solutions for today | options for tomorrow...advancement of cost engineering international (aace)...

44
Solutions for Today | Options for Tomorrow TechnoEconomic Analyses for Direct Air Capture (DAC) Overview February 24, 2021 Tim Fout, Strategic Systems Analysis and Engineering (SSAE)

Upload: others

Post on 09-Sep-2021

12 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

Solutions for Today | Options for Tomorrow

Techno‐Economic Analyses for Direct Air Capture (DAC)Overview

February 24, 2021Tim Fout, Strategic Systems Analysis and Engineering (SSAE) 

Page 2: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

2

• Techno-Economic Analysis (TEA) Process

• QGESS Description/Location

• Bituminous Baseline Study Overview/Example

Presentation Outline

Page 3: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

3

• Techno-Economic Analysis (TEA) Process

• QGESS Description/Location

• Bituminous Baseline Study Overview/Example

Presentation Outline

Page 4: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

4

Right tool for TRL level

• Low TRL Analysis• Mass and Energy Balances• Preliminary Spreadsheet Models – Post Combustion Tool, Compression Tool• Cost correlations

• Mid to High TRL (for NETL projects)• Process Simulation Software

• Aspen Plus• CHEMCAD• Thermoflow• Others

https://www.netl.doe.gov/ea/about

Tecno‐Economic Analysis Tools

Page 5: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

5

Steps to Performing TEA

TEA

TAP

Design Basis

1. Form a Technology Analysis Plan2. Create a Performance Model3. Cost Estimating – BSP4. Reporting Requirements

Page 6: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

6

• A TAP discusses the approach and methodology required to conduct the TEA

• Presented to stakeholders prior to starting the TEA • Document assumptions• Ensure valuable product

• Updated as the TEA is performed - changes should be noted in a final document

Technology Analysis Plan (TAP)What is a TAP?

Case 1 Case 2 Case 2A

CO2 Removal SelexolEnabling Tech.

CO2 Purification YesNo

Novel Capture Tech.Enabled Tech.

Case Baseline (Reference)

Case Study

Technology Combinations

Std. Tech.

TAP

Objective: Aspirational Goals OR Current State of Technology

Reference Plant (Baseline studies)

Plant Wide Assumptions

Reason for reference case and planned deviations

Novel Technology Cases

High Level BFD’s

Case Evaluation Table

Novel Technology Design Basis

Performance Assumptions and Basis

Cost Assumptions and Basis

Technology Integration Plan

Proposed Sensitivity Analysis

Expected Deliverable and Time Frame

(RR) Reporting Requirements

Page 7: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

7

Steps to Performing a TEA

TEA

TAP

Design Basis

1. Form a Technology Analysis Plan2. Create a Performance Model3. Cost Estimating – BSP4. Reporting Requirements

Page 8: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

8

Performance Model Results for Reporting

• Build a performance model• Frequently completed in ASPEN, CHEMCAD, Thermoflow, etc.• When applying novel technology:

• Balance of plant equipment NOT affected by research area will be scaled (RR) • Changes in operating parameters and other assumptions that are different than those QGESS must be justified in

the TEA document (RR)

• Detailed Process Flow Diagram (RR)

Page 9: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

9

Performance Modeling Inconsistencies

These variations without justification may require further communication or resubmission of report

Performance variations NOT related to the novel technology between the reference and novel cases should thoroughly explained 

• Items that are often varied between the reference and novel cases without justification:

• Condenser pressure• Steam cycle conditions (e.g. reheat

temperature)• Combustion turbine conditions (e.g. turbine

inlet temperature)• Cooling water temperature• ASU performance and oxygen quality• Emissions levels• Equipment selection

Page 10: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

10

• Material and Energy Balances (RR)

• Consistent with the level of detail found in the Baseline reports. Material balance should include

• All inputs feedstock, catalyst, limestone, etc.• All outputs such as stack gas, waste water, solid waste disposal• Stream compositions

• Energy Balance should include• Thermal energy input from fuel• Major auxiliary loads• Detailed loads for new technology

Performance Model Results for Reporting

Page 11: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

11

• Total power from turbines (RR)

• New auxiliary loads (RR)

• Net Power (RR)

• Heat rate, efficiencies, etc. (RR)HHV Commonly used for NETL reporting purposes

• Water withdraw, consumption, and discharge (RR)

If new technology creates impurities in water discharge, this must be documented

• CO2 product composition (RR)

• Air emissions

• Equipment and auxiliary loads NOT affected by novel technology will be scaled appropriately

Model ResultsB5B (GEE Radiant Capture)

Page 12: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

12

• Novel equipment should be reported at a greater level of detail than found in the Baseline study

• Items to include (RR):• Design equations (if developed)• Scaling methodology and equations• Design basis (kinetics, volumetric throughput, etc.)• How was the data for the above collected (TGA, lab scale bubbling bed, etc.)

Reporting Novel Equipment

Page 13: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

13

Steps to Performing TEA

TEA

TAP

Design Basis

1. Form a Technology Analysis Plan2. Create a Performance Model3. Cost Estimating – BSP4. Reporting Requirements

Page 14: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

14

Classes of NETL Cost Estimates

54

3

AACE ESTIMATE CLASS

Concept Screening (e.g. -20%/ +100% Accuracy)• 0 to 2% project definition• Cost factored on system / major subsystem capacity • Based on technical analogs / engineering judgment

Feasibility Study (e.g. -15% / +50% Accuracy)• 1 to 15% project definition• Factored equipment costs• Based on preliminary mass and energy balances

Budget Estimate (e.g. -10% / +30% Accuracy)• 10 to 40% project definition• Vendor quotes, third‐party EPC estimates• Based on detailed  process and economic modeling

NETL Baseline Studies

‐15% / +30%

NETL Screening & Pathway Studies

Process flow diagrams (PFDs) and piping and instrument diagrams (P&IDs) are the primary documents that define project scope.  Association for the Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification system.

Page 15: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

15

QGESS: Cost Estimation Methodology

• Capital Cost Breakdown• Estimate Class• Contingency Guidelines• Owner’s Cost Recommendations• Estimate Scope• Project Scope

• Economic Analysis• Global Economic Assumptions• Recommended Financing Structures• Estimation of BSP

https://netl.doe.gov/projects/files/QGESSCostEstMethodforNETLAssessmentsofPowerPlantPerformance_090119.pdf

Page 16: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

16

• Breakeven CO2 Sales Price (BSP) is the minimum revenue a power plant must receive for the CO2captured and sent to storage in order to cover cost and stated IRROE

• Determining involves a complex set of financial assumptions • To simplify the calculation, a Fixed Charge Rate (for capital) has been developed.

• Simplifies and unifies common financial terms and assumptions• Annualizes the capital cost over the life of the plant

• A simplified equation can be utilized to determine the BSP to unify assumptions

Economic Analysis – Breakeven CO2 Sales PriceCost of Capture

𝐁𝐒𝐏

𝑨𝒏𝒏𝒖𝒂𝒍𝒊𝒛𝒆𝒅𝒄𝒂𝒑𝒊𝒕𝒂𝒍 𝒄𝒉𝒂𝒓𝒈𝒆

𝑨𝒏𝒏𝒖𝒂𝒍𝒇𝒊𝒙𝒆𝒅 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒏𝒈

𝒄𝒐𝒔𝒕𝒔

𝑨𝒏𝒏𝒖𝒂𝒍𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒏𝒈

𝒄𝒐𝒔𝒕𝒔𝒂𝒏𝒏𝒖𝒂𝒍 𝑪𝑶𝟐 𝒄𝒂𝒑𝒕𝒖𝒓𝒆𝒅 𝒂𝒏𝒅

𝒔𝒆𝒏𝒕 𝒕𝒐 𝒔𝒕𝒐𝒓𝒂𝒈𝒆

Page 17: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

17

Economic Analysis ‐ BSP(RR)

BSP 𝐅𝐂𝐑 · TASC OC 𝐂𝐅 · OC 𝐂𝐅 · 𝐅𝐏

𝐂𝐅 · 𝐅𝐂𝐎𝟐

• The FCR takes into account the financial aspects of the plant and represents them in a single factor that can then be used to annualize the capital over the life of the plant. Greater detail can be found in the QGESS documents.

• The FCO2 parameter is the annual flow of CO2 from the plant (at 100% CF);

• NET removal = is the net CO2 removed from the atmosphere • GROSS = is the gross CO2 removed from the atmosphere by the DAC system• PLANT GROSS = gross DAC removal plus and other CO2 product flow from the overall

plant including power generation

• The CF parameter Capacity Factor, which is assumed to be equal to the availability

• The FP is the sum of annual fuel costs (if in plant boundary)

Fixed Operating Costs (OCFIX)

Variable Operating Costs (OCVAR)

Annual Operating Labor Cost Maintenance Material Cost

Maintenance Labor Cost Other Consumables

Administrative & Support Labor

Waste Disposal

Property Taxes and Insurance Emission Costs

Additional OCFix for new technology

Byproduct Revenues

Additional OCVar for new technology

*Energy Costs, if outside plant

Page 18: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

18

process equipmentsupporting facilitiesdirect and indirect 

labor

BECEPCC

TPC

TOCTASC 

EPC contractor services

process contingencyproject contingency

pre‐production costsinventory capitalfinancing costs

other owner’s costs

escalation during capital expenditure periodinterest on debt during capital expenditure period

Economic Analysis – Capital Costs(RR)

BSP FCR · 𝐓𝐀𝐒𝐂 OC CF · OC CF · FP

CF · FCO2 Bare Erected CostEngineering, Procurement and 

Construction CostTotal Plant Cost

Total Overnight CostTotal As‐Spent Cost

BEC,  EPCC, TPC, TOC and TCR are all “overnight” costs 

expressed in base‐year dollars.

TASC is expressed in mixed‐year current dollars, spread over the capital expenditure 

period.

Page 19: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

19

• Capital costs (projected commercial costs) for unique equipment may be calculated by several methods: (RR)

• Scaled: The equipment can be scaled if analogous equipment is available either in an NETL baseline study or otherwise

• Bottom-up: Build cost from metal and manufacturing cost estimates• If neither a scaled approach or a bottom-up estimate can be produced - research goals or bearable costs can

be estimated • This approach is occasionally used at laboratory scale projects

• Report what the basis is for cost (experimental scale)• The methodology, reference equipment, and sources of data should be documented in detail

within the TEA

• Balance of plant will be directly used or scaled from the Baseline reports

Capital Cost Basis of Novel Equipment

Page 20: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

20

Contingency Estimation

• Contingency is to cover the known-unknowns or costs that will likely occur based on past experience due to incomplete engineering design

• Example: early in the design phase, the plant will have high contingencies, future plants should have lower contingencies, but more known costs

• Two types of contingencies are used:• Project Contingency: AACE 16R-90 states that project

contingency for a “budget-type” estimate (AACE Class 4 or 5) should be 15 percent to 30 percent of the sum of BEC, EPC fees and process contingency.

• Process Contingency: intended to compensate for uncertainty in cost estimates caused by performance uncertainties associated with the development status of a technology.

• Each “process” in the TEA is assigned a contingency

Technology StatusProcess 

ContingencyNew Concept – limited data 40+%

Concept with bench scale data 30‐70%Small Pilot scale data 20‐35%

Full sized modules tested 5‐20%Commercial process 0‐10%

Page 21: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

21

Contingency Estimation

• Generally, novel technology should have a higher contingency than those in the Baseline studies

• Level of Contingency used should be relative to the development level and engineering completeness of the cost estimate for the novel technology.

• If R&D cost targets, if applicable, contingency might be inclusive

– When assessing progress towards R&D targets, appropriate contingencies should be included

Process contingencies range between 2‐5% of overall TPC

• Contingency is not:• To cover poor engineering or poor estimates

• Accuracy• Cover a scope change• Account for delays• Unexpected cost escalation• Plant performance after startup

Page 22: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

22

Once BSP has been calculated:

• Compared to reference to novel cases(RR)

• Sensitivity analysis can be conducted to guide research or suggest future goals (RR)

Examples include:• Capital cost, • changes in kinetics • reduced pressure drop, • reduced heat of reaction to reduce regeneration duties

• This information can be utilized to determine if a parameter is critical.

• Warning: Do not compare BSP from different developer TEA’s. BSP’s should only be compared when from the same TEA with the same assumptions and basis

Economic Analysis ‐ BSP

Page 23: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

23

Steps to Performing TEA

TEA

TAP

Design Basis

1. Form a Technology Analysis Plan2. Create a Performance Model3. Cost Estimating – BSP4. Reporting Requirements

Page 24: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

24

• TAP – share with stakeholders• State Design and Cost Assumptions and Basis

• Updated TAP• Performance Modeling

• Block Flow diagram• Detailed Simulation Model• Material and Energy Balance

• Cost Estimating – Capital Cost and Breakeven CO2Sales Price ($/tonne)

• Detailed TOC cost estimates• Sensitivity Studies• Breakeven Sales Price

• Focus on $/tonne NET• May also calculate on GROSS or PLANT GROSS

basis

Reporting Requirements

Stakeholders

• The TEA report should:• Provide reasoning for new equipment design basis

– experimental data is preferred• Have a level a detail equal or greater than that

outlined in the Bituminous Baseline (particularly for novel equipment)

• Provide a basis for both design and costing of novel equipment

• Remember to:• Justify any variations from the QGESS/Baseline

outside of the new technology• Provide enough detail to reproduce stated number• Once complete, use the information to guide

research

Page 25: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

25

• TEA Process

• QGESS Description/Location

• Bituminous Baseline Study Overview/Example

Presentation Outline

Page 26: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

26

NETL Quality Guidelines for Energy System StudiesQGESS

Title Description

Detailed Coal Specifications Provides detailed specifications for seven coals commonly used with detailed production information

Specifications for Selected Feedstocks Provides recommended specifications for natural gas and coal that are commonly found in NETL energy system studies.

Process Modeling Design ParametersDocuments the process modeling assumptions most commonly used in systems analysis studies and the basis for those assumptions. The large number of assumptions required for a systems analysis makes it impractical to document the entire set in each report. This document serves as a comprehensive reference for these assumptions as well as their justification.

CO2 Impurity Design Parameters Summarizes the impurity limits for CO2 stream components for use in carbon steel pipelines, enhanced oil recovery (EOR), saline formation sequestration, and co‐sequestration of CO2 and H2S in saline formations.

Capital Cost Scaling MethodologyProvides a standard basis for scaling capital costs, with specific emphasis on scaling exponents. This document contains a listing of frequently used pieces of equipment and their corresponding scaling exponent for various plant types, along with their ranges ofapplicability. 

Cost Estimation Methodology Summarizes the cost estimation methodology employed by NETL in its assessment of power plant performance.  

Estimating Carbon Dioxide Transport and Storage Costs

Addresses the cost of CO2 transport and storage (T&S) in a deep saline formation with respect to plant location and region‐specific aquifers.

Fuel Prices for Selected Feedstocks Provides an estimate of the market price delivered to specific end‐use areas of four coals that are commonly used as feedstocks in the energy system studies sponsored by NETL. Also includes the estimated market price for natural gas delivered to three different regions.

Page 27: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

27

• QGESS on Process Modeling Design

• Site Conditions• Steam Cycle Conditions• Coal Combustion

Parameters • Gasifier Performance• Syngas Processing• Sulfur Processing• Equations of State• Cooling Water

Parameters

Examples of Information Used in TEAQGESS Documents Frequently Referenced

• QGESS on CO2Impurities

• CO2 Delivery Pressure• Individual Contaminate

Concentration Limits• CO2 minimum

concentration• Specifications for

intended use (Saline, EOR, etc.)

• Venting concerns

• Feedstock Specification QGESS

• Natural Gas Composition

• Coal Compositions – by type

• Limestone Analysis• Lime Analysis• LHV and HHV

Page 28: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

28

Energy Analysis WebsiteNETL Webpage: Library: Energy Analysis

https://netl.doe.gov/ea/about

Page 29: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

29

Energy Analysis WebsiteSearch Energy Analysis

https://netl.doe.gov/energy‐analysis/search

Page 30: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

30

QGESS ExamplesSite Characteristics

Site Ambient Conditions

Site Characteristics

Page 31: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

31

QGESS ExamplesFuel Specification

Natural Gas SpecificationCoal Specifications

Page 32: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

32

• TEA Process

• QGESS Description/Location

• Bituminous Baseline Study Overview/Example• Type of content to include• DAC baseline not available yet

Presentation Outline

Page 33: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

33

Final Block Flow Diagram – B12B

PulverizedCoalBoiler

SCR

Air Preheater

Baghouse FGD

GypsumLimestoneSlurry

OxidationAir

Makeup Water

Bottom Ash

Coal

12

1

4

8

7

9

15

Fly Ash

16 17

18 19

23 21

20

Note: Block Flow Diagram is not intended to represent a complete material balance. Only major process streams and equipment are shown.

32

6

5

10 Hydrated Lime

13

14

Activated Carbon

FD Fans

PA Fans

ID Fan

363738

HP Turbine IPTurbine LP Turbine

39

Feedwater Heater System

Water Cooled

Condenser

40

From Cooling Tower

To Cooling Tower

41

Stack gas

Stack

Cansolv

2425

26

29

30

CO2 Product

Reboiler Steam

Reboiler Condensate

CO2 Compressors

27Reclaimer Steam

28

Reclaimer Condensate

Dryer

34

35

3233

31 Vent

Dryer SteamDryer Condensate

Infiltration air

Air

Air

SDE 22

11

Blowdown

FG Extraction

Page 34: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

34

B31B NGCC Stream Tables

Page 35: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

35

B31B (NGCC Capture)Heat & Mass Balance

493,588 W86 T

2,215 P-99 H

CO2 Product

Ambient Air

18,452,800 W

59 T15 P13 H

CO2 Compression (Interstage Cooling) &

Drying

496,343 W86 T29 P16 H

Knockout Water

299,610 W216 T15 P

673 H

State-of-the-art 2017 F-Class Turbine

Cansolv

Natural gas

205,630 W80 T

430 P9 H

2

7,862,473 W87 T15 P38 H

8,658,430 W231 T15 P

110 H

Generator

Condensate Pumps

1,399,880 W101 T107 P70 H

1,399,880 W101 T

1 P69 H

1,232,645 W587 T75 P

1,324 H

821,097 W577 T74 P

1,320 H

Hot Well

Deaerating Condenser

Stack Steam Turbine Makeup

2,805 W59 T15 P27 H

Silencer

Strip

per

Abso

rber

Flue Gas Acid Gas

Blower

571,599 W

KO-Water

1,977 W85 T63 P66 H

LP Turbine

Steam to reboiler

HPTurbine

IPTurbine

7

5

571,599 W304 T71 P

273 H

23

3

282,402 W314 T636 P285 H

1,086,734 W320 T

3,533 P297 H

HP Pump

IP Pump

Mai

n St

eam

1,071,980 W1,085 T2,393 P1,517 H

Cold Reheat

Hot

Reh

eat

1,071,980 W672 T542 P

1,338 H

160,051 W538 T74 P

1,300 H

LP S

team

8

Knockout Water

CondensateFrom Reboiler

CondensateFrom Reclaimer

Reclaimer Steam Dryer Steam

5,147 W672 T542 P

1,338 H

294 W672 T542 P

1,338 H17

1,232,645 W1,084 T

509 P1,566 H

821,097 W101 T

1 P1,022 H

8,658,430 W1,121 T

15 P348 H

6

10

5,147 W416 T297 P393 H

294 W397 T237 P371 H

4

Vent

777 W85 T

441 P59 H

15

12

13

Dryer

16

11

14493,588 W

85 T421 P

-3 H

494,365 W85 T

441 P-2 H

Vent

9

18

19

20

21

22

2,805 W101 T

1 P69 H

14,199 WLeakage

To Gland Seal System (Not Shown)

555 W1,085 T2,393 P1,517 H

FW Preheater 1

To Steam Air Ejector (Not Shown)

793 W672 T542 P

1,338 H

FW Preheater 2

FW Preheater 3

Condensate From Dryer

From Gland Seal System (Not Shown)From Steam Air

Ejector (Not Shown)

Preheater205,630 W

365 T421 P178 H

152,700 W401 T611 P377 H

129,702 W401 T611 P377 H

To Natural Gas Preheater

From IP Economizer 1

129,702 W140 T586 P109 H

LP Economizer

LP Evaporator

HP Economizer

1

IP Economizer

1

HP Economizer

2

IP Economizer

2

IP Evaporator

LP Superheater

HP Economizer

3

HP Economizer

4

IP Superheater

1

IP Superheater 2/Reheater 1

HP Superheater

2

HP Superheater

3

HP Economizer

5

HP Evaporator

HP Superheater

1

IP Superheater 3/ Reheater 2

HP Superheater

4

Reheat

1,399,485 W183 T87 P

151 H

253 T377 T

478 T533 T 629 T 886 T

420 T 474 T 600 T 620 T 689 T 683 T 770 T 855 T 971 T

To LP Economizer

From Preheater

Attemperation

Spray Make-up

Attemperation

Spray Make-up

AttemperationSpray Make-up

661,128 W306 T74 P

1,182 H

5,999 W420 T309 P

1,204 H

342 W400 T247 P

1,202 H

Page 36: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

36

B12B (SC PC Capture)Performance Summary

Power Summary Rev4 – 650 MWSteam Turbine Power, MWe 770Total Gross Power, MWe 770

Auxiliary Load SummaryActivated Carbon Injection, kWe 40Ash Handling, kWe 880Baghouse, kWe 120Circulating Water Pumps, kWe 9,610CO₂ Capture/Removal Auxiliaries, kWe 27,300CO₂ Compression, kWe 44,380Coal Handling and Conveying, kWe 530Condensate Pumps, kWe 790Cooling Tower Fans, kWe 4,970Dry Sorbent Injection, kWe 80Flue Gas Desulfurizer, kWe 4,230Forced Draft Fans, kWe 2,560Ground Water Pumps, kWe 900Induced Draft Fans, kWe 10,440Miscellaneous Balance of PlantA,B, kWe 2,250Primary Air Fans, kWe 2,010Pulverizers, kWe 4,100SCR, kWe 50Sorbent Handling & Reagent Preparation, kWe 1,280Spray Dryer Evaporator, kWe 300Steam Turbine Auxiliaries, kWe 500Transformer Losses, kWe 2,680Total Auxiliaries, MWe 120Net Power, MWe 650

Rev4 Footnotes:ABoiler feed pumps are turbine drivenBIncludes plant control systems, lighting, HVAC, and miscellaneous low voltage loads

Performance Summary Rev4 – 650 MWTotal Gross Power, MWe 770CO₂ Capture/Removal Auxiliaries, kWe 27,300CO₂ Compression, kWe 44,380Balance of Plant, kWe 48,320Total Auxiliaries, MWe 120Net Power, MWe 650HHV Net Plant Efficiency, % 31.5%HHV Net Plant Heat Rate, kJ/kWh (Btu/kWh) 11,430 (10,834)LHV Net Plant Efficiency, % 32.7%LHV Net Plant Heat Rate, kJ/kWh (Btu/kWh) 11,024 (10,449)HHV Boiler Efficiency, % 88.1%LHV Boiler Efficiency, % 91.3%Steam Turbine Cycle Efficiency, % 57.5%Steam Turbine Heat Rate, kJ/kWh (Btu/kWh) 6,256 (5,930)Condenser Duty, GJ/hr (MMBtu/hr) 2,127 (2,016)AGR Duty, GJ/hr (MMBtu/hr) 2,344 (2,222)As-Received Coal Feed, kg/hr (lb/hr) 273,628 (603,246)Limestone Sorbent Feed, kg/hr (lb/hr) 26,469 (58,354)HHV Thermal Input, kWt 2,062,478LHV Thermal Input, kWt 1,989,286Raw Water Withdrawal, (m3/min)/MWnet (gpm/MWnet) 0.058 (15.3)Raw Water Consumption, (m3/min)/MWnet (gpm/MWnet) 0.041 (10.8)Excess Air, % 20.3%

Page 37: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

37

B12B Equipment Summaries

Page 38: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

38

B12B Capital Cost Summary

Report Capital by Account and Sub Account

Additional Accounts in Baseline include:

8 – Steam Turbine & Accessories9 – Cooling Water System11 – Accessory Electric Plant12 – Instrumentation & Controls13 – Improvements to Site14 – Buildings & Structures

Page 39: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

39

Build up of Capital CostsB31B Example

Page 40: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

40

Fixed and Variable Operating CostsB12B Example

Page 41: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

41

Revision 4 Cost Estimate ResultsPC and NGCC Cases

Case Name

PC NGCC

PC Subcritical PC Supercritical State‐of‐the‐art 2017 F‐Class

B11A B11B B12A B12B B31A B31BCOST

Total Plant Cost (2018$/kW) 2,011 3,756 2,099 3,800 780 1,984Bare Erected Cost 1,482 2,641 1,548 2,677 561 1,312Home Office Expenses 259 462 271 469 112 262Project Contingency 269 526 280 531 107 304Process Contingency 0 127 0 123 0 105Total Overnight Cost (2018$M) 1,611 2,991 1,678 3,023 692 1,558Total Overnight Cost (2018$/kW) 2,478 4,604 2,582 4,654 952 2,412Owner's Costs 467 848 484 854 172 428Total As‐Spent Cost (2018$/kW) 2,860 5,314 2,980 5,371 1,040 2,635LCOE ($/MWh) (excluding T&S) 60.9 100.8 61.3 99.7 42.2 68.2Capital Costs 24.2 45.0 25.2 45.4 8.8 22.3Fixed Costs 9.1 16.0 9.5 16.1 3.6 8.6Variable Costs 7.9 14.5 7.7 14.0 1.7 5.6Fuel Costs 19.7 25.4 18.9 24.1 28.1 31.6LCOE ($/MWh) (including T&S) 60.9 110.2 61.3 108.7 42.2 71.6CO₂ T&S Costs 0.0 9.4 0.0 8.9 0.0 3.5Breakeven CO2 Sales Price (ex. T&S), $/tonneA N/A 42.0 N/A 42.9 N/A 74.8Breakeven CO2 Emissions Penalty (incl. T&S), $/tonneA N/A 72.7 N/A 69.9 N/A 96.7A Both the breakeven CO2 sales price and emissions penalty were calculated based on the non‐capture SC PC Case B12A for all coal cases, and the non‐capture NGCC Case B31A for natural gas cases 

Page 42: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

42

Revision 4 Cost Estimate ResultsBreakeven CO2 Sales Price/Emissions Penalty

112

90 92

78

42 43

75

153

120 121 118

73 70

97

0

20

40

60

80

100

120

140

160

180

200

Shell w/ CO₂ Capture (B1B)

E‐Gas w/ CO₂ Capture (B4B)

GEP Radiant w/CO₂ Capture (B5B)

GEP Quench w/CO₂ Capture (B5B‐Q)

SubC PC w/CO₂ Capture (B11B)

SC PC w/CO₂ Capture (B12B)

NGCC w/CO₂ Capture (B31B)

Breakeven CO

2Sales P

rice/Em

ission

s Pen

alty, $/ton

ne

Breakeven CO₂ Sales Price (ex T&S), $/tonne (SC PC reference for Coal, NGCC for NG)

Breakeven CO₂ Emissions Penalty, $/tonne (SC PC reference for Coal, NGCC for NG)

Page 43: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

43

Revision 4 Cost Estimate ResultsSensitivities – Capacity Factor

0

50

100

150

200

250

300

350

400

30% 40% 50% 60% 70% 80% 90% 100%

LCOE with

 CO

2T&

S, $/M

Wh

Capacity Factor, %

Shell w/o Capture (B1A)Shell w/ CO₂ Capture (B1B)E‐Gas w/o Capture (B4A)E‐Gas w/ CO₂ Capture (B4B)GEP Radiant w/o Capture (B5A)GEP Radiant w/CO₂ Capture (B5B)GEP Quench w/CO₂ Capture (B5B‐Q)SubC PC w/o Capture (B11A)SubC PC w/CO₂ Capture (B11B)SC PC w/o Capture (B12A)SC PC w/CO₂ Capture (B12B)NGCC w/o Capture (B31A)NGCC w/CO₂ Capture (B31B)

Base PC/NGCC Capacity Factor – 85%Base IGCC Capacity Factor – 80%

Page 44: Solutions for Today | Options for Tomorrow...Advancement of Cost Engineering International (AACE) Recommended Practice No. 18R‐97 describes the AACE cost estimate classification

44

Tim Fout

Strategic Systems Analysis and [email protected]

304-285-1341

Questions ?