TGC TGC TCG CGG CCG CCA CCG CCG GGC CCC GGC CGT CCC TGG CTC CCC TCC TGC CTC GAG AAG GGC AGG GCT

Met Arg Gly Ser Gly Arg Leu Arg Thr Pro Glu Leu Cys Cys Ser Arg Pro Pro Pro Pro Gly Pro Gly Arg Pro Trp Leu Pro Ser Cys Leu Glu Lys Gly Arg AlaSKW22 TATA ATG CGA GGG TCT GGA CGG CTG AGG ACC CCC GAG CTG GTC TGC TCG CGG CCG CCA CCG CCG GGC CCC GGC CGT CCC TGG CTC CCC TCC TGC CTC GAG AAG GGC AGG GCTMYC TATA ATG CGA GGG TCT GGA CGG CTG AGG ACC CCC GAG CTG TGC TGC TCG CGG CCG CCA CCG CCG GGC CCC GGC CGT CCC TGG CTC CCC TCC TGC CTC GAG AAG GGC AGG GCTBL-2 TATA ATG CGA GGG TCT GGA CGG CTG AGG ACC CCC GAG CTG TGC TGC TCG CGG CCG CCA CCG CCG GGC CCC GGC CGT CCC TGG CTC CCC TCC TGC CTC GAG AAG GGC AGG GCT

*III *P2 2523SKW13 TCT CAG AGG CTT GGC GGG AAA AAG AAC GGA GGG AGG GAT CGC GCT GAG TAT AAA AGC CGG TTT TCG GGG CTT TAT CTA ACT CGC TGT AGT AAT TCC AGC GAG AGG CAG AGG

Ser Gln Arg Leu Gly Gly Lys Lys Asn Gly Gly Arg Asp Arg Ala Glu Tyr Lys Ser Arg Phe Ser Gly Leu Tyr Leu Thr Arg Cys Ser Asn Ser Ser Glu Arg Gln ArgSKW22 TCT CAG AGG CTT GGC GGG AAA AAG AAC GGA GGG AGG GAT CGC GCT GAG TAT AAA AGC CGG TTT TCG GGG CTT TAT CTA ACT CGC TGT AGT AAT TCC AGC GAG AGG CAG AGGMYC TCT CAG AGG CTT GGC GGG AAA AAG AAC GGA GGG AGG GAT CGC GCT GAG TAT AAA AGC CGG TTT TCG GGG CTT TAT CTA ACT CCC TCT AGT AAT TCC AGC GAG AGG CAG AGGBL-2 TCT CAG AGG CTT GGC GGG AAA AAG AAC GGA GGG AGG GAT CGC GCT GAG TAT AAA AGC CGG TTT TCG GGG CTT TAT CTA ACT CGC TGT AGT AAT TCC AGC GAG AGG CAG AGG

2634SKW13 GAG CGA GCG GGC GGC CGG CTA GGG TGG AAG AGC CGG GCG AGC AGA GCT GCG CTG CGG GCG TCC TGG GAA GGG AGA TCC GGA GCG AAT AGG GGG CTT CGC CTC TGG CCC AGC

Gly Arg Ala Gly Gly Arg Leu Gly Trp Lys Ser Arg Ala Ser Arg Ala Ala Leu Arg Ala Ser Trp Glu Gly Arg Ser Gly Ala Asn Arg Gly Leu Arg Leu Trp Pro SerSKW22 GAG CGA GCG GGC GGC CGG CTA GGG TGG AAG AGC CGG GCG AGC AGA GCT GCG CTG CGG GCG TCC TGG GAA GGG AGA TCC GGA GCG AAT AGG GGG CTT CGC CTC TGG CCC AGCMYC GAG GGA GCG GGC GGC CGG CTA GGG TGG AAG AGC CGG GCG AGC AGA GCT GCG CTG CGG GCG TCC TGG GAA GGG AGA TCC GGA GCG AAT AGG GGG CTT CGC CTC TGG CCC AGCBL-2 GAG CGA GCG GGC GGC CGG CGA GGG TGG AAG AGC CGG GCG AGC AGA GCT GCG CTG TGG GCG TCC TGG GAA GGG AGA TCC GGA GCG AAT AGG GGG CTT CGC CTC TGG CCC AGC

Trp2746

SKW13 CCT CCC GCT GAT CCC CCA GCC AGC GGT CCG CAA CCC TTG CCG CAT CCA CGA AAC TTT GCC CAT AGC AGC GGG CGG GCA CTT TGC ACT GGA ACT TAC AAC ACC CGA GCA AGGPro Pro Ala Asp Pro Pro Ala Ser Gly Pro Gln Pro Leu Pro His Pro Arg Asn Phe Ala His Ser Ser Gly Arg Ala Leu Cys Thr Gly Thr Tyr Asn Thr Arg Ala Arg

SKW22 CCT CCC GCT GAT CCC CCA GCC AGC CGT CCG CAA CCC TTG CCG CAT CCA CGA AAC TTT GCC CAT AGC AGC GGG CGG GCA CTT TGC ACT GGA ACT TAC AAC ACC CGA GCA AGGMYC CCT CCC GCT GAT CCC CCA GCC AGC GGT CCG CAA CCC TTG CCG CAT CCA CGA AAC TTT GCC CAT AGC AGC GGG CGG GCA CTT TGC ACT GGA ACT TAC AAC ACC CGA GCA AGGBL-2 CCT CCC GCT GAT CCC CCA ACC AGC GGT CCG CAA CCC TCG TCG CAT CCA CGA AAC TTT GTC CAT AGC AGC GGG CGG ACA CTT TGC ACT GGA ACT TAC AAC ACC CGA GCA AAC

Thr Ser Val Thr LysPvuII 2856

SKW13 ACG CGA CTC TCC CGA CGC GGG GAG GCT ATT CTG CCC ATT TGG GGA CAC TTC CCC GCC GCT GCC AGG ACC CGCC TIC TCT GAA AGG CTC TCC TTG CAG CTG CTT AGA CGC TGGThr Arg Leu Ser Arg Arg Gly Glu Ala Ile Leu Pro Ile Trp Gly His Phe Pro Ala Ala Ala Arg Thr Arg Phe Ser Glu Arg Leu Ser Leu Gln Leu Leu Arg Arg Trp

SKW22 ACG CGA CTC TCC CGA CGC GGG GAG GCT ATT CTG CCC ATT TGG GGA CAC TTC CCC GCC GCT GCC AGG ACC CGCC TIC TCT GAA AGG CTC TCC TTG CAG CTG CTT AGA CGC TGGMYC ACG CGA CTC TCC CGA CGC GGG GAG GCT ATT CTG CCC ATT TGG GGA CAC TTC CCC GCC GCT GCC AGG ACC CGCC TIC TCT GAA AGG CTC TCC TTG CAG CTG CTT AGA CGC TGGBL-2 ACG CGA CTC TCC CGA CGC GGG GAG GCT ATT CTG CCC ATT TGG GGA CAC TTC CCC GCC GCT GCC AGG ACC CGCC TIC TCT GAA AGG CTC TCC TTG CAG CTG CTT AGA CGC TGG

2951SKW13 ATl TTT TTC GGG TAG TGGAAAACCAGGTAAGCACCGAAGTCCACTTGCCTTTTAATTTATTTTTTTATCACTTTAATGCTGAGATGAGTCGAATG

Ile Phe Phe Gly ---

SKW22 ATT TTT TIC GGG TAG TGGAAAACCAGGTAAGCACCGAAGTCCACTTGCCTTTTAATTTATTTTTTTATCACTTTAATGCTGAGATGAGTCGAATGMYC ATT TTT TTC GGG TAG TGGAAAACCAGGTAAGCACCGAAGTCCACTTGCCTTTTAATTTATTTTTTTATCACTTTAATGCTGAGATGAGTCGAATGBL-2 ATT TTT TTC GGG TAG TGGAAAACCAGGTAAGCACCGAAGTCCACTTGCCTTTTAATTTATTTTTIATCACTTTAATGCTGAGATGAGTCGAATG

FIG. 3. Nucleotide sequence ofMYC exoni1 and adjacent flanking regions. Sequences shown are derived from A SKW13 (unrearranged MYCallele of SKW-3), A SKW22 (translocation-associated MYC from SKW-3), normal MYC exon 1 (35), and BL-2, a t(8;22) Burkitt lymphoma line(24). Numerical designations from the 5' end of the HindIII/Xba I fragment and the proposed exon 1 reading frame are from Gazin et al. (35).Changes in the proposed amino acid sequence of BL-2 (24) are shown (bottom line). The DNase I-hypersensitive sites (roman numerals),promoters (*P1, *P2), and restriction sites (Xho I, Pvu II) within the first exon are indicated; thymidine runs at 3' end are underlined. Shadedareas at nucleotide positions 1965, 2134, and 1014/15 show SKW-3 variation from the germ-line sequence.

Dow

nloa

ded

by g

uest

on

July

23,

202

1

Page 4: Sequence MYC that - PNAS · 2005. 4. 23. · Proc. Natl. Acad. Sci. USA85 (1988) 3053 GenomicDNALibraries.ThegenomicDNAlibraries used to isolate the MYCregions were prepared from

Proc. Natl. Acad. Sci. USA 85 (1988) 3055

flanking regions. A SKW22 is representative of the secondclass of MYC clones, corresponding to the 8q+ chromo-some, and restriction sites diverge from the chromosome 8germ-line map 3' to the indicated breakpoint. As reportedpreviously, sequences within the region 3' of the breakpoint(pSKW1.4X) cross-hybridize in Southern blotting experi-ments with somatic cell hybrids containing human chromo-some 14, and the 3' physical map of A SKW22 correspondsto a section of the germ-line joining region (Ja) locus located36 kb 5' of the TCRa C region (34).The Translocation-Associated MYC First Exon Is Not Al-

tered in SKW-3. To analyze the potential mechanisms con-trolling MYC expression in T-cell neoplasms, we have de-termined the nucleotide sequence of the MYC first exon andflanking putative regulatory regions for the translocation-associated and germ-line MYC alleles. Recombinant phageclones A SKW13 and A SKW22 were subcloned into M13vectors mp18 and mp19 (26) and sequenced according to thestrategy outlined in Fig. 2B. The nucleotide sequencesobtained for the germ-line and translocated MYC alleles (ASKW13 and A SKW22, respectively) are shown in Fig. 3,along with the sequence of a normal gene described by Gazinet al. (35) and of the MYC gene involved in a t(8;22) trans-location in BL-2, a variant Burkitt lymphoma (24). Within thefirst exon, the sequences obtained for the SKW-3 MYC alleleon the 8q + chromosome and the homologous nonrearrangedMYC allele are both identical to the normal MYC sequencedescribed by Gazin et al. (35). This finding indicates thatneither SKW-3 MYC allele contains the extra nucleotidesdescribed by Watt et al. (29), which introduce terminationcodons in all reading frames, and, consequently, the codingcapacity for the proposed 188-amino acid peptide (35, 36)remains intact.Regions flanking MYC exon 1 have been implicated in

transcriptional activation of this locus. MYC alterationsclustered around the Pvu II site have been correlated withderegulation in endemic Burkitt lymphoma (23), and regionswithin intron 1 3' of this Pvu II site (in particular, thethymidine runs T7, T4, T7) have been proposed to regulateMYC RNA transcription (21). In both SKW-3 MYC alleles,however, the DNA sequence ofthe 3' flanking region remainsgerm line. We have detected a single base substitution in bothMYC alleles 192 nucleotides upstream of the P1 promoter site5' of the MYC first exon. Within the nontranslocated MYCallele, a second mutation was observed further 5' at position1965, and a two-nucleotide cytosine deletion occurred at aposition corresponding to 1012 of the germ-line sequence.Interestingly, two of these 5' alterations, the base substitu-tion at position 2134 in both alleles and the deletion at position1012 in the nontranslocated MYC allele, were also observedin BL-2 and may represent polymorphic changes rather thansignificant structural abnormalities. These data are consist-ent with conservation of normal MYC coding and regulatorysequences in germ-line and translocation-associated MYCalleles of SKW-3 cells, indicating that mutations and alter-ations within this region, postulated to play a critical role inMYC deregulation in Burkitt lymphoma (23, 37-39), are notpresent in the human leukemia T-cell line investigated here.

DISCUSSIONThe picture that has emerged following the molecular char-acterization of cytogenetic abnormalities in SKW-3 cells isvery similar to some cases of Burkitt lymphoma, particularlythose involving the variant t(2;8) and t(8;22) translocations(5, 40). DNA rearrangements are detected distal (3') to MYCdue to translocation of the TCRa locus to a position 3 kbdownstream of MYC exon 3 (34). The breakpoint splits theTCRa locus (15), placing the Cagene -36 kb downstreamfrom MYC in a "head-to-tail" (5' -- 3', 5' -- 3') orientation

(34). The translocation involves the Ja region of TCRa andV-J joining signal sequences on chromosomes 8 and 14,implicating errors during recombinase-mediated physiologi-cal joining in the etiology of the neoplasm (34). Juxtapositionwith Ca results in the deregulation of MYC expressionspecific to the translocation-associated allele (14).

Transcriptional activation of the MYC oncogene is gener-ally accepted as a consequence of translocations involvingthe MYC locus on chromosome 8. Recent studies havepinpointed diverse regions adjacent to the MYC first exonthat may be mechanistically implicated in this specific dereg-ulation. For example, extensive point mutations within thisregion have been observed in some cases of Burkitt lym-phoma (17, 22, 23), and disruption/mutation of negativeregulatory elements within MYC exon 1 and 5' flankingsequences (6, 18) or alterations adjacent to the Pvu II site (23)have been proposed to account for translocation-specifictranscriptional deregulation. Bentley and Groudine (21) havecharacterized a region at the 3' end of exon 1 that functionsin mRNA elongation and could qualify as such a regulatorysequence. Similarly, mechanisms modulating MYC tran-script stability as a consequence of gene truncation ormutation have been proposed to account for MYC activation(19, 21), and regions within the first exon and 5' flankingregions that are the target of positive and negative trans-acting factors have been described in the human (38) andmurine (39, 41) systems. However, the sequence obtainedsuggests that regions playing a role in regulation of humanMYC expression are normal; observed nucleotide alterationswere predominantly in the nontranslocated allele and notassociated with areas involved in transcriptional regulation(21) or increased message stability (19). Thus, regions withinthe MYC first exon and 1.6 kb upstream remain structurallyintact in SKW-3 cells, arguing against a role for thesemechanisms in deregulating MYC expression following at(8;14) translocation in T-cell leukemias.

In a manner directly analogous to immunoglobulin/MYCjuxtaposition in Burkitt lymphoma, translocation ofCa to the3' MYC region results in MYC transcriptional activationspecific to the 8q + chromosome (15), and the joining eventmediating this deregulation has been reported at sites >36 kbupstream of the activated Ca locus (34, 42). We havesuggested (24) that the dominant effect on MYC transcriptionmay be due to de novo association with an activated (immu-noglobulin or TCR) locus. Although our data cannot elimi-nate specific translocation-mediated changes >1.6 kb 5' ofthe P1 promoter site, it appears that structural alteration isnot necessary to deregulate MYC expression in T-cell leu-kemias. Thus, our findings that translocation-associatedMYC exon 1 and putative flanking regulatory sequences werenormal in SKW-3, together with the detection of MYCtranscription specific to the human 8q + chromosome inhybrids with mouse leukemia T cells, are consistent with theinterpretation that juxtaposition of the TCRa locus to agerm-line MYC oncogene results in MYC deregulation andleads to malignant transformation.

We thank Mr. Robert C. A. Moore for technical suggestions, Ms.Marina Hoffman for editing, and Ms. Charlotte Long for manuscriptpreparation. This work was supported in part by National ScienceFoundation Grant DCB-8511103 (K.N.), American Cancer SocietyGrant JFRA-122 (K.N.), National Institutes of Health OutstandingInvestigator Grant CA 42232 (P.C.N.), National Institutes of HealthOutstanding Investigator Grant CA 39860 (C.M.C.), and NationalInstitutes of Health Grant CA 25875 (C.M.C.).

1. Yunis, J. J. (1983) Science 221, 227-235.2. LeBeau, M. M. & Rowley, J. D. (1984) Cancer Surv. 3,

371-394.3. Croce, C. M. (1987) Cell 49, 155-156.4. Croce, C. M. & Nowell, P. C. (1985) Blood 65, 1-7.

Genetics: Finver et al.

Dow

nloa

ded

by g

uest

on

July

23,

202

1

Page 5: Sequence MYC that - PNAS · 2005. 4. 23. · Proc. Natl. Acad. Sci. USA85 (1988) 3053 GenomicDNALibraries.ThegenomicDNAlibraries used to isolate the MYCregions were prepared from

Proc. Natl. Acad. Sci. USA 85 (1988)

5. Croce, C. M., Thierfelder, W., Erikson, J., Nishikura, K.,Finan, J., Lenoir, G. M. & Nowell, P. C. (1983) Proc. Nail.Acad. Sci. USA 80, 6922-6926.

6. Leder, P., Battey, J., Lenoir, G., Moulding, C., Murphy, W.,Potter, H., Steward, T. & Taub, R. (1983) Science 222,765-771.

7. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce,C. M. (1985) Science 229, 1390-1393.

8. Nishikura, K., ar-Rushdi, A., Erikson, J., Rovera, G. & Croce,C. M. (1983) Proc. NatI. Acad. Sci. USA 80, 4822-4826.

9. ar-Rushdi, A., Nishikura, K., Erikson, J., Watt, R., Rovera, G.& Croce, C. M. (1983) Science 222, 390-393.

10. Zech, L., Gahrton, G., Hammarstrom, L., Juliusson, G.,Mellstedt, H., Robert, K. H. & Smith, C. 1. E. (1984) Nature(London) 308, 858-860.

11. Hecht, F., Morgan, R., McCaw-Hecht, B. K. & Smith, S. D.(1984) Science 226, 1445-1446.

12. Caubet, J.-F., Mathieu-Mahul, D., Bernheim, A., Larsen, C.-J.& Berger, R. (1985) C.R. Hebd. Seances Acad. Sci. Ser. III300,171-176.

13. Croce, C. M., Isobe, M., Palumbo, A., Puck, J., Ming, J.,Tweardy, D., Erikson, J., Davis, M. & Rovera, G. (1985)Science 227, 1044-1047.

14. Erikson, J., Williams, D., Finan, J., Nowell, P. C. & Croce,C. M. (1985) Science 229, 784-786.

15. Erikson, J., Finger, L., Sun, L., ar-Rushdi, A., Nishikura, K.,Minowada, J., Finan, J., Emanuel, B. S., Nowell, P. C. &Croce, C. M. (1986) Science 232, 884-886.

16. Shima, E. A., LeBeau, M. M., McKeithan, T. W., Minowada,J., Showe, L. C., Mak, T. W., Minden, M. D., Rowley, J. D.& Daiz, M. 0. (1986) Proc. Nail. Acad. Sci. USA 83,3439-3443.

17. Rabbitts, T. H., Forster, A., Hamlyn, P. & Baer, R. (1984)Nature (London) 309, 592-597.

18. Siebenlist, U., Hennighausen, L., Gattey, J. & Leder, P. (1984)Cell 37, 381-391.

19. Piechaczyk, M., Yang, J. Q., Blanchard, J. M., Jeantour, P. &Marcu, K. B. (1985) Cell 42, 589-597.

20. Hayday, A. C., Fillies, S. D., Saito, H., Wood, C., Wiman, K.,Hayward, W. S. & Tonegawa, S. (1984) Nature (London) 307,334-340.

21. Bentley, D. L. & Groudine, M. (1986) Nature (London) 321,702-706.

22. Battey, J., Moulding, C., Taub, R., Murphy, W., Stewart, T.,Potter, H., Lenoir, G. & Leder, P. (1983) Cell 34, 779-787.

23. Pelicci, P.-G., Knowles, D. M., Magrath, I. & Dalla-Favera, R.(1986) Proc. Natl. Acad. Sci. USA 83, 2984-2988.

24. Showe, L. C., Moore, R. C. A., Erikson, J. & Croce, C. M.(1987) Proc. Natl. Acad. Sci. USA 84, 2824-2828.

25. Sanger, F., Nicklen, S. & Cojlson, A. R. (1977) Proc. Natl.Acad. Sci. USA 74, 5463-5467.

26. Messing, J. & Vieira, J. (1982) Gene 19, 269-276.27. Frischouf, A., Lehrach, H., Poustka, A. & Murray, N. (1983)

J. Mol. Biol. 170, 827-842.28. Sun, L. K., Showe, L. C. & Croce, C. M. (1986) Nucleic Acids

Res. 14, 4037-4050.29. Watt, R., Stanton, L. W., Marcu, K. B., Gallo, R. C., Croce,

C. M. & Rovera, G. (1983) Nature (London) 303, 725-728.30. Sharp, P. A., Berk, A. J. & Berget, S. M. (1980) Methods

Enzymol. 65, 750-768.31. Nishikura, K., Goldflam, S. & Vuocolo, G. A. (1985) Mol. Cell.

Biol. 5, 1434-1441.32. Ley, T. J., Anagnou, N. P., Pepe, G. & Nienhuis, A. W. (1982)

Proc. Nail. Acad. Sci. USA 79, 4775-4779.33. Nishikura, K., Erikson, J., ar-Rushdi, A., Huebner, K. &

Croce, C. M. (1985) Proc. Natl. Acad. Sci. USA 82,2900-2-904.34. Finger, L. R., Harvey, R. C., Moore, R. C. A., Showe, L. C.

& Croce, C. M. (1986) Science 234, 982-985.35. Gazin, C., de Dinechin, S. D., Hampe, A., Masson, J.-M.,

Martin, P., Stehlin, D. & Galibert, F. (1984) EMBO J. 3,383-387.

36. Gazin, C., Rigolet, M., Briand, J. P., Van Regenmortel,M. H. V. & Galibert, F. (1986) EMBO J. 5, 2241-2250.

37. Cesarman, E., Dalla-Favera, R., Bentley, D. & Groudine, M.(1987) Science 238, 1272-1275.

38. Chung, J., Sinn, E., Reed, R. R. & Leder, P. (1986) Proc. Nail.Acad. Sci. USA 83, 7918-7922.

39. Yang, J.-Q., Remmers, E. F. & Marcu, K. B. (1986) EMBO J.5, 3553-3562.

40. Erikson, J., Nishikura, K., ar-Rushdi, A., Finan, J., Emanuel,B., Lenoir, G., Nowell, P. C. & Croce, C. M. (1983) Proc.Natl. Acad. Sci. USA 80, 7581-7585.

41. Remmers, E. F., Yang, J.-Q. & Marcu, K. B. (1986) EMBO J.5, 899-904.

42. McKeithan, T. W., Shima, E. A., LeBeau, M. M., Minowada,J., Rowley, J. & Diaz, M. 0. (1986) Proc. Nail. Acad. Sci. USA83, 6636-6640.

3056 Genetics: Finver et al.

Dow

nloa

ded

by g

uest

on

July

23,

202

1