summer term 2011 henrik beuther & christian fendtanalytic model for “hubble law” (downes...

35
 Outflows & Jets: Theory & Observations Lecture  plan  &  schedule                            Summer term 2011 Henrik Beuther & Christian Fendt 15.04 Today: Introduction & Overview ("H.B." & C.F.) 29.04 Definitions, parameters, basic observations (H.B.) 06.05 Basic theoretical concepts & models; MHD (C.F.) 13.05 MHD & plasma physics; applications (C.F.) 20.05 Radiation processes (H.B.) 27.05 Observational properties of accretion disks (H.B.) 03.06 Accretion disk theory and jet launching (C.F.) 10.06 Theory of interactions: entrainment, Instabilities, shocks (C.F.) 17.06 Outflow-disk connection, outflow entrainment (H.B.) 24.06 Outflow-ISM interaction, outflow chemistry (H.B.) 01.07 Outflows from massive star-forming regions (H.B.) 08.07 Observations of extragalactic jets (C.F.) 15.07 Some aspects of relativistic jet theory (C.F.)

Upload: others

Post on 02-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Lecture  plan  &  schedule                           

   

Summer term 2011Henrik Beuther & Christian Fendt

15.04 Today: Introduction & Overview ("H.B." & C.F.)29.04   Definitions, parameters, basic observations (H.B.)06.05   Basic theoretical concepts & models; MHD (C.F.)13.05   MHD & plasma physics; applications (C.F.)20.05   Radiation processes (H.B.) 27.05   Observational properties of accretion disks (H.B.)03.06   Accretion disk theory and jet launching (C.F.)10.06   Theory of interactions: entrainment, Instabilities, shocks (C.F.)17.06   Outflow-disk connection, outflow entrainment (H.B.) 24.06  Outflow-ISM interaction, outflow chemistry (H.B.)01.07 Outflows from massive star-forming regions (H.B.)08.07   Observations of extragalactic jets (C.F.)15.07   Some aspects of relativistic jet theory (C.F.)

Page 2: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

MHD model of jet formation:

● ejection of disk/stellar material into wind?

● collimation & acceleration of a disk/stellar wind into a jet

● jet propagation / interaction with ambient medium

● accretion disk structure?

● origin & structure of magnetic field?

Outflows & Jets: Theory & Observations 

Standard model of jet formation          

-> 5 basic questions of jet theory:

Topics today:

  ­  molecular outflows  ­  jet instabilities  ­  shocks (HD, MHD)

Page 3: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

● jet propagation / interaction with ambient medium  

Standard model of jet formation          Outflows & Jets: Theory & Observations 

 HH 212 , 2.12mm (McCaughrean et al. '98)

Page 4: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Driving of molecular outflows               

   

What process drives molecular outflow? Jet - outflow interaction?

-> momentum-driven: excess energy is radiated away ?-> energy-driven: energy adiabatically converted into kinetic energy ?

Observational constraints: 1) M-V relation, vJ is fiducial jet speed:

2) increasing velocity (~ linear) with distance: “acceleration”: “Hubble law” (Lada & Fich 96)

-> defines dynamical time scale:

dM v dv

=k vv j

t dyn=r /vRadial velocity log10 (vr­v0) (km/s):  ( absolute         radial velocity minus velocity at line center )

Page 5: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Driving of molecular outflows               

   

What process drives molecular outflow? Jet - outflow interaction?

From observed M-V relation:

-> kinetic luminosity:

-> momentum flow (“force”):

-> driver cannot be radiation of central star:

-> additional source for energy / momentum: magnetic field (via jet)

Lkin=1

t dyn∫vo

dvv2 dM / dv

Fout=1

t dyn∫vo

dv v dM /dv

Fout=10−3 M o km /s / yr≫Lbol / c

Page 6: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

   

What process drives molecular outflow? Jet - outflow interaction?

-> 4 model scenario of molecular flow acceleration (see Henrik's lecture): jet entrainment, bow shock, wide angle wind, circulation model

-> main questions to be answered by theory (see Downes & Ray 1999):

-> how much momentum is transferred to the ambient molecules?

-> is there a power-law relation between the mass in the molecular flow and velocity?

-> what are the proper motions of the molecular 'knots'?

-> how does the knot emission behave in time?

-> is the so-called Hubble law of molecular outflows reproduced?

-> is there extra entrainment of ambient gas along the jet due to velocity variations (i.e. jet pulses) ?

-> answers are not yet known .... preference for jet-driven models

Driving of molecular outflows               

Page 7: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

   

What process drives molecular outflow? Jet - outflow interaction?

-> main questions to be answered by theory (see Downes & Ray 1999) -> answers are not yet known .... preference for jet-driven models

-> indication that Hubble law is apparent effect:

1) l.o.s. column density increases (Stahler 94) along turbulent outflow; v3 > v2 > v1; opt. thin

-> high velocities become “visible” further out

2) projected bow shock velocity distribution (Downes & Ray 99)

      

Driving of molecular outflows               

Downes & Ray '99:  jet density at 300 yrs

Page 8: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

   

Jet-driven molecular outflows

Numerical simulations (Downes & Ray 1999)

-> tricky problem: accelerate molecules without dissociating them -> consider proper cooling function ... -> measure momentum transfer: - momentum in molecules / total momentum in box ~ 0.1 .. 0.4

- inefficient momentum transfer for molecules, particularly for increasing density

- jet cooling narrows the jet head thus jet cross section, thus reducing momentum transfer

-> “Hubble law” reproduced                                

Driving of molecular outflows               

Downes & Ray '99:  jet density at 300 yrs

  Hubble law   ( 300 yrs,  i= 60° )

Page 9: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

   

Jet-driven molecular outflows

Numerical simulations (Downes & Ray 1999)

-> tricky problem: accelerate molecules without dissociating them -> consider proper cooling function ... -> measure momentum transfer: - momentum in molecules / total momentum in box ~ 0.1 .. 0.4

- inefficient momentum transfer for molecules, particularly for increasing density

- jet cooling narrows the jet head thus jet cross section, thus reducing momentum transfer

-> power-law mass-velocity relation reproduced:    = 2 – 4                                   

Driving of molecular outflows               

Downes & Ray '99:  jet density at 300 yrs

 mass­velocity relation                 ( 300 yrs,  i= 60° )  

Page 10: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

   

Jet-driven molecular outflows

Analytic model for “Hubble law” (Downes & Ray 1999)

Idealized bow shock:

-> shape ('a' is apex position of bow shock)

-> velocity ratio along the bow shock ( = streamline ):

Driving of molecular outflows               

z=a−rs ; s≥2

ℜ≡−vz

vr

=s a−z s−1 /s

Page 11: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

   

Jet-driven molecular outflows

Analytic model for “Hubble law” (Downes & Ray 1999)

-> post-shock velocity: (derived from Hugoniot jump conditions)

-> radial component:

-> component along line of sight:

-> strong shock: compression ratio = 4:

-> this implies Hubble-like position-velocity diagram

-> Hubble law is (partly) artifact of geometry

Driving of molecular outflows               

v1 z

vr z=v1

1ℜ2

v los z =v1

1ℜ2cosℜsin

v los z = v cos arctan ℜ 116ℜ

2

Page 12: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

   

Primer on jet instabilities

-> “instability”: a fluid system is unstable if small perturbations grow unbounded -> instability usually investigated from equilibrium state -> instability may lead to disruption of entire flow

-> jets propagation affected by various instabilities -> Kelvin-Helmholtz-I., current driven I., sausage I., kink I. ... -> magnetic field may stabilise some instability modes (e.g. KHI) -> magnetic field may cause additional instabilities (“current driven i. ”) -> in summary, observed jets are remarkably stable: protostellar jets: jet length (sevaral pc) ~ 100 jet radii ( < 100 AU) AGN jets : jet length (several Mpc) ~ 100 jet radii (on kpc scale)

-> stability analysis: dispersion relation between angular frequency of perturbation and wave vector by wave ansatz:

-> stability is inferred from roots of dispersion relation; solution k() -> roots with negative imaginary part of k correspond to spatially growing perturbations in that direction

D , k =0 ; V VV ' ; V '≃exp i k⋅r− t

Page 13: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability (KHI):

-> fluid layers, velocity shear -> initial disturbance grows -> growth mechanism: centrifugal force due to flow along curved interface (see Shu 1992)-> mathematical approach: (M)HD equations, linear perturbance, wave ansatz -> instability if relative Mach number of two streams M2cos2 < 8-> numerical simulations to investigate nonlinear regime of instability

          Hydrodynamic simulation; time steps 1.0,  5.0;  box of  512 x 512 cells;  density 0.9 ...2.1             [ vX ]1 = ­0.5 ;  [ vX ]2 = 0.5 ; 1 = 1; 2 = 2,  P1 = P2;  M1 = 0.38,  M2 = 0.27

J. Stone et al;  see 

ww

w.astro.princeton.edu/

~jstone/tests/kh/kh.html

Page 14: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability

-> HD simulations of shearing MHD simulation: aligned magnetic field stabilises fluid layers KHI: field tension balances centrifugal force

        

        Time step 5.0;  box of  512 x 512 cells;  density 0.9 ...2.1;  seed disturbance v ~ 0.01     [ vX ]1 = ­0.5 ;  [ vX ]2 = 0.5 ; 1 = 1; 2 = 2,  P1 = P2;  M1 = 0.38,  M2 = 0.27,  B = Bx = const = ½  sqrt(4)

Page 15: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability

Derivations (see lecture notes Bicknell)

-> mass & momentum conservation:

-> disturbance:

-> now check for displacement of interface ....

( see Appendix )

∂t ∂∂x i

v j =0 [∂vi

∂ tv j

∂v i

∂x j]− ∂P∂ xi

=0

=0' , v i=v0, ivi '

∂tv0

∂ x= v z '= Az exp [i k x xk y yk z z−t ]

Page 16: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Current-driven (CD) instabilities

-> poloidal electric current equivalent to toroidal magnetic field: rot B ~ j integration -> R B = I (“identity”)

-> current carrying jets:

-> KH modes slightly stabilised compared to longitudinal field-only case (at same Mach number)

-> liable to additional pure MHD instabilities :

-> driven by electric current along the magnetic field (internal instability) -> thermal pressure gradient in the jet (local instability -> turbulence) -> CD instability growth on time scales < Alfven crossing time scale -> depending on: ratio pitch length / jet radius ~ r Bz / B / rjet

-> small pitch angle -> strongly unstable CD modes

-> sausage & kink modes: most dominant modes of CD instability

  

Page 17: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Current-driven (CD) instabilities

-> current carrying jets:

-> non-linear evolution of CD instabilities: MHD simulations (e.g. Baty & Keppens '02):                 “UNI”:  B= 0, Bz = 0.25

       “HEL1”:  B 0.4,Bz = 0.25

Setup: 3D numerical grid: 200x200x100; M=1.26, MA=6.52, MF= 1.24 -> density distribution across the jet (linear scale 0.5 ...1.3)

-> mode coupling of CD with KH modes. -> CD modes may saturate KH surface vortices, help to avoid jet disruption

Page 18: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Remarks on mode classification:

-> wave ansatz for different coordinate directions, e.g. cylindrical jet, cylindrical coordinates:

-> m=0 mode is sausage (pinch) mode; m=1 is kink (helical) mode m=2 is higher order kink, m=3 involves torsional kink

-> follows also from Fourier expansion of e.g. unstable flow

from

 Hut

chin

son 

lect

ure 

ww

w. aldebaran. cz /astro 

fyzika/plazma/phenom

ena_en. html

f '=f ' r exp i k zm−t

Page 19: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

Basic principles:

1) compressible fluid: disturbance travels in surrounding medium: acoustic wave: -> infinitesimal disturbance: wave form conserved, linear wave (linearized eqns) -> finite disturbance: non-linear equations, non-linear acoustic wave -> wave form steepens -> shock wave

2) steepening of non-linear wave: sinusoidal wavelet -> triangular shock wave: high density part of wave has higher sound speed -> travels faster than average -> wave top catches up with bottom -> wave profile steepens

3) extreme example: compressible high speed jet rams into low speed ISM -> shock wave traveling on front of jet

4) structure of thin shock layer defined by viscous processes -> deceleration = momentum exchange, heating, compression defined by viscosity -> shock thicknessx ~ L mean free path:

-> astrophysical plasmas thin -> mean free path long, “collisionless” shocks -> momentum exchange by magnetic field compression

5) Draine (1980): J-shocks (strong, thin, viscous), C-shocks (weak, wide, magnetic)  

Page 20: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

Hydrodynamic (viscous) shocks (J-shocks):

-> consider hydrodynamic steady state equations in one direction:

-> frictional momentum flux:

-> integration -> conservation laws:

-> shock thickness:

in shock transition layer: momentum flux of same order as other terms

->

for strong shocks: u ~ u  and u ~ vT  since  u  becomes subsonic

since for kinematic viscosity    ~ L vT    =>>  x ~ L  

ddxu=0 d

dx u2P−43

dudx =0 d

dx [ 12

u2uP−4

3

dudx u− dT

dx ]=0

u=const

u2P−

43

dudx=const. u 12 u2

P −4

3u

dudx−

dTdx=const.

xx=43

dudx

−43

dudx≃

u x

≃u2 x≃ x

u2

Page 21: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

Rankine-Hugoniot jump conditions:-> conservation laws upstream & downstream of shock layer (derivatives neglected): -> Rankine-Hugeniot jump conditions

-> solutions for R-H conditions: apply polytropic gas law , define upstream Mach number with sound speed

Note that:

1 u1=2u2 1 u12P1=2 u2

2P2

u1 12 1u21P1=u2 12 2 u222P2

2

1=

1 M 12

1 −1 M12−1

=u1

u2

P2

P1

=1 2 M1

2−1

1

T 2

T 1

=[ 1 2 M 1

2−1 ] [ 1 −1 M 12−1 ]

1 2

M12

M 1≡u1/cscs≡ P/

P~

P2≥P1 ; 2≥1; u2≤u1 ; T 2≥T 1; for M 1≥1, equality for M1=1

for M 1∞ :2

1=1−1

=4 for =5/3 ; butP2

P1

is unlimited

for M 11M 21 [compressive shocks ]

Page 22: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

Hydromagnetic shocks:

-> plane for local dynamics defined by inflow velocity u and magnetic field B (in shock frame) -> decomposition: s-coordinate || to shock , n -coordinate _|_ to shock

-> Note: in addition to viscous stress tensor, now Maxwell stresses to exchange momentum, pressure etc

-> project MHD conservation laws || and _|_ to shock

- mass conservation: ->

- momentum conservation

->

- induction equation ->

- no monopoles:                          ­>     

∂ t ∂∂ x k

uk =0 ∂∂ n un =...

∂∂ t ui ∂

∂ xkui ukPik−T ik =−

∂ x i

=0

∂∂ n [un unP−

18 Bn

2−Bs2 ]= ... ∂

∂ n [us un−1

4Bs Bn ]=...

∂B∂ t ∇× B ×u=0 ∂

∂ n Bn us−Bs un =...

∇⋅ B=0∂Bn

∂ n=...

Page 23: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

Hydromagnetic shocks – jump conditions jump conditions: intergrating conservation laws:

[un ]2=[un ]1

[Bn us−B s un ]2=[Bn us−B s un ]1

[un2P

B s2

8 ]2=[un2P

B s2

8 ]1

[Bn ]2=[ Bn ]1

[un usBs Bn

4 ]2=[un us

B s Bn

4 ]1

[un −1P

12

u2− 14 Bnus−Bs un B s]2=

[un −1P

12

u2− 14 Bn us−Bs un B s]1

Page 24: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

Hydromagnetic shocks – jump conditions

jump conditions -> behaviour of variables:

->  ( un) and Bn  are conserved across the shock

(mass flux, magnetic flux conservation)

-> for parallel velocity us,2  :

-> distinguishing features for MHD shocks: ->  us  is discontinous unlike in the non-magnetic case

-> sudden deflections of tangential velocity possible -> current sheet along shock:

                                        

[us ]2− [us ]1=Bn

4un [Bs ]2−[B s ]1

js=c

4 [ Bs ]2− [Bs ]1

Page 25: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

Hydromagnetic shocks – jump conditions jump conditions -> shock classification:

-> for perpendicular velocity: quartic relation to solve for un,2     (some math ...)

-> solutions exist if  un,1  > MHD wave speeds:

transform (slide tangentially) in ref. frame where u || B upstream & downstream)

1) fast / slow shock: tangential magnetic field increases / decreases across shock ( in reference frame where  u || B upstream & downstream)

2) switch off / on shock:  Bs = 0  behind / ahead of slow shock

3) contact discontinuity: us = 0, Bn > 0  (between jet & bow shock, ambient gas)

4) tangential discontinuity: us = 0, Bn = 0                                                                        

Page 26: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

Structure of jet head

Page 27: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Shocks in jets and outflows                     

   

MHD shocks – C-shocks

-> magnetic shocks: compress both field & gas

-> field compression absorbes momentum

-> upstream gas pressure / temperature lower than for un-magnetised fluid (e.g. molecular dissociation is prevented)

-> partially ionised gases: neutral & charged particles may have different speed (e.g. ions decelerated by magnetic field, then brake neutrals by collisions)

-> weak field: neutral matter undergoes J-shock to sub-sonic velocity -> magnetic precursor: increasing field strength, deceleration of ionised gas -> ion-neutral collisions increase precursor temperature -> J-shock weakens

-> strong field: strong precursor, no viscous shock at all, as fluid density & temperature increase smoothly, velocity may remain supersonic

­ C­shock in molecular cloud, numerical     results for pre­shock B = 100G. ­ Ions decelerate prior to neutrals­ Un­magnetic case would result in       post­shock T = 34.000 K.

Page 28: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Lecture  plan  &  schedule                           

   

Summer term 2011Henrik Beuther & Christian Fendt

15.04 Today: Introduction & Overview ("H.B." & C.F.)29.04   Definitions, parameters, basic observations (H.B.)06.05   Basic theoretical concepts & models; MHD (C.F.)13.05   MHD & plasma physics; applications (C.F.)20.05   Radiation processes (H.B.) 27.05   Observational properties of accretion disks (H.B.)03.06   Accretion disk theory and jet launching (C.F.)10.06   Theory of interactions: entrainment, Instabilities, shocks (C.F.)17.06   Outflow-disk connection, outflow entrainment (H.B.) 24.06  Outflow-ISM interaction, outflow chemistry (H.B.)01.07 Outflows from massive star-forming regions (H.B.)08.07   Observations of extragalactic jets (C.F.)15.07   Some aspects of relativistic jet theory (C.F.)

Page 29: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Appendix                         

   

Page 30: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability

Derivations (see lecture notes Bicknell)

-> mass & momentum conservation:

-> disturbance:

-> implying that:

( used to derive perturbed mass & momentum conservation )

∂t ∂∂x i

v j =0 [∂vi

∂ tv j

∂v i

∂x j]− ∂P∂ xi

=0

=0' , v i=v0, ivi '

v i=0v0, i0v i ' 'v0, i

∂v i

∂x j

=v0, jv j ' ∂v i '

∂ x j

=v0

∂v j '

∂ xi

Page 31: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability derivations ...

-> perturbed mass & momentum conservation:

-> substitute density by pressure using

(note density could be discontinuous, pressure not)

∂'∂t0

∂v j '

∂ x j

−v0, j

∂ '∂ x j

=0

0 [∂vi

∂ t−v0

∂v i '

∂x ]∂P '∂ xi

=0

[∂

∂ t∂

∂ x i] = 1

cS2 [

∂ t∂

∂x i] P

Page 32: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability derivations ....

-> summary of perturbed equations:

-> apply wave ansatz for perturbed quatities:

-> with we have:

0 [∂vi

∂ tv0

∂v i '

∂x ]−∂P '∂ xi

=0[∂P '∂tv0

∂P '∂ x ]0c0

2 ∂v j '

∂x j

=0

P '=Aexp [i k x xk y yk z z−t ]vi '=Aiexp [i k x xk y yk z z−t ]

c02=P0

−i −k xv0 AP0 i k j A j =0

−i 0 −k xv0 Aii k i A=0

Page 33: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability derivations ...

-> rewrite wave vector, parallel component parallel to interface

-> new perturbed equations (multiplied by k_||) -> dispersion relation:

-> this is the dispersion relation of sound waves!

-> for the two sides of the interface:       

k = k x ,k y ,k z = k ∥ ,k z

k x = k ∥ cos k y = k ∥ sin

k2 = k∥

2 k z2=k ik i

−k ∥ v0cos 2=P0

0

k2=c02k2= c0

2 k ∥

2 k z2

−k ∥v1cos

2= c1

2k2

−k ∥ v2cos 2= c2

2k2

Page 34: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability derivations ...

-> now check for displacement of interface ....

-> wave ansatz for z-displacement: -> consider that 1)  P,    are continuous, 2)   is not, and 3) boundary conditions

-> equation for K-H instability:

with phase velocity and velocity difference

∂tv0

∂ x= v z '= Az exp [i k x xk y yk z z−t ]

= Bzexp [ i k x xk y yk z z−t ]

vph' 2

c12 −1

12 vph'

4

c14

=

vph '−vcos 2

c22 −1

22 vph '−vcos

4

c24

vph '= 'k ∥

v = v2−v1

Page 35: Summer term 2011 Henrik Beuther & Christian FendtAnalytic model for “Hubble law” (Downes & Ray 1999)-> post-shock velocity: (derived from Hugoniot jump conditions)-> radial component:

 

Outflows & Jets: Theory & Observations 

Instabilities in jet flows                            

  

Kelvin Helmholtz instability derivations ...

-> define phase velocity of perturbation relative to sound speed in frame of lower stream and relative Mach number of two streams in direction of perturbation ->:

-> basic dispersion relation for compressible KHI:

implicit 6th order polynomial equation (*):

-> example solution for instability for case 1 = 2

-> eq.(*) factorizes (quartic & quadratic part): roots of quadratic: stable solutions

-> roots of quartic correspond to instability if m2 < 8

resp. correspond to stability if

-> critical angle for instability ...

-> growth rate for magnetized KHI ~> Alfven crossing time                 

x≡vph'

c1

m≡v cos

c1

x2−1x4

=1

2

22

c22

c12 x−m

2−c2

2/c1

2

x−m4

m=v cosc1

8