time reversed photonic beam forming of arbitrary waveform ladar arrays final

25
8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 1/25 Cleared for public release TIME REVERSED PHOTONIC BEAMFORMING OF ARBITRARY WAVEFORM LADAR ARRAYS Joseph L. Cox U. S. Air Force Space and Missile Systems Center Los Angeles, CA Henry Zmuda Department of Electrical and Computer Engineering University of Florida Gainesville, FL Rebecca J. Bussjaeger Reinhard K. Erdmann Michael L. Fanto Michael J. Hayduk John E. Malowicki Sensors Directorate  Air Force Research Labs Rome, NY

Upload: joecox

Post on 08-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 1/25

Cleared for public release

TIME REVERSED PHOTONICBEAMFORMING OF ARBITRARY

WAVEFORM LADAR ARRAYS

Joseph L. Cox

U. S. Air Force

Space and Missile

Systems Center Los Angeles, CA

Henry Zmuda

Department of Electrical

and Computer 

EngineeringUniversity of Florida

Gainesville, FL

Rebecca J. Bussjaeger 

Reinhard K. Erdmann

Michael L. Fanto

Michael J. HaydukJohn E. Malowicki

Sensors Directorate

 Air Force Research Labs

Rome, NY

Page 2: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 2/25

Cleared for public release

Step 1Photonic-Based Time Reversal

Laser Probe Pulse

 Array

Extraneous target(s) Desired target

Page 3: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 3/25

Cleared for public release

Step 2Photonic-Based Time Reversal

 Array

(Receive Mode)

Desired targetExtraneous target(s)

Time Reversal Processor 

Page 4: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 4/25

Cleared for public release

Step 3Photonic-Based Time Reversal

 Array

(Transmit Mode)

Extraneous target(s)

(Time gating can removeenergy to extraneous target(s))

Time Reversal Processor 

Page 5: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 5/25

Cleared for public release

Time Lensing

Laser probe pulse is transmitted from the array:

From P1: sin(ω[t0])

Pulse arrives on target:

 At PT: sin(ω[t0+t1])

Reflected pulse arrives at receiver apertures:

 At P1: sin(ω[t0+t1+t1])

 At P2: sin(ω[t0+t1+t2])

Received pulses are time-reversed:

From P1: sin(ω[T - t0 - t1 - t1])

From P2: sin(ω[T - t0 - t1 - t2])

Re-transmitted pulses arrive on target:From P1: sin(ω[T - t0 - t1 - t1+ t1])

From P2: sin(ω[T - t0 - t1 - t2+ t2])

 All pulses are phased matched:

 At PT: sin(ω[T - t0 - t1])

PT

P1 P2

t2t1

sin(ωt0)

Lensing is independent of • Physical location of apertures

• Indices of refraction

Laser Probe Pulse

Note

Page 6: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 6/25

Cleared for public release

Pulsed

Laser EOM

RF Input

Dispersive

Element

λmax λmin

 f (t )

 f (t )

Wavelengths

dispersed

in time

Beam

Expander 

 f (t )

λmax λmin

Optical

Amplifier 

Chirped

Bragg

Grating

Output

Interrogation Pulse

Page 7: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 7/25Cleared for public release

Pulsed

Laser 

EOMDispersive

Element

Beam

Expander 

 f (t+t 1)

Chirped

Bragg

Grating

λmin λmax

Optical

Amplifier 

λmin λmax

λmin λmax

 f (t+t 1)

λmin

 f (-t-t 1+T)

λmax

λmin

 f (-t-t 1+T)

λmax

Time Reversed Pulse

Input

Output

Output

Input

Page 8: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 8/25Cleared for public release

Beam

Expander 

λmin

 f (-t-t 1+T)

λmax

Target

Only One

Pulsed Laser isNecessary

Time Lensing

Focuses Energyon Target

Beamforming Array

Page 9: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 9/25Cleared for public release

Chirped Bragg Grating 

L

n0

λmax λmin

maxλ 

λ ∆=∆

c

 LnT  o

Time Reversal

Page 10: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 10/25Cleared for public release

Arbitrary Waveform Generation

Bradford Pear Bark

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

        1        4        1        3

        1        4        3        4

        1        4        5        5

        1        4        7        6

        1        4        9        8

        1        5        2        1

        1        5        4        5

        1        5        6        9

        1        5        9        4

        1        6        2        0

        1        6        4        7

        1        6        7        5

Wavelength (nm)

   R  e   f   l  e  c   t   i  v   i   t  y

Time-Stretched Chirped Pulse

1400

1450

1500

1550

1600

1650

1700

        7

        1        0        1

        1        9        5

        2        8        9

        3        8        3

        4        7        7

        5        7        0

        6        6        4

        7        5        8

        8        5        2

        9        4        6

Time (nsec)

   W

  a  v  e   l  e  n  g   t   h   (  n  m   )

Required EOM Waveform

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

       7        9        4

        1        8        1

        2        6        8

        3       5        6

        4        4        3

       5        3        0

        6        1       7

       7        0       5

       7        9        2

        8       7        9

        9        6        6

Time (nsec)

   I  n   t  e  n  s   i   t  y

Desired spectra Source is chirped in time Necessary EOM waveform

EOM RF Input

λmaxλmin f (t )

Pulsed

Laser 

Dispersive

Element

Laser Output

* J. Cox and D. Goldstein, “Spectropolarimetric properties of 

vegetation,” Proceedings of SPIE, Vol. 5432, pp 53-62, Jul 2004.

*

The EOM used in UWB

array beamforming is left in

place to produce output

pulses of any conceivable

spectral characteristic

Page 11: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 11/25Cleared for public release

Reflectance Transformation

( )λ  ρ TARGET 

Eglin Soil

0.076

0.078

0.080

0.082

0.084

0.086

0.088

0.090

0.092

        1        4        1        3

        1        4        3        5

        1        4        5        8

        1        4        8        1

        1        5        0        5

        1        5        3        0

        1        5        5        6

        1        5        8        3

        1        6        1        0

        1        6        3        9

        1        6        6        8

Wavelength (nm

   R  e   f   l  e  c   t   i  v   i   t  y

Bradford Pear Bar 

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

        1        4        1        3

        1        4        3        4

        1        4        5        5

        1        4        7        6

        1        4        9        8

        1        5        2        1

        1        5        4        5

        1        5        6        9

        1        5        9        4

        1        6        2        0

        1        6        4        7

        1        6        7        5

Wavelength (nm

   R  e   f   l  e  c   t   i  v   i   t  y

Laser Intensit

5.20

5.40

5.60

5.80

6.00

6.20

6.40

6.60

6.80

7.00

        1        4        1        3

        1        4        3        4

        1        4        5        5

        1        4        7        6

        1        4        9        8

        1        5        2        1

        1        5        4        5

        1        5        6        9

        1        5        9        4

        1        6        2        0

        1        6        4        7

        1        6        7        5

Wavelength (nm

   R  e   l  a   t   i  v  e   I  n   t  e  n  s   i   t  y

* J. Cox and D. Goldstein, “Spectropolarimetric properties of 

vegetation,” Proceedings of SPIE, Vol. 5432, pp 53-62, Jul 2004.

Desired spectraTarget spectra

* *

Necessary spectral output

 An interesting application of this ladar is to transform the apparent target reflectance1. Assuming the reflectance of the target is well-known...

2. Divide the desired reflectance by the target reflectance...

3. Modulate the interrogator pulse to produce this output

Page 12: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 12/25Cleared for public release

RF Modulation of Laser Pulses

Sinusoidal Waveform

0.00

0.50

1.00

1.50

2.00

2.50

        1        4        1        3

        1        4        3        4

        1        4       5       5

        1        4       7        6

        1        4        9        8

        1       5        2        1

        1       5        4       5

        1       5        6        9

        1       5        9        4

        1        6        2        0

        1        6        4       7

        1        6       7       5

Wavelength (nm)

   R

  e   l  a   t   i  v  e   I  n   t  e  n  s   i   t  y

RF Chirp Waveform

0.00

0.50

1.00

1.50

2.00

2.50

        1        4        1        3

        1        4        3        4

        1        4       5       5

        1        4       7        6

        1        4        9        8

        1       5        2        1

        1       5        4       5

        1       5        6        9

        1       5        9        4

        1        6        2        0

        1        6        4       7

        1        6       7       5

Wavele ngth (nm)

   R

  e   l  a   t   i  v  e   I  n   t  e  n  s   i   t  y

Code Modulated Waveform

0.00

0.20

0.40

0.60

0.80

1.00

1.20

        1        4        1        3

        1        4        3        4

        1        4       5       5

        1        4       7        6

        1        4        9        8

        1       5        2        1

        1       5        4       5

        1       5        6        9

        1       5        9        4

        1        6        2        0

        1        6        4       7

        1        6       7       5

Wavelength (nm)

   R

  e   l  a   t   i  v  e   I  n   t  e  n  s   i   t  y

5MHz CW over 1μsec

Modulation of the ladar pulses, spectrally, with RF waveforms is easily achieved1. Stretching of the pulses to 1μsec lengths enables better information content

2. Re-compression to 10fsec lengths would yield a pulse compression ratio of 108

3. Detection would occur in the time domain with the assistance of dispersive fiber 

Chirp,1-50MHz, 1μsec 600-bit coded waveform

Page 13: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 13/25Cleared for public release

Interpretation of Signal Timing

Beam

Expander Chirped

Bragg

Grating

 f (t+t 1)

λminλmax

Optical

Amplifier 

λmin λmax

λmin

 f (-t-t 1+T)

λmax

Time ReversedPulse

Target

Return

Delay

PhaseConjugated

Pulse

TargetReturn

Pulse

Detectable

Signal

Page 14: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 14/25Cleared for public release

Phase

Conjugated

Pulse

Cross-Mixing of Conjugated Pulses

Target

Return

Pulse

ArrayElements

DetectableSignal

Signals Are Generated

SimultaneouslyCross Mixing of Time

Reversed Pulses

Target

Page 15: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 15/25Cleared for public release

Angle/Angle Detection

1

Target

ReturnPulse

Phase

ConjugatedPulse

Detectable

Signal

Pulsewidth

Time

2

1

3

4

5

3

4

2

5 1

7

6

8

9

10

10

8

9

7

6

11

A

12

12

11

B D

CA

Quad Cell Detector 

x

y

Dy

Dx

( ) ( )[ ]

−+−=∠ D BC  A

 x

t t t t  D

c x

2arcsin

( ) ( )[ ]

−+−=∠DC  B A

 yt t t t  D

c

 y 2arcsin

Equally

Spaced

Cells

1. Each cell has a counterpart equally distant

from the center of the cell, A.

2. Cell A will mix with its own signal.

3. Each mixed signal will be generated at the

same time as the signal from cell A.

4. The signals from all 25 cells will be

combined and detected by a single detector.

3N

Page 16: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 16/25Cleared for public release

Expectation of Performance

22

02

2

22 2

1

4

4

4G AN 

 R

 D

 R

 P S 

 INT 

TR τ π 

σρ λ π 

π 

π      

 

 

 

 

=

243

0

228

λ π 

σρτ 

 R

 N  AGS S  TR=

8037.11

 R

 N S =

8

3

037.11 R

 N S =

1m2

0.5

0.8

G 30dB

DINT 245m

 A (245

m)2

P 100W

1675nm

485

233

0

223316

λ π 

τ  ρ σ 

 R

 DG N  PAS  INT =Final expression:

Received at detector:

Time-reversed signal re-

transmitted:

Modification of scene illumination ladar equations Example system

Estimation of noise

20 fsec source 5x1013 Hz bandwidth

Detector quantum efficiency 50%

Background emittance noise level -48.5dB

 Array size 2.55 cm square

Performance metrics

SNR=20dB, range=100m   ~11,000 fibers

Range resolution 3μm

 Angular accuracy 0.46mrad

(4.6cm at 100m range)

Page 17: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 17/25Cleared for public release

Comparison of Generic Ladars• Use of phase

 – Coherent – use of local oscillator 

 – Direct detect – no local oscillator 

 – Coherent beamforming, no L.O.

 – Incoherent beamforming also

 – Phase agnostic on detection

• Pulse-width (temporal)

properties

 – Detector/electronics limitations

 – Target, scene limitations – Limited by selection of source

 – Time-stretch photonics enable

selectable pulse-widths

• Spectral characteristics

 – Narrow line is most common

 – Multiple wavelength transmitters

 – Fluorescence imaging

 – Super-continuum

 –  Arbitrary waveform – selectable

spectra

• Scene illumination methods

 – Scanning: push-broom, rastor 

 – Scannerless: flood illumination – Only illuminate objects that

generate a return signal 

Page 18: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 18/25Cleared for public release

Generic Ladars (cont.)• Beamforming

 – Square hat beam profiling

 – Collimated TEM0,0

 – Other diffractive effects

 – Time reversed phase

matching

•  Angle/Angle Determination

 – Scanning: IFOV

 – Scannerless: FPA

 – Conjugated pulse combinationand timing

• Depth of field

 – Single pulse detection

 – Multiple pulse detection

 – Detect as many voxels as are

illuminated on return pulse

• Clutter rejection

 – Spectro-polarimetry

 – Range gating

 – Time gating

 – Spectral discrimination

Page 19: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 19/25Cleared for public release

Advantages of Photonic Time Reversal

• No phase shifters are needed

 – No squint

 – No quantization noise

• Propagation distortion is negated

 – Independent of index of refraction

 –  Appropriate for inhomogeneous media

• Beamforming independent of array construction

 – Conformal arrays are easily produced

 – Distributed arrays are possible

•  Ability to produce arbitrary ladar waveforms

Page 20: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 20/25Cleared for public release

Questions

Page 21: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 21/25Cleared for public release

c

dnn

c

dnn

cn

dk 

v g 

λ λ 

ω ω 

ω ω 

ω ω 

−=

+= 

  

  == )(

1

   

   −=

λ λ 

dnn

c

 LT 

12 λ λ λ  −=∆λ 

λ 

λ ∆−=∆

2

2

nd 

c

 LT 

2

2

λ 

λ 

nd 

c D −=

Fiber Dispersion

Material Dispersion:

Fiber Dispersion

Page 22: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 22/25Cleared for public release

Ordinary Fiber 

(Corning SMF28):

High Chromatic

Dispersion Fiber:

kmnm

 ps D 18+≈

kmnm

 ps D 100−≈

λ1 λ2 λ1 λ2

∆T

Fiber Dispersion Analysis(Corning SMF28):

Fiber Dispersion (part 2)

Page 23: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 23/25

Cleared for public release

Dispersive Channel

( ) ( ) ( )2

1 2

1

2o oβ ω β β ω ω β ω ω  ≈ + − + −

Input:2

( , 0) cosat 

o f t e t ω −= ( , ) ( , ) cos ( , )a f t z f t z t z φ =

Output:

( )

( )

( )

( ) [ ] ( )

( )( )

( )

2

1

224

22

1 1

221 2

2 12

2

1( , ) exp

1 21 2

, arg ( , )

21tan 2

2 1 2

a

o o o

t z  f t z a

a z a z 

t z f t z t z z z  

a z a z t z  

a z 

β 

β β 

φ ω β ω β β  

β β β 

β 

−= −

+ +

= = − + −

− + −+

( )

( ) ( )( )

2

212

1 2

, 4

1 2i o

d t z  a z t z 

d t z  a z 

φ  β ω ω β 

β  β = = + −

− +

Instantaneous frequency:

Pulse Dispersion

Page 24: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 24/25

Cleared for public release

PulsedLaser 

BPF

DispersiveElement

(Wavelengths

chirped

in time)

Dispersive

Element

(Opposite

Dispersion

Slope)

Excess

Time

Delay T 

Time – Reversed Output

TIME REVERSAL MODULE

Telescope

Output

RF ModulatedOptical Chirp

 f ( - t + T )

EOMSOA

RF Input f (t )

λmin λmax

λminλmax

t t 

Optical Chirp

Page 25: Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

8/7/2019 Time Reversed Photonic Beam Forming of Arbitrary Waveform Ladar Arrays Final

http://slidepdf.com/reader/full/time-reversed-photonic-beam-forming-of-arbitrary-waveform-ladar-arrays-final 25/25

Cross Mixing of Pulses

2

1

3

4

5

3

4

2

5 1

7

6

8

9

10

10

8

9

7

6

11

A

12

12

11

Delay

Lines

Beam

Expanders

Optical

Amplifiers

λmin λmax

Chirped

Bragg

Gratings