tai lieu hd_tttn_2006

118
TRÖÔØNG ÑAÏI HOÏC BAÙCH KHOA TP HOÀ CHÍ MINH KHOA ÑIEÄN – ÑIEÄN TÖÛ PHOØNG THÍ NGHIEÄM KYÕ THUAÄT ÑIEÄN 1 Taøi Lieäu: HÖÔÙNG DAÃN THÖÏC TAÄP TOÁT NGHIEÄP Baøi 1: Ñieàu khieån quaù trình phaân loaïi vaø ñeám saûn phaåm Baøi 2: Ñieàu khieån ñoäng cô khoâng ñoàng boä ba pha duøng boä bieán taàn Baøi 3: Ñieàu khieån ñoäng cô khoâng ñoàng boä ba pha duøng boä bieán taàn vaø PLC S7-200 Baøi 4: Ñieàu khieån ñoäng cô khoâng ñoàng boä ba pha duøng boä khôûi ñoäng meàm sikostart vaø PLC S7-200 Bieân soaïn: Phoøng TN Kyõ Thuaät Ñieän 1 TP. HOÀ CHÍ MINH, THAÙNG 7 NAÊM 2006

Upload: yeuamnhac83

Post on 28-Nov-2014

501 views

Category:

Documents


3 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Tai lieu hd_tttn_2006

TRÖÔØNG ÑAÏI HOÏC BAÙCH KHOA TP HOÀ CHÍ MINH KHOA ÑIEÄN – ÑIEÄN TÖÛ

PHOØNG THÍ NGHIEÄM KYÕ THUAÄT ÑIEÄN 1

Taøi Lieäu:

HÖÔÙNG DAÃN THÖÏC TAÄP TOÁT NGHIEÄP

Baøi 1: Ñieàu khieån quaù trình phaân loaïi vaø ñeám saûn phaåm Baøi 2: Ñieàu khieån ñoäng cô khoâng ñoàng boä ba pha duøng boä

bieán taàn Baøi 3: Ñieàu khieån ñoäng cô khoâng ñoàng boä ba pha duøng boä

bieán taàn vaø PLC S7-200 Baøi 4: Ñieàu khieån ñoäng cô khoâng ñoàng boä ba pha duøng boä

khôûi ñoäng meàm sikostart vaø PLC S7-200

Bieân soaïn: Phoøng TN Kyõ Thuaät Ñieän 1

TP. HOÀ CHÍ MINH, THAÙNG 7 NAÊM 2006

Page 2: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 1 I.1

BAØI 1: ÑIEÀU KHIEÅN QUAÙ TRÌNH PHAÂN LOAÏI VAØ ÑEÁM SAÛN PHAÅM

I. MUÏC ÑÍCH: - Tìm hieåu veà boä PLC S7 – 200, CPU 212; taäp leänh vaø phaàn meàm laäp

trình STEP7 MICROWIN 32 (chuù yù ñoïc tröôùc caùc leänh veà xöû lyù Bit, Set, Reset, Timer (TON), Counter (CTU)).

- Tìm hieåu veà caùch söû duïng PLC ñeå ñieàu khieån caùc ñoái töôïng nhö ñoäng cô, contactor, ….

- Thöïc taäp vôùi caùc thieát bò coâng nghieäp vaø khaùi nieäm ñieàu khieån meàm baèng vieäc laäp trình cho PLC.

II. ÑAËT VAÁN ÑEÀ: Cho moät daây chuyeàn coâng nghieäp vaän chuyeån caùc saûn phaåm coù chieàu daøi L. Caùc saûn phaåm naøy caàn ñöôïc phaân loaïi vaø ñeám theo tieâu chuaån sau: - Neáu L ≥ d2 ta ñöôïc saûn phaåm loaïi daøi. - Neáu L < d1 ta ñöôïc saûn phaåm ngaén. - Neáu d1 ≤ L < d2 ta ñöôïc saûn phaåm vöøa. Giaû söû raèng khoaûng caùch giöõa 2 saûn phaåm lieân tieáp lôùn hôn d2 .

Caùc caûm bieán X1, X2, vaø X3 ñaët döôùi baêng chuyeàn duøng ñeå phaân bieät chieàu daøi cuûa saûn phaåm (coâng taéc haønh trình).

III. NOÄI DUNG THÖÏC TAÄP:

III.1. SINH VIEÂN THÖÏC HIEÄN CAÙC PHAÀN THÖÏC TAÄP SAU:

1) Phaân loaïi vaø ñeám saûn phaåm vöøa:

- Xaùc ñònh vaø nhaäp soá saûn phaåm vöøa caàn ñeám cho moãi thuøng haøng. - Nhaán nuùt START (NO) ñeå khôûi ñoäng daây chuyeàn (Motor: M = 1). - Chôø 5 giaây ñeå baêng chuyeàn chaïy oån ñònh. Sau ñoù cho pheùp ñöa saûn phaåm

vaøo (Enable: EN=1).

X1 X2 X3

L

d1

d2

Page 3: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 1 I.2

- Baét ñaàu quaù trình phaân loaïi vaø ñeám saûn phaåm loaïi vöøa (d1 ≤ L < d2, R=0). Neáu khoâng phaûi saûn phaåm vöøa (pheá phaåm) thì xuaát tín hieäu loaïi boû (Remove: R=1 - ñeå ñieàu khieån caàn gaït saûn phaåm ra ngoaøi). Tín hieäu naøy ñöôïc giöõ (R = 1) cho ñeán khi coù saûn phaåm keá tieáp vaøo.

- Khi ñaõ ñuû soá saûn phaåm yeâu caàu thì xuaát tín hieäu baùo ñaày (FULL = 1)

vaø taïm ngöøng ñöa saûn phaåm vaøo baêng chuyeàn (EN = 0). - Chôø 10 giaây, sau ñoù tieáp tuïc chu kyø môùi quaù trình phaân loaïi vaø ñeám;

cho saûn phaåm chaïy vaøo (EN = 1) vaø reset tín hieäu baùo ñaày (FULL = 0). - Nhaán nuùt STOP (NO) ñeå döøng daây chuyeàn.

2) Phaân loaïi vaø ñeám saûn phaåm theo yeâu caàu:

- Soá saûn phaåm caàn ñeám cho moãi thuøng haøng laø 10. Trong ñoù coù toái thieåu 6 saûn phaåm loaïi vöøa. Soá saûn phaåm loaïi ngaén vaø loaïi daøi khoâng ñöôïc vöïôt quaù 4 saûn phaåm trong soá 10 saûn phaåm cho moãi thuøng haøng.

- Quaù trình baét ñaàu khi nhaán nuùt START (NO) ñeå khôûi ñoäng daây chuyeàn (M=1).

- Chôø 5 giaây ñeå baêng chuyeàn chaïy oån ñònh. Sau ñoù cho pheùp ñöa saûn phaåm vaøo (EN=1).

- Baét ñaàu quaù trình phaân loaïi vaø ñeám saûn phaåm:

M

X3 X2 X1

Saûn phaåm

Pheá phaåm R

EN

PLC S7 INPUT

OUTPUT

Page 4: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 1 I.3

o Saûn phaåm vöøa (R = 0), soá saûn phaåm taêng leân 1. o Khoâng phaûi saûn phaåm vöøa: Neáu trong giôùi haïn cho pheùp (≤ 4 saûn phaåm trong moãi thuøng)

thì xem nhö saûn phaåm (R = 0) vaø soá saûn phaåm taêng leân 1. Neáu vöôït quaù giôùi haïn cho pheùp thì xem nhö pheá phaåm vaø

xuaát tín hieäu loaïi boû (R = 1), ñoàng thôøi taêng toång soá pheá phaåm leân 1.

- Khi ñaõ ñuû soá saûn phaåm yeâu caàu cho thuøng haøng thì xuaát tín hieäu baùo ñaày (FULL = 1) vaø taïm ngöøng ñöa saûn phaåm vaøo baêng chuyeàn (EN = 0).

- Chôø 10 giaây, sau ñoù tieáp tuïc chu kyø môùi quaù trình phaân loaïi vaø ñeám, cho saûn phaåm chaïy vaøo (EN = 1) vaø xoùa tín hieäu baùo ñaày (FULL = 0).

- Nhaán nuùt STOP (NO) ñeå döøng daây chuyeàn.

3) Phaân loaïi vaø ñeám saûn phaåm vöøa, ngaén vaø daøi theo yeâu caàu:

Thöïc hieän nhö phaàn 2 vaø theâm vaøo caùc yeâu caàu sau:

- Phaân loaïi pheá phaåm loaïi ngaén (RS = 1, RL = 0) vaø loaïi daøi(RS = 0, RL=1) thay cho tín hieäu loaïi boû R. Neáu laø saûn phaåm thì (RS = 0, RL = 0). (Remove Short: RS, Remove Long: RL)

- Ñoàng thôøi ñeám rieâng toång soá pheá phaåm loaïi ngaén vaø toång soá pheá

phaåm loaïi daøi trong suoát thôøi gian laøm vieäc (höôùng daãn: duøng theâm hai boä ñeám môùi ñeå ñeám pheá phaåm loaïi ngaén vaø pheá phaåm loaïi daøi).

III.2. HÖÔÙNG DAÃN PHAÂN BIEÄT SAÛN PHAÅM: Ñeå phaân bieät saûn phaåm coù theå thöïc hieän theo caùc böôùc sau:

- Taïi thôøi ñieåm X3 vöøa taùc ñoäng, duøng tieáp ñieåm phaùt hieän caïnh leân P – ON trong moät chu kyø queùt cuûa PLC khi tín hieäu X3 chuyeån töø 0 leân 1 (Ví duï X3 öùng vôùi ngoõ vaøo I0.4).

M

X3 X2 X1

Saûn phaåm

Pheá phaåm ngaén RS EN

Pheá phaåm daøi

RL

Page 5: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 1 I.4

- Khi ñoù xeùt traïng thaùi cuûa X1, X2: • Neáu caû X1, X2 khoâng taùc ñoäng ta coù saûn phaåm loaïi ngaén L < d1 . • Neáu caû X1, X2 ñeàu taùc ñoäng ta coù saûn phaåm loaïi daøi L ≥ d2 . • Neáu X1 khoâng taùc ñoäng vaø X2 taùc ñoäng ta coù saûn phaåm loaïi vöøa

d1≤L<d2.

Xuaát tín hieäu phaân bieät saûn phaåm (R, RS, RL): Ñeå xuaát tín hieäu phaân bieät saûn phaåm coù theå thöïc hieän baèng leänh SET (S) vaø leänh RESET (R). Sau ñaây laø moät ví duï cho leänh SET vaø leänh P (|P|):

Chuù yù caùc leänh sau:

Leänh SET vaø leänh RESET: Khi leänh SET ñöôïc taùc ñoäng seõ ñaët 1 bit Q0.3 sang traïng thaùi ON. Khi leänh khoâng coøn ñöôïc taùc ñoäng nöõa, Q0.3 vaãn ôû traïng thaùi ON cho ñeán khi leänh RESET Q0.3 ñöôïc taùc ñoäng. Trong tröôøng hôïp naøy, Q0.3 laø ngoõ ra cuûa PLC ñieàu khieån caùc caàn gaïc phaân loaïi saûn phaåm vaø pheá phaåm (R, RS, RL).

Leänh phaùt hieän caïnh leân P: Khi leänh P chuyeån töø traïng thaùi khoâng taùc ñoäng sang ñöôïc taùc ñoäng (nhö trong ví duï treân, I0.4 chuyeån töø OFF sang ON), ngoõ ra leänh P seõ ON trong moät chu kyø queùt cuûa PLC (thöôøng khoaûng vaøi ms).

X1

X2

X3

Ngoõ vaøo (Q0.3)

Q0.3

Saûn phaåm vöøa Saûn phaåm daøi

Ngoõ ra leänh |P|

OFF

ON

ON

ON

OFF ON

ON trong 1 chu kyø queùt

Page 6: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 1 I.5

III.3. YEÂU CAÀU CHUAÅN BÒ TRÖÔÙC KHI THÖÏC TAÄP: (Moãi sinh vieân phaûi noäp chuaån bò tröôùc khi vaøo thöïc taäp) - Töï tìm hieåu caáu truùc PLC S7-200 CPU 212 cuûa Siemens; ngoân ngöõ vaø

phaàn meàm laäp trình STEP7 MICROWIN 32 (caùc leänh caàn duøng). - Veõ löu ñoà giaûi thuaät cuûa chöông trình. - Xaùc ñònh soá tín hieäu vaøo vaø ra caàn lieân keát vôùi PLC. - Veõ sô ñoà noái daây PLC. - Vieát chöông trình LADDER cho PLC thöïc hieän chöùc naêng ñieàu khieån.

III.4. THÖÏC TAÄP THEO TRÌNH TÖÏ SAU: Treân cô sôû baøi töï chuaån bò, trong nhoùm töï kieåm tra laïi, thoáng nhaát vaø tieán haønh thöïc taäp döôùi söï giaùm saùt cuûa Caùn boä höôùng daãn thöïc taäp trong thôøi gian quy ñònh: - Veõ löu ñoà giaûi thuaät cuûa chöông trình. - Xaùc ñònh soá tín hieäu vaøo vaø ra caàn lieân keát vôùi PLC. - Veõ sô ñoà noái daây PLC. - Laäp trình treân maùy tính ñeå duøng PLC thöïc hieän chöùc naêng ñieàu khieån. - Naïp chöông trình ñieàu khieån vaøo PLC vaø kieåm tra hoaït ñoäng cuûa chöông

trình. Moâ phoûng caùc traïng thaùi cuûa caùc caûm bieán khi coù saûn phaåm ñi qua ñeå phaân loaïi vaø ñeám. Khi ñaõ vaän haønh toát, baùo caùo laïi vôùi caùn boä höôùng daãn thöïc taäp.

IV. BAÙO CAÙO: (Moãi sinh vieân phaûi noäp laïi baùo caùo thöïc taäp vaøo buoåi keá tieáp) Chæ baùo caùo phaàn 3 - Phaân loaïi vaø ñeám saûn phaåm vöøa, ngaén vaø daøi theo yeâu caàu:

1. Löu ñoà giaûi thuaät cuûa chöông trình. 2. Sô ñoà noái daây PLC (theå hieän roõ chöùc naêng cuûa töøng ñaàu vaøo, ra ñöôïc

söû duïng). 3. Chöông trình (LADDER) cho PLC thöïc hieän chöùc naêng ñieàu khieån. 4. Giaûi thích hoaït ñoäng cuûa chöông trình theo töøng network. 5. Nhaän xeùt chöông trình ñieàu khieån.

Taøi lieäu tham khaûo: [1] Töï ñoäng hoùa vôùi SIMATIC S7 – 200 . Nguyeãn Doaõn Phöôùc Phan Xuaân Minh [2] Siemens S7 – 200 Programmable Controller.

Page 7: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 2 II.1

BAØI 2 : ÑIEÀU KHIEÅN ÑOÄNG CÔ KHOÂNG ÑOÀNG BOÄ BA PHA DUØNG BOÄ BIEÁN TAÀN

I. MUÏC ÑÍCH : - Tìm hieåu veà boä bieán taàn Siemens MicroMaster Vector 3. - Caùc thao taùc vaän haønh cô baûn. - Tìm hieåu moät vaøi caùch ñieàu khieån ñôn giaûn II. ÑAËT VAÁN ÑEÀ : Boä bieán taàn MicroMaster Vector (MMV) ñöôïc duøng ñeå ñieàu khieån toác ñoä ñoäng cô 3 pha vôùi khaû naêng ñieàu khieån vector khoâng duøng caûm bieán cho pheùp boä bieán taàn tính toaùn caùc thay ñoåi caàn thieát cuûa doøng ñieän vaø taàn soá ñaàu ra ñeå duy trì toác ñoä mong muoán cuûa ñoäng cô vôùi caùc ñieàu kieän taûi khaùc nhau. Boä bieán taàn MMV coù theå hoïat ñoäng ôû 4 cheá ñoä ñieàu khieån : - Cheá ñoä ñieàu khieån V/f : duøng cho caùc öùng duïng coù caùc ñaëc tính moâmen

tuyeán tính. - Cheá ñoä ñieàu khieån doøng töø thoâng FCC. - Cheá ñoä ñieàu khieån V/f bình phöông : duøng cho caùc öùng duïng taûi quaït vaø

bôm (moâmen thay ñoåi theo qui luaät bình phöông) . - Cheá ñoä ñieàu khieån vector phi caûm bieán (SVC). Caùc cheá ñoä ñieàu khieån naøy ñöôïc löïa choïn baèng vieäc thay ñoåi thoâng soâ P077. Trong noäi dung baøi thöïc taäp naøy chæ duøng phöông phaùp ñieàu khieån FCC. III. NOÄI DUNG THÖÏC TAÄP : - Tìm hieåu caùch söû duïng boä bieán taàn MM 3. - Tìm hieåu caùc phöông phaùp ñieàu khieån cô baûn boä bieán taàn : phöông phaùp

ñieàu khieån soá (duøng caùc taàn soá ñaët coá ñònh) vaø phöông phaùp ñieàu khieån töông töï (ñöa ñieän aùp töông töï vaøo boä bieán taàn baèng caùch ñieàu chænh bieán trôû ñeå thay ñoåi taàn soá ra).

Ñieàu khieån toác ñoä ñoäng cô khoâng ñoàng boä 3 pha baèng caùch thay ñoåi taàn soá ngoõ ra boä bieán taàn. Trong baøi naøy yeâu caàu SV ñieàu khieån toác ñoä vaø ñaûo chieàu ñoäng cô söû duïng tröïc tieáp boä bieán taàn :

Ñieàu khieån soá (digital control) thoâng qua caùc chaân DIN cuûa boä bieán taàn. Ñieàu khieån töông töï (analogue control) baèng caùch ñöa tín hieäu töông töï

vaøo caùc chaân AIN cuûa boä bieán taàn (duøng bieán trôû ñeå ñieàu chænh toác ñoä).

Page 8: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 2 II.2

1. Ñieàu khieån soá : Trong phaàn naøy SV seõ thöïc taäp ñieàu khieån ñoäng cô KÑB vôùi 4 toác ñoä. Ñoäng cô ñöôïc khôûi ñoäng vaø döøng bôûi coång ñieàu khieån DIN1. Vieäc choïn löïa toác ñoä cuûa ñoäng cô (taàn soá ñoäng cô) nhaän ñöôïc qua vieäc ñieàu khieån DIN4 vaø DIN5 ( hai coång ñieàu khieån naøy duøng choïn löïa giöõa 4 taàn soá). DIN2 ñöôïc duøng ñeå choïn thôøi gian taêng(giaûm) toác (ramp time) . Coång ñieàu khieån DIN6 duøng nhö coâng taéc OFF2 cho pheùp ngöôøi duøng nhanh choùng ngaét ngoõ ra bieán taàn maø khoâng caàn taét nguoàn. Yeâu caàu : ñieàu khieån ñoäng cô hoaït ñoäng ôû caùc taàn soá 15Hz, 20Hz, 25Hz, 30Hz duøng caùc coâng taéc noái giöõa chaân P+15V vaø caùc coång DIN3, DIN4, DIN5 .

Baûng maõ nhò phaân DIN3 (P053) DIN 4 (P054) DIN 5 (P055) FF5(P046) : taàn soá coá ñònh 5 0 0 0 FF6(P047) : taàn soá coá ñònh 6 0 0 1 FF7(P048) : taàn soá coá ñònh 7 0 1 0 FF8(P049) : taàn soá coá ñònh 8 0 1 1 FF1(P041) : taàn soá coá ñònh 1 1 0 0 FF2(P042) : taàn soá coá ñònh 2 1 0 1 FF3(P043) : taàn soá coá ñònh 3 1 1 0 FF4(P044) : taàn soá coá ñònh 4 1 1 1

Thay ñoåi thoâng soá P001 cuûa bieán taàn (xem baûng thoâng soá) ñeå thay ñoåi cheá ñoä hieån thò cuûa bieán taàn treân P000.

Thieát bò caàn thieát: - Ñoäng cô khoâng ñoàng boä 3 pha 1,5 kW. - Bieán taàn MICROMASTER Vector 6SE32. - Giao tieáp ñieàu khieån bieán taàn : ngoõ vaøo soá vôùi Run Right, 4 taàn soá coá

ñònh, 2 thôøi gian taêng toác, OFF2.

Page 9: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 2 II.3

Thieát laäp thoâng soá theo thöù töï trong baûng : Thoâng soá Giaù trò Yù nghóa

P009 3 Cho pheùp truy caäp taát caû caùc thoâng soá P944 1 Reset boä bieán taàn veà caùc thoâng soá maëc ñònh P002 Töï choïn Thôøi gian taêng toác thöù nhaát (normal) (>3s) P003 Töï choïn Thôøi gian giaûm toác thöù nhaát (normal) P006 2 Cheá ñoä duøng taàn soá coá ñònh P007 0 Cho pheùp ñieàu khieån bieán taàn qua caùc ngoõ vaøo soá P009 3 Cho pheùp truy caäp taát caû caùc thoâng soá P013 30.00 Taàn soá cho pheùp cöïc ñaïi laø 30Hz P033 Töï choïn Thôøi gian taêng toác thöù hai (jog ramp time) (>10s) P034 Töï choïn Thôøi gian giaûm toác thöù hai (jog ramp time) P041 Töï tính Taàn soá coá ñònh 1 P042 Töï tính Taàn soá coá ñònh 2 P043 Töï tính Taàn soá coá ñònh 3 P044 Töï tính Taàn soá coá ñònh 4 P052 16 Cho pheùp DIN2 choïn löïa giöõa thôøi gian taêng toác

(giaûm toác) thứ nhất hay thứ hai (jog ramp time). P053 17 DIN3 duøng choïn taàn soá ra 1 – 4 (maõ nhò phaân) P054 17 DIN4 duøng choïn taàn soá ra 1 – 4 (maõ nhò phaân) P055 17 DIN5 duøng choïn taàn soá ra 1 – 4 (maõ nhò phaân) P356 4 Cho pheùp DIN6 OFF2 ( khoâng cho pheùp ngoõ ra) P080 0.80 Heä soá coâng suaát ñònh möùc cuûa ñoäng cô = 0,8 P082 Xem ñoäng cô Toác ñoä ñònh möùc cuûa ñoäng cô (RPM) P083 Xem ñoäng cô Doøng ñieän ñònh möùc cuûa ñoäng cô (A) Xem theâm baûng thoâng soá bieán taàn trong phaàn phuï luïc.

2. Ñieàu khieån töông töï: Trong phaàn naøy SV seõ ñieàu khieån toác ñoä ñoäng cô baèng caùc ñöa ñieän aùp ñieàu khieån vaøo boä bieán taàn (ñieàu chænh bieán trôû ñeå thay ñoåi ñieän aùp). Ñieàu khieån ñoäng cô chaïy döøng thoâng qua DIN1. Chieàu quay cuûa ñoäng cô ñöôïc ñieàu khieån qua DIN2. Noái daây cho bieán trôû duøng nguoàn +10V (coång 1 vaø 2) ñeå ñöa ñieän aùp ñieàu khieån thay ñoåi (0 – 10V) vaøo ngoõ vaøo töông töï cuûa bieán taàn AIN+ , AIN- (coång 3 vaø coång 4). Ñieàu chænh bieán trôû ñeå coù ñöôïc toác ñoä ra mong muoán. Yeâu caàu : laàn löôït ñieàu khieån taàn soá ra cuûa bieán taàn laø 15, 20, 25 vaø 30Hz baèng caùch chænh bieán trôû.

Page 10: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 2 II.4

Thieát bò caàn thieát : - Ñoäng cô khoâng ñoàng boä 3 pha 1,5 kW. - Bieán taàn MICROMASTER Vector 6SE32. - Giao tieáp ñieàu khieån bieán taàn : ngoõ vaøo ñieàu khieån soá Run Left, Run

Right, ngoõ vaøo töông töï AIN. Thieát laäp thoâng soá theo thöù töï trong baûng :

Thoâng soá Giaù trò Yù nghóa P009 3 Cho pheùp truy caäp taát caû caùc thoâng soá P944 1 Reset boä bieán taàn veà caùc thoâng soá maëc ñònh P002 Töï choïn Thôøi gian taêng toác (>5s) P003 Töï choïn Thôøi gian giaûm toác P006 1 Cheá ñoä duøng ngoõ vaøo töông töï P007 0 Khoâng cho pheùp ñieàu khieån bieán taàn qua baøn

phím P009 3 Cho pheùp truy caäp taát caû caùc thoâng soá P051 Töï tính Cho pheùp DIN1 ñieàu khieån ñoäng cô chaïy/ döøng. P052 Töï tính Cho pheùp DIN2 ñaûo chieàu quay. P021 Töï choïn Choïn taàm taàn soá ñaët öùng vôùi Analog min P022 Töï choïn Choïn taàm taàn soá ñaët öùng vôùi Analog max P013 30.00 Taàn soá cho pheùp cöïc ñaïi laø 30Hz P080 0.80 Heä soá coâng suaát ñònh möùc cuûa ñoäng cô = 0,8 P082 Xem ñoäng cô Toác ñoä ñònh möùc cuûa ñoäng cô (RPM) P083 Xem ñoäng cô Doøng ñieän ñònh möùc cuûa ñoäng cô (A) Xem theâm baûng thoâng soá bieán taàn trong phaàn phuï luïc.

Thieát laäp thoâng soá bieán taàn (P356) ñeå DIN6 thöïc hieän chöùc naêng OFF2. Khaûo saùt ñaùp öùng toác ñoä khi khoâng taûi vaø coù taûi (ñoäng cô keùo baêng taûi).

3. Ñieàu khieån voøng kín: Trong phaàn naøy SV seõ ñieàu khieån toác ñoä ñoäng cô duøng boä bieán taàn, coù hoài tieáp toác ñoä theo cheá ñoä ñieàu khieån töông töï (nhö ôû phaàn 2). Ñieàu khieån ñoäng cô chaïy döøng thoâng qua DIN1. (Khoâng ñaûo chieàu ñoäng cô trong cheá ñoä naøy.) Noái daây cho bieán trôû duøng nguoàn +10V ñeå caáp ñieän aùp ñieàu khieån thay ñoåi (0÷10V) vaøo ngoõ vaøo töông töï cuûa bieán taàn AIN+ , AIN-. Hoài tieáp toác ñoä baèng caùch noái daây ngoõ vaøo PID+, PID– cuûa bieán taàn vôùi ngoõ ra cuûa caûm bieán toác ñoä (Tachometter). Ñieàu khieån voøng kín duøng phöông phaùp PID.

Page 11: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 2 II.5

Phương trình vi phân mô tả hiệu chỉnh PID là:

u(t) = KP e(t) + KI ∫ dt)t(e + KD dt)t(de

KP: hệ số khâu tỉ lệ. KI: hệ số khâu tích phân. KD:hệ số khâu vi phân.

Thieát bò caàn thieát :

- Ñoäng cô khoâng ñoàng boä 3 pha 1,5 kW. - Bieán taàn MICROMASTER Vector 6SE32. - Caûm bieán toác ñoä - Giao tieáp ñieàu khieån bieán taàn: ngoõ vaøo ñieàu khieån soá Run, DIR, ngoõ vaøo

töông töï AIN, PID

e(t) u(t) PID

Đối tượng điều khiển

c(t) r(t)

Page 12: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 2 II.6

Thieát laäp thoâng soá theo thöù töï trong baûng: Thoâng soá Giaù trò Yù nghóa

P009 3 Cho pheùp truy caäp taát caû caùc thoâng soá P944 1 Reset boä bieán taàn veà caùc thoâng soá maëc ñònh P002 Töï choïn Thôøi gian taêng toác P003 Töï choïn Thôøi gian giaûm toác P006 1 Cheá ñoä duøng ngoõ vaøo töông töï P007 0 Khoâng cho pheùp ñieàu khieån bieán taàn qua baøn phím P009 3 Cho pheùp truy caäp taát caû caùc thoâng soá P051 Töï tính Cho pheùp DIN1 ñieàu khieån ñoäng cô chaïy/ döøng. P013 30.00 Taàn soá cho pheùp cöïc ñaïi laø 30Hz P021 0 Choïn taàm % toác ñoä ñaët öùng vôùi analog min (0%)

% toác ñoä ñöôïc tính theo giaù trò “toác ñoä cöïc ñaïi” P022 Töï choïn Choïn taàm % toác ñoä ñaët öùng vôùi analog max (65%)

% toác ñoä ñöôïc tính theo giaù trò “toác ñoä cöïc ñaïi” P323 0 Tín hieäu caûm bieán daïng ñieän aùp taàm 0÷10V Caûm bieán toác ñoä (tachometter): ±4V/±1000RPM

Bieán taàn (P323): Vmax = 10V⇔ 2500RPM ⇔ 41,7Hz Ñöôïc xem laø “toác ñoä cöïc ñaïi” khi chaïy ôû cheá ñoä voøng kín (PID)

P201 1 Cho pheùp chaïy cheá ñoä PID P202 Hieäu chænh Kp (Ñieàu chænh Kp töø 0 → 200.0) P203 Hieäu chænh Ki (Ñieàu chænh Ki töø 0 → 2.00) P204 Hieäu chænh Kd (Ñieàu chænh Kd töø 0 → 1.0) P080 0.80 Heä soá coâng suaát ñònh möùc cuûa ñoäng cô = 0,8 P082 Xem ñoäng cô Toác ñoä ñònh möùc cuûa ñoäng cô (RPM) P083 Xem ñoäng cô Doøng ñieän ñònh möùc cuûa ñoäng cô (A)

Page 13: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 2 II.7

Thay ñoåi thoâng soá P001 cuûa bieán taàn (xem baûng thoâng soá) ñeå thay ñoåi cheá ñoä hieån thò cuûa bieán taàn treân P000. Khi ñieàu khieån voøng kín PID (P201=1):

1. P001 = 1: hieån thò giaù trò ñaët theo % toác ñoä cöïc ñaïi. 2. P001 = 7: hieån thò giaù trò hoài tieáp theo % toác ñoä cöïc ñaïi.

Ñieàu chænh bieán trôû ñeå thay ñoåi % toác ñoä ñaët.

Hieäu chænh PID sao cho ñaùp öùng toác ñoä (ñoä giaûm toác, …) cuûa ñoäng cô khi khoâng taûi toát nhaát (so saùnh giaù trò ñaët vaø giaù trò hoài tieáp).

Khaûo saùt, so saùnh ñaùp öùng toác ñoä cuûa ñoäng cô khi khoâng taûi vaø khi coù taûi (ñoäng cô keùo baêng taûi).

So saùnh ñaùp öùng toác ñoä khi ñieàu khieån voøng vaø khi ñieàu khieån voøng hôû nhö ôû phaàn 2.

IV. BAÙO CAÙO : 1. So saùnh hai phöông phaùp ñieàu khieån ñaõ khaûo saùt. 2. Yeâu caàu ñieàu khieån toác ñoä ñoäng cô duøng 4 taàn soá coá ñònh 15, 20, 25, 30 vaø coù coâng taéc ñaûo chieàu. - Xaùc ñònh vaø giaûi thích chi tieát caùc thoâng soá cuûa boä bieán taàn caàn söû duïng .

- Veõ sô ñoà noái daây cuûa heä bieán taàn vaø ñoäng cô (coù chuù thích) 3. Neâu sô löôïc veà phöông phaùp ñieàu khieån voøng kín duøng PID.

Veõ sô ñoà ñaáu daây vaø caùc thoâng soá caàn thieát laäp (giaûi thích). Khaûo saùt ñaùp öùng toác ñoä ñoäng cô so vôùi ñieàu khieån voøng hôû. Neâu caùc öu/ khuyeát ñieåm khi ñieàu khieån voøng kín toác ñoä ñoäng cô duøng

bieán taàn. Taøi lieäu tham khaûo : [1] Siemens MicroMaster Vector Manual

Page 14: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 3 III.1

BAØI 3 : ÑIEÀU KHIEÅN ÑOÄNG CÔ KHOÂNG ÑOÀNG BOÄ BA PHA DUØNG BOÄ BIEÁN TAÀN VAØ PLC S7 – 200

I. MUÏC ÑÍCH : - Tìm hieåu veà boä bieán taàn Siemens MicroMaster 3. - Tìm hieåu veà hoï PLC S7–200 vaø phaàn meàm laäp trình STEP7-MICROWIN

32. - Tìm hieåu vaø söû duïng toolbox USS (giao thöùc USS) cuûa MICROWIN 32. - Tìm hieåu veà caùch söû duïng PLC ñeå ñieàu khieån caùc ñoái töôïng nhö ñoäng cô,

contactor, …. - Laøm quen vôùi caùc thieát bò coâng nghieäp vaø khaùi nieäm ñieàu khieån meàm

baèng vieäc laäp trình cho PLC. II. ÑAËT VAÁN ÑEÀ : Boä bieán taàn MicroMaster Vector (MMV) ñöôïc duøng ñeå ñieàu khieån toác ñoä ñoäng cô 3 pha vôùi khaû naêng ñieàu khieån vector khoâng duøng caûm bieán cho pheùp boä bieán taàn tính toaùn caùc thay ñoåi caàn thieát cuûa doøng ñieän vaø taàn soá ñaàu ra ñeå duy trì toác ñoä mong muoán cuûa ñoäng cô vôùi caùc ñieàu kieän taûi khaùc nhau. Boä bieán taàn MMV coù theå hoïat ñoäng ôû 4 cheá ñoä ñieàu khieån : - Cheá ñoä ñieàu khieån V/f : duøng cho caùc öùng duïng coù caùc ñaëc tính moâmen

tuyeán tính. - Cheá ñoä ñieàu khieån doøng töø thoâng FCC. - Cheá ñoä ñieàu khieån V/f bình phöông : duøng cho caùc öùng duïng taûi quaït vaø

bôm (moâmen thay ñoåi theo qui luaät bình phöông) . - Cheá ñoä ñieàu khieån vector phi caûm bieán (SVC). Caùc cheá ñoä ñieàu khieån naøy ñöôïc löïa choïn baèng vieäc thay ñoåi thoâng soâ P077. Trong noäi dung baøi thöïc taäp naøy chæ duøng phöông phaùp ñieàu khieån FCC. III. NOÄI DUNG THÖÏC TAÄP : - Tìm hieåu caùch söû duïng boä bieán taàn MM 3. - Tìm hieåu vaø söû duïng CPU 226 vaø phaàn meàm laäp trình STEP 7

MICROWIN 32, USS TOOLBOX. - Laäp trình Ladder ñieàu khieån töø xa boä bieán taàn duøng giao thöùc USS. - Naïp chöông trình ñieàu khieån vaøo PLC vaø kieåm tra hoaït ñoäng cuûa PLC vaø

ñoäng cô. Chuaån bò tröôùc caùc leänh: caùc leänh giao thöùc USS, caùc leänh ñoïc traïng thaùi bit, caùc leänh sao cheùp döõ lieäu daïng byte, word, real.

Page 15: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 3 III.2

Ñieàu khieån boä bieán taàn töø xa qua ñöôøng döõ lieäu USS duøng PLC 226 vaø toolbox USS Protocol trong Step7 MicroWin 32. Thay ñoåi toác ñoä ñoäng cô baèng caùch xuaát ra caùc giaù trò taàn soá töông öùng vaøo boä bieán taàn duøng giao thöùc USS. Duøng moät input PLC laøm nuùt nhaán ñaûo chieàu ñoäng cô.

MICROMASTER

Communication Port

PPI network cable

Yeâu caàu: Vieát chöông trình LADDER: Ñieàu khieån ñoäng cô 3 toác ñoä (25%, 50% vaø 100%), giaù trò taàn soá ñaët

(trong P094) (duøng leänh USS_CTRL). Duøng caùc ngoõ vaøo PLC ñeå ñieàu khieån RUN/STOP, DIR(ñaûo chieàu), OFF

(OFF2 vaø OFF3) (duøng leänh USS_CTRL). Ñoïc giaù trò toác ñoä (Param P135) vaøo boä nhôù PLC (duøng leänh

USS_RPM_W). Töø PLC coù theå chuyeån ñoåi giöõa 2 cheá ñoä hieån thò treân bieán taàn (hieån thò

taàn soá ra vaø hieån thò toác ñoä treân P000) (duøng leänh USS_WPM_W ñeå ghi leân bieán taàn thay ñoåi P001 - xem baûng thoâng soá).

Thieát bò caàn thieát : - Ñoäng cô khoâng ñoàng boä 3 pha 1,5 kW. - Bieán taàn MICROMASTER Vector 6SE32. - PLC S7-226 vaø caùc moñun INPUT/OUTPUT Simulator. Löu yù :Phaàn höôùng daãn veà caùch thieát laäp thoâng soá bieán taàn vaø giôùi thieäu veà toolbox USS ñoïc phaàn phuï luïc.

Page 16: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 3 III.3

Thieát laäp thoâng soá :

Thoâng soá Giaù trò Yù nghóa P944 1 Reset boä bieán taàn veà caùc thoâng soá maëc ñònh P009 3 Cho pheùp truy caäp taát caû caùc thoâng soá P081 – P085 Xem ñoäng cô Caùc giaù trò danh ñònh cuûa ñoäng cô P910 1 Cho pheùp cheá ñoä ñieàu khieån töø xa P092 Giaù trò töông öùng

BAUD (USS_INIT)

Toác ñoä baud cuûa bieán taàn

P091 0 – 30, töông öùng vôùi giaù trò DRIVE (USS_CTRL)

Ñòa chæ cuûa boä bieán taàn

P002 Töï choïn Thôøi gian taêng toác cuûa ñoäng cô P003 Töï choïn Thôøi gian giaûm toác cuûa ñoäng cô P094 50 Taàn soá ñaët cuûa ñoäng cô = 50 Hz P095 0 Ñoä phaân giaûi 0,1 Hz

Xem theâm baûng thoâng soá bieán taàn trong phaàn phuï luïc. Vieát chöông trình ñieàu khieån ñoäng cô . Ví duï veà caùch ñaët thoâng soá : - Ñòa chæ bieán taàn = 1 : giaù trò ACTIVE = 2, DRIVE = 1 - Toác ñoä baud = 9600 : BAUD = 9600 - Caùc ngoõ vaøo ñieàu khieån RUN, OFF, DIR,…. - Duøng port 0 noái caùp USS tôùi coång RS485 cuûa bieán taàn : USS = 1 - Ñieàu khieån ñoäng cô chaïy ôû 75% toác ñoä ñaët : SPD_SP = 75 - Sau khi vieát xong chöông trình vaøo menu File/Library Memory ñeå thieát

laäp boä nhôù daønh cho toolbox USS ( vuøng nhôù bieán V) : vuøng nhôù naøy (khoaûng 400 byte ) khoâng ñöôïc söû duïng trong chöông trình.

Thieát laäp Library Memory Allocation : ñeå chaïy ñöôïc chöông trình söû duïng USS Toolbox thì caàn phaûi thieát laäp vuøng nhôù duøng cho toolbox naøy (thieát laäp trong menu File/Library Memory, nhaán nuùt Suggest Address ñeå choïn) Chuù yù raèng vuøng nhôù naøy (~ 400 byte) ñöôïc duøng cho thö vieän leänh USS, do ñoù khoâng ñöôïc söû duïng vuøng nhôù naøy trong chöông trình.

Page 17: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 3 III.4

IV. BAÙO CAÙO :

1. Neâu söï khaùc nhau cuûa caùc cheá ñoä döøng OFF2 , OFF3 vaø RUN(khi chuyeån töø traïng thaùi ON sang traïng thaùi OFF) . 2. Vieát chöông trình LADDER ñieàu khieån ñoäng cô 3 toác ñoä (25%, 50% vaø 100%); coù theå ñaûo chieàu, coù theå chuyeån ñoåi giöõa 2 cheá ñoä hieån thò treân bieán taàn (hieån thò taàn soá ra vaø hieån thò toác ñoä) ; ñoàng thôøi cho pheùp ñoïc giaù trò toác ñoä vaøo boä nhôù cuûa PLC. Löu yù ñeán kieåu döõ lieäu cuûa caùc ngoõ vaøo leänh USS. - Xaùc ñònh soá tín hieäu vaøo vaø ra caàn lieân keát vôùi PLC. - Lieät keâ caùc thoâng soá bieán taàn caàn thieát. - Sô ñoà noái daây PLC - Giaûi thích hoaït ñoäng cuûa chöông trình

Giaûi thích hoaït ñoäng cuûa chöông trình ñaõ vieát, nhaän xeùt veà chöông trình. Taøi lieäu tham khaûo : [1] Töï ñoäng hoùa vôùi SIMATIC S7 – 200 . Nguyeãn Doaõn Phöôùc Phaïm Xuaân Minh [2] Siemens S7 – 200 Programmable Controller. [3] Siemens

MicroMaster Vector Manual

Page 18: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

Caáu truùc döõ lieäu soá trong PLC

1. Caùc oâ nhôù ñaëc bieät: SM0.0 Bit naøy luoân luoân ON. SM0.1 Bit naøy chæ ON trong chu kyø queùt ñaàu tieân cuûa PLC. SM0.5 Bit naøy taïo xung clock 1 giaây (0,5s ON vaø 0,5s OFF). SM0.4 Bit naøy taïo xung clock 1 phuùt.

2. Caáu truùc oâ nhôù trong PLC Siemens: 1 Byte = 8 Bit QB0 ≡ Q0.0→Q0.7 1 Word = 2 Byte = 16 Bit (lieân tieáp) QW0 ≡ QB0→QB1 1 Double Word = 4 Byte = 32 Bit (lieân tieáp) QD0 ≡ QB0→QB3

3. Caáu truùc oâ nhôù cuûa döõ lieäu soá: Soá Byte (B) 1 byte ~ Byte Soá Integer (I): 2 byte ~ Word Soá Long Integer (D) 4 byte ~ Double Word Soá Real (R) 4 byte ~ Double Word

Leänh xaùc ñònh caïnh leân

- Tieáp ñieåm phaùt hieän caïnh leân P seõ chæ ON trong moät chu kyø queùt cuûa PLC khi tín hieäu ngay tröôùc P (I0.4) chuyeån traïng thaùi töø 0 leân 1.

Page 19: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.1

BAØI 4: ÑIEÀU KHIEÅN ÑOÄNG CÔ KHOÂNG ÑOÀNG BOÄ BA PHA DUØNG BOÄ KHÔÛI ÑOÄNG MEÀM SIKOSTART VAØ PLC S7-200

I. MUÏC ÑÍCH: - Tìm hieåu veà boä khôûi ñoäng meàm Sikostart cuûa haõng Siemens. - Tìm hieåu veà hoï PLC S7–200, CPU 226 (ngoõ ra Relay); taäp leänh vaø

phaàn meàm laäp trình STEP7 MICROWIN 32 (chuù yù ñeán caùc leänh veà xöû lyù Bit, Timer (TON, TOF)).

- Thöïc taäp veà caùch söû duïng PLC ñeå ñieàu khieån caùc ñoái töôïng nhö ñoäng cô, contactor, ….

- Thöïc taäp ñieàu khieån ñoäng cô duøng boä khôûi ñoäng meàm Sikostart vaø khaùi nieäm ñieàu khieån meàm baèng vieäc laäp trình cho PLC.

II. ÑAËT VAÁN ÑEÀ: Sikostart 3RW2221-1AB15 laø boä khôûi ñoäng meàm, cho pheùp ñieàu khieån ñoäng cô AC khoâng ñoàng boä 3 pha. Baèng caùch ñieàu khieån ñoä lôùn ñieän aùp cung caáp cho ñoäng cô, vaø giaùm saùt doøng ñieän laøm vieäc. Sikostart coù theå khoáng cheá doøng ñieän laøm vieäc cuûa ñoäng cô trong moät giôùi haïn thôøi gian cho pheùp, hay baûo veä cho ñoäng cô neáu xaûy ra quaù taûi. Thoâng qua vieäc caøi ñaët thôøi gian, Sikostart coù theå ñieàu khieån ñoäng cô khôûi ñoäng meàm (doøng khôûi ñoäng giôùi haïn) hay döøng meàm; maø khoâng laøm momen cuûa ñoäng cô thay ñoåi quaù nhanh; coù theå xem nhö SIKOSTART ñieàu khieån voøng hôû toác ñoä khôûi ñoäng ñoäng cô.

U, I UN

UAnf UAB=0,85UAnf

0,9UN

IBI

U

tR tB

t tAus

5 3Cheá ñoä khôûi ñoäng

2 1 Cheá ñoä döøng

Page 20: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.2

Sô ñoà treân moâ taû SIKOSTART ñieàu khieån ñoäng cô trong moät quaù trình khôûi ñoäng meàm vaø döøng meàm. Daïng ñieän aùp (ñoä lôùn) thay ñoåi theo cheá ñoä caøi ñaët cho Sikostart vaø doøng ñieän hieän taïi cuûa ñoäng cô.

III. NOÄI DUNG THÖÏC TAÄP:

III.1. SINH VIEÂN THÖÏC HIEÄN CAÙC PHAÀN THÖÏC TAÄP SAU:

1) Söû duïng Sikostart vaän haønh ñoäng cô trong caùc cheá ñoä khôûi ñoäng meàm vaø döøng meàm:

Duøng SIKOSTART vaän haønh ñoäng cô laàn löôït theo töøng cheá ñoä döôùi ñaây. Caøi ñaët cheá ñoä khôûi ñoäng vaø cheá ñoä döøng cho Sikostart thoâng qua 4 bieán trôû ñieàu chænh vaø 8 coâng taéc DIL1 ÷DIL8. Ghi nhaän laïi ñaùp öùng thôøi gian cuûa ñoäng cô (2HP, vaän haønh khoâng taûi) ñoái vôùi töøng cheá ñoä. Baèng caùch thay ñoåi caùc giaù trò treân caùc bieán trôû ñieàu chænh vaø xem LED hieån thò ñeå ñaùnh giaù thôøi gian ñaùp öùng töông ñoái cuûa ñoäng cô.

Cheá ñoä khôûi ñoäng meàm:

Coâng taéc DIL DIL 3 DIL 5

Cheá ñoä khôûi ñoäng

Haøm doác ñieän aùp (Voltage ramp) Giôùi haïn doøng (Current limiting) Haøm doác ñieän aùp vôùi giôùi haïn doøng

(voltage ramp with current limiting) Haøm doác ñieän aùp vôùi xung ban ñaàu

(voltage ramp with start impulse) Haøm doác ñieän aùp vôùi xung ban ñaàu vaø giôùi haïn doøng

(voltage ramp with start impulse and current limiting) Khôûi ñoäng nhanh (Emergency start)

Taêng toác

Giaûm toác

Haïn doøng

Page 21: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.3

Cheá ñoä döøng meàm:

Coâng taéc DIL DIL 1 DIL 2

Cheá ñoä döøng

Taét kieåu bôm (pump-stopping) Haõm moät chieàu (khoâng duøng) Döøng meàm (soft-stopping) Döøng nhanh (costing down)

Xem höôùng daãn caøi ñaët chi tieát cho töøng cheá ñoä trong phaàn Höôùng daãn söû duïng SIKOSTART ôû cuoái taøi lieäu naøy. Chuù yù:

• Caáp nguoàn ñieàu khieån 220V vaø nguoàn ñoäng löïc ba pha 220-380V thoâng qua caùc CB, ñieàu khieån baèng nuùt nhaán 24V:

• Khoâng söû duïng caùc ngoõ ra relay cuûa Sikostart trong cheá ñoä naøy. Söû duïng contactor 220V- 3 tieáp ñieåm ñeå noái Sikostart vôùi ñoäng cô 3 pha.

• Khi thay ñoåi caùc giaù trò cuûa caùc bieán trôû ñieàu chænh, ñaùp öùng thôøi gian khôûi ñoäng vaø thôøi gian döøng cuûa ñoäng cô nhö theá naøo?

2) Söû duïng Sikostart khôûi ñoäng meàm ñoäng cô vaø bypass: Duøng Sikostart khôûi ñoäng meàm ñoäng cô vaø bypass: Khôûi ñoäng meàm ñoäng cô theo cheá ñoä haøm doác ñieän aùp vôùi giôùi haïn doøng (voltage ramp with current limiting). Khi ñoäng cô ñaõ chaïy oån ñònh, duøng contactor bypass noái tröïc tieáp ñoäng cô vôùi nguoàn (,sau ñoù coù theå caét Sikostart ra khoûi maïch ñoäng löïc – môû contactor noái Sikostart vôùi ñoäng cô). Caáp nguoàn ñieàu khieån 220V, ñieàu khieån baèng nuùt nhaán, söû duïng ngoõ ra relay ñeå ñoùng contactor bypass. Söû duïng 2 contactor 220V - 3 tieáp ñieåm ñeå laøm contactor bypass vaø noái Sikostart vôùi ñoäng cô 3 pha. Chuù yù:

• Trong cheá ñoä naøy, khi ñoäng cô ñaõ ñöôïc bypass, coù neân vaän haønh ñöôïc cheá ñoä döøng meàm cuûa SIKOSTART ñöôïc khoâng?

• Khi ñaõ vaän haønh oån ñònh thì maïch ñieàu khieån cuûa heä thoáng coù coøn lieân heä gì ñeán SIKOSTART khoâng?

• Neâu ra giaûi phaùp ñieàu khieån (duøng PLC) ñeå cho SIKOSTART döøng haún khi ñaõ bypass, taïo ñieàu kieän cho SIKOSTART khôûi ñoäng tuaàn töï nhieàu ñoäng cô.

11 OUT L+ DC 24V 10 IN1 START 9 IN2 STOP

ONOFF

Page 22: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.4

3) Söû duïng PLC S7-200 vaø Sikostart khôûi ñoäng meàm vaø bypass cho ñoäng cô: Laäp trình cho PLC ñieàu khieån SIKOSTART khôûi ñoäng ñoäng cô theo cheá ñoä haøm doác ñieän aùp vôùi giôùi haïn doøng (voltage ramp with current limiting).

Ñaáu daây maïch ñieàu khieån tuaàn töï theo caùc yeâu caàu sau: Khi coù yeâu caàu khôûi ñoäng cô, ngöôøi ñieàu khieån caáp tín hieäu (nuùt nhaán START treân PLC) yeâu caàu cho PLC. PLC ñoùng contactor noái ñoäng cô vôùi Sikostart vaø caáp tín hieäu ñieàu khieån Sikostart gioáng nhö moät contactor. Khi ñoäng cô chaïy oån ñònh, ngoõ ra relay seõ ñöa tín hieäu veà PLC thoâng qua ngoõ ra relay (3 vaø 4) cuûa Sikostart. Khi ñoù PLC caáp tín hieäu ñoùng contactor bypass, chôø moät thôøi gian cho contactor bypass ñaùp öùng thì caét Sikostart ra khoûi maïch ñoäng löïc, döøng hoaït ñoäng cuûa Sikostart. Döøng ñoäng cô baèng caùch caáp tín hieäu cho PLC môû contactor bypass. Coù theå ñoïc tín hieäu baùo loãi töø Sikostart thoâng qua ngoõ ra relay baùo loãi. Chæ cho pheùp khôûi ñoäng laïi ñoäng cô khi ñoäng cô ñoù ñaõ döøng sau ít nhaát 10 sec. Chuù yù:

• PLC nhaän tín hieäu ngoõ vaøo 24V, vì vaäy ngoõ ra relay (3 vaø 4) cuûa SIKOSTART phaûi caáp tín hieäu 24V veà cho PLC.

• PLC coù ngoõ ra laø caùc tieáp ñieåm relay ñöôïc noái chung vôùi nhau, chöa noái nguoàn beân trong, vì vaäy coù theå ñieàu khieån caùc contactor baèng caáp ñieän aùp 220V.

• Do caùc ngoõ ra relay cuûa PLC ñaõ ñöôïc noái chung: neân phaûi ñieàu khieån khôûi ñoäng SIKOSTART baèng tín hieäu ñieän aùp 220V (ñieàu khieån Sikostart gioáng nhö moät contactor), cuøng caáp ñieän aùp ñieàu khieån vôùi caùc caùc contactor.

15 380-415 VAC 14 200-240 VAC 13 100-120 VAC 12 N/L

L1

N 11 OUT L+ DC 24V 10 IN1 START 9 IN2 STOP

ON/OFF

PLC S7-200 CPU-226

Q0.0 Q0.1 Q0.2 Q0.3 Q0.4 COM OUTPUT-Relay

INPUT-24Vdc COM I0.0 I0.1 I0.2 I0.3

Page 23: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.5

4) Söû duïng PLC S7-200 vaø 1 Sikostart khôûi ñoäng meàm cho hai ñoäng cô:

• Ñaáu daây maïch ñoäng löïc (ñaõ daáu saün) vaø maïch ñieàu khieån töông töï nhö phaàn 3 cho hai ñoäng cô.

• Laäp trình ñieàu khieån theo caùc yeâu caàu sau:

Nuùt nhaán yeâu caàu khôûi ñoäng rieâng cho töøng ñoäng cô.

Nhaán nuùt yeâu caàu khôûi ñoäng ñoäng cô sẽ khoâng coù taùc duïng neáu ñoäng cô ñoù döøng chöa ñuû 10 sec.

Trong khi moät ñoäng cô ñang khôûi ñoäng, nhaán nuùt khôûi ñoäng cho ñoäng cô khaùc seõ khoâng coù taùc duïng – traùnh tröôøng hôïp SIKOSTART cuøng luùc noái daây vôùi hai ñoäng cô.

Nuùt nhaán yeâu caàu döøng rieâng cho töøng ñoäng cô. Chuù yù: Duøng chung moät tín hieäu baùo ñoäng cô khôûi ñoäng xong thoâng qua relay 3 & 4 cuûa SIKOSTART.

III.2. HÖÔÙNG DAÃN VAÄN HAØNH SIKOSTART:

1) Söû duïng Sikostart vaän haønh ñoäng cô trong caùc cheá ñoä khôûi ñoäng meàm vaø döøng meàm:

Döôùi ñaây laø moät ví duï veà maïch ñieàu khieån vaø maïch ñoäng löïc cho SIKOSTART ñieàu khieån ñoäng cô. Xem caøi ñaët cho DIL1 ÷DIL8 vaø 4 bieán trôû ñieàu chænh trong phaàn Höôùng daãn söû duïng SIKOSTART ôû cuoái taøi lieäu naøy.

Ñaët cheá ñoä khôûi ñoäng baèng coâng taéc DIL 3 vaø DIL 5.

Ñaët thôøi gian leân cuûa ñieän aùp tR: RAMP TIME. (tR = 0,3 – 180 sec). Ñaët ñieän aùp (xung) ban ñaàu UAnf (UL): START VOLTAGE. (UAnf (UL) = 20% - 100% UN).

Ñaët doøng giôùi haïn baèng IB nuùt ñieàu chænh CURRENT LIMIT. (Vôùi Sikostart 3RW2221-1AB15, doøng Ie = 5.5A, IB = 0.5 – 6 Ie; trong baøi thöïc taäp naøy choïn IB = 0.5Ie).

Ñaët cheá ñoä döøng baèng coâng taéc DIL 1 vaø DIL 2.

Ñaët thôøi gian xuoáng cuûa ñieän aùp tAus: STOP TIME. (tAus = 5÷90 sec hay tAus = 1 ÷ 20 sec).

Ñaët ñieän aùp taét UAB: START VOLTAGE. (UAB = 85% ñieän aùp khôûi ñoäng).

Neáu tB lôùn hôn 20 sec thì Sikostart seõ baùo quaù taûi, “overload”.

Thôøi gian xung ti = (50 ms * tR) vaø ti ≤ 1 sec. tR ñöôïc tính töø luùc keát thuùc ti.

Page 24: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.6

2) Söû duïng Sikostart khôûi ñoäng meàm ñoäng cô vaø bypass:

- Söû duïng laïi maïch ñieàu khieån vaø maïch ñoäng löïc ôû phaàn 1.

o Trong phaàn maïch ñoäng löïc maéc theâm contactor bypass noái nguoàn vôùi ñoäng cô.

o Trong phaàn maïch ñieàu khieån maéc theâm maïch ñieàu khieån cho contactor bypass.

- Khi ñoäng cô ñaõ chaïy oån ñònh, tieáp ñieåm (NO) giöõa chaân 3 vaø chaân 4 cuûa Sikostart ñoùng laïi, khi ñoù contactor bypass ñöôïc ñoùng vaø doøng ñieän vaøo ñoäng cô theo ñöôøng contactor bypass. Luùc naøy coù theå caét Sikostart ra khoûi maïch ñoäng löïc – môû contactor noái Sikostart vôùi ñoäng cô (coù theå thoâng qua tieáp ñieåm trung gian NC cuûa contactor bypass).

- Döøng ñoäng cô baèng caùch môû contactor bypass – döøng Sikostart. Trong tröôøng hôïp naøy, Sikostart chæ coù theå döøng nhanh (costing down).

L2 L3L1AC 380 – 415V

123456789

101112131415

bracking protection

end off start

Fault

ResetIN1IN2DC L +24VN/LAC 100 – 120VAC 200 – 240V

T2 T3T1

CB

L1 L2 L3 N

M 3

K

CB

K W V U

STA

RT

STO

P

Page 25: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.7

3) Söû duïng PLC S7-200 vaø Sikostart khôûi ñoäng meàm cho nhiều ñoäng cô:

3.1: Söû duïng PLC S7-200 vaø Sikostart khôûi ñoäng meàm cho một ñoäng cô:

- Caùc cheá ñoä hoaït ñoäng cuûa Sikostart coù theå nhö phaàn 2. Nhöng tín hieäu taùc ñoäng leân Sikostart vaø tín hieäu Sikostart taùc ñoäng leân ñoäng cô phaûi qua trung gian PLC.

- Ñeå ñieàu khieån moät ñoäng cô chaïy, chæ caàn nhaán nuùt START öùng vôùi ñoäng cô ñoù treân PLC. Quaù trình keát noái Sikostart vôùi ñoäng cô - khôûi ñoäng – bypass

L2 L3L1AC 380 – 415V

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15

bracking protection

end off start

Fault

ResetIN1IN2DC L +24VN/LAC 100 – 120VAC 200 – 240V

T2 T3T1

CB

L1 L2 L3 N

K2

M 3

K1

CB

K1 K2

W V U

STA

RT

STO

P

K2

Page 26: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.8

– caét Sikostart khoûi ñoäng cô – döøng Sikostart hoaøn toaøn töï ñoäng do PLC ñieàu khieån. Contactor bypass ñöôïc ñieàu khieån tröïc tieáp töø PLC, neân khi Sikostart döøng vaãn khoâng aûnh höôûng ñeán ñoäng cô. Khoaûng caùch giöõa moãi thao taùc caàn delay moät khoaûng thôøi gian ñuû cho contactor ñaùp öùng.

- Nhaán nuùt yeâu caàu khôûi ñoäng ñoäng cô sẽ khoâng coù taùc duïng: neáu ñoäng cô ñoù döøng chöa ñuû 10 sec.

- Ngoõ ra relay cuûa PLC ñieàu khieån khôûi ñoäng Sikostart (gioáng nhö moät contactor – xem ngoõ vaøo ñieàu khieån Sikostart) vaø caùc contactor baèng tín hieäu ñieän aùp 220V.

- Ngoõ ra relay cuûa Sikostart caáp tín hieäu 24V veà PLC ñeå baùo ñoäng cô ñaõ chaïy oån ñònh.

3.2: Söû duïng PLC S7-200 vaø Sikostart khôûi ñoäng meàm cho hai ñoäng cô:

• Caùc cheá ñoä hoaït ñoäng cuûa hệ thoáng töông töï phaàn treân. Thieát laäp sô ñoà ñieàu khieån vaø maïch ñoäng löïc ñieàu khieån cho hai ñoäng cô.

• Khi ñang trong cheá ñoä khôûi ñoäng moät ñoäng cô naøy thì nhaán nuùt yeâu caàu khôûi ñoäng ñoäng cô khaùc sẽ khoâng coù taùc duïng – traùnh tröôøng hôïp SIKOSTART cuøng luùc noái daây vôùi hai ñoäng cô.

III.3. YEÂU CAÀU CHUAÅN BÒ TRÖÔÙC KHI THÖÏC TAÄP:

(Moãi sinh vieân phaûi noäp chuaån bò tröôùc khi vaøo thöïc taäp)

- Töï tìm hieåu boä khôûi ñoäng meàm Sikostart 3RW2221-1AB15. - Töï tìm hieåu caáu truùc PLC S7-200 CPU 226 cuûa Siemens; ngoân ngöõ vaø

phaàn meàm laäp trình STEP7 MICROWIN 32 (caùc leänh caàn duøng).

- Ñoái vôùi phaàn 1 vaø phaàn 2: o Veõ maïch ñieàu khieån vaø maïch ñoäng löïc cho Sikostart ñieàu khieån

ñoäng cô. o Thieát laäp caùc thoâng soá ñieàu khieån trong töøng cheá ñoä cho Sikostart. o Moâ taû trình töï khôûi ñoäng ñoäng cô, bypass (phaàn 2) vaø döøng ñoäng cô.

- Ñoái vôùi phaàn 3: o Xaùc ñònh soá tín hieäu vaøo vaø ra caàn lieân keát vôùi PLC. o Veõ maïch ñieàu khieån keát noái PLC vôùi Sikostart vaø caùc contactor,

cuøng vôùi maïch ñoäng löïc ñeå ñieàu khieån khôûi ñoäng hai ñoäng cô. o Thieát laäp caùc thoâng soá ñieàu khieån cho Sikostart. o Moâ taû cheá ñoä khôûi ñoäng ñoäng cô, noái bypass vaø cheá ñoä döøng ñoäng cô. o Vieát chöông trình LADDER cho PLC thöïc hieän chöùc naêng ñieàu khieån.

Page 27: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.9

III.4. THÖÏC TAÄP THEO TRÌNH TÖÏ SAU:

Treân cô sôû baøi töï chuaån bò, trong nhoùm töï kieåm tra laïi, thoáng nhaát vaø tieán haønh thöïc taäp döôùi söï giaùm saùt cuûa Caùn boä höôùng daãn thöïc taäp trong thôøi gian quy ñònh:

- Ñoái vôùi phaàn 1 vaø phaàn 2: o Noái maïch ñieàu khieån vaø maïch ñoäng löïc cho Sikostart ñieàu khieån

ñoäng cô. o Caøi ñaët caùc thoâng soá ñieàu khieån trong töøng cheá ñoä cho Sikostart. o Xin pheùp vaø giaûi thích cho Caùn boä höôùng daãn tröôùc khi vaän haønh. o Ñoùng nguoàn vaø tieán haønh khôûi ñoäng vaø döøng ñoäng cô döôùi söï

giaùm saùt cuûa Caùn boä höôùng daãn. o Ghi laïi caùc hieäu öùng nhö caùc thoâng soá ñeå baùo caùo.

- Ñoái vôùi phaàn 3 vaø phaàn 4:

o Söû duïng PLC S7-200 vaø Sikostart khôûi ñoäng meàm cho một ñoäng cô, neáu vaän haønh toát thì tieáp tuïc maéc maïch ñieàu khieån khôûi ñoäng cho hai ñoäng cô.

o Döïa treân baøi chuaån bò ñaõ thoáng nhaát, laäp trình (LADDER) cho PLC ñeå ñieàu khieån khôûi ñoäng hai ñoäng cô thoâng qua Sikostart vaø caùc contactor.

o Naïp chöông trình ñieàu khieån vaøo PLC; kieåm tra hoaït ñoäng cuûa chöông trình baèng caùch moâ phoûng caùc traïng thaùi qua caùc nuùt nhaán vaø boùng ñeøn. Neáu hoaït ñoäng theo ñuùng yeâu caàu, baùo caùo ngay vôùi Caùn boä höôùng daãn.

o Noái maïch ñieàu khieån keát noái PLC vôùi Sikostart vaø caùc contactor, cuøng vôùi maïch ñoäng löïc ñeå ñieàu khieån khôûi ñoäng hai ñoäng cô.

o Caøi ñaët caùc thoâng soá ñieàu khieån cho Sikostart. o Xin pheùp vaø giaûi thích cho Caùn boä höôùng daãn tröôùc khi vaän haønh. o Ñoùng nguoàn vaø tieán haønh khôûi ñoäng vaø döøng ñoäng cô döôùi söï

giaùm saùt cuûa Caùn boä höôùng daãn.

Page 28: Tai lieu hd_tttn_2006

Taøi lieäu thöïc taäp toát nghieäp

Baøi 4 IV.10

IV. BAÙO CAÙO: (Moãi sinh vieân phaûi noäp laïi baùo caùo thöïc taäo vaøo buoåi keá tieáp)

- Ñoái vôùi phaàn 1 vaø phaàn 2: o Sô ñoà noái daây maïch ñieàu khieån vaø maïch ñoäng löïc cho Sikostart

ñieàu khieån ñoäng cô. o Caùc thoâng soá caøi ñaët cho Sikostart trong töøng cheá ñoä ñieàu khieån. o Nhaän xeùt caùc hieäu öùng vaø öùng duïng khi duøng Sikostart.

- Ñoái vôùi phaàn 3: o Moâ taû tín hieäu vaøo vaø ra caàn lieân keát vôùi PLC. o Sô ñoà noái daây maïch ñieàu khieån keát noái PLC vôùi Sikostart vaø caùc

contactor, cuøng vôùi maïch ñoäng löïc ñeå ñieàu khieån khôûi ñoäng hai ñoäng cô.

o Caùc thoâng soá caøi ñaët cho Sikostart. o Chöông trình (LADDER) cho PLC thöïc hieän chöùc naêng ñieàu khieån. o Giaûi thích hoaït ñoäng cuûa chöông trình theo töøng network. o Nhaän xeùt quaù trình ñieàu khieån.

Taøi lieäu tham khaûo: [1] Töï ñoäng hoùa vôùi SIMATIC S7 – 200 . Nguyeãn Doaõn Phöôùc Phan Xuaân Minh [2] Siemens S7 – 200 Programmable Controller. [3] Siemens SIKOSTART 3RW22 Manual

Page 29: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

HÖÔÙNG DAÃN SUÛ DUÏNG STEP7-MICROWIN 32 V3.2

Sau ñaây laø trình töï toång quaùt caàn thöïc hieän ñeå khôûi taïo, kieåm tra vaø giaùm saùt moät project söû duïng Step7-MicroWin 32. Moät project goàm chöông trình ñieàu khieån duøng ñeå naïp vaøo PLC, caùc ghi chuù caàn thieát cho chöông trình ñoù vaø caáu hình cho loaïi CPU cuûa PLC.

Trình töï

1. Khôûi ñoäng chöông trình STEP7- MicroWIN 32 trong Windows

Ñeå thieát laäp giao tieáp giöõa PLC vaø PC ta choïn bieåu töôïng Communications (double click)

Trong muïc Communications ta coù theå choïn thieát laäp giao tieáp PG/PC Interface baèng caùch choïn (double click) PC/PPI cable(PPI)

Choïn Properties trong phaàn Set PG/PC Interface ñeå thieát laäp caùc thoâng soá keát noái ( ví duï : toác ñoä baud, coång giao tieáp, ñòa chæ, ...)

Page 30: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

Sau khi hoaøn taát vieäc thieát laäp double click vaøo muïc Double-Click to Refresh ñeå keát noái vôùi PLC.

Neáu giao tieáp ñöôïc :

Page 31: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

2. Khôûi taïo Project

Choïn New trong menu File (xem hình), hoaëc click (nhaán mouse) treân thanh coâng cuï.

3. Vieát/söûa chöông trình

Duøng mouse choïn caùc phaàn töû caàn söû duïng töø danh saùch leänh (duøng chuoät ñeå keùo phaàn töû hoaëc double click vaøo phaàn töû ñeå choïn) ñeå veõ sô ñoà LADDER, sau ñoù ñaët teân cho caùc phaàn töû nhö ví duï trong hình veõ sau :

Chuù yù:

– Moät sô ñoà ñieàu khieån daïng ladder thöôøng bao goàm nhieàu network “maéc song song” vôùi nhau. – Keát thuùc sô ñoà ñoái vôùi Step7-MicroWin 32 ta khoâng baét buoäc phaûi coù leänh keát thuùc khoâng ñieàu kieän END

4. Caùc chuù thích cuûa chöông trình a. Nhaán mouse vaøo haøng chöõ Network 1(2,3...) ñeå ñaët teân cho Network. b. Nhaán mouse vaøo haøng chöõ POU Comment (Project Component Comments) ñeå ghi chuù veà caùc thaønh phaàn cuûa Project. c. Nhaán mouse vaøo haøng chöõ Network Comment ñeå chuù thích cho Network.

Page 32: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

5. Dòch leänh (compile) vaø gôõ roái (debug) chöông trình

- Dòch leänh : vaøo menu PLC choïn leänh Compile :

Luùc naøy chöông trình seõ kieåm tra cuù phaùp cuûa sô ñoà ñieàu khieån vaø thoâng baùo veà kích thöôùc cuûa chöông trình vaø caùc loãi cuù phaùp cuûa chöông trình :

6. Löu giöõ chöông trình: vaøo menu File choïn leänh Save as, neáu chæ söûa chöông trình thì duøng leänh Save.

7. Naïp chöông trình vaøo CPU cuûa PLC

a. Ñònh CPU ôû cheá ñoä STOP theo moät trong hai caùch: • Gaït contact treân boä PLC qua vò trí STOP • Gaït contact treân boä PLC qua vò trí TERM roài vaøo menu PLC choïn Stop.

b. Vaøo menu File, choïn Download. c. Neáu chöông trình ñöôïc naïp vaøo PLC thaønh coâng thì seõ coù thoâng baùo Download hoaøn thaønh.

8. Kieåm tra söï vaän haønh cuûa chöông trình

Ñònh CPU ôû cheá ñoä RUN theo moät trong hai caùch: • Gaït contact treân boä PLC qua vò trí RUN • Gaït contact treân boä PLC qua vò trí TERM roài vaøo menu PLC choïn Run.

Page 33: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

Caáu truùc döõ lieäu soá trong PLC

1. Caùc oâ nhôù ñaëc bieät: SM0.0 Bit naøy luoân luoân ON. SM0.1 Bit naøy chæ ON trong chu kyø queùt ñaàu tieân cuûa PLC. SM0.5 Bit naøy taïo xung clock 1 giaây (0,5s ON vaø 0,5s OFF). SM0.4 Bit naøy taïo xung clock 1 phuùt.

2. Caáu truùc oâ nhôù trong PLC Siemens: 1 Byte = 8 Bit QB0 ≡ Q0.0→Q0.7 1 Word = 2 Byte = 16 Bit (lieân tieáp) QW0 ≡ QB0→QB1 1 Double Word = 4 Byte = 32 Bit (lieân tieáp) QD0 ≡ QB0→QB3

3. Caáu truùc oâ nhôù cuûa döõ lieäu soá: Soá Byte (B) 1 byte ~ Byte Soá Integer (I): 2 byte ~ Word Soá Long Integer (D) 4 byte ~ Double Word Soá Real (R) 4 byte ~ Double Word

Leänh xaùc ñònh caïnh leân

- Tieáp ñieåm phaùt hieän caïnh leân P seõ chæ ON trong moät chu kyø queùt cuûa PLC khi tín hieäu ngay tröôùc P (I0.4) chuyeån traïng thaùi töø 0 leân 1.

Page 34: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

PHAÀN HÖÔÙNG DAÃN PLC: USS TOOLBOX

1. USS TOOLBOX :

Trình töï laäp trình söû duïng caùc leänh USS nhö sau : - Ñaët leänh USS_INIT trong chöông trình. Leänh USS_INIT chæ neân ñöôïc goïi trong moät chu kyø queùt ñeå thieát laäp hay thay ñoåi caùc thoâng soá giao tieáp cuûa giao thöùc USS. - Ñaët chæ moät leänh DRV_CTRL cho moãi moät bieán taàn tích cöïc trong chöông trình. Coù theå theâm vaøo nhieàu leänh USS_RPM_x vaø USS_WPM_x neáu caàn thieát, nhöng chæ moät bieán taàn ñöôïc tích cöïc taïi moät thôøi ñieåm. - Thieát laäp caùc thoâng soá bieán taàn ñeå phuø hôïp vôùi toác ñoä baud vaø ñòa chæ cuûa bieán taàn ñöôïc duøng trong chöông trình. - Noái caùp giao tieáp giöõa CPU vaø caùc bieán taàn..

Caùc leänh USS Protocol Thö vieän leänh STEP7 – Micro/Win cho pheùp ñieàu khieån caùc boä bieán taàn MicroMaster moät caùch deã daøng baèng caùc haøm leänh ñaëc bieät ñöôïc thieát keá söû duïng giao thöùc USS ñeå giao tieáp vôùi bieán taàn. Vôùi caùc leänh USS, ta coù theå ñieàu khieån bieán taàn vaø coù theå ñoïc/ghi caùc thoâng soá cuûa bieán taàn. Caùc leänh USS naøy naèm trong thö muïc Libraries cuûa caây leänh STEP7 – Micro/Win. USS_INIT

Leänh naøy duøng ñeå khôûi ñoäng giao thöùc USS keát noái PLC vaø (maïng) bieán taàn.

Leänh USS_INIT ñöôïc duøng ñeå cho pheùp vaø thieát laäp hay khoâng cho pheùp giao tieáp vôùi bieán taàn MicroMaster. Leänh USS phaûi ñöôïc thöïc hieän maø khoâng coù loãi xuaát hieän tröôùc khi baát cöù leänh USS Protocol naøo coù theå ñöôïc duøng. Leänh naøy hoaøn thaønh vaø bit Done ñöôïc set laäp töùc tröôùc khi tieáp tuïc tôùi leänh keát tieáp. Leänh naøy ñöôïc thöïc hieän moãi khi ngoõ vaøo EN ñöôïc ON. Leänh USS_INIT neân ñöôïc thöïc thi moãi khi coù thay ñoåi traïng thaùi giao tieáp. Moät khi giao thöùc USS Protocol ñaõ ñöôïc thieát laäp , giao thöùc USS phaûi ñöôïc disable bôûi vieäc thöïc thi moät leänh USS_INIT môùi tröôùc khi coù thay ñoåi trong caùc thoâng soá giao tieáp.

Page 35: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

Giaù trò cuûa ngoõ vaøo USS cho pheùp choïn giao thöùc giao tieáp. Giaù trò 1 cho pheùp duøng port 0 cho giao thöùc USS. Giaù trò 0 gaùn port 0 cho giao thöùc PPI vaø disable giao thöùc USS. Ngoõ vaøo BAUD thieát laäp toác ñoä baud : 1200, 2400, 4800, 9600, 19,200, hay 38,400 baud. Ngoõ vaøo ACTIVE chæ ra bieán taàn naøo ñöôïc tích cöïc. Ñoái vôùi bieán taàn MM3 thì hoã trôï ñòa chæ töø 0 ñeán 30.

MSB LSB

31 30 29 28 3 2 1 0

D0D1D2D31 D30 D29

D0 Drive 0 active bit; 0 = drive not active, 1 = drive activeD1 Drive 1 active bit; 0 = drive not active, 1 = drive active...

Active Drive Description and Format Khi leänh USS_INIT hoaøn taát, bit DONE ñöôïc set leân 1. Ngoõ ra ERR (byte) chöùa keát quaû cuûa vieäc thöïc thi leänh. Caùc toaùn haïng vaø kieåu döõ lieäu duøng cho leänh USS_INIT

Inputs/Outputs

Operands Data Types

USS VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

BYTE

BAUD VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, Constant, AC *VD, *AC, *LD

WORD

ACTIVE VD, ID, QD, MD, SD, SMD, LD, AC, Constant, *VD, *AC, *LD

DWORD

DONE I, Q, M, S, SM, T, C, V, Long an BOOL ERR VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC,

*LD BYTE

Page 36: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

USS_CTRL

Leänh naøy duøng ñeå ñieàu khieån bieán taàn chaïy, döøng, ñaûo chieàu vaø thay ñoåi toác ñoä.

Leänh USS_CTRL ñöôïc duøng ñeå ñieàu khieån moät bieán taàn MM ñöôïc tích cöïc. Leänh USS_CTRL ñaët caùc leänh choïn tröôùc trong boä ñeäm giao tieáp. Caùc leänh ñaët trong boä ñeäm ñöôïc göûi cho bieán taàn coù ñòa chæ ñöôïc choïn trong thoâng soá DRIVE, neáu ñòa chæ bieán taàn ñoù ñaõ ñöôïc choïn trong thoâng soá ACTIVE cuûa leänh USS_INIT . Moãi bieán taàn chæ neân coù moät leänh DRV_CTRL . Ngoõ vaøo EN phaûi ñöôïc ON ñeån cho pheùp leänh DRV_CTRL(leänh naøy phaûi luoân luoân ñöôïc cho pheùp). Ngoõ vaøo RUN (RUN/STOP) cho pheùp bieán taàn laø on (1) hay off (0). Khi RUN laø ON, boä bieán taàn MM nhaän ñöôïc leänh baét ñaàu chaïy taïi toác ñoä vaø chieàu ñaõ ñònh tröôùc. Ñeå bieán taàn chaïy thì: • DRIVE phaûi ñöôïc choïn tích cöïc ACTIVE

trong USS_INIT. • OFF2 vaø OFF3 phaûi ñöôïc set baèng 0. • FAULT vaø INHIBIT phaûi laø 0. Khi RUN laø OFF thì moät leänh ñöôïc göûi tôùi MM ñeå giaûm toác ñoä xuoáng theo haøm doác cho tôùi khi ñoäng cô döøng haún. Bit OFF2 ñöôïc duøng ñeå cho pheùp bieán taàn MM taét lao doác. Bit OFF3 ñöôïc duøng ñeå MM döøng

Page 37: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

nhanh choùng. Bit F_ACK (Fault Acknowledge) ñöôïc duøng ñeå xaùc nhaän loãi trong bieán taàn. Bieán taàn seõ xoaù loãi (FAULT) khi F_ACK ñi töø möùc thaáp ñeán möùc cao. Bit DIR (direction) ñaûođchieàu quay cuûa ñoäng cô. Ngoõ vaøo DRIVE (drive address) chæ ra ñòa chæ cuûa bieán taàn MM maø leänh DRV_CTRL ñaõ ñieàu khieån. Ñòa chæ coù giaù trò töø 0 ñeán 30. Ngoõ vaøo TYPE choïn loaïi bieán taàn. Vôùi bieán taàn MicroMaster 3 choïn Type = 0, vôùi bieán taàn MicroMaster 4 choïn Type = 1. Ngoõ vaøo Speed_SP (speed setpoint) nhaäp toác ñoä cuûa ñoäng cô döôùi daïng phaàn traêm cuûa toác ñoä toái ña (-200.0% tôùi 200.0%). Giaù trò aâm cuûa Speed_SP laøm ñoäng cô ñaûo chieàu quay. Bit Resp_R (Response Received) laø phaûn hoài töø bieán taàn. Moãi khi CPU nhaän phaûn hoài töø bieán taàn thì bit Resp_R ñöôïc set ON trong moät chu kyø queùt. Bit Error laø moät byte löu keát quaû cuûa laàn giao tieáp môùi nhaát vôùi bieán taàn. Ngoõ ra STATUS chöùa traïng thaùi cuûa bieán taàn. Ngoõ ra SPEED löu toác ñoä cuûa ñoäng cô döôùi daïng phaàn traêm cuûa toác ñoä ñònh möùc (-200.0% tôùi 200.0%). Ngoõ ra RUN_EN (DRIVE RUN Enable) chæ ra raèng bieán taàn ñang chaïy (1) hay ñaõ döøng(0). Ngoõ ra D_DIR chæ ra chieàu quay cuûa ñoäng cô. Ngoõ ra INHIBIT chæ ra traïng thaùi cuûa bit caám trong bieán taàn (0 - not inhibited, 1 - inhibited). Ñeå xoaù bit caám thì bit FAULT phaûi ñöôïc OFF vaø caùc bit vaøo RUN, OFF2, vaø OFF3 phaûi laø OFF. Ngoõ ra FAULT chæ ra traïng thaùi cuûa bit loãi (0 - no fault, 1 - fault). Boä bieán taàn seõ hieån thò maõ loãi. Ñeå xoaù bit FAULT thì phaûi khaéc phuïc loãi vaø set ON bit ACK.

Page 38: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

Caùc toaùn haïng vaø kieåu döõ lieäu duøng cho leänh USS_CTRL Inputs/ Outputs

Operands Data Types

RUN I, Q, M, S, SM, T, C, V, L, Power Flow BOOL OFF2 I, Q, M, S, SM, T, C, V, L, Power Flow BOOL OFF3 I, Q, M, S, SM, T, C, V, L, Power Flow BOOL F_ACK I, Q, M, S, SM, T, C, V, L, Power Flow BOOL DIR I, Q, M, S, SM, T, C, V, L, Power Flow BOOL DRIVE, TYPE

VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

BYTE

Speed_SP VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD, Constant

REAL

Resp_R I, Q, M, S, SM, T, C, V, L BOOL Error VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD BYTE STATUS VW, T, C, IW, QW, SW, MW, SMW, LW, AC,

AQW, *VD, *AC, *LD WORD

SPEED VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD

REAL

RUN_EN I, Q, M, S, SM, T, C, V, L BOOL D_DIR I, Q, M, S, SM, T, C, V, L BOOL INHIBIT I, Q, M, S, SM, T, C, V, L BOOL FAULT I, Q, M, S, SM, T, C, V, L BOOL

Page 39: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

USS_RPM_x Leänh naøy duøng ñeå ñoïc moät thoâng soá töø bieán taàn veà PLC.

Leänh USS_RPM_x ñoïc moät thoâng soá kieåu word khoâng daáu. Leänh USS_RPM_x hoaøn taát khi MM xaùc nhaän hay khi nhaän ñöôïc error. Ngoõ vaøo EN phaûi ñöôïc ON ñeå cho pheùp truyeàn yeâu caàu xuoáng MM vaø neân giöõ nguyeân traïng thaùi ON cho ñeán khi bit DONE ñöôïc set baùo hieäu söï hoaøn taát. Moät yeâu caàu USS_RPM_x ñöôïc truyeàn tôùi MM ôû moãi chu kyø queùt khi ngoõ vaøo XMT_REQ laø ON. Vì theá ngoõ vaøo XMT_REQ neân ñöôïc kích leân möùc 1 qua moät boä phaùt hieän caïnh leân nhaèm chæ cho pheùp moät yeâu caàu ñöôïc truyeàn ñi ôû moãi caïnh leân cuûa ngoõ vaøo EN .

Ngoõ vaøo DRIVE laø ñòa chæ cuûa bieán taàn MM maø leänh USS_RPM_x ñöôïc göûi ñi. Ñòa chæ coù giaù trò töø 0 ñeán 31. Ngoõ vaøo PARAM xaùc ñònh thoâng soá caàn ñoïc. Ngoõ vaøo INDEX laø giaù trò index cuûa thoâng soá caàn ñoïc. Ñòa chæ cuûa moät boä ñeäm 16–byte phaûi ñöôïc cung caáp cho ngoõ vaøo DB_PTR. Boä ñeäm naøy ñöôïc söû duïng bôûi leänh READ_PM ñeå löu keát quaû nhaän ñöôïc töø bieán taàn MM. Khi leänh READ_PM hoaøn taát thì ngoõ ra DONE ñöôïc set ON vaø ngoõ ra ERROR(byte) chöùa keát quaû cuûa vieäc thöïc thi leänh. Ngoõ ra VALUE laø giaù trò thoâng soá ñoïc veà. Caùc toaùn haïng vaø kieåu döõ lieäu duøng cho leänh READ_PM

Inputs/Outputs

Operands Data Types

XMT_REQ I, Q, M, S, SM, T, C, V, L, Power Flow conditioned by a rising edge detection element.

BOOL

DRIVE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

BYTE

Page 40: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

PARAM VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, Constant, AC *VD, *AC, *LD

WORD

INDEX VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, Constant, AC *VD, *AC, *LD

WORD

DB_PTR &VB DWORD DONE I, Q, M, S, SM, T, C, V, L BOOL ERROR VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC,

*LD BYTE

VALUE VW, T, C, IW, QW, SW, MW, SMW, LW, AC, AQW, *VD, *AC, *LD

WORD

USS_WPM_x Leänh naøy duøng ñeå ghi moät thoâng soá töø PLC leân bieán taàn.

Leänh USS_WPM_x ghi moät giaù trò word khoâng daáu vaøo moät thoâng soá xaùc ñònh. Leänh USS_WPM_x hoaøn taát khi MM xaùc nhaän hay khi nhaän ñöôïc error. Ngoõ vaøo EN phaûi laø ON ñeå cho pheùp truyeàn moät yeâu caàu vaø neân giöõ nguyeân traïng thaùi ON cho ñeán khi bit DONE ñöôïc set baùo hieäu söï hoaøn taát. Moät yeâu caàu USS_WPM_x ñöôïc truyeàn tôùi MM ôû moãi chu kyø queùt khi ngoõ vaøo XMT_REQ laø ON. Vì theá ngoõ vaøo XMT_REQ neân ñöôïc kích leân möùc 1 qua moät boä phaùt hieän caïnh leân nhaèm chæ cho pheùp moät yeâu caàu ñöôïc truyeàn ñi ôû moãi caïnh leân cuûa ngoõ vaøo EN.

Ngoõ vaøo DRIVE laø ñòa chæ cuûa bieán taàn MM maø leänh USS_WPM_x ñöôïc göûi ñi. Ñòa chæ coù giaù trò töø 0 ñeán 31.

Page 41: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà PLC

Ngoõ vaøo PARAM xaùc ñònh thoâng soá caàn ghi. Ngoõ vaøo INDEX laø giaù trò index cuûa thoâng soá caàn ghi. Ngoõ ra VALUE laø giaù trò caàn ghi vaøo thoâng soá.

Khi ngoõ vaøo EEPROM ñöôïc baät leân 1 thì leänh naøy ñöôïc ghi vaøo caû RAM vaø EEPROM cuûa bieán taàn. Khi ngoõ vaøo naøy bò taét ñi thì leänh chæ ñöôïc ghi vaøo RAM cuûa bieán taàn. Do MicroMaster 3 khoâng hoã trôï chöùc naêng naøy neân ngoõ vaøo naøy phaûi off ( =0).

Ñòa chæ cuûa moät boä ñeäm 16–byte phaûi ñöôïc cung caáp cho ngoõ vaøo DB_PTR. Boä ñeäm naøy ñöôïc söû duïng bôûi leänh USS_WPM_x ñeå löu keát quaû nhaän ñöôïc töø bieán taàn MM.

Khi leänh USS_WPM_x hoaøn taát thì ngoõ ra DONE ñöôïc set ON vaø ngoõ ra ERROR(byte) chöùa keát quaû cuûa vieäc thöïc thi leänh.

Caùc toaùn haïng vaø kieåu döõ lieäu duøng cho leänh WRITE_PM Inputs/Out

puts Operands Data

Types XMT_REQ I, Q, M, S, SM, T, C, V, L, Power Flow

conditioned by a rising edge detection element. BOOL

DRIVE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

BYTE

PARAM VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, Constant, AC *VD, *AC, *LD

WORD

VALUE VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, Constant, AC *VD, *AC, *LD

WORD

DB_PTR &VB DWORD DONE I, Q, M, S, SM, T, C, V, L BOOL ERROR VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC,

*LD BYTE

Page 42: Tai lieu hd_tttn_2006

5

Programming Concepts, Conventions, and Features Chapter 5

51

Using STEP 7–Micro/WIN to Create Your ProgramsTo open STEP 7–Micro/WIN, double-click on the STEP 7–Micro/WIN icon, or select the Start > SIMATIC >STEP 7 MicroWIN 3.2 menu command. As shown in Figure 5-1, the STEP 7–Micro/WIN project windowprovides a convenient working space for creating your control program.

The toolbars provide buttons for shortcuts to frequently used menu commands. You can view or hide anyof the toolbars.

The navigation bar presents groups of icons foraccessing different programming features ofSTEP 7–Micro/WIN.

The instruction tree displays all of the projectobjects and the instructions for creating yourcontrol program. You can drag and dropindividual instructions from the tree into yourprogram, or you can double-click an instruction toinsert it at the current location of the cursor in theprogram editor.

The program editor contains the program logicand a local variable table where you can assignsymbolic names for temporary local variables.Subroutines and interrupt routines appear astabs at the bottom of the program editor window.Click on the tabs to move between the

Instruction tree

Program Editor

Navigation bar

subroutines, interrupts, and the main program. Figure 5-1 STEP 7–Micro/WIN

STEP 7–Micro/WIN provides three editors for creating your program: Ladder Logic (LAD), Statement List(STL), and Function Block Diagram (FBD). With some restrictions, programs written in any of theseprogram editors can be viewed and edited with the other program editors.

Features of the STL EditorThe STL editor displays the program as a text-based language. The STL editor allows you to createcontrol programs by entering the instruction mnemonics. The STL editor also allows you to createprograms that you could not otherwise create with the LAD or FBD editors. This is because you areprogramming in the native language of the S7-200, rather than in a graphical editor where somerestrictions must be applied in order to draw the diagrams correctly. As shown in Figure 5-2, thistext-based concept is very similar to assembly language programming.

The S7-200 executes each instruction in theorder dictated by the program, from top tobottom, and then restarts at the top.

STL uses a logic stack to resolve the controllogic. You insert the STL instructions for handling

LD I0.0 //Read one input A I0.1 //AND with another input = Q1.0 //Write value to output 1

the stack operations. Figure 5-2 Sample STL Program

Consider these main points when you select the STL editor:

STL is most appropriate for experienced programmers.

STL sometimes allows you to solve problems that you cannot solve very easily with the LAD or FBDeditor.

You can only use the STL editor with the SIMATIC instruction set.

While you can always use the STL editor to view or edit a program that was created with the LAD orFBD editors, the reverse is not always true. You cannot always use the LAD or FBD editors todisplay a program that was written with the STL editor.

ProgramEditor

Page 43: Tai lieu hd_tttn_2006

5

S7-200 Programmable Controller System Manual

52

Features of the LAD EditorThe LAD editor displays the program as a graphical representation similar to electrical wiring diagrams.Ladder programs allow the program to emulate the flow of electric current from a power source through aseries of logical input conditions that in turn enable logical output conditions. A LAD program includes aleft power rail that is energized. Contacts that are closed allow energy to flow through them to the nextelement, and contacts that are open block that energy flow.

The logic is separated into networks. Theprogram is executed one network at a time, fromleft to right and then top to bottom as dictated bythe program. Figure 5-3 shows an example of aLAD program. The various instructions arerepresented by graphic symbols and includethree basic forms.

Contacts represent logic input conditions such asswitches, buttons, or internal conditions.

Coils usually represent logic output results suchas lamps, motor starters, interposing relays, orinternal output conditions.

Boxes represent additional instructions, such asBoxes represent additional instructions, such astimers, counters, or math instructions. Figure 5-3 Sample LAD Program

Consider these main points when you select the LAD editor:

Ladder logic is easy for beginning programmers to use.

Graphical representation is easy to understand and is popular around the world.

The LAD editor can be used with both the SIMATIC and IEC 1131–3 instruction sets.

You can always use the STL editor to display a program created with the SIMATIC LAD editor.

Features of the FBD EditorThe FBD editor displays the program as a graphical representation that resembles common logic gatediagrams. There are no contacts and coils as found in the LAD editor, but there are equivalent instructionsthat appear as box instructions.

Figure 5-4 shows an example of an FBDprogram.

FBD does not use the concept of left and rightpower rails; therefore, the term “power flow” isused to express the analogous concept of controlflow through the FBD logic blocks. Figure 5-4 Sample FBD Program

The logic “1” path through FBD elements is called power flow. The origin of a power flow input and thedestination of a power flow output can be assigned directly to an operand.

The program logic is derived from the connections between these box instructions. That is, the output fromone instruction (such as an AND box) can be used to enable another instruction (such as a timer) tocreate the necessary control logic. This connection concept allows you to solve a wide variety of logicproblems.

Consider these main points when you select the FBD editor:

The graphical logic gate style of representation is good for following program flow.

The FBD editor can be used with both the SIMATIC and IEC 1131–3 instruction sets.

You can always use the STL editor to display a program created with the SIMATIC FBD editor.

Page 44: Tai lieu hd_tttn_2006

4

S7-200 Programmable Controller System Manual

24

Accessing the Data of the S7-200The S7-200 stores information in different memory locations that have unique addresses. You canexplicitly identify the memory address that you want to access. This allows your program to have directaccess to the information. Table 4-1 shows the range of integer values that can be represented by thedifferent sizes of data.

Table 4-1 Decimal and Hexadecimal Ranges for the Different Sizes of Data

Representation Byte (B) Word (W) Double Word (D)

Unsigned Integer 0 to 255

0 to FF

0 to 65,535

0 to FFFF

0 to 4,294,967,295

0 to FFFF FFFF

Signed Integer –128 to +127

80 to 7F

–32,768 to +32,767

8000 to 7FFF

–2,147,483,648 to +2,147,483,647

8000 0000 to 7FFF FFFF

Real IEEE 32-bit Floating Point

Not applicable Not applicable +1.175495E–38 to +3.402823E+38 (positive)

–1.175495E–38 to –3.402823E+38 (negative)

To access a bit in a memory area, you specify the address, which includes the memory area identifier, thebyte address, and the bit number. Figure 4-3 shows an example of accessing a bit (which is also called“byte.bit” addressing). In this example, the memory area and byte address (I = input, and 3 = byte 3) arefollowed by a period (“.”) to separate the bit address (bit 4).

I 3 4

7 6 5 4 3 2 1 0

Byte 0

Byte 1Byte 2

Byte 3Byte 4

Byte 5

.

Memory area identifier

Byte address: byte 3 (thefourth byte)

Period separates thebyte address from the bitnumber

Bit of byte, or bit number:bit 4 of 8 (0 to 7)

Process-image Input (I) Memory Area

Figure 4-3 Byte.Bit Addressing

You can access data in most memory areas (V, I, Q, M, S, L, and SM) as bytes, words, or double words byusing the byte-address format. To access a byte, word, or double word of data in the memory, you mustspecify the address in a way similar to specifying the address for a bit. This includes an area identifier,data size designation, and the starting byte address of the byte, word, or double-word value, as shown inFigure 4-4.

Data in other memory areas (such as T, C, HC, and the accumulators) are accessed by using an addressformat that includes an area identifier and a device number.

Page 45: Tai lieu hd_tttn_2006

4

PLC Concepts Chapter 4

25

V B 100

VB100MSB LSB

VW100 15 8MSB

7 0LSB

VD100

Most significant byte Least significant byte

31 8 7 016 1524 23

Most significant byte Least significant byte

MSB = most significant bitLSB = least significant bit

VB100

VB100 VB101

VB100 VB103VB101 VB102

MSB LSB

7 0

Byte addressAccess to a byte sizeArea identifier

V W 100Byte addressAccess to a word sizeArea identifier

V D 100Byte addressAccess to a double word sizeArea identifier

Figure 4-4 Comparing Byte, Word, and Double-Word Access to the Same Address

Accessing Data in the Memory Areas

Process-Image Input Register: IThe S7-200 samples the physical input points at the beginning of each scan cycle and writes these valuesto the process-image input register. You can access the process-image input register in bits, bytes, words,or double words:

Bit: I[byte address].[bit address] I0.1Byte, Word, or Double Word: I[size][starting byte address] IB4

Process-Image Output Register: QAt the end of the scan cycle, the S7-200 copies the values stored in the process-image output register tothe physical output points. You can access the process-image output register in bits, bytes, words, ordouble words:

Bit: Q[byte address].[bit address] Q1.1Byte, Word, or Double Word: Q[size][starting byte address] QB5

Variable Memory Area: VYou can use V memory to store intermediate results of operations being performed by the control logic inyour program. You can also use V memory to store other data pertaining to your process or task. You canaccess the V memory area in bits, bytes, words, or double words:

Bit: V[byte address].[bit address] V10.2Byte, Word, or Double Word: V[size][starting byte address] VW100

Bit Memory Area: MYou can use the bit memory area (M memory) as control relays to store the intermediate status of anoperation or other control information. You can access the bit memory area in bits, bytes, words, or doublewords:

Bit: M[byte address].[bit address] M26.7Byte, Word, or Double Word: M[size][starting byte address] MD20

Page 46: Tai lieu hd_tttn_2006

4

S7-200 Programmable Controller System Manual

26

Timer Memory Area: TThe S7-200 provides timers that count increments of time in resolutions (time-base increments) of 1 ms,10 ms, or 100 ms. Two variables are associated with a timer:

Current value: this 16-bit signed integer stores the amount of time counted by the timer.

Timer bit: this bit is set or cleared as a result of comparing the current and the preset value. Thepreset value is entered as part of the timer instruction.

You access both of these variables by using the timer address (T + timer number). Access to either thetimer bit or the current value is dependent on the instruction used: instructions with bit operands accessthe timer bit, while instructions with word operands access the current value. As shown in Figure 4-5, theNormally Open Contact instruction accesses the timer bit, while the Move Word instruction accesses thecurrent value of the timer.

Format: T[timer number] T24

Current Value

T0T1T2T3

I2.1 MOV_W

EN

OUT VW200INT3

T3Timer Bits

T0

T3

T1T2

0 (LSB)15 (MSB)

Accesses the current value Accesses the timer bit

Figure 4-5 Accessing the Timer Bit or the Current Value of a Timer

Counter Memory Area: CThe S7-200 provides three types of counters that count each low-to-high transition event on the counterinput(s): one type counts up only, one type counts down only, and one type counts both up and down. Twovariables are associated with a counter:

Current value: this 16-bit signed integer stores the accumulated count.

Counter bit: this bit is set or cleared as a result of comparing the current and the preset value. Thepreset value is entered as part of the counter instruction.

You access both of these variables by using the counter address (C + counter number). Access to eitherthe counter bit or the current value is dependent on the instruction used: instructions with bit operandsaccess the counter bit, while instructions with word operands access the current value. As shown inFigure 4-6, the Normally Open Contact instruction accesses the counter bit, while the Move Wordinstruction accesses the current value of the counter.

Format: C[counter number] C24

Current Value

C0C1C2C3

I2.1 MOV_W

EN

OUT VW200INC3

C3Counter Bits

C0

C3

C1C2

0 (LSB)15 (MSB)

Accesses the current value Accesses the counter bit

Figure 4-6 Accessing the Counter Bit or the Current Value of a Counter

Page 47: Tai lieu hd_tttn_2006

4

PLC Concepts Chapter 4

27

High-Speed Counters: HCThe high-speed counters count high-speed events independent of the CPU scan. High-speed countershave a signed, 32-bit integer counting value (or current value). To access the count value for thehigh-speed counter, you specify the address of the high-speed counter, using the memory type (HC) andthe counter number (such as HC0). The current value of the high-speed counter is a read-only value andcan be addressed only as a double word (32 bits).

Format: HC[high–speed counter number] HC1

Accumulators: ACThe accumulators are read/write devices that can be used like memory. For example, you can useaccumulators to pass parameters to and from subroutines and to store intermediate values used in acalculation. The S7-200 provides four 32-bit accumulators (AC0, AC1, AC2, and AC3). You can accessthe data in the accumulators as bytes, words, or double words.

The size of the data being accessed is determined by the instruction that is used to access theaccumulator. As shown in Figure 4-7, you use the least significant 8 or 16 bits of the value that is stored inthe accumulator to access the accumulator as bytes or words. To access the accumulator as a doubleword, you use all 32 bits.

For information about how to use the accumulators within interrupt subroutines, refer to the InterruptInstructions in Chapter 6.

Format: AC[accumulator number] AC0

MSB7 0

LSB

15 0LSB

31MSB

0LSB

AC2 (accessed as a byte)

AC1 (accessed as a word) MSB78

7815162324

Least significant

Least significantMost significant

Byte 0Byte 1

Byte 0Byte 1Byte 2Byte 3

Most significant

AC3 (accessed as a double word)

Figure 4-7 Accessing the Accumulators

Page 48: Tai lieu hd_tttn_2006

4

S7-200 Programmable Controller System Manual

28

Special Memory: SMThe SM bits provide a means for communicating information between the CPU and your program. Youcan use these bits to select and control some of the special functions of the S7-200 CPU, such as: a bitthat turns on for the first scan cycle, a bit that toggles at a fixed rate, or a bit that shows the status of mathor operational instructions. (For more information about the SM bits, see Appendix D.) You can access theSM bits as bits, bytes, words, or double words:

Bit: SM[byte address].[bit address] SM0.1Byte, Word, or Double Word: SM[size][starting byte address] SMB86

Local Memory Area: LThe S7-200 provides 64 bytes of local memory of which 60 can be used as scratchpad memory or forpassing formal parameters to subroutines.

TipIf you are programming in either LAD or FBD, STEP 7–Micro/WIN reserves the last four bytes of localmemory for its own use. If you program in STL, all 64 bytes of L memory are accessible, but it isrecommended that you do not use the last four bytes of L memory.

Local memory is similar to V memory with one major exception. V memory has a global scope while Lmemory has a local scope. The term global scope means that the same memory location can beaccessed from any program entity (main program, subroutines, or interrupt routines). The term local scopemeans that the memory allocation is associated with a particular program entity. The S7-200 allocates64 bytes of L memory for the main program, 64 bytes for each subroutine nesting level, and 64 bytes forinterrupt routines.

The allocation of L memory for the main program cannot be accessed from subroutines or from interruptroutines. A subroutine cannot access the L memory allocation of the main program, an interrupt routine, oranother subroutine. Likewise, an interrupt routine cannot access the L memory allocation of the mainprogram or of a subroutine.

The allocation of L memory is made by the S7-200 on an as-needed basis. This means that while themain portion of the program is being executed, the L memory allocations for subroutines and interruptroutines do not exist. At the time that an interrupt occurs or a subroutine is called, local memory isallocated as required. The new allocation of L memory might reuse the same L memory locations of adifferent subroutine or interrupt routine.

The L memory is not initialized by the S7-200 at the time of allocation and might contain any value. Whenyou pass formal parameters in a subroutine call, the values of the parameters being passed are placed bythe S7-200 in the appropriate L memory locations of the called subroutine. L memory locations, which donot receive a value as a result of the formal parameter passing step, will not be initialized and mightcontain any value at the time of allocation.

Bit: L[byte address].[bit address] L0.0Byte, Word, or Double Word: L[size] [starting byte address] LB33

Page 49: Tai lieu hd_tttn_2006

4

PLC Concepts Chapter 4

29

Analog Inputs: AIThe S7-200 converts an analog value (such as temperature or voltage) into a word-length (16-bit) digitalvalue. You access these values by the area identifier (AI), size of the data (W), and the starting byteaddress. Since analog inputs are words and always start on even-number bytes (such as 0, 2, or 4), youaccess them with even-number byte addresses (such as AIW0, AIW2, or AIW4). Analog input values areread-only values.

Format: AIW[starting byte address] AIW4

Analog Outputs: AQThe S7-200 converts a word-length (16-bit) digital value into a current or voltage, proportional to the digitalvalue (such as for a current or voltage). You write these values by the area identifier (AQ), size of the data(W), and the starting byte address. Since analog outputs are words and always start on even-numberbytes (such as 0, 2, or 4), you write them with even-number byte addresses (such as AQW0, AQW2, orAQW4). Analog output values are write-only values.

Format: AQW[starting byte address] AQW4

Sequence Control Relay (SCR) Memory Area: SSCRs or S bits are used to organize machine operations or steps into equivalent program segments.SCRs allow logical segmentation of the control program. You can access the S bits as bits, bytes, words,or double words.

Bit: S[byte address].[bit address] S3.1Byte, Word, or Double Word: S[size][starting byte address] SB4

Format for Real NumbersReal (or floating-point) numbers are represented as 32-bit, single-precision numbers, whose format isdescribed in the ANSI/IEEE 754–1985 standard. See Figure 4-8. Real numbers are accessed indouble-word lengths.

For the S7-200, floating point numbers areaccurate up to 6 decimal places. Therefore, youcan specify a maximum of 6 decimal placeswhen entering a floating-point constant.

31 0LSBMSB

2223

MantissaExponent

30

S

Sign

Figure 4-8 Format of a Real Number

Accuracy when Calculating Real NumbersCalculations that involve a long series of values including very large and very small numbers can produceinaccurate results. This can occur if the numbers differ by 10 to the power of x, where x > 6.

For example: 100 000 000 + 1 = 100 000 000

Page 50: Tai lieu hd_tttn_2006

4

S7-200 Programmable Controller System Manual

30

Format for StringsA string is a sequence of characters, with each character being stored as a byte. The first byte of the stringdefines the length of the string, which is the number of characters. Figure 4-9 shows the format for astring. A string can have a length of 0 to 254 characters, plus the length byte, so the maximum length for astring is 255 bytes.

Character 1

Byte 3Byte 2Byte 1Byte 0

Length Character 2 Character 3

Byte 4

Character 4

Byte 254

Character 254...

Figure 4-9 Format for Strings

Specifying a Constant Value for S7-200 InstructionsYou can use a constant value in many of the S7-200 instructions. Constants can be bytes, words, ordouble words. The S7-200 stores all constants as binary numbers, which can then be represented indecimal, hexadecimal, ASCII, or real number (floating point) formats. See Table 4-2.

Table 4-2 Representation of Constant Values

Representation Format Sample

Decimal [decimal value] 20047

Hexadecimal 16#[hexadecimal value] 16#4E4F

Binary 2#[binary number] 2#1010_0101_1010_0101

ASCII ’[ASCII text]’ ’Text goes between single quotes.’

Real ANSI/IEEE 754–1985 +1.175495E–38 (positive) –1.175495E–38 (negative)

TipThe S7-200 CPU does not support “data typing” or data checking (such as specifying that the constantis stored as an integer, a signed integer, or a double integer). For example, an Add instruction can usethe value in VW100 as a signed integer value, while an Exclusive Or instruction can use the same valuein VW100 as an unsigned binary value.

Page 51: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

66

Bit Logic Instructions

Contacts

Standard ContactsThe Normally Open contact instructions (LD, A, and O) andNormally Closed contact instructions (LDN, AN, ON) obtain thereferenced value from the memory or from the process-imageregister. The standard contact instructions obtain the referencedvalue from the memory (or process-image register if the data type isI or Q).

The Normally Open contact is closed (on) when the bit is equal to 1,and the Normally Closed contact is closed (on) when the bit is equalto 0. In FBD, inputs to both the And and Or boxes can be expandedto a maximum of 32 inputs. In STL, the Normally Open instructionsLoad, AND, or OR the bit value of the address bit to the top of thestack, and the Normally Closed instructions Load, AND, or OR thelogical NOT of the bit value to the top of the stack.

Immediate ContactsAn immediate contact does not rely on the S7-200 scan cycle toupdate; it updates immediately. The Normally Open Immediatecontact instructions (LDI, AI, and OI) and Normally ClosedImmediate contact instructions (LDNI, ANI, and ONI) obtain thephysical input value when the instruction is executed, but theprocess-image register is not updated.

The Normally Open Immediate contact is closed (on) when thephysical input point (bit) is 1, and the Normally Closed Immediatecontact is closed (on) when the physical input point (bit) is 0. TheNormally Open instructions immediately Load, AND, or OR thephysical input value to the top of the stack, and the Normally Closedinstructions immediately Load, AND, or OR the logical NOT of thevalue of the physical input point to the top of the stack.

NOT InstructionThe Not instruction (NOT) changes the state of power flow input(that is, it changes the value on the top of the stack from 0 to 1 orfrom 1 to 0).

Positive and Negative Transition InstructionsThe Positive Transition contact instruction (EU) allows power to flow for one scan for each off-to-ontransition. The Negative Transition contact instruction (ED) allows power to flow for one scan for eachon-to-off transition. For the Positive Transition instruction, detection of a 0-to-1 transition in the value onthe top of the stack sets the top of the stack value to 1; otherwise, it is set to 0. For a Negative Transitioninstruction, detection of a 1-to-0 transition in the value on the top of the stack sets the top of the stackvalue to 1; otherwise, it is set to 0.

For run-time editing (when you edit your program in RUN mode), you must enter a parameter for thePositive Transition and Negative Transition instructions. Refer to Chapter 5 for more information aboutediting in RUN mode.

Table 6-3 Valid Operands for the Bit Logic Input Instructions

Inputs/Outputs Data Type Operands

Bit BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Bit (immediate) BOOL I

Page 52: Tai lieu hd_tttn_2006

6

S7-200 Instruction Set Chapter 6

67

TipBecause the Positive Transition and Negative Transition instructions require an on-to-off or an off-to-ontransition, you cannot detect an edge-up or edge-down transition on the first scan. During the first scan,the S7-200 sets the state of the bit specified by these instructions. On subsequent scans, theseinstructions can then detect transitions for the specified bit.

Example: Contact Instructions

Network 1 //N.O. contacts I0.0 AND I0.1 must be on (closed) to activate //Q0.0. The NOT instruction acts as an inverter. //In RUN mode, Q0.0 and Q0.1 have opposite logic states.

LD I0.0A I0.1= Q0.0NOT = Q0.1

Network 2 //N.O. contact I0.2 must be on or N.C. contact I0.3 must be off //to activate Q0.2. One or more parallel LAD branches //(OR logic inputs) must be true to make the output active.

LD I0.2ON I0.3= Q0.2

Network 3 //A positive Edge Up input on a P contact or a negative Edge //Down input on a N contact outputs a pulse with a 1 scan cycle //duration. In RUN mode, the pulsed state changes of Q0.4 and //Q0.5 are too fast to be visible in program status view. //The Set and Reset outputs latch the pulse in Q0.3 and //make the state change visible in program status view.

LD I0.4LPS EU S Q0.3, 1= Q0.4LPPEDR Q0.3, 1= Q0.5

Timing Diagram

Network 2

Network 3

Network 1

Page 53: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

68

Coils

OutputThe Output instruction (=) writes the new value for the output bit tothe process-image register. When the Output instruction isexecuted, the S7-200 turns the output bit in the process-imageregister on or off. For LAD and FBD, the specified bit is set equal topower flow. For STL, the value on the top of the stack is copied tothe specified bit.

Output ImmediateThe Output Immediate instruction (=I) writes the new value to boththe physical output and the corresponding process-image registerlocation when the instruction is executed.

When the Output Immediate instruction is executed, the physicaloutput point (Bit) is immediately set equal to power flow. For STL,the instruction immediately copies the value on the top of the stackto the specified physical output bit (STL). The “I” indicates animmediate reference; the new value is written to both the physicaloutput and the corresponding process-image register location whenthe instruction is executed. This differs from the non-immediatereferences, which write the new value to the process-image registeronly.

Set and ResetThe Set (S) and Reset (R) instructions set (turn on) or reset (turn off)the specified number of points (N), starting at the specified address(Bit). You can set or reset from 1 to 255 points.

If the Reset instruction specifies either a timer bit (T) or counter bit(C), the instruction resets the timer or counter bit and clears thecurrent value of the timer or counter.

Error conditions that set ENO = 0

0006 (indirect address)

0091 (operand out of range)

Set Immediate and Reset ImmediateThe Set Immediate and Reset Immediate instructions immediately set (turn on) or immediately reset (turnoff) the number of points (N), starting at specified address (Bit). You can set or reset from 1 to 128 pointsimmediately.

The “I” indicates an immediate reference; when the instruction is executed, the new value is written toboth the physical output point and the corresponding process-image register location. This differs fromthe non-immediate references, which write the new value to the process-image register only.

Error conditions that set ENO = 0

0006 (indirect address)

0091 (operand out of range)

Table 6-4 Valid Operands for the Bit Logic Output Instructions

Inputs/Outputs Data Type Operands

Bit BOOL I, Q, V, M, SM, S, T, C, L

Bit (immediate) BOOL Q

N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

Page 54: Tai lieu hd_tttn_2006

6

S7-200 Instruction Set Chapter 6

69

Example: Coil Instructions

Network 1 //Output instructions assign bit values to external I/O (I, Q) //and internal memory (M, SM, T, C, V, S, L).

LD I0.0= Q0.0= Q0.1= V0.0

Network 2 //Set a sequential group of 6 bits to a value of 1. //Specify a starting bit address and how many bits to set. //The program status indicator for Set is ON when the value //of the first bit (Q0.2) is 1.

LD I0.1S Q0.2, 6

Network 3 //Reset a sequential group of 6 bits to a value of 0. //Specify a starting bit address and how many bits to reset.//The program status indicator for Reset is ON when the value //of the first bit (Q0.2) is 0.

LD I0.2R Q0.2, 6

Network 4 //Sets and resets 8 output bits (Q1.0 to Q1.7) as a group.

LD I0.3LPS A I0.4S Q1.0, 8LPPA I0.5R Q1.0, 8

Network 5 //The Set and Reset instructions perform the function of a latched relay. //To isolate the Set/Reset bits, make sure they are not overwritten by //another assignment instruction. In this example, Network 4 sets and //resets eight output bits (Q1.0 to Q1.7) as a group. //In RUN mode, Network 5 can overwrite the Q1.0 bit value and //control the Set/Reset program status indicators in Network 4.

LD I0.6= Q1.0

Timing Diagram

Page 55: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

72

Set and Reset Dominant Bistable InstructionsThe Set Dominant Bistable is a latch where the set dominates. If theset (S1) and reset (R) signals are both true, the output (OUT) is true.

The Reset Dominant Bistable is a latch where the reset dominates.If the set (S) and reset (R1) signals are both true, the output (OUT)is false.

The Bit parameter specifies the Boolean parameter that is set orreset. The optional output reflects the signal state of the Bitparameter.

Table 6-7 shows the truth tables for the sample program.

Table 6-6 Valid Operands for the Set Dominant Bistable and Reset Dominant Bistable Instructions

Inputs/Outputs Data Types Operands

S1, R BOOL I, Q, V, M, SM, S, T, C, Power Flow

S, R1, OUT BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

Bit BOOL I, Q, V, M, S

Example: Set and Reset Dominant Bistable Instructions

Set I0.0

Reset I0.1

SR Q0.0

RS Q0.1

Timing Diagram

Table 6-7 Truth Table for the Set and Reset Dominant Bistable Instructions

Instruction S1 R Out (Bit)

Set Dominant Bistable instruction (SR) 0 0 Previous state

0 1 0

1 0 1

1 1 1

Instruction S R1 Out (Bit)

Reset Dominant Bistable instruction (RS) 0 0 Previous state

0 1 0

1 0 1

1 1 0

Page 56: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

106

Counter Instructions

SIMATIC Counter InstructionsCount Up Counter The Count Up instruction (CTU) counts up from the current valueeach time the count up (CU) input makes the transition from off toon. When the current value Cxx is greater than or equal to thepreset value PV, the counter bit Cxx turns on. The counter is resetwhen the Reset (R) input turns on, or when the Reset instruction isexecuted. The counter stops counting when it reaches themaximum value (32,767).

STL operation :

Reset input: Top of stack

Count Up input: Value loaded in the second stack location

Count Down Counter The Count Down instruction (CTD) counts down from the currentvalue of that counter each time the count down (CD) input makesthe transition from off to on. When the current value Cxx is equal to0, the counter bit Cxx turns on. The counter resets the counter bitCxx and loads the current value with the preset value PV when theload input LD turns on. The counter stops upon reaching zero, andthe counter bit Cxx turns on.

STL operation:

Load input: Top of stack

Count Down input: Value loaded in the second stack location.

Count Up/Down Counter The Count Up/Down instruction (CTUD) counts up each time the count up (CU) input makes thetransition from off to on, and counts down each time the count down (CD) input makes the transition fromoff to on. The current value Cxx of the counter maintains the current count. The preset value PV iscompared to the current value each time the counter instruction is executed.

Upon reaching maximum value (32,767), the next rising edge at the count up input causes the currentcount to wrap around to the minimum value (–32,768). On reaching the minimum value (–32,768), thenext rising edge at the count down input causes the current count to wrap around to the maximum value(32,767).

When the current value Cxx is greater than or equal to the preset value PV, the counter bit Cxx turns on.Otherwise, the counter bit turns off. The counter is reset when the Reset (R) input turns on, or when theReset instruction is executed. The CTUD counter stops counting when it reaches PV.

STL operation:

Reset input: Top of stack

Count Down input: Value loaded in the second stack location

Count Up input: Value loaded in the third stack location

Table 6-21 Valid Operands for the SIMATIC Counter Instructions

Inputs/Outputs Data Types Operands

Cxx WORD Constant (C0 to C255)

CU, CD, LD, R BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

PV INT IW, QW, VW, MW, SMW, SW, LW, T, C, AC, AIW, *VD, *LD, *AC, Constant

Page 57: Tai lieu hd_tttn_2006

6

S7-200 Instruction Set Chapter 6

107

TipSince there is one current value for each counter, do not assign the same number to more than onecounter. (Up Counters, Up/Down Counters, and Down counters with the same number access the samecurrent value.)

When you reset a counter using the Reset instruction, the counter bit is reset and the counter currentvalue is set to zero. Use the counter number to reference both the current value and the counter bit ofthat counter.

Table 6-22 Operations of the Counter Instructions

Type Operation Counter Bit Power Cycle/First Scan

CTU CU increments the current value.

Current value continues to incrementuntil it reaches 32,767.

The counter bit turns on when:

Current value >= Preset

Counter bit is off.

Current value can be retained.1

CTUD CU increments the current value. CD decrements the current value.

Current value continues to increment ordecrement until the counter is reset.

The counter bit turns on when:

Current value >= Preset

Counter bit is off.

Current value can be retained.1

CTD CD decrements the current value untilthe current value reaches 0.

The counter bit turns on when:

Current value = 0

Counter bit is off.

Current value can be retained.1

1 You can select that the current value for the counter be retentive. See Chapter 4 for information about memory retentionfor the S7-200 CPU.

Example: SIMATIC Count Down Counter Instruction

Network 1 //Count down counter C1 current value counts from 3 to 0 //with I0.1 off, //I0.0 Off–on decrements C1 current value //I0.1 On loads countdown preset value 3

LD I0.0 LD I0.1 CTD C1, +3

Network 2 //C1 bit is on when counter C1 current value = 0

LD C1 = Q0.0

Timing Diagram

Page 58: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

108

Example: SIMATIC Count Up/Down Counter Instruction

Network 1 //I0.0 counts up //I0.1 counts down //I0.2 resets current value to 0

LD I0.0 LD I0.1 LD I0.2 CTUD C48, +4

Network 2 //Count Up/Down counter C48 turns on C48 bit //when current value >= 4

LD C48 = Q0.0

Timing Diagram

Page 59: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

196

Timer Instructions

SIMATIC Timer InstructionsOn-Delay Timer Retentive On-Delay TimerThe On-Delay Timer (TON) and Retentive On-Delay Timer (TONR)instructions count time when the enabling input is on. The timernumber (Txx) determines the resolution of the timer.

Off-Delay TimerThe Off-Delay Timer (TOF) is used to delay turning an output off fora fixed period of time after the input turns off. The timer number(Txx) determines the resolution of the timer.

Table 6-69 Valid Operands for the SIMATIC Timer Instructions

Inputs/Outputs Data Types Operands

Txx WORD Constant (T0 to T255)

IN BOOL I, Q, V, M, SM, S, T, C, L, Power Flow

PT INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

TipYou cannot share the same timer number (Txx) for an off-delay timer (TOF) and an on-delay timer(TON). For example, you cannot have both a TON T32 and a TOF T32.

As shown in Table 6-70, the three types of timers perform different types of timing tasks:

You can use a TON for timing a single interval.

You can use a TONR for accumulating a number of timed intervals.

You can use a TOF for extending time past an off (or false) condition, such as for cooling a motorafter it is turned off.

Table 6-70 Operations of the Timer Instructions

Type Current >= Preset State of the Enabling Input (IN) Power Cycle/First Scan

TON Timer bit on Current continues countingto 32,767

ON: Current value counts time

OFF: Timer bit off, current value = 0

Timer bit off

Current value = 0

TONR Timer bit on Current continues countingto 32,767

ON: Current value counts time

OFF: Timer bit and current value maintain laststate

Timer bit off

Current value can bemaintained1

TOF Timer bit off Current = Preset, stopscounting

ON: Timer bit on, current value = 0

OFF: Timer counts after on-to-off transition

Timer bit off

Current value = 0

1 The retentive timer current value can be selected for retention through a power cycle. See Chapter 4 for information aboutmemory retention for the S7-200 CPU.

Refer to the Tips and Tricks on the documentation CD for a sample program that uses the on-delay timer(TON). See Tip 31

Tips and Tricks

Page 60: Tai lieu hd_tttn_2006

6

S7-200 Instruction Set Chapter 6

197

The TON and TONR instructions count time when the enabling input is on. When the current value isequal to or greater than the preset time, the timer bit is on.

The current value of a TON timer is cleared when the enabling input is off, whereas the currentvalue of the TONR timer is maintained when the input is off.

You can use the TONR timer to accumulate time when the input turns on and off. Use the Resetinstruction (R) to clear the current value of the TONR.

Both the TON and the TONR timers continue counting after the preset is reached, and they stopcounting at the maximum value of 32,767.

The TOF instruction is used to delay turning an output off for a fixed period of time after the input turns off.When the enabling input turns on, the timer bit turns on immediately, and the current value is set to 0.When the input turns off, the timer counts until the elapsed time reaches the preset time.

When the preset is reached, the timer bit turns off and the current value stops incrementing;however, if the input turns on again before the TOF reaches the preset value, the timer bit remainson.

The enabling input must make an on-to-off transition for the TOF to begin counting time intervals.

If the TOF timer is inside an SCR region and the SCR region is inactive, then the current value is setto 0, the timer bit is turned off, and the current value does not increment.

TipYou can reset a TONR only by using the Reset (R) instruction. You can also use the Reset instruction toreset any TON or TOF. The Reset instruction performs the following operations:

Timer Bit = off

Timer Current = 0

After a reset, TOF timers require the enabling input to make the transition from on to off in order for thetimer to restart.

Determining the Resolution of the TimerTimers count time intervals. The resolution (or time base) of the timer determines the amount of time ineach interval. For example, a TON with a resolution of 10 ms counts the number of 10-ms intervals thatelapse after the TON is enabled: a count of 50 on a 10-ms timer represents 500 ms. The SIMATIC timersare available in three resolutions: 1 ms, 10 ms, and 100 ms. As shown in Table 6-71, the timer numberdetermines the resolution of the timer.

TipTo guarantee a minimum time interval, increase the preset value (PV) by 1. For example: To ensure aminimum timed interval of at least 2100 ms for a 100-ms timer, set the PV to 22.

Table 6-71 Timer Numbers and Resolutions

Timer Type Resolution Maximum Value Timer Number

TONR 1 ms 32.767 s (0.546 min.) T0, T64(retentive)

10 ms 327.67 s (5.46 min.) T1 to T4, T65 to T68

100 ms 3276.7 s (54.6 min.) T5 to T31, T69 to T95

TON, TOF 1 ms 32.767 s (0.546 min.) T32, T96(non-retentive)

10 ms 327.67 s (5.46 min.) T33 to T36, T97 to T100

100 ms 3276.7 s (54.6 min.) T37 to T63, T101 to T255

Page 61: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

198

Understanding How Resolution Affects the Timer ActionFor a timer with a resolution of 1 ms, the timer bit and the current value are updated asynchronous to thescan cycle. For scans greater than 1 ms, the timer bit and the current value are updated multiple timesthroughout the scan.

For a timer with a resolution of 10 ms, the timer bit and the current value are updated at the beginning ofeach scan cycle. The timer bit and current value remain constant throughout the scan, and the timeintervals that accumulate during the scan are added to the current value at the start of each scan.

For a timer with a resolution of 100 ms, the timer bit and current value are updated when the instruction isexecuted; therefore, ensure that your program executes the instruction for a 100-ms timer only once perscan cycle in order for the timer to maintain the correct timing.

Example: SIMATIC On-Delay Timer

Network 1 //100 ms timer T37 times out after (10 x 100 ms = 1s) //I0.0 ON=T37 enabled, I0.0 OFF=disable and reset T37

LD I0.0TON T37, +10

Network 2 //T37 bit is controlled by timer T37

LD T37= Q0.0

Timing Diagram

Page 62: Tai lieu hd_tttn_2006

6

S7-200 Instruction Set Chapter 6

199

TipTo guarantee that the output of a self-resetting timer is turned on for one scan each time the timerreaches the preset value, use a normally closed contact instead of the timer bit as the enabling input tothe timer.

Example: SIMATIC Self-Resetting On-Delay Timer

Network 1 //10 ms timer T33 times out after (100 x 10 ms = 1s) //M0.0 pulse is too fast to monitor with Status view

LDN M0.0TON T33, +100

Network 2 //Comparison becomes true at a rate that is visible //with Status view. Turn on Q0.0 after (40 x 10 ms) //for a 40% OFF/60% ON waveform

LDW>= T33, +40= Q0.0

Network 3 //T33 (bit) pulse too fast to monitor with Status view //Reset the timer through M0.0 after the (100 x 10 ms) period

LD T33= M0.0

Timing Diagram

Example: SIMATIC Off-Delay Timer

Network 1 //10-ms timer T33 times out after (100 x 10 ms = 1s) //I0.0 ON–to–OFF=T33 enabled //I0.0 OFF–to–ON=disable and reset T33

LD I0.0 TOF T33, +100

Network 2 //Timer T33 controls Q0.0 through timer contact T33

LD T33 = Q0.0

Timing Diagram

Page 63: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

200

Example: SIMATIC Retentive On-Delay Timer

Network 1 //10 ms TONR timer T1 times out at PT=(100 x 10 ms=1s)

LD I0.0TONR T1, +100

Network 2 //T1 bit is controlled by timer T1. //Turns Q0.0 on after the timer accumulates a total //of 1 second

LD T1= Q0.0

Network 3 //TONR timers must be reset by a Reset instruction //with a T address. //Resets timer T1 (current and bit) when I0.1 is on.

LD I0.1R T1, 1

Timing Diagram

Page 64: Tai lieu hd_tttn_2006

6

S7-200 Instruction Set Chapter 6

165

Move Instructions

Move Byte, Word, Double Word, or RealThe Move Byte (MOVB), Move Word (MOVW), Move Double Word(MOVD), and Move Real (MOVR) instructions move a value from amemory location IN to a new memory location OUT withoutchanging the original value.

Use the Move Double Word instruction to create a pointer. For moreinformation, refer to the section on pointers and indirect addressingin Chapter 4.

For the IEC Move instruction, the input and output data types canvary, but must be of the same size.

Error conditions that set ENO = 0

0006 (indirect address)

Table 6-51 Valid Operands for the Move Instructions

Inputs/Outputs Data Types Operands

IN BYTE

WORD, INT

DWORD, DINT

REAL

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, &IB, &QB, &VB, &MB, &SB, &T,&C, *VD, *LD, *AC, Constant

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

OUT BYTE

WORD, INT

DWORD, DINT, REAL

IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Page 65: Tai lieu hd_tttn_2006

6

S7-200 Programmable Controller System Manual

166

Move Byte Immediate (Read and Write)The Move Byte Immediate instructions allow you to immediatelymove a byte between the physical I/O and a memory location.

The Move Byte Immediate Read (BIR) instruction reads physicalinput (IN) and writes the result to the memory address (OUT), butthe process-image register is not updated.

The Move Byte Immediate Write instruction (BIW) reads the datafrom the memory address (IN) and writes to physical output (OUT),and the corresponding process image location.

Error conditions that set ENO = 0

0006 (indirect address)

Unable to access expansion module

Table 6-52 Valid Operands for the Move Byte Immediate Read Instruction

Inputs/Outputs Data Types Operands

IN BYTE IB, *VD, *LD, *AC

OUT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

Table 6-53 Valid Operands for the Move Byte Immediate Write Instruction

Inputs/Outputs Data Types Operands

IN BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

OUT BYTE QB, *VD, *LD, *AC

Page 66: Tai lieu hd_tttn_2006

6

S7-200 Instruction Set Chapter 6

167

Block Move Instructions Block Move Byte, Word, or Double WordThe Block Move Byte (BMB), Block Move Word (BMW), and BlockMove Double Word (BMD) instructions move a specified amount ofdata to a new memory location by moving the number of bytes,words, or double words N starting at the input address IN to a newblock starting at the output address OUT.

N has a range of 1 to 255.

Error conditions that set ENO = 0

0006 (indirect address)

0091 (operand out of range)

Table 6-54 Valid Operands for the Block Move Instructions

Inputs/Outputs Data Types Operands

IN BYTE

WORD, INT

DWORD, DINT

IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC

OUT BYTE

WORD, INT

DWORD, DINT

IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

IW, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC

N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, Constant, *VD, *LD, *AC

Example: Block Move Instruction

Network 1 //Move array 1 (VB20 to VB23) //to array 2 (VB100 to VB103)

LD I2.1BMB VB20, VB100, 4

Array 1

Array 2

30VB20

31VB21

32VB22

33VB23

30VB100

31VB101

32VB102

33VB103

Page 67: Tai lieu hd_tttn_2006

431

S7-200 Quick Reference Information

To help you find information more easily, this section summarizes the following information:

Special Memory Bits

Descriptions of Interrupt Events

Summary of S7-200 CPU Memory Ranges and Features

High-Speed Counters HSC0, HSC1, HSC2, HSC3, HSC4, HSC5

S7-200 Instructions

Table G-1 Special Memory Bits

Special Memory Bits

SM0.0 Always On SM1.0 Result of operation = 0

SM0.1 First Scan SM1.1 Overflow or illegal value

SM0.2 Retentive data lost SM1.2 Negative result

SM0.3 Power up SM1.3 Division by 0

SM0.4 30 s off / 30 s on SM1.4 Table full

SM0.5 0.5 s off / 0.5 s on SM1.5 Table empty

SM0.6 Off 1 scan / on 1 scan SM1.6 BCD to binary conversion error

SM0.7 Switch in RUN position SM1.7 ASCII to hex conversion error

Page 68: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

HÖÔÙNG DAÃN VEÀ BOÄ BIEÁN TAÀN :

BOÄ BIEÁN TAÀN MICROMASTER

1. GIÔÙI THIEÄU : Boä bieán taàn MICROMASTER Vector hoã trôï moät daûi roäng caùc ñieän aùp : - 1/3 phase 208-240V±15% - 3 phase 380 - 500V±10% Caùc ñaëc tính hoaït ñoäng : - MICROMASTER Vector ñöa ra giaûi phaùp ñieàu khieån Sensorless Vector Control chaát löôïng cao vôùi moment lôùn ôû toác ñoä thaáp vaø chaát löôïng ñoäng tuyeät haûo. for high torque at low speeds and excellent dynamic performance. Ñieàu naøy cho pheùp söû duïng bieán taàn thaäm chí trong caùc öùng duïng khoù khaên nhö thang maùy, caàn truïc vaø caùc maùy giaët coâng nghieäp. - MICROMASTER ñöa ra giaûi phaùp ñieàu khieån V/F voøng hôû tieâu chuaån vaø lyù töôûng cho caùc öùng duïng ñôn giaûn nhö bôm, quaït. - Deã daøng söû duïng, boä giao tieáp ngöôøi duøng tieâu chuaån bao goàm 7 nuùt nhaán vaø boä hieån thò LED. - Moät boä giao tieáp noái tieáp RS485 tieâu chuaån. - Coù theå thao taùc ñieàu khieån qua baøn phím , qua caùc ngoõ vaøo digital hay qua coång giao tieáp noái tieáp RS485. - Toác ñoä ñaët cuûa ñoäng cô coù theå ñöôïc choïn söû duïng caùc coång vaøo digital , bieán trôû, taàn soá coá ñònh, caùc ngoõ vaøo analogue hay qua giao tieáp noái tieáp. - Caùc cheá ñoä ñieàu khieån hoãn hôïp cho pheùp ñieàu khieån bieán taàn vaø thieát laäp ñaàu vaøo töø caùc nguoàn khaùc nhau. 2000) compliant. Chi tieát kyõ thuaät : 230V Single Phase MICROMASTER Vector 6SE3216-8BB40 Taàm ñieän aùp ngoõ vaøo 1AC 208V – 240V ±10% Coâng suaát ñoäng cô ñònh möùc (KW/hp) 1,5 / 2 Coâng suaát ra lieân tuïc taïi 230V 2,8 kVA Doøng ñieän ra danh ñònh (A) 6,6 A Doøng ñieän ra (cöïc ñaïi lieân tuïc) (A) 7,4 A Doøng ñieän vaøo (cöïc ñaïi) (A) 14,4 A 2. CAÙC CHEÁ ÑOÄ ÑIEÀU KHIEÅN :

Boä bieán taàn MMV coù theå hoïat ñoäng ôû 4 cheá ñoä ñieàu khieån :

Page 69: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

- Cheá ñoä ñieàu khieån V/f : duøng cho caùc öùng duïng coù caùc ñaëc tính moâmen tuyeán tính.

- Cheá ñoä ñieàu khieån doøng töø thoâng FCC.

Ñaëc tính V/f

Page 70: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

- Cheá ñoä ñieàu khieån V/f bình phöông : duøng cho caùc öùng duïng taûi quaït vaø bôm (moâmen thay ñoåi theo qui luaät bình phöông) .

- Cheá ñoä ñieàu khieån vector phi caûm bieán (SVC).

3. CAÙC KEÁT NOÁI ÑIEÀU KHIEÅN :

Page 71: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

4. CAÙC THAO TAÙC ÑIEÀU KHIEÅN CÔ BAÛN :

Page 72: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

4.1 DIP Selector Switches : Goàm 5 coâng taéc DIP ñöôïc thieát laäp phuø hôïp vôùi caùc thoâng soá P023 vaø P323 döïa theo hoaït ñoäng cuûa bieán taàn. Hình döôùi chæ ra caùch thieát laäp caùc coâng taéc DIP cho caùc cheá ñoä hoaït ñoäng :

Page 73: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

4.2 Möôøi böôùc thao taùc cô baûn : Phöông phaùp cô baûn thieát laäp boä bieán taàn ñöôïc mieâu taû döôùi ñaây. Phöông phaùp naøy duøng moät taàn soá ñaët digital vaø ñoøi hoûi chæ moät löôïng toái thieåu caùc thoâng soá ñeå thay ñoåi caùc thieát laäp maëc ñònh.

Page 74: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

4.3 Ñieàu khieån soá:

Page 75: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

Ñeå thieát laäp caáu hình khôûi ñoäng cô baûn söû duïng ñieàu khieån soá :

- Noái coång ñieàu khieån 9 vôùi coång 5,6 qua hai coâng taéc on/off ñôn giaûn. Hai coâng taéc naøy cho pheùp ñaûo chieàu ñoäng cô.

- Caáp nguoàn cho boä bieán taàn. Thieát laäp thoâng soá P009 = 002 hay 003 ñeå cho pheùp taát caû caùc thoâng soá coù theå ñieàu chænh.

- Thieát laäp thoâng soá P006 = 002 ñeå choïn cheá ñoä ñieàu khieån ôû caùc taàn soá coá ñònh. - Thieát laäp P007 = 000 ñeå xaùc ñònh ngoõ vaøo digital vaø khoâng cho pheùp ñieàu khieån

qua baøn phím. - Caùc taàn soá coá ñònh ñöôïc thieát laäp tröôùc trong caùc thoâng soá P040 – P050 - Chöùc naêng cuûa caùc coång DIN ñöôïc thieát laäp trong caùc thoâng soá P051 – P055,

P356. - Caùc thoâng soá cuûa ñoäng cô ñöôïc thieát laäp trong P080 – P085.

4.4 Ñieàu khieån töông töï :

Ñeå thieát laäp caáu hình khôûi ñoäng cô baûn söû duïng ñieàu khieån töông töï:

- Noái coång ñieàu khieån 9 vôùi coång 5,6 qua hai coâng taéc on/off ñôn giaûn. Hai coâng taéc naøy cho pheùp ñaûo chieàu ñoäng cô.

- Keát noái bieán trôû vaøo caùc coång 1, 2, 3 ñeå ñöa tín hieäu ñieän aùp (0 – 10V) vaøo ngoõ vaøo töông töï AIN+, AIN-.

- Caáp nguoàn cho boä bieán taàn. Thieát laäp thoâng soá P009 = 002 hay 003 ñeå cho pheùp taát caû caùc thoâng soá coù theå ñieàu chænh.

- Thieát laäp thoâng soá P006 = 001 ñeå choïn cheá ñoä ñieàu khieån töông töï. - Thieát laäp P007 = 000 ñeå xaùc ñònh ngoõ vaøo digital vaø khoâng cho pheùp ñieàu khieån

qua baøn phím. - Thoâng soá P021 vaø P022 duøng ñeå ñaët taàn soá ngoõ ra nhoû nhaát vaø lôùn nhaát. - Caùc thoâng soá cuûa ñoäng cô ñöôïc thieát laäp trong P080 – P085. - Ñieàu chænh bieán trôû ñeå coù ñöôïc taàn soá ra mong muoán.

Page 76: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

4.5 Ñieàu khieån töø xa :

a. Keát noái PLC vôùi bieán taàn MM3 :

Caùp PROFIBUS vaø caùc boä noái coù theå ñöôïc duøng ñeå keát noái CPU vôùi bieán taàn MicroMaster. Sô ñoà boä noái nhö hình sau :

b. Thieát laäp ban ñaàu boä bieán taàn MM3 :

Tröôùc khi keát noái MM3 vôùi PLC phaûi chaéc chaén raèng ñaõ thöïc hieän caùc böôùc thieát laäp thoâng soá heä thoáng cuûa bieán taàn nhö sau:

1. Reset boä bieán taàn veà thieát laäp maëc ñònh. Nhaán phím P : P000 ñöôïc hieån thò. Nhaán

phím muõi teân leân hay xuoáng cho ñeán khi hieån thò P944. Nhaán P ñeå nhaäp giaù trò. P944=1

2. Cho pheùp truy caäp tôùi taát caû caùc thoâng soá : P009=3 3. Kieåm tra thoâng soá cuûa ñoäng cô P081=Nominal frequency of motor (Hz) P082=Toác ñoä danh ñònh cuûa ñoäng cô (RPM) P083=Doøng ñieän danh ñònh cuûa ñoäng cô (A) P084=Ñieän aùp danh ñònh cuûa ñoäng cô (V) P085=Coâng suaát danh ñònh cuûa ñoäng cô (kW/HP)

Page 77: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä bieán taàn

4. Set cheá ñoä ñieàu khieån töø xa : P910=1 5. Set toác ñoä baud cuûa giao tieáp noái tieáp RS-485 : P092

P092 = 3 (1200 baud) 4 (2400 baud) 5 (4800 baud) 6 (9600 baud - default) 7 (19200 baud)

6. Nhaäp ñòa chæ Slave. Moãi bieán taàn ñöôïc gaùn moät ñòa chæ (0 - 30)

P091=0 ñeán 30. 7. Thôøi gian taêng toác (s) (optional). Ñaây laø thôøi gian tính baèng giaây ñeå ñoäng cô taêng

toác tôùi toác ñoä toái ña. P002=0-650.00

8. Thôøi gian giaûm toác (s) (optional). Ñaây laø thôøi gian tính baèng giaây ñeå ñoäng cô giaûm

toác tôùi khi döøng haún. P003=0-650.00

9. Serial Link Timeout. Ñaây laø soá chu kyø toái ña cho pheùp giöõa 2 khoái data tôùi. Chöùc

naêng naøy duøng ñeå taét bieán taàn khi giao tieáp thaát baïi. P093=0-240 (0 laø maëc ñònh; ñôn vò tính laø giaây)

10. Serial Link Nominal System Setpoint. Giaù trò naøy coù theå thay ñoåi nhöng seõ töông

öùng vôùi taàn soá 50 Hz hay 60 Hz. P094=0-400.00

11. USS Compatibility (optional).

P095 = 0 Ñoä phaân giaûi 0.1Hz (maëc ñònh) 1 Ñoä phaân giaûi 0.01Hz

12. EEPROM storage control (optional).

P971 = 0 Caùc thay ñoåi cuûa thoâng so (bao goàm caû P971)bò maát khi ngaét ñieän.

1 (maëc ñònh) Caùc thay ñoåi cuûa thoâng soá khoâng bò maát khi ngaét ñieän.

13. Operating display. Nhaán P ñeå thoaùt khoûi cheá ñoä nhaäp thoâng soá.

Page 78: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS English

© Siemens plc 1999 G85139-H1751-U529-D1

41 4/8/99

6. SYSTEM PARAMETERS

Parameters can be changed and set using the keypad on the front panel (see Figure 4.1.1) to adjust thedesired properties of the inverter, such as ramp times, minimum and maximum frequencies, etc. Theparameter numbers selected and the setting of the parameter values are indicated on the four digit LED display.

Note: If the ∆ or ∇ button is pressed momentarily, the values change step by step. If the button is pressed fora longer time, the values scroll through rapidly.

Access to parameters is determined by the value set in P009. Make sure that the key parameters necessary forthe application have been programmed.

Note: In the following parameter table:

‘•’ Indicates parameters that can be changed during operation.‘¶¶¶’ Indicates that the value of this factory setting depends on the rating of the inverter.

Increased Parameter Resolution

To increase the resolution to 0.01 when changing frequency parameters, instead of pressing P momentarily toreturn to the parameter display, keep the button pressed until the display changes to ‘- -.n0’ (n = the currenttenths value, e.g. if the parameter value = ‘055.8’ then n = 8). Press ∆ or ∇ to change the value (all valuesbetween .00 and .99 are valid) and then press P twice to return to the parameter display.

Resetting to Factory Defaults

If parameters are changed accidentally, all parameters can be reset to their default values by setting parameterP944 to 1 and then pressing P.

Page 79: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 42

P000 Operating display - This displays the output selected in P001.

In the event of a failure, the relevant fault code (Fnnn) is displayed(see section 7) or the display flashes in the event of a warning (seeP931) or If output frequency has been selected (P001 = 0) and theinverter is in stand-by mode, the display alternates between thesetpoint frequency and the actual output frequency which is zero Hz.

P001 • Display mode 0 - 9[0]

Display selection:0 = Output frequency (Hz)1 = Frequency setpoint (i.e. speed at which inverter is set to run)

(Hz)2 = Motor current (A)3 = DC-link voltage (V)4 = Motor torque (% nominal)5 = Motor speed (rpm)6 = USS serial bus status (see section 9.2)7 = PID Feedback signal (%)8 = Output voltage (V)9 = Instantaneous rotor / shaft frequency (Hz).Note: Applicable

only for Sensorless Vector control mode.Notes: 1. The display can be scaled via P010.

2. When the inverter is operating in Sensorless VectorControl mode (P077 = 3) the display shows actual rotor /shaft speed in Hz. When the inverter is operating in V/f orFCC modes (P077 = 0, 1 or 2) the display shows inverteroutput frequency in Hz.

WARNING: In Sensorless Vector Control mode (P077= 3) the display shows 50Hz when a 4-polemotor is rotating at 1500rpm which may beslightly higher than the nominal speedshown on the motor rating plate.

P002 • Ramp-up time (seconds)MMVMDV550/2, 750/2, 750/3, 1100/3,220/4, 400/4, 550/4, 750/4,1100/4.MDV1100/2, 1500/2, 1850/2,2200/2, 1500/3, 1850/3, 2200/3,3000/3, 3700/3, 1500/4, 1850/4,2200/4, 3000/4, 3700/4.MDV3000/2, 3700/2, 4500/2,4500/3, 5500/3, 7500/3.

0 - 650.0[10.0]

[10.0]

[20.0]

[40.0]

This is the time taken for the motor to accelerate from standstill to themaximum frequency as set in P013. Setting the Ramp-up time too shortcan cause the inverter to trip (fault code F002 - overcurrent).Frequency

fmax

0 HzTimeRamp up

time(0 - 650 s)

P003 • Ramp-down time (seconds)MMVMDV550/2, 750/2, 750/3, 1100/3,220/4, 400/4, 550/4, 750/4,1100/4.MDV1100/2, 1500/2, 1850/2,2200/2, 1500/3, 1850/3, 2200/3,3000/3, 3700/3, 1500/4, 1850/4,2200/4, 3000/4, 3700/4.MDV3000/2, 3700/2, 4500/2,4500/3, 5500/3, 7500/3.

0 - 650.00[10.0]

[10.0]

[20.0]

[40.0]

This is the time taken for the motor to decelerate from maximumfrequency (P013) to standstill, Setting the Ramp-down time too short cancause the inverter to trip (fault code F001 -DC Link overvoltage).This is also the period for which DC injection braking is applied when P073is selected.Frequency

fmax

0 HzTimeRamp down

time(0 - 650 s)

Page 80: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

43 4/8/99

P004 • Smoothing Time (seconds) 0 - 40.0[0.0]

Used to smooth the acceleration/deceleration of the motor (useful inapplications where it is important to avoid ‘jerking’, e.g. conveyorsystems, textiles, etc.).Smoothing is only effective if the Ramp-up and/or down time exceeds0.3 s.Frequency

fmax

(P013)

0 Hz

Time

Total acceleration time= 15 s

P002 = 10 s

P004= 5 s

P004= 5 s

Note: The smoothing curve for deceleration is also affected by theRamp-up gradient (P002). Therefore, the Ramp-down time is alsoaffected by changes to P002.

P005 • Digital frequency setpoint (Hz) 0 - 650.00[5.00]

Sets the frequency that the inverter will run at when operated indigital mode. Only effective if P006 = 0 or 3.

P006 Frequency setpoint sourceselection

0 - 3[0]

Selects the mode of control of the frequency setpoint for the inverter.0 = Digital motorised potentiometer. The inverter runs at the

frequency set in P005 and can be controlled with the ∆ and ∇pushbuttons (motorised potentiometer). Alternatively, if P007is set to zero, the frequency may be increased or decreased bysetting any two of the digital inputs (P051 to P055 or P356) tovalues of 11 and 12.

1 = Analogue. Control via analogue input signal.2 = Fixed frequency. Fixed frequency is only selected if the

value of at least one of the digital inputs (P051 to P055 orP356) = 6 17 or 18.

3 = Digital setpoint addition. Requested frequency = digitalfrequency (P005) + fixed frequencies (P041 to P044, P046to P049) as selected.

Notes: (1) If P006 = 1 and the inverter is set up for operation via theserial link, the analogue inputs remain active.(2) Motorised potentiometer setpoints via digital inputs arestored upon power-down when P011 = 1.

P007 Keypad control 0 - 1[1]

0 = RUN, JOG and REVERSE are disabled. Control is via digitalinputs (see parameters P051 - P055 and P356). ∆ and ∇ maystill be used to control frequency provided that P124 = 1 and adigital input has not been selected to perform this function.

1 = Front panel buttons can be selectively enabled or disableddepending on the setting of parameters P121 - P124.

Note: The digital inputs for RUN, JOG and increase/decreasefrequency are disabled.

P009 • Parameter protection setting 0 - 3[0]

Determines which parameters can be adjusted:0 = Only parameters from P001 to P009 can be read/set.1 = Parameters from P001 to P009 can be set and all other

parameters can only be read.2 = All parameters can be read/set but P009 automatically

resets to 0 when power is removed.3 = All parameters can be read/set.

Page 81: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 44

P010 • Display scaling 0 - 500.0[1.00]

Scale factor for display when P001 = 0, 1, 4, 5, 7 or 9.Four digit resolution.

P011 Frequency setpoint memory 0 - 1[0]

0 = Disabled1 = Enabled after switch-off. i.e. the setpoint alterations made with

the ∆ / ∇ buttons are stored even when power has beenremoved from the inverter.

P012 • Minimum motor frequency (Hz) 0 - 650.00[0.00]

Sets the minimum motor frequency (must be less than the value ofP013).

P013 • Maximum motor frequency (Hz) 0.01-650.00[50.00]

Sets the maximum motor frequency.CAUTION: To maintain stable operation when in sensorless vectorcontrol mode (P077=3), the maximum motor frequency (P013),should not exceed 3x nominal rating plate motor frequency (P081).

P014 • Skip frequency 1 (Hz) 0 - 650.00[0.00]

A skip frequency can be set with this parameter to avoid the effects ofresonance of the inverter. Frequencies within +/- (the value of P019)of this setting are suppressed. Stationary operation is not possiblewithin this suppressed frequency range - the range is just passedthrough. Setting P014=0 disables this function.

P015 • Automatic restart after mainsfailure.

0 - 1[0]

Setting this parameter to ‘1’ enables the inverter to restartautomatically after a mains break or ‘brownout’, provided the externalrun/stop switch, connected to a digital input, is still closed, P007 = 0and P910 = 0, 2 or 4.

0 = Disabled1 = Automatic restart

P016 • Start on the fly 0 - 4[0]

Allows the inverter to start onto a spinning motor.Under normal circumstances the inverter runs the motor up from 0 Hz.However, if the motor is still spinning or is being driven by the load, it willundergo braking before running back up to the setpoint - this can cause anovercurrent trip. By using a flying restart, the inverter ‘homes in’ on themotor's speed and runs it up from that speed to the setpoint. (Note: If themotor has stopped or is rotating slowly, some ‘rocking’ may occur as theinverter senses the direction of rotation prior to restarting.)

0 = Normal restart1 = Flying restart after power up, fault or OFF2 ( if P018 = 1).2 = Flying restart every time (useful in circumstances where the

motor can be driven by the load).3 = As P016 = 1 except that the inverter will only attempt to

restart the motor in the direction of the requested setpoint.The motor is prevented from ‘rocking’ backwards andforwards during the initial frequency scan.

4 = As P016 = 2 except that the inverter will only attempt torestart the motor in the direction of the requested setpoint.The motor is prevented from ‘rocking’ backwards andforwards during the initial frequency scan.

Note: For MIDIMASTER Vector units, it is recommended that ifP016 > 0 then P018 should be set to ‘1’. This will ensurecorrect re-starting if the inverter fails to re-synchronise onthe initial attempt.

IMPORTANT:When P016 > 0, care must be taken to set up the motornameplate data (parameters P080 toP085) and toperform an auto stator resistance calibration (P088=1)on a cold motor. Recommended maximum operatingfrequency should be less than 120 Hz.

Page 82: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

45 4/8/99

P017 • Smoothing type 1 - 2[1]

1 = Continuous smoothing (as defined by P004).2 = Discontinuous smoothing. This provides a fast unsmoothed

response to STOP commands and requests to reducefrequency.

Note: P004 must be set to a value > 0.0 for this parameter tohave any effect.

P018 • Automatic restart after fault 0 - 1[0]

Automatic restart after fault:0 = Disabled1 = The inverter will attempt to restart up to 5 times after a fault.

If the fault is not cleared after the 5th attempt, the inverterwill remain in the fault state. The display flashes during thiscondition.

WARNING:While waiting to re-start, the display willflash. This means that a start is pending andmay happen at any time. Fault codes can beobserved in P140 and P930.

P019 • Skip frequency bandwidth (Hz) 0.00 - 10.00[2.00]

Frequencies set by P014, P027, P028 and P029 that are within +/-the value of P019 of all skip frequencies are suppressed.

P021 • Minimum analogue frequency(Hz)

0 - 650.00[0.00]

Frequency corresponding to the lowest analogue input value, i.e.0 V/0 mA or 2 V/4 mA, determined by P023 and the settings of theDIP selector switches 1, 2 and 3 (see Figure 4.1.2). This can be setto a higher value than P022 to give an inverse relationship betweenanalogue input and frequency output (see diagram in P022).

P022 • Maximum analogue frequency(Hz)

0 - 650.00[50.00]

Frequency corresponding to the highest analogue input value, i.e.10 V or 20 mA, determined by P023 and the setting of the DIPselector switches 1, 2 and 3 (see Figure 4.1.2) This can be set to alower value than P021 to give an inverse relationship betweenanalogue input and frequency output.i.e.

Note: The output frequency is limited by values entered forP012/P013.

f

V/ I

P021

P021

P022

P022

Page 83: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 46

P023 • Analogue input 1 type 0 - 3[0]

Sets analogue input type for analogue input 1, in conjunction with thesettings of the DIP selector switches 1, 2 and 3 (see Figure 4.1.2). :0 = 0 V to 10 V/ 0 to 20 mA Unipolar input1 = 2 V to 10 V/ 4 to 20 mA Unipolar input2 = 2 V to 10 V/ 4 to 20 mA Unipolar input with controlled start /

stop when using analogue input control.3 = -10V to +10V Bipolar input. -10V corresponds to left rotation at

speed set in P021, +10V corresponds to right rotation at speedset in P022

Note: Setting P023 = 2 will not work unless the inverter is underfull local control (i.e. P910 = 0 or 4) and V ≥ 1 V or 2mA.

WARNING: The inverter will automatically start when voltagegoes above 1V. This equally applies to both analogueand digital control (i.e. P006 = 0 or 1)

Bi-polar Input Operation

P024 • Analogue setpoint addition 0 - 2[0]

If the inverter is not in analogue mode (P006 = 0 or 2), setting thisparameter to:

0 = No addition to basic setpoint frequency as defined in P006.1 = Addition of analogue input 1 to the basic setpoint frequency

as defined in P0062 = Scaling of basic setpoint (P006) by analogue input 1 in the

range 0 -100%.

P025 • Analogue output 1 0 - 105[0]

This provides a method of scaling the analogue output 1 inaccordance with the following table:Use range 0 - 5 if minimum output value = 0 mA.Use range 100 - 105 if minimum output value = 4 mA

P025 = Selection Analogue Output Range Limits0/4 mA 20 mA

0/100 Outputfrequency

0 Hz Output frequency (P013)

1/101 Frequencysetpoint

0 Hz Frequency setpoint (P013)

2/102 Motor current 0 A Max. overload current(P083 x P086 / 100)

3/103 DC-link voltage 0 V 1023 Vdc4/104 Motor torque -250% +250%

(100% = P085 x 9.55 / P082Nm)

5/105 Motor RPM 0 Nominal motor RPM(P082)

F max

F min

+10V

0.2V Hysteresis

-10V

P021

P022

Page 84: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

47 4/8/99

6/106 Motormagnetisingcurrent

0 A Max. overload current(P083 x P186 / 100)

7/107 Motor torqueproducingcurrent(centre zero)

0 AMax

regenerativetorque

Max. overload currenti.e. accelerating torque

(P083 x P186 / 100)

P026 • Analogue output 2 (MDV only) 0 - 105[0]

This provides a method of scaling the analogue output 2 inaccordance with the table shown in P025.

P027 • Skip frequency 2 (Hz) 0 - 650.00[0.00]

See P014.

P028 • Skip frequency 3 (Hz) 0 - 650.00[0.00]

See P014.

P029 • Skip frequency 4 (Hz) 0 - 650.00[0.00]

See P014.

P031 • Jog frequency right (Hz) 0 - 650.00[5.00]

Jogging is used to advance the motor by small amounts. It iscontrolled via the JOG button or with a non-latching switch on one ofthe digital inputs (P051 to P055 and P356).If jog right is enabled for one if these digital inputs (e.g. P051-55 or P356 =7)or if the Job Button is pressed this parameter controls the frequency at whichthe inverter will run when the switch is closed. Unlike other setpoints, it can beset lower than the minimum frequency.

P032 • Jog frequency left (Hz) 0 - 650.00[5.00]

If jog left is enabled (e.g. P051-55 or P356 = 8), this parameter controls thefrequency at which the inverter will run when the switch is closed. Unlike othersetpoints, it can be set lower than the minimum frequency.

P033 • Jog Ramp-up time (seconds) 0 - 650.0[10.0]

This is the time taken to accelerate from 0 Hz to maximumfrequency (P013) for jog functions. It is not the time taken toaccelerate from 0 Hz to the jog frequency.If one of the digital inputs is programmed to select jog ramp times, thecorresponding digital input can be used to select the ramp time setby this parameter instead of the normal Ramp-up time set by P002.

P034 • Jog Ramp-down time (seconds) 0 - 650.0[10.0]

This is the time taken to decelerate from maximum frequency (P013)to 0 Hz for jog functions. It is not the time taken to decelerate fromthe jog frequency to 0 Hz.If one of the digital inputs is programmed to select jog ramp times, thecorresponding digital input can be used to select the ramp time setby this parameter, instead of the normal Ramp-down time set byP003.

Page 85: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 48

P040 • Positioning function 0 - 1[0]

0 - Disabled1 - Under normal operation the ramp-down time is defined as the timetaken to ramp-down from the value set in P013 to 0. Setting P040 to1 will automatically re-scale the ramp down time so that the motor willalways stop in the same position regardless of operating frequency.

P013

0

Stop Command

Stop position0

f

t

e.g. P003 = 1s, P013 = 50Hz, P012 = 0Hz.If the motor is running at 50Hz and a stop command applied, themotor will stop in 1second. If the motor is running at 25Hz, the motorwill stop in 2 seconds and if the motor is running at 5Hz, the motor willstop in 10 seconds. In each case, the motor will stop at the sameposition.

P041 • Fixed frequency 1 (Hz) 0 - 650.00[5.00]

Valid if P006 = 2 and P055 = 6 or 18, or P053-55=17

P042 • Fixed frequency 2 (Hz) 0 - 650.00[10.00]

Valid if P006 = 2 and P054 = 6 or 18, or P053-55=17

P043 • Fixed frequency 3 (Hz) 0 - 650.00[15.00]

Valid if P006 = 2 and P053 = 6 or 18, or P053-55=17

P044 • Fixed frequency 4 (Hz) 0 - 650.00[20.00]

Valid if P006 = 2 and P052 = 6 or 18 , or P053-55=17

Page 86: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

49 4/8/99

P045 Inversion fixed setpoints forfixed frequencies 1 - 4

0 - 7[0]

Sets the direction of rotation for the fixed frequency:

FF 1 FF 2 FF3 FF 4P045 = 0 ⇒ ⇒ ⇒ ⇒P045 = 1 ⇐ ⇒ ⇒ ⇒P045 = 2 ⇒ ⇐ ⇒ ⇒P045 = 3 ⇒ ⇒ ⇐ ⇒P045 = 4 ⇒ ⇒ ⇒ ⇐P045 = 5 ⇐ ⇐ ⇒ ⇒P045 = 6 ⇐ ⇐ ⇐ ⇒P045 = 7 ⇐ ⇐ ⇐ ⇐

⇒ Fixed setpoints not inverted.⇐ Fixed setpoints inverted.

P046 • Fixed frequency 5 (Hz) 0 - 650.00[25.0]

Valid if P006 = 2 and P051 = 6 or 18. , or P053-55=17

P047 • Fixed frequency 6 (Hz) 0 - 650.00[30.0]

Valid if P006 = 2 and P356 = 6 or 18, or P053-55=17

P048 • Fixed frequency 7 (Hz) 0 - 650.00[35.0]

Valid if P006 = 2, and P053-55=17

P049 • Fixed frequency 8 (Hz) 0 - 650.00[40.0]

Valid if P006 = 2, and P053-55=17

P050 Inversion fixed setpoints forfixed frequencies 5 - 8

0 - 7[0]

Sets the direction of rotation for the fixed frequency:

FF 5 FF 6 FF7 FF8P050 = 0 ⇒ ⇒ ⇒ ⇒P050 = 1 ⇐ ⇒ ⇒ ⇒P050 = 2 ⇒ ⇐ ⇒ ⇒P050 = 3 ⇒ ⇒ ⇐ ⇒P050 = 4 ⇒ ⇒ ⇒ ⇐P050 = 5 ⇐ ⇐ ⇒ ⇒P050 = 6 ⇐ ⇐ ⇐ ⇒P050 = 7 ⇐ ⇐ ⇐ ⇐

⇒ Fixed setpoints not inverted⇐ Fixed setpoints inverted

Page 87: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 50

P051 Selection control function, DIN1 0 - 24(terminal 5), fixed frequency 5. [1]

P052 Selection control function, DIN2 0 - 24(terminal 6), fixed frequency 4. [2]

P053 Selection control function, DIN3 0 - 24(terminal 7), fixed frequency 3. [6]If set to 17, this enables the mostsignificant bit of the 3-bit Binary code(see table).

P054 Selection control function, DIN4 0 - 24(terminal 8 ), fixed frequency 2 . [6]If set to 17, this enables the middlebit of the 3-bit Binary code (see table).

P055 Selection control function, DIN5 0 - 24(terminal 16 ), fixed frequency 1. [6]If set to 17, this enables the leastsignificant bit of the 3-bit Binary code(see table).

P356 Selection control function, DIN6 0 - 24(terminal 17 ), fixed frequency 6. [6]

Value

0123456789

10

111213

14

1516

17

18

1920

22

23

24

Function of P051 to P055 andP356

Input disabledON rightON leftReverseOFF2(see section 5.4)OFF3(see section 5.4)Fixed frequencies 1 - 6Jog rightJog leftUSS operation (P910 =1 or 3)

Fault reset

Increase frequency *Decrease frequency *Disable analogue input (setpointis 0.0Hz)Disable the ability to changeparametersEnable dc brakeUse jog ramp times instead ofnormal ramp timesBinary fixed frequency control(fixed frequencies 1 - 8) **Fixed frequencies 1-6, but inputhigh will also request RUN whenP007 = 0.External tripWatchdog trip (see P057),(minimum pulse width = 20 ms)Note: The first Low-to-Hightransition initiates the Watchdogtimer.Download parameter set 0 fromOPM2***Download parameter set 1 fromOPM2***Switch analogue setpoint

Function,low state

-OffOffNormalOFF2OFF3OffOffOffLocal

Off

OffOffAnalogueon‘P’ enabled

OffNormal

Off

Off

Yes (F012)

Off

Off

Analogueinput 1active.

Function,high state

-On rightOn leftReverseOnOnOnJog rightJog left(USS, Profi-and CANbus)Reset onrising edgeIncreaseDecreaseAnaloguedisabled‘P’ disabled

Brake onJog ramptimesOn

On

NoLow to Hightransition re-setsWatchdogtimerDownload

Download

Analogue ****input 2active.

* Only effective when P007 = 0.** Not available on P051, P052 or P356.*** The motor must be stopped before downloading begins. Downloading takes approx. 30 seconds.**** Top left hand segment in display flashes

Page 88: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

51 4/8/99

Binary Coded Fixed Frequency MappingDIN3 (P053) DIN4 (P054) DIN5 (P055)

FF5 (P046) 0 0 0FF6 (P047) 0 0 1FF7 (P048) 0 1 0FF8 (P049) 0 1 1FF1 (P041) 1 0 0FF2 (P042) 1 0 1FF3 (P043) 1 1 0FF4 (P044) 1 1 1Note: If P051 or P052 = 6 or 18 while P053 or P054 or P055 = 17

then the setpoints are added.Examples: (1) P053 = 17, P054 = 17, P055 = 17:

All 8 fixed frequencies are availablee.g. DIN3 = 1, DIN4 = 1, DIN5 = 0 ⇒ FF3 (P043)

(2) P053 ≠ 17, P054 = 17, P055 = 17:DIN3 is fixed at zero (only FF5 to FF8 available)e.g. DIN4 = 1, DIN5 = 0 ⇒ FF7 (P048)

P056 Digital input debounce time 0 - 2[0]

0 = 12.5 ms1 = 7.5 ms2 = 2.5 ms

P057 Digital Input Watchdog Trip(seconds)

0.0-650.0[1.0]

Time interval between expected ‘Watchdog kicks’ or if this time intervalshould lapse without a pulse on one of the digital inputs, an F057 tripwill occur.(See P051 to P055 and P356)

Page 89: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 52

P061 Selection relay output RL1 0 - 13[6]

Sets the relay function, output RL1 (terminals 18,19 and 20)

Value Relay function Active3

0 No function assigned (relay not active) Low1 Inverter is running High2 Inverter frequency 0.0 Hz Low3 Motor running direction right High4 External brake on (see parameters P063/P064) Low5 Inverter frequency greater than minimum frequency High6 Fault indication 1 Low7 Inverter frequency greater than or equal to setpoint High8 Warning active 2 Low9 Output current greater than or equal to P065 High

10 Motor current limit (warning) 2 Low11 Motor over temperature (warning) 2 Low12 PID closed loop motor LOW speed limit High13 PID closed loop motor HIGH speed limit High

1 Inverter switches off (see parameter P930 and P140 to P143 andsection 7).

2 Inverter does not trip(see parameter P931).3 ‘Active low’ = relay OFF/ de-energised or ‘Active high’ = relay ON/

energisedNote: If the external brake function is used (P061 or P062 = 4)

and additional slip compensation is used (P071≠ 0),minimum frequency must be less than 5 Hz (P012 < 5.00),otherwise the inverter may not switch off.

Warning:Relay operation is not defined during parameter changes and may change unpredictably.Ensure any equipment connected to the relays will remain safe if the relays change state during parameterisation.

P062 Selection relay output RL2. 0 - 13[8]

Sets the relay function, output RL2 (terminals 21and 22) (refer to thetable in P061).

P063 External brake release delay(seconds)

0 - 20.0[1.0]

Only effective if the relay output is set to control an external brake(P061 or P062 = 4). In this case when the inverter is switched on, it willrun at the minimum frequency for the time set by this parameter beforereleasing the brake control relay and ramping up (see illustration inP064).

Page 90: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

53 4/8/99

P064 External brake stopping time(seconds)

0 - 20.0[1.0]

As P063, only effective if the relay output is set to control an externalbrake. This defines the period for which the inverter continues to run atthe minimum frequency after ramping down and while the externalbrake is applied.

Notes: (1) Settings for P063 and P064 should be slightly longerthan the actual time taken for the external brake toapply and release respectively

(2) Setting P063 or P064 to too high a value, especiallywith P012 set to a high value, can cause an overcurrentwarning or trip as the inverter attempts to turn a lockedmotor shaft.

P065 Current threshold for relay (A) 0.0-300.0[1.0]

This parameter is used when P061 or P062 = 9. The relay switches onwhen the motor current is greater than the value of P065 and switchesoff when the current falls to 90% of the value of P065 (hysteresis).

P066 Compound braking 0 - 250[0]

0 = Off1 to 250 = Defines the level of DC superimposed on the AC waveform,

expressed as a percentage of P083. Generally, increasing thisvalue improves braking performance, however, with 400Vinverters, a high value in this parameter could cause F001 trips.

Note: Compound braking does not operate in Sensorless Vectorcontrol mode (P077=3).

P069 Ramp extension disable 0 - 1

[1]

0 - Ramp extension disabled.

1 - Ramp extension enabled. Ramp time is increased during currentlimit, overvoltage limit and slip limit to prevent tripping.

Note: Ramp extension does not occur when in vector control (P077=3).

P070 Braking Resistor Duty Cycle(MMV only)

0 - 4[0]

0 = 5%1 = 10%2 = 20%3 = 50%4 = 100% (i.e. continuous)WARNING: Standard braking resistors for the MICROMASTER

Vector are designed for the 5% duty cycle only. Donot select higher duty cycles unless suitably ratedresistors are being used to handle the increasedpower dissipation. The maixmum on time forvalues 0 to 3 is limited according to the brakeresistor thermal capacity. Limit is 12 seconds for5%, increasing to 25 seconds for 50%.

ON OFF

tP063

A

tP064

A

f

fmin

B

t

A = Brake appliedB = Brake removed

Page 91: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 54

P071 • Slip compensation (%) 0 - 200[0]

The inverter can estimate the amount of slip in an asynchronous motorat varying loads and increase its output frequency to compensate. Thisparameter ‘fine tunes’ the compensation for different motors in therange 0 - 200% of the calculated slip.Note: This feature is not active and is not necessary when in

Sensorless Vector Control (P077=3).WARNING: This parameter must be set to zero when using

synchronous motors or motors that are connectedin parallel or over-compensation can causeinstability.

P072 • Slip limit (%) 0 - 500[250]

0 - 499 - This limits the slip of the motor to prevent ‘pull-out’ (stalling),which can occur if slip is allowed to increase indefinitely.When the slip limit is reached, the inverter reduces frequencyto keep the level of slip below this limit.

500 - Disables slip limit warning

P073 • DC injection braking (%) 0 - 200[0]

This rapidly stops the motor by applying a DC braking current andholds the shaft stationary until the end of the braking period. Additionalheat is generated within the motor. Braking is effective for the period oftime set by P003.The DC brake can be activated using DIN1 to DIN6 (see P051 to P055and P356).WARNING: Frequent use of long periods of dc injection

braking can cause the motor to overheat.If DC injection braking is enabled via a digital inputthen DC current is applied for as long as the digitalinput is high. This causes heating of the motor.

Page 92: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

55 4/8/99

P074 • I2t motor protection 0 - 7[1]

Selects the most appropriate curve for the motor derating at lowfrequencies due to the reduced cooling effect of the shaft mountedcooling fan.

0 = No derating. Suitable for motors with separately powered coolingor no fan cooling which dissipate the same amount of heatregardless of speed.

1 = For 2 or 4-pole motors which generally have better cooling due totheir higher speeds. The inverter assumes that the motor candissipate full power at ò 50% nominal frequency.

2 = Suitable for special motors not continuously rated at nominalcurrent at nominal frequency..

3 = For 6 or 8-pole motors. The inverter assumes that the motor candissipate full power at ò nominal frequency.

4 = As P074 = 0 but the inverter trips (F074) instead of reducing themotor torque / speed.

5 = As P074 = 1 but the inverter trips (F074) instead of reducing themotor torque / speed.

6 = As P074 = 2 but the inverter trips (F074) instead of reducing themotor torque / speed.

7 = As P074 = 3 but the inverter trips (F074) instead of reducing themotor torque / speed.

Note: I2t motor protection is not recommended where the motor is lessthan half the power rating of the inverter.

P075 • Braking chopper enable(MMV only)

0 - 1[0]

0 = An external braking resistor is not connected.

1 = An external braking resistor is connected.

An external braking resistor can be used to ‘dump’ the powergenerated by the motor, thus giving greatly improved braking anddeceleration capabilities. It MUST be greater than 40Ω (80Ω for 3 AC400 V inverters) or the inverter will be damaged. Purpose maderesistors are available to cater for all MICROMASTER Vector variants.WARNING: Take care if an alternative resistor is to be used as

the pulsed voltage applied by the inverter candestroy ordinary resistors.

IN = Nominal motor current (P083)FN = Nominal motor frequency (P081)

P074 = 1/5 P074 = 3/7 P074 = 2/6P074 = 0/4

100% IN

50% IN

50% FN 100% FN 150% FN

Page 93: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 56

P076 • Pulse frequency 0 - 7[0 or 4]

Sets the pulse frequency (from 2 to 16 kHz) and the PWM mode. If silentoperation is not absolutely necessary, the losses in the inverter as well asthe RFI emissions can be reduced by selecting lower pulse frequencies.

0/1 = 16 kHz (230 V default)2/3 = 8 kHz4/5 = 4 kHz (400 V default)6/7 = 2 kHz

Even numbers = normal modulation technique.Odd numbers = lower loss modulation technique used when operatingmainly at speeds above 5 Hz.Due to higher switching losses at increased switching frequencies,certain inverters may have their maximum continuous current (100%)derated if the value of P076 is changed from the default value

Model % of full load de-rating

P076 =0 or 1 P076 =2 or 3

MMV75/3 80 100MMV110/3 50 80MMV150/3 50 80MMV220/3* 80 100MMV300/3* 50 80MMV400/3* 50 80MMV550/3* 50 80MMV750/3* 50 80

* Derating applies to filtered units MMVXXX/3F as well

Model % of full load de-rating

P076 =0 or 1 P076 =2 or 3

MDV550/2 55 90MDV750/2 64 90MDV1100/2 55 75MDV1500/2 47 80MDV1850/2 43 79MDV2200/2 38 68

MDV750/3 57 90MDV1100/3 50 83MDV1500/3 64 90MDV1850/3 55 75

MDV2200/3 50 90MDV3000/3 47 88MDV3700/3 40 75

MDV550/4 75 100MDV750/4 55 100MDV1100/4 39 75MDV1500/4 64 90MDV1850/4 55 75

Page 94: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

57 4/8/99

Note: If P076 = 4, 5, 6 or 7 then derating does not occur on theabove inverters.

Note: On 230V units of 30kW and above, 400V units of 45kW andabove, and 575V units of 22kW and above, P076 can only beset to 4, 5, 6 or 7 (4kHz or 2kHz only).

The switching frequency will automatically be reduced if theinverter internal protection detects an excessive heat sinktemperature. The switching frequency will automatically bereturned to the setting once this temperature returns tonormal.

P077 Control mode 0 - 3(1)

Controls the relationship between the speed of the motor and thevoltage supplied by the inverter. One of four modes can be selected:0 = V/f curve1 = FCC control2 = Quadratic V/f3 = Vector ControlNote: When Sensorless Vector Control is selected (P077 = 3), P088

will automatically be set to 1, so that on first run-up, the inverterwill measure the stator resistance of the motor and calculatemotor constants from the rating plate data in P080 to P085.

P078 • Continuous boost (%)MMVMDV (P077=3)MDV (P077=0, 1 or 2)

0 - 250[100][100][50]

For many applications it is necessary to increase low frequency torque.This parameter sets the start-up current at 0 Hz to adjust the availabletorque for low frequency operation. 100% setting will produce ratedmotor current (P083) at low frequencies.WARNING: If P078 is set too high, overheating of the motor

and/or an overcurrent trip (F002) can occur.

P079 • Starting boost (%) 0 - 250[0]

For drives which require a high initial starting torque, it is possible to setan additional current (added to the setting in P078) during rampduration (P002). This is only effective during initial start up and until thefrequency setpoint is reached.WARNING: This increase is in addition to P078, but the total is

limited to 250%.

Page 95: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 58

P080 Nominal rating plate motor powerfactor (cosϕ)

0.00-1.00[¶¶¶] If efficiency is shown on the motor rating plate, calculate the power

factor as follows: pf =

If neither power factor nor efficiency are shown on the motor ratingplate - set P080 = 0.

P081 Nominal rating plate frequency formotor (Hz)

0 - 650.00[50.00]

P082 Nominal rating plate speed formotor (RPM)

0 - 9999[¶¶¶]

Notes:1 These parameters P080 to P085 must be set for the particular motor

used. Read the figures from the motor rating plate (see Figure 4.2..1 ).

P083 Nominal rating plate current formotor (A)

0.1-300.0[¶¶¶]

2 It will be necessary to perform an automatic calibration (P088 = 1) ifP080 to P085 are changed from their factory default settings.

P084 Nominal rating plate voltage formotor (V)

0 - 1000[¶¶¶]

3 When the inverter is set-up for North American operation (P101=1);P081 will default to 60Hz and P085 will indicate hp (0.16 - 250)

P085 Nominal rating plate power formotor (kW)

0.12-250.00[¶¶¶]

P086 • Motor current limit (%) 0 - 250[150]

Defines the motor overload current as a % of the Nominal motorcurrent (P083) allowed for up to one minute.With this parameter and P186, the motor current can be limited andoverheating of the motor prevented. If the value set in P083 isexceeded for one minute, (or longer if the overload is small) , theoutput frequency is reduced until the current falls to that set in P083.The inverter display flashes as a warning indication but the inverterdoes not trip. The inverter can be made to trip using P074.Note: The maximum value that P086 can be set to is automatically

limited by the rating of the inverter.

P087 • Motor PTC enable 0 - 1[0]

0 = Disabled1 = External PTC enabledNote: If motor thermal protection is required, then an external PTC

must be used and P087 = 1. If P087 = 1 and the PTC inputgoes high then the inverter will trip (fault code F004displayed).

P088 Automatic calibration 0 - 1[0]

The motor stator resistance is used in the inverter's internal currentmonitoring calculations. When P088 is set to ‘1’ and the RUN button ispressed, the inverter performs an automatic measurement of motorstator resistance; stores it in P089 and then resets P088 to ‘0’.If the measured resistance is too high for the size of inverter (e.g.motor not connected or unusually small motor connected), the inverterwill trip (fault code F188) and will leave P088 set to ‘1’. If this happens,set P089 manually and then set P088 to ‘0’.

P089 • Stator resistance (Ω) 0.01-199.99[¶¶¶]

Can be used instead of P088 to set the motor stator resistancemanually. The value entered should be the resistance measuredacross any two motor phases.

WARNING: The measurement should be made at the inverterterminals with power off and cold motor.

Note: If the value of P089 is too high then an overcurrent trip(F002)may occur.

P091 • Serial link slave address 0 - 30[0]

Up to 31 inverters can be connected via the serial link and controlled bya computer or PLC using the USS serial bus protocol. This parametersets a unique address for the inverter.

hp x 7461.732 x efficiency x nom. volts x nom. amps

Page 96: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

59 4/8/99

P092 • Serial link baud rate 3 - 7[6]

Sets the baud rate of the RS485 serial interface (USS protocol):3 = 1200 baud4 = 2400 baud5 = 4800 baud6 = 9600 baud7 = 19200 baud

Note: Some RS232 to RS485 converters are not capable of baudrates higher than 4800.

P093 • Serial line time-out (seconds) 0 - 240.[0]

This is the maximum permissible period between two incoming datatelegrams. This feature is used to turn off the inverter in the event of acommunications failure.Timing starts after a valid data telegram has been received and if afurther data telegram is not received within the specified time period,the inverter will trip and display fault code F008.Setting the value to zero switches off the control.

P094 • Serial link nominal systemsetpoint (Hz)

0 - 650.00[50.00]

Setpoints are transmitted to the inverter via the serial link aspercentages. The value entered in this parameter represents 100%

(HSW = 4000H).

P095 • USS compatibility 0 - 2[0]

0 = Compatible with 0.1 Hz resolution1 = Enable 0.01 Hz resolution

2 = HSW is not scaled but represents the actual frequency valueto a resolution of 0.01 Hz (e.g. 5000 = 50 Hz).

P099 • Option module type 0 - 2[0]

0 = Option module not present1 = PROFIBUS module (enables parameters relating to

PROFIBUS)2 = CANbus module (enables parameters relating to CANbus)

P101 • Operation for Europe or NorthAmerica

0 - 1[0]

This sets the inverter for European or North America supply andnominal rating plate frequency for the motor to:

0 = Europe (50 Hz and power ratings to kW)1 = North America (60 Hz and power ratings to hp)

Note: After setting P101 =1 the inverter must be re-set to factorydefaults, i.e. P944 = 1 to automatically set P013 = 60Hz, P081=60Hz, P082 = 1680rpm P085 will be displayed in hp.

P111 Inverter power rating (kW/hp) 0.12- 75.00[¶¶¶]

Read-only parameter that indicates the power rating of the inverter inkW. e.g. 0.55 = 550 WNote: If P101 = 1 then the rating is displayed in hp.

P112 Inverter type 1 - 8[¶¶¶]

Read-only parameter.1 = MICROMASTER 2nd Generation (MM2)2 = COMBI MASTER3 = MIDIMASTER4 = MICROMASTER Junior (MMJ)5 = MICROMASTER 3rd Generation (MM3)6 = MICROMASTER Vector (MMV)7 = MIDIMASTER Vector (MDV)8 = COMBIMASTER 2nd Generation.

P113 Drive model 0 - 29[¶¶¶]

Read-only parameter; indicates the Vector model number according tothe type range indicated by P112.

P113 P112 = 6 P112 = 7 P113 P112 = 6 P112 = 70 MMV12 MDV550/2 15 MMV110/2 MDV3000/31 MMV25 MDV750/2 16 MMV150/2 MDV3700/32 MMV37 MDV1100/2 17 MMV220/2 MDV4500/33 MMV55 MDV1500/2 18 MMV300/2 MDV5500/3

Page 97: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 60

4 MMV75 MDV1850/2 19 MMV400/2 MDV7500/35 MMV110 MDV2200/2 20 MMV37/3 MDV220/46 MMV150 MDV3000/2 21 MMV55/3 MDV400/47 MMV220 MDV3700/2 22 MMV75/3 MDV550/48 MMV300 MDV4500/2 23 MMV110/3 MDV750/4

24 MMV150/3 MDV1100/410 MMV12/2 MDV750/3 25 MMV220/3 MDV1500/411 MMV25/2 MDV1100/3 26 MMV300/3 MDV1850/412 MMV37/2 MDV1500/3 27 MMV400/3 MDV2200/413 MMV55/2 MDV1850/3 28 MMV550/3 MDV3000/414 MMV75/2 MDV2200/3 29 MMV750/3 MDV3700/4

P121 Enable/disable RUN button 0 - 1[1]

0 = RUN button disabled1 = RUN button enabled (only possible if P007 = 1)

P122 Enable/disableFORWARD/REVERSE button

0 - 1[1]

0 = FORWARD/REVERSE button disabled1 = FORWARD/REVERSE button enabled (only possible if P007 = 1)

P123 Enable/disable JOG button 0 - 1[1]

0 = JOG button disabled1 = JOG button enabled (only possible if P007 = 1)

P124 Enable/disable ∆ and ∇ buttons 0 - 1[1]

0 = ∆ and ∇ buttons disabled1 = ∆ and ∇ buttons enabled (only possible if P007 = 1)Note: This applies for frequency adjustment only. The buttons can

still be used to change parameter values.

P125 Reverse direction inhibit 0 - 1[1]

This parameter can be used to prevent the inverter from running amotor in the reverse direction.

0 = Reverse direction disabled. Inhibits reverse commands from ALLsources (e.g. front panel, digital, analogue, etc.). All negative RUNcommands (e.g. ON left, JOG left, REVERSE, etc.) result inFORWARD rotation. Any negative result of setpoint addition isclipped at 0 Hz.

1 = Normal operation. Forward and reverse direction of rotationallowed.

P128 Fan switch-off delay time(seconds) (MMV only)

0 - 600[120]

Time taken for the fan to switch off following an OFF command.

P131 Frequency setpoint (Hz) 0.00-650.00[-]

P132 Motor current (A) 0.0 - 300.0[-]

P133 Motor torque (% nominal torque) 0 - 250[-]

Read-only parameters. These are copies of the values stored in P001but can be accessed directly via the serial link.

P134 DC link voltage (V) 0 - 1000[-]

P135 Motor RPM 0 - 9999[-]

P137 Output voltage (V) 0 - 1000[-]

P138 Instantaneous rotor / shaftfrequency (Hz)(Vector mode only)

0 - 650[-]

P139 Peak output current detect 0.0 - 99.9[-]

Stores the peak current seen by the motor. Can be reset using ∆ and∇buttons.

Page 98: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

61 4/8/99

P140 Most recent fault code 0 - 255[-]

Read only. The last recorded fault code (see section 7) is stored in thisparameter. The stored value can be cleared by using the ∆ and ∇buttons. Or by resetting to factory defaults (P944)

This is a copy of the code stored in P930.

P141 Most recent fault code -1 0 - 255[-]

Read only. This parameter stores the last recorded fault code prior tothat stored in P140/P930.

P142 Most recent fault code -2 0 - 255[-]

Read only. This parameter stores the last recorded fault code prior tothat stored in P141.

P143 Most recent fault code -3 0 - 255[-]

Read only. This parameter stores the last recorded fault code prior tothat stored in P142.

P186 • Motor instantaneous current limit(%)

0 - 500*(200)

This parameter defines the instantaneous motor current limit as a % ofthe nominal motor current (P083). If the output current reaches thislimit for three seconds, the inverter automatically reduces the current tothe limit set in P086.Note: * The maximum value that can be set for P186 is automaticallylimited by the rating of the inverter.

Torque limit operation is available, from 5Hz to 50Hz, when usingVector Control mode (P077=3). The motor torque produced is afunction of motor current. If P186 and P086 are equal, the current limitfunction can effectively be used as a torque limit.

P201 PID closed loop mode 0 - 1[0]

0 = Normal operation (closed loop process control disabled).1 = Closed loop process control using analogue input 2 as feedback.

P202 • P gain 0.0-999.9[1.0]

Proportional gain.

P203 • I gain 0.00-99.9[0]

Integral gain.0.01% corresponds to the longest integral action time.

P204 • D gain 0.0-999.9[0]

Derivative gain.

P205 • Sample interval (x 25 ms) 1 - 2400[1]

Sampling interval of feedback sensor. The integral response rate isslowed down by this factor

P206 • Transducer filtering 0 - 255[0]

0 = Filter off.1 - 255 = Low pass filtering applied to transducer.

P207 • Integral capture range (%) 0 - 100[100]

Percentage error above which integral term is reset to zero.

P208 Transducer type 0 - 1[0]

0 = An increase in motor speed causes an increase in transducervoltage/current output.1 = An increase in motor speed causes an decrease in transducervoltage/current output..

P210 Transducer reading (%) 0.00-100.00[-]

Read-only. Value is a percentage of full scale of the selected signalinput(i.e. 10 V or 20 mA).

P211 • 0% setpoint 0.0 - 100.00[0.0]

Value of P210 to be maintained for 0% setpoint.

P212 • 100% setpoint 0.0 - 100.00[100.00]

Value of P210 to be maintained for 100% setpoint.

P220 Frequency cut-off. 0 - 1[0]

0 = Normal operation.1 = Switch off inverter output at or below minimum frequency.

Note: Active in all modes.

Page 99: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 62

P321 • Minimum analogue frequency foranalogue setpoint 2 (Hz)

0 - 650.00[0.00]

Frequency corresponding to the lowest analogue input value, i.e.0 V/0 mA or 2 V/4 mA, determined by P323 and the settings of the DIPselector switches 4 and 5 (see Section 4.1.2). This can be set to ahigher value than P322 to give an inverse relationship betweenanalogue input and frequency output (see diagram in P322).

P322 • Maximum analogue frequency foranalogue setpoint 2 (Hz)

0 - 650.00[50.00]

Frequency corresponding to the highest analogue input value, i.e.10 V or 20 mA, determined by P323 and the setting of the DIP selectorswitches 4 and 5 (see Section 4.1.2).. This can be set to a lower valuethan P321 to give an inverse relationship between analogue input andfrequency output.

P323 • Analogue input 2 type 0 - 2[0]

Sets analogue input type for analogue input 2, in conjunction with thesettings of the DIP selector switches 4 and 5 (see, Section 4.1.2) :0 = 0 V to 10 V/ 0 to 20 mA Unipolar input1 = 2 V to 10 V/ 4 to 20 mA Unipolar input2 = 2 V to 10 V/ 4 to 20 mA Unipolar input with controlled start /

stop when using analogue input control.Note: Setting P323 = 2 will not work unless the inverter is under

full local control (i.e. P910 = 0 or 4) and V ≥ 1 V or 2mA.WARNING:The inverter will automatically start when voltage goes

above 1V or 2mA. This equally applies to bothanalogue and digital control (i.e. P006 = 0 or 1)

P356 Digital input 6 configuration 0 - 24[6]

Control function selection, DIN 6See P051 - P055 for description.

P386 Sensorless vector speed controlloop gain - proportional term

0.1 - 20.0[1.0]

To optimise the dynamic performance of the vector control thisparameter should be incremented whilst the inverter is operating undertypical conditions until the first signs of speed instability occur. Thesetting should then be reduced slightly (approx. 10%) until stability isrestored. In general, the optimum setting required will be proportionalto the load inertia. If this setting is too low or too high, rapid loadchanges may result in DC link overvoltage trips (F001) and/or unstablevector control.See section 5.3.3 for further information .Note: P386 = Load inertia + motor shaft inertia motor shaft inertia

P387 Sensorless vector speed controlloop gain - integral term

0.01- 10.0[1.0]

P386 must be optimised before adjusting P387. Whilst operating theinverter under typical conditions, increment this parameter until the firstsigns of speed instability occur. The setting should then be reducedslightly (approx. 30%) until stability is restored.See section 5.3.3 for further information.

P700P701 • Specific to PROFIBUS-DP. See PROFIBUS Handbook for further

P702 details. Access only possible with P099 = 1

f

V/ I

P322

P322

P321

P321

Page 100: Tai lieu hd_tttn_2006

6. SYSTEM PARAMETERS EnglishParameter Function Range

[Default]Description / Notes

© Siemens plc 1999 G85139-H1751-U529-D1

63 4/8/99

P720 • Direct input/output functions 0 - 7[0]

Allows direct access to the relay outputs and the analogue output viathe serial link (USS or PROFIBUS-DP with module):

0 = Normal operation1 = Direct control of relay 12 = Direct control of relay 23 = Direct control of relay 1 and relay 24 = Direct control of analogue output 1 only5 = Direct control of analogue output 1 and relay 16 = Direct control of analogue output 1 and relay 27 = Direct control of analogue output 1, relay 1 and relay 2

P721 Analogue input 1 voltage (V) 0.0 - 10.0[-]

Read only. Displays the analogue input 1 voltage (approximate).

P722 • Analogue output 1 current (mA) 0.0 - 20.0[0.0]

Allows direct control of the output current over the serial link if P720 =4, 5, 6 or 7.

P723 State of digital inputs 0 - 3F[-]

Read-only. Provides a HEX representation of a 6-digit binary number ofwhich the LSB = DIN1 and the MSB = DIN6 (1 = ON, 0 = OFF).e.g. If P723 = B, this represents ‘001011’ - DIN1, DIN2 and DIN4

= ON, DIN3 , DIN5 and DIN6 = OFF.

P724 • Relay output control 0 - 3[0]

Enables control of the output relays. Used in conjunction with P720,e.g. setting P724 = 1 (relay 1 = ON) has no effect unless P720 = 1, 3,5,or 7.

0 = Both relays OFF / de-energised1 = Relay 1 ON / energised2 = Relay 2 ON / energised3 = Both relays ON / energised

P725 Analogue input 2 voltage (V) 0.0-10.0[-]

Read only. Displays the analogue input 2 voltage (approximate) onlywhen analogue input 2 is active (P051 to P055 or P356 = 24 and therespective digital input is high).

P726 Analogue output 2 current (mA)(MDV only)

0.0-20.0[0.0]

Allows direct control of the analogue output 2 current over the seriallink if P720 = 4, 5, 6 or 7.

P880 Specific to PROFIBUS-DP. See PROFIBUS Handbook for furtherdetails. Access only possible with P099 = 1

P900 toP970

(Other than those listed below) Specific to PROFIBUS-DP and CANbus operation. See PROFIBUSor CANbus Handbook for further details.Access only possible with P099 = 1 or 2

P910 • Local / USS mode 0 - 4[0]

Sets the inverter for local control or USS control over the serial link:0 = Local control1 = USS control (and setting of parameter values)2 = Local control (but USS control of frequency)3 = USS control (but local control of frequency)4 = Local control (but USS read and write access to

parameters and facility to reset trips)Note: When operating the inverter via USS control (P910 = 1

or 2 ), the analogue input remains active when P006 = 1and is added to the setpoint.

P922 Software version 0.00 - 99.99[-]

Contains the software version number andcannot be changed.

P923 • Equipment system number 0 - 255[0]

You can use this parameter to allocate a unique reference number tothe inverter. It has no operational effect.

P930 Most recent fault code 0 - 255[-]

See Parameter 140

Page 101: Tai lieu hd_tttn_2006

English 6. SYSTEM PARAMETERSParameter Function Range

[Default]Description / Notes

G85139-H1751-U529-D1 © Siemens plc 1999

4/8/99 64

P931 Most recent warning type 0 - 99[-]

Read only. The last recorded warning is stored in this parameter untilpower is removed from the inverter. This can be cleared by using the ∆and ∇ buttons.

See section 7.2 for explanation of warning codes

P944 Reset to factory default settings 0 - 1[0]

Set to ‘1’ and then press P to reset all parameters except P101 to thefactory default settings. Previously set parameters will be overwrittenincluding the motor parameters P080 - P085 (See section 4.2)

P971 • EEPROM storage control 0 - 1[1]

0 = Changes to parameter settings (including P971)are lost when power is removed.

1 = Changes to parameter settings are retained during periodswhen power is removed.

IMPORTANT: When using the serial link to update the parameterset held in EEPROM, care must be taken not to exceed themaximum number of write cycles to this EEPROM - this isapproximately 50,000 write cycles. Exceeding this number of writecycles would result in corruption of the stored data andsubsequent data loss. The number of read cycles are unlimited.

Page 102: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

Giôùi thieäu veà boä khôûi ñoäng meàm:

BOÄ KHÔÛI ÑOÄNG MEÀM SIKOSTART

Boä khôûi ñoäng meàm SIKOSTART 3RW22 coù taùc duïng laøm giaûm toån hao, taêng tuoåi thoï cuûa thieát bò. Caùc chöùc naêng ñöôïc tích hôïp trong SIKOSTART 3RW22: khôûi ñoäng meàm, döøng meàm, tieát kieäm naêng löôïng, boä haõm DC.

Ñaëc ñieåm

- Taàm coâng suaát leân tôùi 710 kW taïi 400 V - Coù theå choïn löïa caùc chöùc naêng khôûi ñoäng: breakaway pulse, voltage ramp, voltage or

current limiting - Coù theå choïn löïa 4 kieåu döøng: free run down, pump run down, soft run down, d.c. braking

- Coù cheá ñoä tieát kieäm naêng löôïng, boä thaéng DC. - Coù theå thieát laäp caùc thoâng soá vaø thöïc hieän caùc thao taùc ñieàu khieån ñôn giaûn qua giao tieáp

vôùi maùy vi tính. - Chöùc naêng giaùm saùt ñöôïc tích hôïp va tieáp ñieåm baùo hieäu. - Hieån thò caùc traïng thaùi hoaït ñoäng vaø traïng thaùi loãi. - Coù thieát bò baûo veä quaù taûi ñieän töû. - Baûo veä choáng quaù nhieät. - Giao tieáp vôùi maùy vi tính ñeå khôûi ñoäng giaùm saùt vaø ñieàu khieån ñoäng cô. - Boä nguoàn tích hôïp cho 3 loaïi ñieän aùp ñieàu khieån.

ÖÙng duïng:

SIKOSTART 3RW22 thích hôïp cho baát cöù loaïi öùng duïng thöïc teá naøo ví duï nhö : bôm, maùy neùn khí, quaït, baêng taûi, maùy nghieàn, maùy caét, maùy troän, …. Phaïm vi hoaït ñoäng cuûa SIKOSTART 3RW22:

- Doøng ñieän ñònh möùc (taïi 400C) [A] : 7 – 1200 - Ñieän aùp hoaït ñoäng ñònh möùc [V] : 200 – 1000 - Coâng suaát ñoäng cô (taïi 400C) [kW] : 1,5 – 1200 (5,5 – 1000 taïi 550C) - Ñieän aùp ñieàu khieån ñònh möùc [V] : 380 – 415, 200 – 240, 100 – 120 - Nhieät ñoä hoaït ñoäng [0C] : 0 – 55 - Soá löôïng thoâng soá thieát laäp : 1 – 3

Page 103: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

Caùch keát noái vaø ñaáu daây : 1. Ñieän aùp nguoàn ñieàu khieån : coù 4 ñaàu noái, ta coù theå söû duïng moät trong 3 loaïi

ñieän aùp sau :

2. Caùc ngoõ vaøo ñieàu khieån :

Caùc ngoõ vaøo IN1 vaø IN2 ñöôïc duøng ñeå khôûi ñoäng hay döøng boä khôûi ñoäng. IN3 ñöôïc duøng ñeå RESET khi coù söï coá. Caùc ngoõ vaøo ñieàu khieån naøy hoaït ñoäng khi ñöôïc noái vôùi chaân nguoàn +24V (chaân 11).

3. Ngoõ ra relay : GROUP ALARM Moät caëp tieáp ñieåm NO vaø NC (chaân 5, 6, 7) ñöôïc duøng baùo hieäu khi coù söï coá. Tieáp ñieåm NO ñoùng laïi (vaø NC hôû ra) khi coù söï coá.

4. Caùc ngoõ ra relay : MOTOR RUNNING vaø DC BRAKING

Tieáp ñieåm NO giöõa chaân 3 vaø 4 ñoùng moät khi heát thôøi gian leân hay khi ñoäng cô chaïy oån ñònh. Tieáp ñieåm NO giöõa chaân 1 vaø 2 ñieàu khieån contactor thaéng (braking contactor).

Page 104: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

5. Maïch keát noái ñoäng cô : Chuù yù :

- Doøng ñieän qua ñoäng cô phaûi ít nhaát baèng 20% doøng ñieän ñònh möùc Ie cuûa SIKOSTART.

- Vôùi maïch coù braking contactor thì contactor naøy phaûi ñöôïc gaén giöõa 2 ñaàu ra T2, T3 cuûa SIKOSTART.

- Vôùi maïch coù bypass contactor : neáu moät coâng taéc döøng ñoäng cô ñaët giöõa SIKOSTART vaø ñoäng cô thì khi bypass contactor ñöôïc ñoùng, SIKOSTART seõ khoâng theå phaùt hieän ñoäng cô ñöôïc döøng vaø khoâng coù tín hieäu alarm.

6. Sô ñoà noái daây cô baûn :

Page 105: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

Page 106: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

Höôùng daãn veà boä khôûi ñoäng meàm:

BOÄ KHÔÛI ÑOÄNG MEÀM SIKOSTART

I. HÖÔÙNG DAÃN VEÀ BOÄ KHÔÛI ÑOÄNG MEÀM SIKOSTART: Sikostart 3RW2221-1AB15 laø boä khôûi ñoäng meàm, cho pheùp ñieàu khieån ñoäng cô AC khoâng ñoàng boä 3 pha. Baèng caùch ñieàu khieån ñoä lôùn ñieän aùp cung caáp cho ñoäng cô, vaø giaùm saùt doøng ñieän laøm vieäc. Sikostart coù theå khoáng cheá doøng ñieän laøm vieäc cuûa ñoäng cô trong moät giôùi haïn thôøi gian cho pheùp, hay baûo veä cho ñoäng cô neáu xaûy ra quaù taûi. Thoâng qua vieäc caøi ñaët thôøi gian, Sikostart coù theå ñieàu khieån ñoäng cô khôûi ñoäng meàm (doøng khôûi ñoäng giôùi haïn) hay döøng meàm; maø khoâng laøm momen cuûa ñoäng cô thay ñoåi quaù nhanh. Sô ñoà treân moâ taû Sikostart ñieàu khieån ñoäng cô trong moät quaù trình khôûi ñoäng meàm vaø döøng meàm. Daïng ñieän aùp (ñoä lôùn) thay ñoåi theo cheá ñoä caøi ñaët cho Sikostart vaø doøng ñieän hieän taïi cuûa ñoäng cô.

Ñeå vaän haønh Sikostart 3RW2221-1AB15, caàn phaûi tìm hieåu hai phaàn chính: Caøi ñaët cheá ñoä (khôûi ñoäng vaø döøng) cho Sikostart. Maéc maïch ñieàu khieån vaø maïch ñoäng löïc cho Sikostart vaø ñoäng cô.

1. Caøi ñaët cheá ñoä khôûi ñoäng vaø cheá ñoä döøng cho Sikostart thoâng qua 4 nuùt ñieàu chænh vaø 8 coâng taéc DIL:

Caøi ñaët cheá ñoä khôûi ñoäng cho Sikostart:

U, I UN

UAnf UAB=0,85UAnf

0,9UN

IBI

U

tR tB

t tAus

5 3Cheá ñoä khôûi ñoäng

2 1 Cheá ñoä döøng

Page 107: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

Ñaët cheá ñoä khôûi ñoäng baèng coâng taéc DIL 3 vaø DIL 5, goàm caùc cheá ñoä:

Coâng taéc DIL DIL 3 DIL 5

Cheá ñoä khôûi ñoäng

Haøm doác ñieän aùp (Voltage ramp) Giôùi haïn doøng (Current limiting) Haøm doác ñieän aùp vôùi giôùi haïn doøng Haøm doác ñieän aùp vôùi xung ban ñaàu Haøm doác ñieän aùp vôùi xung ban ñaàu vaø giôùi haïn doøng Khôûi ñoäng nhanh (Emergency start)

Ñaët thôøi gian leân cuûa ñieän aùp tR baèng nuùt ñieàu chænh RAMP TIME. (tR = 0,3 – 180 sec).

Ñaët ñieän aùp (xung) ban ñaàu UAnf (UL) baèng nuùt ñieàu chænh START VOLTAGE. (UAnf (UL) = 20% - 100% UN).

Ñaët doøng giôùi haïn baèng IB nuùt ñieàu chænh CURRENT LIMIT. (Vôùi Sikostart 3RW2221-1AB15, doøng Ie = 5.5A, IB = 0.5– 6Ie).

Neáu tB lôùn hôn 20 sec thì Sikostart seõ baùo quaù taûi, “overload”. Thôøi gian xung ti = (50 ms * tR) vaø ti ≤ 1 sec. Chuù yù: ÔÛ cheá ñoä khôûi ñoäng nhanh, khoâng theå vaän haønh cheá ñoä döøng meàm.

Caøi ñaët cheá ñoä döøng cho Sikostart, goàm caùc cheá ñoä: Ñaët cheá ñoä döøng baèng coâng taéc DIL 1 vaø DIL 2.

Coâng taéc DIL DIL 1 DIL 2

Cheá ñoä döøng

Taét kieåu bôm Haõm moät chieàu Döøng meàm Döøng nhanh

Ñaët thôøi gian xuoáng cuûa ñieän aùp tAus baèng nuùt ñieàu chænh STOP TIME. (Taét kieåu bôm:tAus = 5–90s), (Döøng meàm: tAus=1–20s).

Ñaët ñieän aùp taét UAB baèng nuùt ñieàu chænh START VOLTAGE. (UAB = 85% ñieän aùp khôûi ñoäng).

Khi noái contactor bypass, Sikostart chæ coù theå vaän haønh cheá ñoä döøng nhanh. Chi tieát veà cheá ñoä khôûi ñoäng vaø döøng cuûa Sikostart 3RW2221-1AB15 xem trong phuï luïc.

Page 108: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

2. LED hieån thò:

LED saùng Moâ taû READY Saün saøng khôûi ñoäng START/ STOPING Ñang khôûi ñoäng/ döøng MOTOR RUNNING Ñoäng cô ñang chaïy oån ñònh ENERGY SAVING Tieát kieäm naêng löôïng DC BRACKING Haõm moät chieàu

LED chôùp taét Moâ taû SUPPLY FAULT Loãi caáp nguoàn THYRISTOR FAULT Hoûng Thyristor OVERLOAD Quaù taûi GENERAL FAULT Loãi chung START BLOCKED Ñoäng cô bò keït khi khôûi ñoäng

3. Maïch ñieàu khieån vaø maïch ñoäng löïc noái Sikostart vaø ñoäng cô:

Maéc maïch ñieàu khieån cho Sikostart 3RW2221-1AB15:

a. Caáp nguoàn ñieàu khieån: Coù theå caáp nguoàn cho maïch ñieàu khieån cuûa Sikostart theo moät trong ba möùc ñieän aùp treân hình veõ. Hình veõ laø moät ví duï caáp nguoàn 220V cho maïch ñieàu khieån.

b. Ngoõ vaøo ñieàu khieån:

1) Ñieàu khieån baèng nuùt nhaán:

(Neáu caû hai cuøng ñöôïc nhaán thì tín hieäu OFF ñöôïc öu tieân hôn)

15 380-415 VAC14 200-240 VAC13 100-120 VAC12 N/L

220V 50HzL1

N

11 OUT L+ DC 24V 10 IN1 START 9 IN2 STOP

ONOFF

Page 109: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

2) Ñieàu khieån baèng coâng taéc:

3) Ñieàu khieån Sikostart gioáng nhö moät contactor:

4) Cheá ñoä töï ñoäng:

Maïch ñoäng löïc vaø maïch ñieàu khieån ñöôïc caáp nguoàn ñoàng thôøi.

Chuù yù: trong hai caùch ñieàu khieån 3) vaø 4), Sikostart chæ coù theå vaän haønh ôû cheá ñoä döøng nhanh (costing down), khoâng theå vaän haønh ôû caùc cheá ñoä döøng meàm, taét kieåu bôm hay haõm moät chieàu.

11 OUT L+ DC 24V 10 IN1 START 9 IN2 STOP

ON/OFF

15 380-415 VAC 14 200-240 VAC 13 100-120 VAC 12 N/L

L1

N 11 OUT L+ DC 24V 10 IN1 START 9 IN2 STOP

ON/OFF

15 380-415 VAC14 200-240 VAC13 100-120 VAC12 N/L

L1

11 OUT L+ DC 24V10 IN1 START9 IN2 STOP

L1 L2 L3

L2 L3

Page 110: Tai lieu hd_tttn_2006

Taøi lieäu höôùng daãn thöïc taäp toát nghieäp

Phaàn höôùng daãn veà boä khôûi ñoäng meàm

Xaùc nhaän loãi (Fault):

Khi bò loãi, Sikostart seõ baùo loãi Fault baèng caùc ñeøn LED. Sau khò khaéc phuïc loãi xong, ñeå Sikostart hoaït ñoäng tieáp caàn phaûi Reset Fault.

c. Ngoõ ra relay:

Maïch ñoäng löïc noái Sikostart 3RW2221-1AB15 ñieàu khieån ñoäng cô:

76 Baùo loãi 54

Ñoäng cô chaïy oån ñònh 321

Haõm moät chieàu NO

NO

NO

NC

L1

Haõm moät chieàuBypass contactor

Baùo loãi

N

11 OUT L+ DC 24V

8 REMOTE - RESET RESET FAULT

M 3~

K

F

Softstart

Page 111: Tai lieu hd_tttn_2006

10

English

Table A: Control modesduring startup

Position of DIL

switches 3 and 5 OFF/ON

Potentiometer settingX Set operating valueLeft stop / Right stop

↔ Any setting

Remarks

Voltage ramp Potentiometer No.1 X tR 2 X UAnf 34 ↔ UAnf = 20 % to 100% UN tR = 0.3 s to 180 s

Current limiting Potentiometer No.1 2 3 X IB **4 ↔ IB = 20 % to 100 % Ia or 0.5 to 6 IetB *

Voltage ramp with current limiting

Potentiometer No.1 X tR 2 X UAnf 3 X IB **4 ↔ tB *

IB sets the starting current limit. Depending on the level of UAnf, tR can be set as short as required.

* Limiting time tB: Standard model (3RW2221-... to 3RW2231-1AA05): Once run-up has been detected, the motor terminal voltage isincreased to the mains voltage. The maximum current limiting time is 20 s. If run-up is not detected within this timeit switches off with the alarm "overload“. With motor overload protection (3RW2221-... to 3RW2231-1AB05 and ...-.AB1.): The internal protection definesthe maximum current limiting time.

**Limiting current IB: Basic device (3RW22..-1AA05): IB = 20 to 100% of motor starting current in the case of direct-on-line starting (Ia )3RW22..-1AB.. or 3RW22..-DB.. (device with device protection): IB = 0.5 to 6 rated current of the 3RW22 (Ie )

UN

UAnf

t

U

tR

35

IB

tBt

I

20 %IN

Ia 35

UN

UAnf

t

IB

UI

tBtR

35

Page 112: Tai lieu hd_tttn_2006

11

English

Note:Please ensure on setting the start impulse level that the motor does not exceed its stalling torque! If the stalling torque is exceeded by the starting impulse, run-up detection is not possible. The basic unit will switch off after 20 s and issues the alarm "overload" (starting time exceeded).

Voltage ramp with start impulse

Potentiometer No.1 X tR 2 X UL **

3 4 ↔ UL = 20 % to 100 % UN

** in this case: impulse voltage; Start voltage = 0.8 x impulse voltageImpulse time ti : 1 s when tR ≥ 20 s; otherwise 50 ms per second of ramp time

Voltage ramp with start impulse and current limiting

Potentiometer No.1 X tR 2 X UL **

3 X IB 4 ↔ tB *

Emergency start Potentiometer No.1 X tR 2 X UAnf 3 ↔ 4 ↔

The motor starts with increased start voltage

Note:In the case of an emergency start, only a voltage ramp is possible. Energy-saving mode, soft-stopping and DC braking are inhibited. The electric circuit must be connected through to the motor.

Table A: Control modesduring startup

Position of DIL

switches 3 and 5 OFF/ON

Potentiometer settingX Set operating valueLeft stop / Right stop

↔ Any setting

Remarks

UN

UL

tRt

U

20 %

ti

35

UN

UL

tRt

U

ti

IN

IB

tB

UI 3

5

UN

UAnf

tRt

U5

Page 113: Tai lieu hd_tttn_2006

12

English

Table B: Motor running modesPosition of DIL

switch 4OFF/ON

Remarks

Full-on modeWarning:High temperatures can be generated by the heatsinks! Depending on the model, the maximum heatsink temperature in continuous operation can be 100 °C.

Energy-saving modeWarning:In energy-saving mode, with driving loads, the motor may reach oversynchronous speeds. To prevent unpermissibly high speeds, energy-saving mode must be switched off.

With bypass contactor In the case of AC-1 layout of the bypass contactor: set DIL switches 1 and 2 to soft start. Turn soft stopping time to minimum (left-hand end position).

With bypass contactor In the event of an OFF command, the thyristors of the SIKOSTART are turned on before the bypass contactor opens. The bypass contactor switches the current at zero voltage and hence with minimum stress on the contacts. The current goes over to the thyristors.Note:In this mode, the SIKOSTART should not be switched off with a line contactor if con-trol voltage is applied continuously at the SIKOSTART. A line fault will otherwise be signalled and the SIKOSTART will not be able to be switched on again until after the fault has been acknowledged.

4

4

4

12

Page 114: Tai lieu hd_tttn_2006

13

English

1) Parameterizing with COM SIKOSTART permits considerably better braking performance to be achieved is possible with potentiometer setting.

Table C: Stopping modesPosition of DIL

switches 1 and 2 OFF/ON

Potentiometer settingX Set operating value

↔ Any settingRemarks

Pump-stopping Potentiometer No.1 ↔ 2 ↔ 3 ↔ 4 X

Ramp time tAus can be varied from 5 s to 90 s using potentiometer 4.

DC braking Potentiometer No.1 ↔ 2 ↔ 3 ↔ 4 X

The use of a braking contactor is recommended.1)

Warning:The braking contactor must only be connected between T2 and T3, otherwise there is a danger of generating a short circuit!

Soft-stopping Potentiometer No.1 ↔ 2 X * UAb 3 ↔ 4 X

Without PC interface: UAnf = 0.9 UN tAus = 1 s to 20s*In this case, the switch-off voltage UAb is 85% of the startup starting voltage.Note:When operated with bypass contactor, the SIKOSTART should not be switched off with a line contactor if con-trol voltage is applied continuously at the SIKOSTART. A line fault will otherwise be signalled and the SIKO-START will not be able to be switched on again until after the fault has been acknowledged.

Coasting down Potentiometer No.1 ↔ 2 ↔ 3 ↔ 4 ↔

t

U

UAnf

UN

tAus

12

t

UI

m in .

1 8 s3 s

m a x .s to p t im e

s to p t im e12

t

U

U A nf

U A b

U N

tA us

12

t

U

UB

12

Page 115: Tai lieu hd_tttn_2006

14

English

3.4 Fault analysis

Flashing LED No.Alarm Cause Action

1 Supply fault

Load voltage missing Check fuses / check mains contactor

1 or 2 phases missing Check mains contactor Check voltage on L1, L2 and L3

Harmonics in the mains Check mains (phase sequence, phase imbalance, harmonics) Reduce harmonic content

Supply voltage too low Check supply voltage and adjust it

Load missing* Connect motor

2Thyristor fault

1 or 2 thyristors shorted

All 3 phases of bypass contactor not closed

Check thyristors and replace if necessary. Undamaged thyristors must have a resistance > 100 kΩ Check contactor function

3Overload

Heatsink overtemperature Check ambient temperature Check DIL switch 6: Is ambient temperature or rated current set correctly? Check required SIKOSTART type (rating) Drive blocked? Too many restarts?

Operating current or starting current too high Drive blocked?

Starting time exceeded (only for ...-1AA05) Adjust current limit Switch off run-up detection

Short circuit on load side Check main motor circuit

Note: * When a bypass contactor is in use, the alarm "Missing load" cannot be indicated when the motor is running.

Page 116: Tai lieu hd_tttn_2006

15

English

NotePlease ensure on setting the start impulse level that the motor does not exceed its stalling torque! If the stalling torque is exceeded by the starting impulse, run-up detection is not possible. The basic unit will switch off after 20 s and issues the alarm "overload" (starting time exceeded).

4General fault

Bypass contactor opens immediately after closing Check function of bypass contactor

Bypass contactor not open Check function of bypass contactor

SCR firing fault Check mains (phase sequence, phase imbalance, harmonics)

Wrong machine-readable product designation (MLFB) has been set in the control section for the power section.

Replace the SIKOSTART control electronics

EEPROM fault (only with ...-1.B15) Ensure motor current > 0.2 Ie When parameterizing at the controller: Set DIL switch 8 to OFF When parameterizing with the PC: Store parameters in the EEPROM If parameterization is not successful: Replace the control section

EEPROM fault (only with ...-1AA05) Set DIL switch 8 to OFF

Thermistor short-circuited or interrupted Check thermistor

5Start inhibited

Heatsink for starting momentarily too hot (a running motor can continue operating without any problems)

Do not start before LED is off Too many restarts?

Flashing LED No.Alarm Cause Action

Page 117: Tai lieu hd_tttn_2006

DC BremsenDC Braking

SIKOSTART

1

1

SIEMENS

min max

5

5

3

3

20% 100% Ia

20%

1

2

3

4

6

5

7

9

8

12

11

13

14

15

10

2

BetriebsbereitREADY

NetzstörungSUPPLY FAULT

ThyristorfehlerTHYRISTOR FAULT

Im An-AuslaufSTART/STOPPINGAnlauf-EndeMOTOR-RUNNING

2

NO

NO

NO

StörungGROUPALARM

AC 380-415V

N/L.

AC 100-120V

AC 200-240V

DC BremsenDC BRAKING

EnergiesparenENERGY SAVING

ÜberlastOVERLOAD

GerätestörungGENERAL FAULT

Start gesperrtSTART BLOCKED

OUT L+ DC 24V

IN1

IN2

IN3

EinSTARTAusSTOPFern-REMOTE-RESET

NC

3RW22

Anlauf-EndeMOTORRUNNING

100%

Losbrechimpuls

AusOFF

EinON

DC Bremsen

Sanftauslauf

Energiesparen

Notstart

Umgebungstemp.

RUN UP DETECT.

AMBIENT TEMP.

EMERG. START

ENERGY SAVING

IMPULSE START

SOFT STOP

DC-BRAKING

Hochlauferkennung

12

12

34

51

2

40° 55° C

akt. inakt.

10

15

2030 60

90

120

0

150180s

RampenzeitRAMP TIME

BegrenzungsstromCURRENT LIMIT

Ia=MotoranlaufstromMotor starting current at UN

Startspannung

START VOLTAGE

AuslaufzeitSTOP TIME

12345678

T1

T1

L1 L2 L3

L1 L2 L3

1 2

3 4

1

2

3

4

5

bei/on/sur/en/in/no 3RW22..-..B1.

Anschluss PC-Schnittstelle

Connection for PC interface

Connecteur d'interface PC

Conector de interface PC

Allacciamento interfaccia PC

Terminal interface de PC

LED No. / N. LED / LED n.º

Potentiometer No. / Potentiomètre-No.Potenciómetro No. / N. potenziometro/Potenciómetro n.º

3RW2221 bis/to/à/a/até 3RW2231-1AA05

a. Grundgerät

Basic unit

Appareil de base

Aparato base

Apparecchio base

Aparelho base

Page 118: Tai lieu hd_tttn_2006

Losbrechimpuls

AusOFF

EinON

DC Bremsen

Sanftauslauf

Energiesparen

Notstart

Umgebungstemp.

RUN UP DETECT.

AMBIENT TEMP.

EMERG. START

ENERGY SAVING

IMPULSE START

SOFT STOP

DC-BRAKING

Hochlauferkennung1

21

2

34

51

2

40° 55° C

akt. inakt.

12 Pumpenauslauf PUMP STOP

Losbrechimpuls

AusOFF

EinON

DC Bremsen

Sanftauslauf

Energiesparen

Notstart

Umgebungstemp.

RUN UP DETECT.

AMBIENT TEMP.

EMERG. START

ENERGY SAVING

IMPULSE START

SOFT STOP

DC-BRAKING

Hochlauferkennung

12

12

34

51

2

40° 55° C

akt. inakt.

12 Pumpenauslauf PUMP STOP

RS 232-Interface

min max0,5 Ie 6 Ie

20% 100%

10

15

2030 60

90

120

0

150180s

RampenzeitRAMP TIME

BegrenzungsstromCURRENT LIMIT

Startspannung

START VOLTAGE

AuslaufzeitSTOP TIME

12345678

Ie = SIKOSTART-BemessungsstromSIKOSTART rated current

min max0,5 Ie 6 Ie

20% 100%

10

15

2030 60

90120

0

150180s

RampenzeitRAMP TIME

BegrenzungsstromCURRENT LIMIT

Startspannung

START VOLTAGE

AuslaufzeitSTOP TIME

12345678

Ie = SIKOSTART-BemessungsstromSIKOSTART rated current

3RW2221 bis/to/à/a/até 3RW2231-1AB05

b. Version mit elektronischem Geräteschutz

Version with electronic overload protection

avec protection contre les surcharges

Versión con protección electrónica de sobrecarga

Versione con protezione elettronica

Versão com protecção electrónica de aparelho

3RW2221 bis/to/à/a/até 3RW2250-..B1.

c. Version mit elektronischem Geräteschutz undserieller PC-Schnittstelle RS232

Version with electronic overload protection anda serial RS232 PC interface

avec protection contre les surcharges etinterface série RS232 pour PC

Versión con protección electrónica de sobrecarga e interface para PC serie RS232

Versione con protezione elettronica e interfacciaseriale RS232 per PC

Versão com protecção electrónica de aparelho einterface serial de PC RS232