uva-dare (digital academic repository) engineering retinal ... · 156 5()(5f 43. ort dr, merchant...

22
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp. PCC6803 Chen, Q. Link to publication Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses): Other Citation for published version (APA): Chen, Q. (2017). Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp. PCC6803. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 19 May 2020

Upload: others

Post on 19-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Engineering retinal-based phototrophy via a complementary photosystem in Synechocystissp. PCC6803

Chen, Q.

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):Other

Citation for published version (APA):Chen, Q. (2017). Engineering retinal-based phototrophy via a complementary photosystem in Synechocystis sp.PCC6803.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 19 May 2020

Page 2: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

References

Page 3: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

154

RefeRences

1. Hartman H. 1998. Photosynthesis and the origin of life. Origins of Life and Evolution of the Biosphere. 28: 515-521.

2. De Marais DJ. 2000. Evolution. when did photosynthesis emerge on earth?. Science. 289: 1703-1705.

3. Lake JA, Larsen J, Sarna B, de la Haba RR, Pu Y, et al. 2015. Rings reconcile genotypic and phenotypic evolution within the proteobacteria. Genome Biol Evol. 7: 3434-3442.

4. Hellingwerf KJ, Crielaard W, Westerhoff HV. 1993. in Modern Trends in Biothermokinet-ics, ed Stefan Schuster, Michel Rigoulet, Rachid Ouhabi, Jean-Pierre Mazat (Springer, US, Plenum press. New York.), pp 45-52.

5. Wijffels RH, Kruse O, Hellingwerf KJ. 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol. 24: 405-413.

6. Al-Haj L, Lui YT, Abed RM, Gomaa MA, Purton S. 2016. Cyanobacteria as chassis for in-dustrial biotechnology: Progress and prospects. Life. 6: 42.

7. Jones CS, Mayfield SP. 2012. Algae biofuels: Versatility for the future of bioenergy. Curr Opin Biotechnol. 23: 346-351.

8. Sharma NK, Tiwari SP, Tripathi K, Rai AK. 2011. Sustainability and cyanobacteria (blue-green algae): Facts and challenges. J Appl Phycol. 23: 1059-1081.

9. Janssen M, Tramper J, Mur LR, Wijffels RH. 2003. Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bio-eng. 81: 193-210.

10. Touloupakis E, Cicchi B, Torzillo G. 2015. A bioenergetic assessment of photosynthetic growth of synechocystis sp. PCC 6803 in continuous cultures. Biotechnology for Biofuels. 8: 133.

11. Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJ. 2009. Energy biotechnology with cyanobacteria. Curr Opin Biotechnol. 20: 257-263.

12. Ducat DC, Way JC, Silver PA. 2011. Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 29: 95-103.

13. Machado IM, Atsumi S. 2012. Cyanobacterial biofuel production. J Biotechnol. 162: 50-56.

14. Zhu X, Long SP, Ort DR. 2008. What is the maximum efficiency with which photosynthe-sis can convert solar energy into biomass?. Curr Opin Biotechnol. 19: 153-159.

15. Hambourger M, Moore GF, Kramer DM, Gust D, Moore AL, et al. 2009. Biology and technology for photochemical fuel production. Chem Soc Rev. 38: 25-35.

16. Gust D, Kramer D, Moore A, Moore TA, Vermaas W. 2008. Engineered and artificial pho-tosynthesis: Human ingenuity enters the game. MRS Bull. 33: 383-387.

17. Zhu X, Long SP, Ort DR. 2008. What is the maximum efficiency with which photosynthe-sis can convert solar energy into biomass?. Curr Opin Biotechnol. 19: 153-159.

18. Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, et al. 2010. A red-shifted chlorophyll. Science. 329: 1318-1319.

19. Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AW. 2005. Ecology: A niche for cyano-bacteria containing chlorophyll d. Nature. 433: 820-820.

20. Ooms MD, Dinh CT, Sargent EH, Sinton D. 2016. Photon management for augmented photosynthesis. Nature Communications. 7: 1-12.

21. Brock T, Madigan M & Martinko J . 1991. in Biology of microorganisms, (Englewood Cliffs, NJ: Prentice Hall, Upper Saddle River, NJ,).

22. Atsumi S, Higashide W, Liao JC. 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 27: 1177-1180.

23. Kwon J, Bernát G, Wagner H, Rögner M, Rexroth S. 201 3. Reduced light-harvesting an-

Page 4: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

155

RefeRences

tenna: Consequences on cyanobacterial metabolism and photosynthetic productivity. Algal Research. 2: 188-195.

24. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I. 2012. Detailing the opti-mality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A. 109: 2678-2683.

25. Zhou J, Zhang F, Meng H, Zhang Y, Li Y. 2016. Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metab Eng. 38: 217-227.

26. Abramson BW, Kachel B, Kramer DM, Ducat DC. 2016. Increased photochemical efficien-cy in cyanobacteria via an engineered sucrose sink. Plant Cell Physiol. 57: 2451-2460.

27. Chen M, Blankenship RE. 2011. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 16: 427-431.

28. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improve-ment. Science. 332: 805-809.

29. Croce R, Van Amerongen H. 2014. Natural strategies for photosynthetic light harvesting. Nature Chemical Biology. 10: 492-501.

30. Gan F, Shen G, Bryant DA. 2014. Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life. 5: 4-24.

31. Linnanto J, Korppi-Tommola J. 2006. Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. Physical Chemistry Chemical Physics. 8: 663-687.

32. Manning WM, Strain HH. 1943. Chlorophyll d, a green pigment of red algae. J Biol Chem. 151: 1-19.

33. Von Wettstein D, Gough S, Kannangara CG. 1995. Chlorophyll biosynthesis. Plant Cell. 7: 1039-1057.

34. Li Y, Scales N, Blankenship RE, Willows RD, Chen M. 2012. Extinction coefficient for red-shifted chlorophylls: Chlorophyll d and chlorophyll f. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 1817: 1292-1298.

35. Ho MY, Shen G, Canniffe DP, Zhao C, Bryant DA. 2016. Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science. 353: 10.1126/science.aaf9178. Epub 2016 Jul 7.

36. Mielke S, Kiang N, Blankenship R, Gunner M, Mauzerall D. 2011. Efficiency of photo-synthesis in a chl d-utilizing cyanobacterium is comparable to or higher than that in chl a-utilizing oxygenic species. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 1807: 1231-1236.

37. Hoogewerf GJ, Jung DO, Madigan MT. 2003. Evidence for limited species diversity of bacteriochlorophyll b-containing purple nonsulfur anoxygenic phototrophs in freshwa-ter habitats. FEMS Microbiol Lett. 218: 359-364.

38. Rätsep M, Cai Z, Reimers JR, Freiberg A. 2011. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution qy fluorescence and absorption spectra of bacteriochlorophyll a. J Chem Phys. 134: 024506.

39. Scheer H, Svec WA, Cope BT, Studier MH, Scott RG, et al. 1974. Structure of bacteri-ochlorophyll b. J Am Chem Soc. 96: 3714-3716.

40. Whitmarsh J. 1999. in Concepts in Photobiology, (Springer, ), pp 11-51.

41. Kiang NY, Siefert J, Blankenship RE. 2007. Spectral signatures of photosynthesis. I. re-view of earth organisms. Astrobiology. 7: 222-251.

42. Feiler U, Hauska G (2006) Anoxygenic photosynthetic bacteria, eds Blankenship RE, Madigan MT & Bauer CE (Springer Science & Business Media, New York), pp 665-685.

Page 5: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

156

RefeRences

43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015. Redesigning pho-tosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci U S A. 112: 8529-8536.

44. Petersen J, Brinkmann H, Bunk B, Michael V, Päuker O, et al. 2012. Think pink: Photo-synthesis, plasmids and the roseobacter clade. Environ Microbiol. 14: 2661-2672.

45. Chen Q, Montesarchio D, Hellingwerf K. 2016. ‘Direct conversion’: Artificial photosyn-thesis with cyanobacteria. Adv Bot Res. 79: 43-62.

46. Chen Q, van der Steen, Jeroen B, Dekker HL, Ganapathy S, De Grip WJ, et al. 2016. Ex-pression of holo-proteorhodopsin in synechocystis sp. PCC 6803. Metab Eng. 35: 83-94.

47. Spudich JL, Yang C, Jung K, Spudich EN. 2000. Retinylidene proteins: Structures and functions from archaea to humans. Annu Rev Cell Dev Biol. 16: 365-392.

48. Spudich JL, Zacks DN, Bogomolni RA. 1995. Microbial sensory rhodopsins: Photochem-istry and function. Isr J Chem. 35: 495-513.

49. Oesterhelt D, Stoeckenius W. 1971. Rhodopsin-like protein from the purple membrane of halobacterium halobium. Nature. 233: 149-152.

50. Kwon SK, Kim BK, Song JY, Kwak MJ, Lee CH, et al. 2013. Genomic makeup of the marine flavobacterium nonlabens (donghaeana) dokdonensis and identification of a novel class of rhodopsins. Genome Biol Evol. 5: 187-199.

51. Jung KH . 2012. in New type of cation pumping microbial rhodopsins in marine bac-teria <br /> , (ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA), pp 1155.

52. Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, et al. 2013. A light-driven sodium ion pump in marine bacteria. Nature Communications. 4: 1678.

53. Balashov SP, Imasheva ES, Dioumaev AK, Wang JM, Jung K, et al. 2014. Light-driven na pump from gillisia limnaea: A high-affinity na binding site is formed transiently in the photocycle. Biochemistry (N Y ). 53: 7549-7561.

54. Schobert B, Lanyi JK. 1982. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 257: 10306-10313.

55. Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, et al. 2014. Functional characteriza-tion of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci U S A. 111: 6732-6737.

56. Hasemi T, Kikukawa T, Kamo N, Demura M. 2016. Characterization of a cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J Biol Chem. 291: 355-362.

57. Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, et al. 2015. Crystal structure of a light-driven sodium pump. Nature Structural & Molecular Biology. 22: 390-395.

58. Sasaki J, Brown LS, Chon Y, Kandori H. 1995. Conversion of bacteriorhodopsin into a chloride ion pump. Science. 269: 73-75.

59. Konno M, Kato Y, Kato HE, Inoue K, Nureki O, et al. 2015. Mutant of a light-driven sodium ion pump can transport cesium ions. The Journal of Physical Chemistry Letters. 7: 51-55.

60. Lanyi JK. 1978. Light energy conversion in halobacterium halobium. Microbiol Rev. 42: 682-706.

61. Walter JM, Greenfield D, Bustamante C, Liphardt J. 2007. Light-powering escherichia coli with proteorhodopsin. Proc Natl Acad Sci U S A. 104: 2408-2412.

62. Blaurock AE, Stoeckenius W. 1971. Structure of the purple membrane. Nature. 233: 152-155.

63. Singh K, Caplan SR. 1980. The purple membrane and solar energy conversion. Trends

Page 6: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

157

RefeRences

Biochem Sci. 5: 62-64.

64. Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, et al. 2016. A three-dimensional movie of structural changes in bacteriorhodopsin. Science. 354: 1552-1557.

65. Bratanov D, Balandin T, Round E, Shevchenko V, Gushchin I, et al. 2015. An approach to heterologous expression of membrane proteins. the case of bacteriorhodopsin. PloS One. 10: e0128390.

66. Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, et al. 2011. The microbial opsin family of optogenetic tools. Cell. 147: 1446-1457.

67. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, et al. 2000. Bacterial rhodopsin: Evi-dence for a new type of phototrophy in the sea. Science. 289: 1902-1906.

68. Palovaara J, Akram N, Baltar F, Bunse C, Forsberg J, et al. 2014. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc Natl Acad Sci U S A. 111: E3650-E3658.

69. Gómez-Consarnau L, González JM, Coll-Lladó M, Gourdon P, Pascher T, et al. 2007. Light stimulates growth of proteorhodopsin-containing marine flavobacteria. Nature. 445: 210-213.

70. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, et al. 2007. The sorcerer II global ocean sampling expedition: Northwest atlantic through eastern tropical pacific. PLoS Biol. 5: e77.

71. Finkel OM, Béjà O, Belkin S. 2013. Global abundance of microbial rhodopsins. The ISME Journal. 7: 448-451.

72. Campbell BJ, Waidner LA, Cottrell MT, Kirchman DL. 2008. Abundant proteorhodopsin genes in the north atlantic ocean. Environ Microbiol. 10: 99-109.

73. Miranda MR, Choi AR, Shi L, Bezerra AG, Jung K, et al. 2009. The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys J. 96: 1471-1481.

74. Atamna-Ismaeel N, Sabehi G, Sharon I, Witzel K, Labrenz M, et al. 2008. Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. The ISME Jour-nal. 2: 656-662.

75. Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, et al. 2012. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol. 14: 140-146.

76. Koh EY, Atamna-Ismaeel N, Martin A, Cowie RO, Beja O, et al. 2010. Proteorhodop-sin-bearing bacteria in antarctic sea ice. Appl Environ Microbiol. 76: 5918-5925.

77. Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: An array of physiologi-cal roles?. Nature Reviews Microbiology. 6: 488-494.

78. Man D, Wang W, Sabehi G, Aravind L, Post AF, et al. 2003. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22: 1725-1731.

79. Wang WW, Sineshchekov OA, Spudich EN, Spudich JL. 2003. Spectroscopic and photo-chemical characterization of a deep ocean proteorhodopsin. J Biol Chem. 278: 33985-33991.

80. Váró G, Brown LS, Lakatos M, Lanyi JK. 2003. Characterization of the photochemical reaction cycle of proteorhodopsin. Biophys J. 84: 1202-1207.

81. Hempelmann F, Holper S, Verhoefen M, Woerner AC, Kohler T, et al. 2011. His75− Asp97 cluster in green proteorhodopsin. J Am Chem Soc. 133: 4645-4654.

82. Dioumaev AK, Brown LS, Shih J, Spudich EN, Spudich JL, et al. 2002. Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry (N Y ). 41: 5348-5358.

83. Lindholm L, Ariöz C, Jawurek M, Liebau J, Mäler L, et al. 2015. Effect of lipid bilayer properties on the photocycle of green proteorhodopsin. Biochimica Et Biophysica Acta

Page 7: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

158

RefeRences

(BBA)-Bioenergetics. 1847: 698-708.

84. Balashov SP, Imasheva ES, Ebrey TG, Chen N, Menick DR, et al. 1997. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Bio-chemistry (N Y ). 36: 8671-8676.

85. Hussain S, Kinnebrew M, Schonenbach NS, Aye E, Han S. 2015. Functional consequenc-es of the oligomeric assembly of proteorhodopsin. J Mol Biol. 427: 1278-1290.

86. Kimura H, Young CR, Martinez A, DeLong EF. 2011. Light-induced transcriptional re-sponses associated with proteorhodopsin-enhanced growth in a marine flavobacteri-um. The ISME Journal. 5: 1641-1651.

87. Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ. 2011. Energy starved can-didatus pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One. 6: e19725.

88. Gonzalez JM, Fernandez-Gomez B, Fernandez-Guerra A, Gomez-Consarnau L, Sanchez O, et al. 2008. Genome analysis of the proteorhodopsin-containing marine bacterium polaribacter sp. MED152 (flavobacteria). Proc Natl Acad Sci U S A. 105: 8724-8729.

89. Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neurze R, et al. 2010. Prote-orhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biology. 8: e1000358.

90. Akram N, Palovaara J, Forsberg J, Lindh MV, Milton DL, et al. 2013. Regulation of pro-teorhodopsin gene expression by nutrient limitation in the marine bacterium vibrio sp. AND4. Environ Microbiol. 15: 1400-1415.

91. Wang Z, O’Shaughnessy TJ, Soto CM, Rahbar AM, Robertson KL, et al. 2012. Function and regulation of vibrio campbellii proteorhodopsin: Acquired phototrophy in a classical organoheterotroph. PLoS One. 7: e38749.

92. Feng S, Powell SM, Wilson R, Bowman JP. 2013. Light-stimulated growth of proteor-hodopsin-bearing sea-ice psychrophile psychroflexus torquis is salinity dependent. The ISME Journal. 7: 2206-2213.

93. Marchetti A, Catlett D, Hopkinson BM, Ellis K, Cassar N. 2015. Marine diatom proteor-hodopsins and their potential role in coping with low iron availability. The ISME Journal. 9: 2745-2748.

94. Hellingwerf KJ . 1979. in Structural and functional studies on lipid vesicles containing bacteriorhodopsin (Doctoral dissertation). (university of Amsterdam, WorldCat Data-base), pp 27.

95. Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, et al. 2008. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A. 105: 16561-16565.

96. Sasaki K, Yamashita T, Yoshida K, Inoue K, Shichida Y, et al. 2014. Chimeric pro-ton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin. PloS One. 9: e91323.

97. Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, et al. 2005. Xanthorho-dopsin: A proton pump with a light-harvesting carotenoid antenna. Science. 309: 2061-2064.

98. Rippka R, Waterbury J, Cohen-Bazire G. 1974. A cyanobacterium which lacks thylakoids. Arch Microbiol. 100: 419-436.

99. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, et al. 2003. Complete genome structure of gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res. 10: 137-145.

100. Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, et al. 2008. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A. 105: 16561-16565.

Page 8: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

159

RefeRences

101. Balashov SP, Imasheva ES, Choi AR, Jung KH, Liaaen-Jensen S, et al. 2010. Reconstitu-tion of gloeobacter rhodopsin with echinenone: Role of the 4-keto group. Biochemistry. 49: 9792-9799.

102. Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK. 2009. Reconstitution of gloeo-bacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry. 48: 10948-10955.

103. Hellingwerf KJ, Crielaard W, Westerhoff HV. 1993. in Modern Trends in Biothermokinet-ics, ed Stefan Schuster, Michel Rigoulet, Rachid Ouhabi, Jean-Pierre Mazat (Springer,US, Plenum press. New York,), pp 45-52.

104. Derguini F, Nakanishi K. 1986. Synthetic rhodopsin analogs. Photobiochem Photobio-phys. 13: 259-283.

105. Ottolenghi M, Sheves M. 1989. Synthetic retinals as probes for the binding site and photoreactions in rhodopsins. J Membr Biol. 112: 193-212.

106. Liu R, Asato A. 1990. The binding site of opsin based on analog studies with isomeric, fluorinated, alkylated, and other modified retinals. Chemistry and Biology of Synthetic Retinoids. : 52-75.

107. Muthyala RS, Alam M, Liu RS. 1998. Alkylated azulenic retinal and bacteriorhodopsin analogs. Tetrahedron Lett. 39: 5-8.

108. Balogh-Nair V, Nakanishi K. 1982. [64] synthetic analogs of retinal, bacteriorhodopsin, and bovine rhodopsin. Meth Enzymol. 88: 496-506.

109. Nocera DG. 2012. The artificial leaf. Acc Chem Res. 45: 767-776.

110. Hellingwerf KJ, Konings WN. 1985. The energy flow in bacteria: The main free energy intermediates and their regulatory role. Adv Microb Physiol. 26: 125-154.

111. MITCHELL P. 1957. A general theory of membrane transport from studies of bacteria. Nature. 180: 134-136.

112. Kim YM, Nowack S, Olsen MT, Becraft ED, Wood JM, et al. 2015. Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. Front Microbiol. 6: 209.

113. Danon A, Stoeckenius W. 1974. Photophosphorylation in halobacterium halobium. Proc Natl Acad Sci U S A. 71: 1234-1238.

114. Oesterhelt D, Stoeckenius W. 1971. Rhodopsin-like protein from the purple membrane of halobacterium halobium. Nature. 233: 149-152.

115. Berg MJ, John LT & Lubert S . 2012. in Biochemistry, ed 7th (W.H. Freeman, New York), pp 726-746.

116. Ebrey TG. 2002. A new type of photoreceptor in algae. Proc Natl Acad Sci U S A. 99: 8463-8464.

117. Madigan TM, Martinko MJ, Bender SK, et al . 2014. in Brock Biology of Microorganisms (14th ed.), (Benjamin Cummings, Boston: Pearson), pp 404-414.

118. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, et al. 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science. 290: 291-296.

119. Marris E. 2006. Sugar cane and ethanol: Drink the best and drive the rest. Nature. 444: 670-672.

120. Elbersen HW, Sanders JPM, Dam JEGv, Goetheer E, Boerrigter H, et al. 2003. Transitie-pad “bioraffinage”. Transitie Naar Een Duurzame Energiehuishouding. : 1-17.

121. Wijffels RH, Kruse O, Hellingwerf KJ. 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol. 24: 405-413.

122. Rabbinge R . 1993. in Ciba Foundation Symposium 177-Crop Protection and Sustainable Agriculture, (Wiley Online Library, ), pp 2-29.

Page 9: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

160

RefeRences

123. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improve-ment. Science. 332: 805-809.

124. Ganapathy S, Becheau O, Venselaar H, Frolich S, van der Steen JB, et al. 2015. Modula-tion of spectral properties and pump activity of proteorhodopsins by retinal analogues. Biochem J. 467: 333-343.

125. Finazzi G. 2002. Redox-coupled proton pumping activity in cytochrome b6f, as evidenced by the pH dependence of electron transfer in whole cells of chlamydomonas reinhardtii. Biochemistry. 41: 7475-7482.

126. Deng MD, Coleman JR. 1999. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol. 65: 523-528.

127. Ducat DC, Avelar-Rivas JA, Way JC, Silver PA. 2012. Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol. 78: 2660-2668.

128. Atsumi S, Higashide W, Liao JC. 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 27: 1177-1180.

129. Angermayr SA, Paszota M, Hellingwerf KJ. 2012. Engineering a cyanobacterial cell facto-ry for production of lactic acid. Appl Environ Microbiol. 78: 7098-7106.

130. Pirt S. 1972. Introductory lecture. prospects and problems in continuous flow culture of micro-organisms. Journal of Applied Chemistry and Biotechnology. 22: 55-64.

131. Angermayr SA, Hellingwerf KJ. 2013. On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories. J Phys Chem B. 117: 11169-11175.

132. Oliver JW, Atsumi S. 2015. A carbon sink pathway increases carbon productivity in cya-nobacteria. Metab Eng. 29: 106-112.

133. Duhring U, Enke H, Kramer D, Smith C, Woods RP, et al. 2013. Genetically modified photoautotrophic ethanol producing host cells. U S Patent Application. 13/941, 299: .

134. Oliver JW, Atsumi S. 2014. Metabolic design for cyanobacterial chemical synthesis. Photosynth Res. 120: 249-261.

135. Angermayr SA, Gorchs Rovira A, Hellingwerf KJ. 2015. Metabolic engineering of cya-nobacteria for the synthesis of commodity products. Trends Biotechnol. 33: 352-361.

136. Sarkar D, Shimizu K. 2015. An overview on biofuel and biochemical production by pho-tosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresourc-es and Bioprocessing. 2: 1-19.

137. Jacobsen JH, Frigaard NU. 2014. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng. 21: 60-70.

138. Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M. 2014. Engineering of cyanobacteria for the photosynthetic production of limonene from CO 2. J Biotechnol. 185: 1-7.

139. Lindberg P, Park S, Melis A. 2010. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using synechocystis as the model organism. Metab Eng. 12: 70-79.

140. Günther A, Jakob T, Goss R, König S, Spindler D, et al. 2012. Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour Tech-nol. 121: 454-457.

141. Klassen V, Blifernez-Klassen O, Hoekzema Y, Mussgnug JH, Kruse O. 2015. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass. J Biotechnol. 215: 44-51.

142. Lan EI, Liao JC. 2012. ATP drives direct photosynthetic production of 1-butanol in cyano-bacteria. Proc Natl Acad Sci U S A. 109: 6018-6023.

143. Angermayr SA, van der Woude AD, Correddu D, Vreugdenhil A, Verrone V, et al. 2014.

Page 10: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

161

RefeRences

Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by synechocystis sp. PCC6803. Biotechnol Biofuels. 7: 99.

144. Bobik TA. 2006. Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol. 70: 517-525.

145. Branco Dos Santos F, Du W, Hellingwerf KJ. 2014. Synechocystis: Not just a plug-bug for CO2, but a green E. coli. Front Bioeng Biotechnol. 2: 36.

146. Croce R, van Amerongen H. 2014. Natural strategies for photosynthetic light harvesting. Nat Chem Biol. 10: 492-501.

147. Knoop H, Steuer R. 2015. A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Frontiers in Bioengineering and Biotech-nology. 3: 47.

148. Gupta PL, Lee S, Choi H. 2015. A mini review: Photobioreactors for large scale algal culti-vation. World Journal of Microbiology and Biotechnology. 31: 1409-1417.

149. Singh R, Sharma S. 2012. Development of suitable photobioreactor for algae produc-tion–A review. Renewable and Sustainable Energy Reviews. 16: 2347-2353.

150. Bentley FK, Melis A. 2012. Diffusion-based process for carbon dioxide uptake and iso-prene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic mi-croorganisms. Biotechnol Bioeng. 109: 100-109.

151. Molina E, Fernández J, Acién F, Chisti Y. 2001. Tubular photobioreactor design for algal cultures. J Biotechnol. 92: 113-131.

152. Chen C, Yeh K, Aisyah R, Lee D, Chang J. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour Technol. 102: 71-81.

153. Jones PR. 2014. Genetic instability in cyanobacteria - an elephant in the room?. Front Bioeng Biotechnol. 2: 12.

154. Borirak O, Rolfe MD, de Koning LJ, Hoefsloot HC, Bekker M, et al. 2015. Time-series analysis of the transcriptome and proteome of E. coli upon glucose repression. Biochim Biophys Acta. 1854: 1269-1279.

155. Kopfmann S, Hess WR. 2013. Toxin-antitoxin systems on the large defense plasmid pSYSA of synechocystis sp. PCC 6803. J Biol Chem. 288: 7399-7409.

156. Garcia-Camacho F, Sanchez-Miron A, Molina-Grima E, Camacho-Rubio F, Merchuck J. 2012. A mechanistic model of photosynthesis in microalgae including photoacclimation dynamics. J Theor Biol. 304: 1-15.

157. Fogg G, Stewart W, Fay P, Walsby A. 1973. The blue-green algae. Science. 184: 1066-1067.

158. Ducat DC, Way JC, Silver PA. 2011. Engineering cyanobacteria to generate high-value products. Trends Biotechnol. 29: 95-103.

159. Machado IM, Atsumi S. 2012. Cyanobacterial biofuel production. J Biotechnol. 162: 50-56.

160. Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos, M Joost Teixeira. 2009. Energy biotechnology with cyanobacteria. Curr Opin Biotechnol. 20: 257-263.

161. Campbell BJ, Waidner LA, Cottrell MT, Kirchman DL. 2008. Abundant proteorhodopsin genes in the north atlantic ocean. Environ Microbiol. 10: 99-109.

162. Koh EY, Atamna-Ismaeel N, Martin A, Cowie RO, Beja O, et al. 2010. Proteorhodop-sin-bearing bacteria in antarctic sea ice. Appl Environ Microbiol. 76: 5918-5925.

163. Martinez A, Bradley AS, Waldbauer JR, Summons RE, DeLong EF. 2007. Proteorhodop-sin photosystem gene expression enables photophosphorylation in a heterologous host. Proc Natl Acad Sci U S A. 104: 5590-5595.

164. Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, et al. 2010. Enhance-

Page 11: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

162

RefeRences

ment of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol. 76: 4123-4129.

165. Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA. 2010. Substrate-level phosphor-ylation is the primary source of energy conservation during anaerobic respiration of shewanella oneidensis strain MR-1. J Bacteriol. 192: 3345-3351.

166. Kim JY, Jo BH, Jo Y, Cha HJ. 2012. Improved production of biohydrogen in light-powered escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase. Microb Cell Fact. 11: 2-2859-11-2.

167. Kuniyoshi TM, Balan A, Schenberg ACG, Severino D, Hallenbeck PC. 2015. Heterolo-gous expression of proteorhodopsin enhances H 2 production in escherichia coli when endogenous hyd-4 is overexpressed. J Biotechnol. 206: 52-57.

168. Wang Y, Li Y, Xu T, Shi Z, Wu Q. 2015. Experimental evidence for growth advantage and metabolic shift stimulated by photophosphorylation of proteorhodopsin expressed in escherichia coli at anaerobic condition. Biotechnol Bioeng. 112: 947-956.

169. Na Y, Lee J, Bang W, Lee HJ, Choi S, et al. 2015. Growth retardation of escherichia coli by artificial increase of intracellular ATP. J Ind Microbiol Biotechnol. 42: 915-924.

170. Walter JM, Greenfield D, Liphardt J. 2010. Potential of light-harvesting proton pumps for bioenergy applications. Curr Opin Biotechnol. 21: 265-270.

171. Claassens NJ, Volpers M, dos Santos, Vitor AP Martins, van der Oost J, de Vos WM. 2013. Potential of proton-pumping rhodopsins: Engineering photosystems into microor-ganisms. Trends Biotechnol. 31: 633-642.

172. Angermayr SA, Paszota M, Hellingwerf KJ. 2012. Engineering a cyanobacterial cell facto-ry for production of lactic acid. Appl Environ Microbiol. 78: 7098-7106.

173. Ganapathy S, Becheau O, Venselaar H, Frolich S, van der Steen JB, et al. 2015. Modula-tion of spectral properties and pump activity of proteorhodopsins by retinal analogues. Biochem J. 467: 333-343.

174. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. 2011. Electrical spiking in escherichia coli probed with a fluorescent voltage-indicating protein. Science. 333: 345-348.

175. Casadaban MJ, Cohen SN. 1980. Analysis of gene control signals by DNA fusion and cloning in escherichia coli. J Mol Biol. 138: 179-207.

176. Zinchenko V, Piven I, Melnik V, Shestakov S. 1999. Vectors for the complementation analysis of cyanobacterial mutants. RUSSIAN JOURNAL OF GENETICS C/C OF GENETIKA. 35: 228-232.

177. Angermayr SA, Hellingwerf KJ. 2013. On the use of metabolic control analysis in the optimization of cyanobacterial biosolar cell factories. The Journal of Physical Chemistry B. 117: 11169-11175.

178. Kim SY, Waschuk SA, Brown LS, Jung K. 2008. Screening and characterization of proteor-hodopsin color-tuning mutations in escherichia coli with endogenous retinal synthesis. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 1777: 504-513.

179. Savakis PE, Angermayr SA, Hellingwerf KJ. 2013. Synthesis of 2, 3-butanediol by syn-echocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid-and enterobacteria. Metab Eng. 20: 121-130.

180. Bachmann BJ. 1972. Pedigrees of some mutant strains of escherichia coli K-12. Bacteriol Rev. 36: 525-557.

181. Jacob A, Grinter N. 1975. Plasmid RP4 as a vector replicon in genetic engineering. Na-ture. 255: 504-506.

182. Rupenyan A, Van Stokkum IH, Arents JC, Van Grondelle R, Hellingwerf KJ, et al. 2009. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump− dump− probe spectroscopy. The Journal of Physical Chemistry B. 113: 16251-16256.

183. Rupenyan A, van Stokkum IH, Arents JC, Van Grondelle R, Hellingwerf K, et al. 2008.

Page 12: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

163

RefeRences

Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy. Biophys J. 94: 4020-4030.

184. Schuurmans RM, Schuurmans JM, Bekker M, Kromkamp JC, Matthijs HC, et al. 2014. The redox potential of the plastoquinone pool of the cyanobacterium synechocystis spe-cies strain PCC 6803 is under strict homeostatic control. Plant Physiol. 165: 463-475.

185. Huang F, Parmryd I, Nilsson F, Persson AL, Pakrasi HB, et al. 2002. Proteomics of syn-echocystis sp. strain PCC 6803: Identification of plasma membrane proteins. Mol Cell Proteomics. 1: 956-966.

186. Selao TT, Zhang L, Arioz C, Wieslander A, Norling B. 2014. Subcellular localization of monoglucosyldiacylglycerol synthase in synechocystis sp. PCC6803 and its unique regu-lation by lipid environment. PLoS One. 9: e88153.

187. Pisareva T, Kwon J, Oh J, Kim S, Ge C, et al. 2011. Model for membrane organization and protein sorting in the cyanobacterium synechocystis sp. PCC 6803 inferred from pro-teomics and multivariate sequence analyses. Journal of Proteome Research. 10: 3617-3631.

188. von Lintig J, Vogt K. 2000. Filling the gap in vitamin A research. molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem. 275: 11915-11920.

189. Groenendljk G, De Grip W, Daemen F. 1980. Quantitative determination of retinals with complete retention of their geometric configuration. Biochimica Et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 617: 430-438.

190. Hubbard R. 1966. The stereoisomerization of 11-cis-retinal. J Biol Chem. 241: 1814-1818.

191. Sandrini G, Jakupovic D, Matthijs HC, Huisman J. 2015. Strains of the harmful cyanobac-terium microcystis aeruginosa differ in gene expression and activity of inorganic carbon uptake systems at elevated CO2 levels. Appl Environ Microbiol. 81: 7730-7739.

192. Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, et al. 2013. Synthetic biolo-gy of cyanobacteria: Unique challenges and opportunities. Frontiers in Microbiology. 4: 256.

193. Huang HH, Camsund D, Lindblad P, Heidorn T. 2010. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial bio-technology. Nucleic Acids Res. 38: 2577-2593.

194. Schneider D, Fuhrmann E, Scholz I, Hess WR, Graumann PL. 2007. Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. BMC Cell Biol. 8: 39.

195. van de Meene, Allison ML, Hohmann-Marriott MF, Vermaas WF, Roberson RW. 2006. The three-dimensional structure of the cyanobacterium synechocystis sp. PCC 6803. Arch Microbiol. 184: 259-270.

196. Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB. 2006. Ultrastructure of the mem-brane systems in the unicellular cyanobacterium synechocystis sp. strain PCC 6803. Pro-toplasma. 227: 129-138.

197. Norling B, Zak E, Andersson B, Pakrasi H. 1998. 2D-isolation of pure plasma and thyla-koid membranes from the cyanobacterium synechocystis sp. PCC 6803. FEBS Lett. 436: 189-192.

198. Ruch S, Beyer P, Ernst H, Al-Babili S. 2005. Retinal biosynthesis in eubacteria: In vitro characterization of a novel carotenoid oxygenase from synechocystis sp. PCC 6803. Mol Microbiol. 55: 1015-1024.

199. Marasco EK, Vay K, Schmidt-Dannert C. 2006. Identification of carotenoid cleavage diox-ygenases from nostoc sp. PCC 7120 with different cleavage activities. J Biol Chem. 281: 31583-31593.

200. Sui X, Kiser PD, Che T, Carey PR, Golczak M, et al. 2014. Analysis of carotenoid isomerase activity in a prototypical carotenoid cleavage enzyme, apocarotenoid oxygenase (ACO). J Biol Chem. 289: 12286-12299.

Page 13: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

164

RefeRences

201. Kloer D, Schulz G. 2006. Structural and biological aspects of carotenoid cleavage. Cellu-lar and Molecular Life Sciences CMLS. 63: 2291-2303.

202. Katoh A, Sonoda M, Katoh H, Ogawa T. 1996. Absence of light-induced proton extrusion in a cotA-less mutant of synechocystis sp. strain PCC6803. J Bacteriol. 178: 5452-5455.

203. Sonoda M, Katoh H, Vermaas W, Schmetterer G, Ogawa T. 1998. Photosynthetic elec-tron transport involved in PxcA-dependent proton extrusion in synechocystis sp. strain PCC6803: Effect of pxcA inactivation on CO2, HCO3-, and NO3- uptake. J Bacteriol. 180: 3799-3803.

204. Jeanjean R, Matthijs HC, Onana B, Havaux M, Joset F. 1993. Exposure of the cyanobac-terium synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant and Cell Physiology. 34: 1073-1079.

205. Horie Y, Ito Y, Ono M, Moriwaki N, Kato H, et al. 2007. Dark-induced mRNA instability involves RNase E/G-type endoribonuclease cleavage at the AU-box and SD sequences in cyanobacteria. Molecular Genetics and Genomics. 278: 331-346.

206. Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, et al. 2012. Positive regulation of psbA gene expression by cis-encoded antisense RNAs in synechocystis sp. PCC 6803. Plant Physiol. 160: 1000-1010.

207. Herranen M, Aro E, Tyystjärvi T. 2001. Two distinct mechanisms regulate the transcrip-tion of photosystem II genes in synechocystis sp. PCC 6803. Physiol Plantarum. 112: 531-539.

208. Eriksson J, Salih GF, Ghebramedhin H, Jansson C. 2000. Deletion mutagenesis of the 5′ psbA2 region in synechocystis 6803: Identification of a putative cis element involved in photoregulation. Molecular Cell Biology Research Communications. 3: 292-298.

209. Mohamed A, Jansson C. 1991. Photosynthetic electron transport controls degradation but not production of psbA transcripts in the cyanobacterium synechocystis 6803. Plant Mol Biol. 16: 891-897.

210. Mohamed A, Jansson C. 1989. Influence of light on accumulation of photosynthe-sis-specific transcripts in the cyanobacterium synechocystis 6803. Plant Mol Biol. 13: 693-700.

211. Lindberg P, Park S, Melis A. 2010. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using synechocystis as the model organism. Metab Eng. 12: 70-79.

212. Salih GF, Jansson C. 1997. Activation of the silent psbA1 gene in the cyanobacterium synechocystis sp strain 6803 produces a novel and functional D1 protein. Plant Cell. 9: 869-878.

213. Ke N, Baudry J, Makris TM, Schuler MA, Sligar SG. 2005. A retinoic acid binding cyto-chrome P450: CYP120A1 from synechocystis sp. PCC 6803. Arch Biochem Biophys. 436: 110-120.

214. Alder A, Bigler P, Werck-Reichhart D, Al-Babili S. 2009. In vitro characterization of syn-echocystis CYP120A1 revealed the first nonanimal retinoic acid hydroxylase. FEBS Jour-nal. 276: 5416-5431.

215. Hoffmann J, Aslimovska L, Bamann C, Glaubitz C, Bamberg E, et al. 2010. Studying the stoichiometries of membrane proteins by mass spectrometry: Microbial rhodopsins and a potassium ion channel. Physical Chemistry Chemical Physics. 12: 3480-3485.

216. Kirchman DL, Hanson TE. 2013. Bioenergetics of photoheterotrophic bacteria in the oceans. Environmental Microbiology Reports. 5: 188-199.

217. dos Santos FB, Du W, Hellingwerf KJ. 2014. Synechocystis: Not just a plug-bug for CO2, but a green E. coli. Frontiers in Bioengineering and Biotechnology. 2: 36.

218. Matthijs HC, Visser PM, Reeze B, Meeuse J, Slot PC, et al. 2012. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res. 46: 1460-1472.

Page 14: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

165

RefeRences

219. Balashov SP, Imasheva ES, Choi AR, Jung K, Liaaen-Jensen S, et al. 2010. Reconstitution of gloeobacter rhodopsin with echinenone: Role of the 4-keto group. Biochemistry (N Y ). 49: 9792-9799.

220. Balashov SP, Imasheva ES, Boichenko VA, Anton J, Wang JM, et al. 2005. Xanthorhodop-sin: A proton pump with a light-harvesting carotenoid antenna. Science. 309: 2061-2064.

221. Choi AR, Shi L, Brown LS, Jung K. 2014. Cyanobacterial light-driven proton pump, gloeo-bacter rhodopsin: Complementarity between rhodopsin-based energy production and photosynthesis. PloS One. 9: e110643.

222. Varo G, Lanyi JK. 1991. Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. Biochemistry (N Y ). 30: 5016-5022.

223. Melis A, Neidhardt J, Benemann JR. 1998. Dunaliella salina (chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol. 10: 515-525.

224. Nakajima Y, Ueda R. 1997. Improvement of photosynthesis in dense microalgal suspen-sion by reduction of light harvesting pigments. J Appl Phycol. 9: 503-510.

225. Erdrich P, Knoop H, Steuer R, Klamt S. 2014. Cyanobacterial biofuels: New insights and strain design strategies revealed by computational modeling. Microbial Cell Factories. 13: 1-15.

226. Bryant DA, Frigaard N. 2006. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14: 488-496.

227. Sabehi G, Loy A, Jung K, Partha R, Spudich JL, et al. 2005. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol. 3: e273.

228. Kirchman DL, Hanson TE. 2013. Bioenergetics of photoheterotrophic bacteria in the oceans. Environ Microbiol Rep. 5: 188-199.

229. Ganapathy S, Venselaar H, Chen Q, de Groot HJ, Hellingwerf KJ, et al. 2017. Reti-nal-based proton pumping in the near infra-red. J Am Chem Soc. 139(6): 2338-2344.

230. Kraayenhof R, Schuurmans JJ, Valkier LJ, Veen JP, Van Marum D, et al. 1982. A thermo-electrically regulated multipurpose cuvette for simultaneous time-dependent measure-ments. Anal Biochem. 127: 93-99.

231. Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, et al. 2002. Proteorhodopsin is a light-driven proton pump with variable vectoriality. J Mol Biol. 321: 821-838.

232. Schuurmans RM, Schuurmans JM, Bekker M, Kromkamp JC, Matthijs HC, et al. 2014. The redox potential of the plastoquinone pool of the cyanobacterium synechocystis spe-cies strain PCC 6803 is under strict homeostatic control. Plant Physiol. 165: 463-475.

233. Groenendijk G, De Grip W, Daemen F. 1979. Identification and characterization of syn-and anti-isomers of retinaloximes. Anal Biochem. 99: 304-310.

234. van Thor JJ, Jeanjean R, Havaux M, Sjollema KA, Joset F, et al. 2000. Salt shock-induc-ible photosystem I cyclic electron transfer in synechocystis PCC6803 relies on binding of ferredoxin:NADP(+) reductase to the thylakoid membranes via its CpcD phycobili-some-linker homologous N-terminal domain. Biochim Biophys Acta. 1457: 129-144.

235. Zhang L, Selão TT, Selstam E, Norling B. 2015. Subcellular localization of carotenoid biosynthesis in synechocystis sp. PCC 6803. PloS One. 10: e0130904.

236. Makino T, Harada H, Ikenaga H, Matsuda S, Takaichi S, et al. 2008. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in escherichia coli. Plant Cell Physiol. 49: 1867-1878.

237. Cymer F, Schneider D. 2012. Oligomerization of polytopic α-helical membrane proteins: Causes and consequences. Biol Chem. 393: 1215-1230.

238. Tsukamoto T, Kikukawa T, Kurata T, Jung KH, Kamo N, et al. 2013. Salt bridge in the con-served his-asp cluster in gloeobacter rhodopsin contributes to trimer formation. FEBS Lett. 587: 322-327.

Page 15: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

166

RefeRences

239. Yoshimura K, Kouyama T. 2008. Structural role of bacterioruberin in the trimeric struc-ture of archaerhodopsin-2. J Mol Biol. 375: 1267-1281.

240. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improve-ment. Science. 332: 805-809.

241. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015. Redesigning pho-tosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci U S A. 112: 8529-8536.

242. Spudich JL, Yang C, Jung K, Spudich EN. 2000. Retinylidene proteins: Structures and functions from archaea to humans. Annu Rev Cell Dev Biol. 16: 365-392.

243. Ganapathy S, Becheau O, Venselaar H, Frolich S, van der Steen JB, et al. 2015. Modula-tion of spectral properties and pump activity of proteorhodopsins by retinal analogues. Biochem J. 467: 333-343.

244. Lakshman M, Okoh C. 1993. [23] enzymatic conversion of all-trans-β-carotene to retinal. Meth Enzymol. 214: 256-269.

245. Redmond TM, Gentleman S, Duncan T, Yu S, Wiggert B, et al. 2001. Identification, ex-pression, and substrate specificity of a mammalian beta-carotene 15,15’-dioxygenase. J Biol Chem. 276: 6560-6565.

246. Peck RF, Echavarri-Erasun C, Johnson EA, Ng WV, Kennedy SP, et al. 2001. Brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in halobacterium salinarum. J Biol Chem. 276: 5739-5744.

247. Scherzinger D, Ruch S, Kloer DP, Wilde A, Al-Babili S. 2006. Retinal is formed from apo-carotenoids in nostoc sp. PCC7120: In vitro characterization of an apo-carotenoid oxygenase. Biochem J. 398: 361-369.

248. Prado-Cabrero A, Scherzinger D, Avalos J, Al-Babili S. 2007. Retinal biosynthesis in fungi: Characterization of the carotenoid oxygenase CarX from fusarium fujikuroi. Eukaryot Cell. 6: 650-657.

249. Cui H, Wang Y, Qin S. 2012. Genomewide analysis of carotenoid cleavage dioxygenases in unicellular and filamentous cyanobacteria. Comp Funct Genomics. 2012: 1-13.

250. Ruch S, Beyer P, Ernst H, Al-Babili S. 2005. Retinal biosynthesis in eubacteria: In vitro characterization of a novel carotenoid oxygenase from synechocystis sp. PCC 6803. Mol Microbiol. 55: 1015-1024.

251. Kloer DP, Ruch S, Al-Babili S, Beyer P, Schulz GE. 2005. The structure of a retinal-forming carotenoid oxygenase. Science. 308: 267-269.

252. Alder A, Bigler P, Werck-Reichhart D, Al-Babili S. 2009. In vitro characterization of syn-echocystis CYP120A1 revealed the first nonanimal retinoic acid hydroxylase. FEBS Jour-nal. 276: 5416-5431.

253. Perlmann T. 2002. Retinoid metabolism: A balancing act. Nat Genet. 31: 7-8.

254. Gallego O, Belyaeva OV, Porte S, Ruiz FX, Stetsenko AV, et al. 2006. Comparative func-tional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids. Biochem J. 399: 101-109.

255. Hintzpeter J, Martin HJ, Maser E. 2015. Reduction of lipid peroxidation products and advanced glycation end-product precursors by cyanobacterial aldo-keto reductase AKR3G1-a founding member of the AKR3G subfamily. FASEB J. 29: 263-273.

256. Shimakawa G, Suzuki M, Yamamoto E, Nishi A, Saito R, et al. 2013. Scavenging systems for reactive carbonyls in the cyanobacterium synechocystis sp. PCC 6803. Biosci Biotech-nol Biochem. 77: 2441-2448.

257. Vidal R, Lopez-Maury L, Guerrero MG, Florencio FJ. 2009. Characterization of an alco-hol dehydrogenase from the cyanobacterium synechocystis sp. strain PCC 6803 that re-sponds to environmental stress conditions via the Hik34-Rre1 two-component system.

Page 16: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

167

RefeRences

J Bacteriol. 191: 4383-4391.

258. Trautmann D, Beyer P, Al-Babili S. 2013. The ORF slr0091 of synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals. FEBS J. 280: 3685-3696.

259. Fujisawa T, Okamoto S, Katayama T, Nakao M, Yoshimura H, et al. 2014. CyanoBase and RhizoBase: Databases of manually curated annotations for cyanobacterial and rhizobial genomes. Nucleic Acids Res. 42: D666-D670.

260. van der Woude, Aniek D, Gallego RP, Vreugdenhil A, Veetil VP, Chroumpi T, et al. 2016. Genetic engineering of synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol. Microbial Cell Factories. 15: 60.

261. van der Woude, Aniek D, Angermayr SA, Veetil VP, Osnato A, Hellingwerf KJ. 2014. Car-bon sink removal: Increased photosynthetic production of lactic acid by synechocystis sp. PCC6803 in a glycogen storage mutant. J Biotechnol. 184: 100-102.

262. Zhu T, Xie X, Li Z, Tan X, Lu X. 2015. Enhancing photosynthetic production of ethylene in genetically engineered synechocystis sp. PCC 6803. Green Chem. 17: 421-434.

263. Bachmann BJ. 1972. Pedigrees of some mutant strains of escherichia coli K-12. Bacteriol Rev. 36: 525-557.

264. Jacob A, Grinter N. 1975. Plasmid RP4 as a vector replicon in genetic engineering. Na-ture. 255: 504-506.

265. Hubbard R, Brown PK, Bownds D. 1971. Methodology of vitamin A and visual pigments. Meth Enzymol. 18: 615-653.

266. Groenendijk G, Jansen P, Bonting S, Daemen F. 1980. Analysis of geometrically isomeric vitamin A compounds. Meth Enzymol. 67: 203-220.

267. Trautmann D, Beyer P, Al-Babili S. 2013. The ORF slr0091 of synechocystis sp. PCC6803 encodes a high-light induced aldehyde dehydrogenase converting apocarotenals and alkanals. FEBS J. 280: 3685-3696.

268. Jung K, Trivedi VD, Spudich JL. 2003. Demonstration of a sensory rhodopsin in eubacte-ria. Mol Microbiol. 47: 1513-1522.

269. Blomhoff R, Blomhoff HK. 2006. Overview of retinoid metabolism and function. J Neu-robiol. 66: 606-630.

270. Cui H, Wang Y, Qin S. 2012. Genomewide analysis of carotenoid cleavage dioxygenases in unicellular and filamentous cyanobacteria. Comp Funct Genomics. 2012: 1-13.

271. Wu X, Jiang J, Hu J. 2013. Determination and occurrence of retinoids in a eutrophic lake (taihu lake, china): Cyanobacteria blooms produce teratogenic retinal. Environ Sci Technol. 47: 807-814.

272. Hoff W, Matthijs H, Schubert H, Crielaard W, Hellingwerf K. 1995. Rhodopsin (s) in eu-bacteria. Biophys Chem. 56: 193-199.

273. Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, et al. 2004. Anabaena sensory rhodopsin: A photochromic color sensor at 2.0 A. Science. 306: 1390-1393.

274. Albertano P, Barsanti L, Passarelli V, Gualtieri P. 2000. A complex photoreceptive struc-ture in the cyanobacterium leptolyngbya sp. Micron. 31: 27-34.

275. Jung K, Trivedi VD, Spudich JL. 2003. Demonstration of a sensory rhodopsin in eubacte-ria. Mol Microbiol. 47: 1513-1522.

276. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, et al. 2003. Complete genome structure of gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res. 10: 137-145.

277. Heo J, Kim SH, Lee PC. 2013. New insight into the cleavage reaction of nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids. Appl Environ Microbiol. 79: 3336-3345.

Page 17: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

168

RefeRences

278. Kopf M, Klahn S, Scholz I, Matthiessen JK, Hess WR, et al. 2014. Comparative analysis of the primary transcriptome of synechocystis sp. PCC 6803. DNA Res. 21: 527-539.

279. De Grip W, Gillespie J, Rothschild K. 1985. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A fourier transform infrared spectroscopic study. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 809: 97-106.

280. Wraight CA, Clayton RK. 1974. The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of rhodopseudomonas spheroides. Biochimica Et Bio-physica Acta (BBA)-Bioenergetics. 333: 246-260.

281. Bauer CE, Buggy JJ, Yang Z, Marrs BL. 1991. The superoperonal organization of genes for pigment biosynthesis and reaction center proteins is a conserved feature in rhodobacter capsulatus: Analysis of overlapping bchB and puhA transcripts. Molecular and General Genetics MGG. 228: 433-444.

282. Hernandez-Prieto MA, Tibiletti T, Abasova L, Kirilovsky D, Vass I, et al. 2011. The small CAB-like proteins of the cyanobacterium synechocystis sp. PCC 6803: Their involvement in chlorophyll biogenesis for photosystem II. Biochimica Et Biophysica Acta (BBA)-Bioen-ergetics. 1807: 1143-1151.

283. Shen G, Boussiba S, Vermaas WF. 1993. Synechocystis sp PCC 6803 strains lacking pho-tosystem I and phycobilisome function. Plant Cell. 5: 1853-1863.

284. Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HC, Hellingwerf KJ. 2015. Comparison of the photosynthetic yield of cyanobacteria and green algae: Different methods give different answers. PloS One. 10: e0139061.

285. Allahverdiyeva Y, Ermakova M, Eisenhut M, Zhang P, Richaud P, et al. 2011. Interplay between flavodiiron proteins and photorespiration in synechocystis sp. PCC 6803. J Biol Chem. 286: 24007-24014.

286. Kok B . 1948. in A critical consideration of the quantum yield of Chlorella-photosynthesis. (Wageningen University & Research, Amsterdam : Junk), pp 0-56.

287. Lorinczi É, Verhoefen M, Wachtveitl J, Woerner AC, Glaubitz C, et al. 2009. Voltage-and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mu-tant proteorhodopsins upon expression in xenopus oocytes. J Mol Biol. 393: 320-341.

288. Vogt A, Wietek J, Hegemann P. 2013. Gloeobacter rhodopsin, limitation of proton pumping at high electrochemical load. Biophys J. 105: 2055-2063.

289. Choi AR, Shi L, Brown LS, Jung KH. 2014. Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: Complementarity between rhodopsin-based energy production and photosynthesis. PLoS One. 9: e110643.

290. Akai M, Onai K, Kusano M, Sato M, Redestig H, et al. 2011. Plasma membrane aqua-porin AqpZ protein is essential for glucose metabolism during photomixotrophic growth of synechocystis sp. PCC 6803. J Biol Chem. 286: 25224-25235.

291. Takahashi H, Uchimiya H, Hihara Y. 2008. Difference in metabolite levels between pho-toautotrophic and photomixotrophic cultures of synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. J Exp Bot. 59: 3009-3018.

292. Kahlon S, Beeri K, Ohkawa H, Hihara Y, Murik O, et al. 2006. A putative sensor kinase, Hik31, is involved in the response of synechocystis sp. strain PCC 6803 to the presence of glucose. Microbiology. 152: 647-655.

293. Ryu JY, Song JY, Lee JM, Jeong SW, Chow WS, et al. 2004. Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic ph in the cyanobac-terium synechocystis sp. PCC 6803. J Biol Chem. 279: 25320-25325.

294. Lee S, Ryu JY, Kim SY, Jeon JH, Song JY, et al. 2007. Transcriptional regulation of the respiratory genes in the cyanobacterium synechocystis sp. PCC 6803 during the early response to glucose feeding. Plant Physiol. 145: 1018-1030.

295. Tibiletti T, Hernández-Prieto MA, Matthijs HC, Niyogi KK, Funk C. 2016. Deletion of the

Page 18: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

169

RefeRences

gene family of small chlorophyll-binding proteins (ScpABCDE) offsets C/N homeostasis in synechocystis PCC 6803. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 1857: 396-407.

296. Van De Meene, Allison ML, Sharp WP, McDaniel JH, Friedrich H, Vermaas WF, et al. 2012. Gross morphological changes in thylakoid membrane structure are associated with photosystem I deletion in synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta (BBA)-Biomembranes. 1818: 1427-1434.

297. Du W, Jongbloets JA, Hernández HP, Bruggeman FJ, Hellingwerf KJ, et al. 2016. Photon-fluxostat: A method for light-limited batch cultivation of cyanobacteria at different, yet constant, growth rates. Algal Research. 20: 118-125.

298. Imanaka T. 1987. Some factors affecting the copy number of specific plasmids in bacillus species. Ann N Y Acad Sci. 506: 371-383.

299. Asayama M. 2012. Overproduction and easy recovery of target gene products from cya-nobacteria, photosynthesizing microorganisms. Appl Microbiol Biotechnol. 95: 683-695.

300. Oliveira PH, Prather KJ, Prazeres DM, Monteiro GA. 2009. Structural instability of plas-mid biopharmaceuticals: Challenges and implications. Trends Biotechnol. 27: 503-511.

301. Mullineaux CW. 2014. Electron transport and light-harvesting switches in cyanobacteria. Frontiers in Plant Science. 5: 7.

302. Cook GM, Hards K, Vilcheze C, Hartman T, Berney M. 2014. Energetics of respiration and oxidative phosphorylation in mycobacteria. Microbiol Spectr. 2: 10.1128/microbiolspec.MGM2-0015-2013.

303. Ermakova M, Huokko T, Richaud P, Bersanini L, Howe CJ, et al. 2016. Distinguishing the roles of thylakoid respiratory terminal oxidases in the cyanobacterium synechocystis sp. PCC 6803. Plant Physiol. 171: 1307-1319.

304. Cournac L, Redding K, Bennoun P, Peltier G. 1997. Limited photosynthetic electron flow but no CO2 fixation in chlamydomonas mutants lacking photosystem I. FEBS Lett. 416: 65-68.

305. Wikström M. 1984. Two protons are pumped from the mitochondrial matrix per elec-tron transferred between NADH and ubiquinone. FEBS Lett. 169: 300-304.

306. Brandt U. 2011. A two-state stabilization-change mechanism for proton-pumping com-plex I. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 1807: 1364-1369.

307. Ripple MO, Kim N, Springett R. 2013. Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells. J Biol Chem. 288: 5374-5380.

308. Westerhoff HV, Scholte BJ, Hellingwerf KJ. 1979. Bacteriorhodopsin in liposomes. I. A description using irreversible thermodynamics. Biochimica Et Biophysica Acta (BBA)-Bio-energetics. 547: 544-560.

309. Hellingwerf K, Crielaard W, Hoff W, Matthijs H, Mur L, et al. 1994. Photobiology of bac-teria. Antonie Van Leeuwenhoek. 65: 331-347.

310. Peltier G, Thibault P. 1988. Oxygen-exchange studies in chlamydomonas mutants de-ficient in photosynthetic electron transport: Evidence for a photosystem II-dependent oxygen uptake in vivo. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 936: 319-324.

311. Schoepp-Cothenet B, Lieutaud C, Baymann F, Vermeglio A, Friedrich T, et al. 2009. Menaquinone as pool quinone in a purple bacterium. Proc Natl Acad Sci U S A. 106: 8549-8554.

312. Klamt S, Grammel H, Straube R, Ghosh R, Gilles ED. 2008. Modeling the electron trans-port chain of purple non-sulfur bacteria. Mol Syst Biol. 4: 156.

313. Wang QJ, Singh A, Li H, Nedbal L, Sherman LA, et al. 2012. Net light-induced oxygen evolution in photosystem I deletion mutants of the cyanobacterium synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 1817: 792-801.

Page 19: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

170

RefeRences

314. Vermaas WF, Shen G, Styling S. 1994. Electrons generated by photosystem II are utilized by an oxidase in the absence of photosystem I in the cyanobacterium synechocystis sp. PCC 6803. FEBS Lett. 337: 103-108.

315. Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, et al. 2000. Electron flow be-tween photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is me-diated by a quinol oxidase involved in chlororespiration. J Biol Chem. 275: 17256-17262.

316. Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ. 2005. Terminal oxidases of cyanobac-teria. Biochem Soc Trans. 33: 832-835.

317. Berry S, Schneider D, Vermaas WF, Rogner M. 2002. Electron transport routes in whole cells of synechocystis sp. strain PCC 6803: The role of the cytochrome bd-type oxidase. Biochemistry (N Y ). 41: 3422-3429.

318. Vermaas WF. 1994. Molecular-genetic approaches to study photosynthetic and respira-tory electron transport in thylakoids from cyanobacteria. Biochimica Et Biophysica Acta (BBA)-Bioenergetics. 1187: 181-186.

319. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, et al. 2014. Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem Rev. 114: 126-163.

320. Pinhassi J, DeLong EF, Beja O, Gonzalez JM, Pedros-Alio C. 2016. Marine bacterial and archaeal ion-pumping rhodopsins: Genetic diversity, physiology, and ecology. Microbiol Mol Biol Rev. 80: 929-954.

321. Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, et al. 2013. A light-driven sodium ion pump in marine bacteria. Nature Communications. 4: 1678.

322. Schobert B, Lanyi JK. 1982. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 257: 10306-10313.

323. MacDonald RE, Greene RV, Clark RD, Lindley EV. 1979. Characterization of the light-driv-en sodium pump of halobacterium halobium. J Biol Chem. 254: 11831-11838.

324. Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S, et al. 2017. Demonstration of a light-driven SO42-transporter and its spectroscopic characteristics. J Am Chem Soc. 139: 4376-4389.

325. Hasemi T, Kikukawa T, Kamo N, Demura M. 2016. Characterization of a cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J Biol Chem. 291: 355-362.

326. Inoue K, Nomura Y, Kandori H. 2016. Asymmetric functional conversion of eubacterial light-driven ion pumps. J Biol Chem. 291: 9883-9893.

327. Hoff W, Matthijs H, Schubert H, Crielaard W, Hellingwerf K. 1995. Rhodopsin (s) in eu-bacteria. Biophys Chem. 56: 193-199.

328. Gorriti MF, Dias GM, Chimetto LA, Trindade-Silva AE, Silva BS, et al. 2014. Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics. 15: 473.

329. Kato HE, Inoue K, Kandori H, Nureki O. 2016. The light-driven sodium ion pump: A new player in rhodopsin research. Bioessays. 38: 1274-1282.

330. Armshaw P, Carey D, Sheahan C, Pembroke JT. 2015. Utilising the native plasmid, pCA2. 4, from the cyanobacterium synechocystis sp. strain PCC6803 as a cloning site for en-hanced product production. Biotechnology for Biofuels. 8: 201.

331. Berla BM, Pakrasi HB. 2012. Upregulation of plasmid genes during stationary phase in synechocystis sp. strain PCC 6803, a cyanobacterium. Appl Environ Microbiol. 78: 5448-5451.

332. Labarre J, Chauvat F, Thuriaux P. 1989. Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium synechocystis strain PCC 6803. J Bacteriol. 171: 3449-3457.

Page 20: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

171

RefeRences

333. Zinchenko V, Piven I, Melnik V, Shestakov S. 1999. Vectors for the complementation analysis of cyanobacterial mutants. RUSSIAN JOURNAL OF GENETICS C/C OF GENETIKA. 35: 228-232.

334. Jones PR. 2014. Genetic instability in cyanobacteria–an elephant in the room?. Frontiers in Bioengineering and Biotechnology. 2: 12.

335. Huang H, Lindblad P. 2013. Wide-dynamic-range promoters engineered for cyanobac-teria. Journal of Biological Engineering. 7: 10.

336. Celesnik H, Tansek A, Tahirovic A, Vizintin A, Mustar J, et al. 2016. Biosafety of biotech-nologically important microalgae: Intrinsic suicide switch implementation in cyanobac-terium synechocystis sp. PCC 6803. Biol Open. 5: 519-528.

337. Englund E, Liang F, Lindberg P. 2016. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium synechocystis sp. PCC 6803. Sci Rep. 6: 36640.

338. Blasi B, Peca L, Vass I, Kos PB. 2012. Characterization of stress responses of heavy met-al and metalloid inducible promoters in synechocystis PCC6803. J.Microbiol.Biotechnol. 22: 166-169.

339. Abe K, Miyake K, Nakamura M, Kojima K, Ferri S, et al. 2014. Engineering of a green-light inducible gene expression system in synechocystis sp. PCC6803. Microbial Biotech-nology. 7: 177-183.

340. Qi Q, Hao M, Ng WO, Slater SC, Baszis SR, et al. 2005. Application of the synechococcus nirA promoter to establish an inducible expression system for engineering the synecho-cystis tocopherol pathway. Appl Environ Microbiol. 71: 5678-5684.

341. Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR. 2012. Ethylene synthesis and regulated expression of recombinant protein in synechocystis sp. PCC 6803. PLoS One. 7: e50470.

342. Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, et al. 2013. Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms. Chem Rev. 114: 126-163.

343. Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: An array of physiologi-cal roles?. Nature Reviews Microbiology. 6: 488-494.

344. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I. 2012. Detailing the opti-mality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A. 109: 2678-2683.

345. Kramer DM, Evans JR. 2011. The importance of energy balance in improving photosyn-thetic productivity. Plant Physiol. 155: 70-78.

346. Kramer DM, Avenson TJ, Edwards GE. 2004. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci. 9: 349-357.

347. Hambourger M, Gervaldo M, Svedruzic D, King PW, Gust D, et al. 2008. [FeFe]-hydro-genase-catalyzed H2 production in a photoelectrochemical biofuel cell. J Am Chem Soc. 130: 2015-2022.

348. McKinlay JB, Harwood CS. 2010. Photobiological production of hydrogen gas as a bio-fuel. Curr Opin Biotechnol. 21: 244-251.

349. Antonovsky N, Gleizer S, Noor E, Zohar Y, Herz E, et al. 2016. Sugar synthesis from CO 2 in escherichia coli. Cell. 166: 115-125.

350. Gong F, Liu G, Zhai X, Zhou J, Cai Z, et al. 2015. Quantitative analysis of an engineered CO 2-fixing escherichia coli reveals great potential of heterotrophic CO 2 fixation. Bio-technology for Biofuels. 8: 86.

351. Zhu Z, Luan G, Tan X, Zhang H, Lu X. 2017. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-ris-

Page 21: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

172

RefeRences

ing strategy. Biotechnology for Biofuels. 10: 93.

352. Day JG, Slocombe SP, Stanley MS. 2012. Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol. 109: 245-251.

353. Gómez-Consarnau L, González JM, Riedel T, Jaenicke S, Wagner-Döbler I, et al. 2015. Proteorhodopsin light-enhanced growth linked to vitamin-B1 acquisition in marine fla-vobacteria. The ISME Journal. 2016: 1102-1112.

354. Kok S, Kozak BU, Pronk JT, Maris AJ. 2012. Energy coupling in saccharomyces cerevisiae: Selected opportunities for metabolic engineering. FEMS Yeast Research. 12: 387-397.

355. Wisedchaisri G, Park M, Iadanza MG, Zheng H, Gonen T. 2014. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE. Nature Commu-nications. 5: 4521.

356. van Maris AJ, Winkler AA, Porro D, van Dijken JP, Pronk JT. 2004. Homofermentative lactate production cannot sustain anaerobic growth of engineered saccharomyces cer-evisiae: Possible consequence of energy-dependent lactate export. Appl Environ Micro-biol. 70: 2898-2905.

357. van Maris AJ, Konings WN, van Dijken JP, Pronk JT. 2004. Microbial export of lactic and 3-hydroxypropanoic acid: Implications for industrial fermentation processes. Metab Eng. 6: 245-255.

358. Pastrana E. 2011. Optogenetics: Controlling cell function with light. Nature Methods. 8: 24.

359. Kandori H. 2015. Ion-pumping microbial rhodopsins. Frontiers in Molecular Biosciences. 2: 52.

360. Herwig L, Rice AJ, Bedbrook CN, Zhang RK, Lignell A, et al. 2017. Directed evolution of a bright near-infrared fluorescent rhodopsin using a synthetic chromophore. Cell Chem-ical Biology. 24: 415-425.

361. Hososhima S, Yuasa H, Ishizuka T, Hoque MR, Yamashita T, et al. 2015. Near-infrared (NIR) up-conversion optogenetics. Scientific Reports. 5: 16533.

362. Atamna-Ismaeel N, Sabehi G, Sharon I, Witzel K, Labrenz M, et al. 2008. Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. The ISME Jour-nal. 2: 656-662.

363. Boeuf D, Lami R, Cunnington E, Jeanthon C. 2016. Summer abundance and distribu-tion of proteorhodopsin genes in the western arctic ocean. Frontiers in Microbiology. 7: 1584.

364. Kramer DM, Cruz JA, Kanazawa A. 2003. Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci. 8: 27-32.

365. Yurkov VV, Gemerden H. 1993. Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in erythromicrobium hydrolyticum. Arch Microbiol. 159: 84-89.

366. Vredenberg WJ. 2007. in Chlorophyll a Fluorescence: A Signature of Photosynthesis, ed Papageorgiou GC (Springer Science & Business Media, New York), pp 134-168.

367. Evans R, Kushwaha S, Kates M. 1980. The lipids of halobacterium marismortui, an ex-tremely halophilic bacterium in the dead sea. Biochimica Et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 619: 533-544.

368. Pfennig N. 1967. Photosynthetic bacteria. Annual Reviews in Microbiology. 21: 285-324.

369. Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci U S A. 74: 5088-5090.

370. Imhoff JF, Kushner DJ, Kushwaha SC, Kates M. 1982. Polar lipids in phototrophic bacteria of the rhodospirillaceae and chromatiaceae families. J Bacteriol. 150: 1192-1201.

371. Hellingwerf KJ, Crielaard W, Westerhoff HV. 1993. in Modern Trends in Biothermokinet-

Page 22: UvA-DARE (Digital Academic Repository) Engineering retinal ... · 156 5()(5F 43. Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, et al. 2015.Redesigning pho-tosynthesis to

173

RefeRences

ics, ed Stefan Schuster, Michel Rigoulet, Rachid Ouhabi, Jean-Pierre Mazat (Springer, US, Plenum press. New York.), pp 45-52.

372. Kirchman DL, Hanson TE. 2013. Bioenergetics of photoheterotrophic bacteria in the oceans. Environmental Microbiology Reports. 5: 188-199.

373. Brinkhoff T, Giebel H, Simon M. 2008. Diversity, ecology, and genomics of the roseo-bacter clade: A short overview. Arch Microbiol. 189: 531-539.

374. Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, et al. 2005. The genome of salinibacter ruber: Convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci U S A. 102: 18147-18152.

375. Dickerson RE. 1980. Evolution and gene transfer in purple photosynthetic bacteria. Na-ture. 283: 210-212.

376. Lake JA. 2009. Evidence for an early prokaryotic endosymbiosis. Nature. 460: 967-971.

377. Forterre P. 2011. A new fusion hypothesis for the origin of eukarya: Better than previous ones, but probably also wrong. Res Microbiol. 162: 77-91.

378. Rivera MC, Lake JA. 2004. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature. 431: 152-155.

379. Lake JA, Larsen J, Sarna B, de la Haba RR, Pu Y, et al. 2015. Rings reconcile genotypic and phenotypic evolution within the proteobacteria. Genome Biol Evol. 7: 3434-3442.

380. Lake JA, Clark MW, Henderson E, Fay SP, Oakes M, et al. 1985. Eubacteria, halobacteria, and the origin of photosynthesis: The photocytes. Proc Natl Acad Sci U S A. 82: 3716-3720.

381. Bapteste E, Walsh DA. 2005. Does the ‘Ring of life’ring true?. Trends Microbiol. 13: 256-261.

382. Soucy SM, Huang J, Gogarten JP. 2015. Horizontal gene transfer: Building the web of life. Nature Reviews Genetics. 16: 472-482.