tocteach.files.wordpress.com · web viewmatheny 7 — jason g. matheny, research associate at the...

66
Woodward Academy 1 2011-2012 File Title *** 1AC

Upload: others

Post on 05-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 12011-2012 File Title

*** 1AC

Page 2: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 22011-2012 File Title

1AC—#MARSContention One is #MARS:

Risk of extinction is high—consensus of experts.Matheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics at Johns Hopkins University, holds a Master’s in Public Health from the Bloomberg School of Public Health at Johns Hopkins University and an M.B.A. from the Fuqua School of Business at Duke University, 2007 (“Reducing the Risk of Human Extinction,” Risk Analysis, Volume 27, Issue 5, October, Available Online at http://jgmatheny.org/matheny_extinction_risk.htm, Accessed 07-04-2011)

It is possible for humanity (or its descendents) to survive a million years or more, but we could succumb to extinction as soon as this century . During the Cuban Missile Crisis, U.S. President Kennedy estimated the probability of a nuclear holocaust as "somewhere between one out of three and even" (Kennedy, 1969 , p. 110). John von Neumann, as Chairman of the U.S. Air Force Strategic Missiles Evaluation Committee, predicted that it was "absolutely certain (1) that there would be a nuclear war; and (2) that everyone would die in it" (Leslie, 1996 , p. 26). More recent predictions of human extinction are little more optimistic. In their catalogs of extinction risks, Britain's Astronomer Royal, Sir Martin Rees (2003) , gives humanity 50-50 odds on surviving the 21st century; philosopher Nick Bostrom argues that it would be "misguided" to assume that the probability of extinction is less than 25%; and philosopher John Leslie (1996) assigns a 30% probability to extinction during the next five centuries. The "Stern Review" for the U.K. Treasury (2006) assumes that the probability of human extinction during the next century is 10% . And some explanations of the "Fermi Paradox" imply a high probability (close to 100%) of extinction among technological civilizations (Pisani, 2006 ).4 Estimating the probabilities of unprecedented events is subjective, so we should treat these numbers skeptically. Still, even if the probability of extinction is several orders lower, because the stakes are high, it could be wise to invest in extinction countermeasures .

Extinction is inevitable if we don’t get off the rock—multiple scenariosAusten 11 [Ben Austen, contributing editor of Harper’s Magazine, “After Earth: Why, Where, How, and When We Might Leave Our Home Planet,” popular science, http://www.popsci.com/science/article/2011-02/after-earth-why-where-how-and-when-we-might-leave-our-home-planet?page=3]

Earth won’t always be fit for occupation. We know that in two billion years or so, an expanding sun will boil away our oceans, leaving our home in the universe uninhabitable—unless, that is, we haven’t already been wiped out by the Andromeda galaxy, which is on a multibillion-year collision course with our Milky Way. Moreover, at least a third of the thousand mile-wide asteroids that hurtle across our orbital path will eventually crash into us , at a rate of about one every 300,000 years. Why? Indeed, in 1989 a far smaller asteroid , the impact of which would still have been equivalent in force to 1,000 nuclear bombs, crossed our orbit just six hours after Earth had passed. A recent report by the Lifeboat Foundation, whose hundreds of researchers track a dozen different existential risks to humanity, likens that one-in-300,000 chance of a catastrophic strike to a game of Russian roulette: “If we keep pulling the trigger long enough we’ll blow our head off, and there’s no guarantee it won’t be the next pull.” Many of the threats that might lead us to consider off-Earth living arrangements are actually man-made, and not necessarily in the distant future. The amount we consume each year already far outstrips what our planet can sustain , and the World Wildlife Fund estimates that by 2030 we will be consuming two planets’ worth of natural resources annually. The Center for Research on the Epidemiology of Disasters, an

Page 3: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 32011-2012 File Title

international humanitarian organization, reports that the onslaught of droughts, earthquakes , epic rains and floods over the past decade is triple the number from the 1980s and nearly 54 times that of 1901, when this data was first collected . Some scenarios have climate change leading to severe water shortages, the submersion of coastal areas, and widespread famine. Additionally, the world could end by way of deadly pathogen, nuclear war or, as the Lifeboat Foundation warns, the “misuse of increasingly powerful technologies.” Given the risks humans pose to the planet, we might also someday leave Earth simply to conserve it, with our planet becoming a kind of nature sanctuary that we visit now and again, as we might Yosemite. None of the threats we face are especially far-fetched . Climate change is already a major factor in human affairs, for instance, and our planet has undergone at least one previous mass extinction as a result of asteroid impact . “The dinosaurs died out because they were too stupid to build an adequate spacefaring civilization,” says Tihamer Toth-Fejel, a research engineer at the Advanced Information Systems division of defense contractor General Dynamics and one of 85 members of the Lifeboat Foundation’s space-settlement board. “So far, the difference between us and them is barely measurable.” The Alliance to Rescue Civilization, a project started by New York University chemist Robert Shapiro, contends that the inevitability of any of several cataclysmic events means that we must prepare a copy of our civilization and move it into outer space and out of harm’s way—a backup of our cultural achievements and traditions. In 2005, then–NASA administrator Michael Griffin described the aims of the national space program in similar terms. “If we humans want to survive for hundreds of thousands or millions of years, we must ultimately populate other planets,” he said. “One day, I don’t know when that day is, but there will be more human beings who live off the Earth than on it.”

Reducing existential risk by even a tiny amount outweighs every other impact—the math is conclusively on our side.Bostrom 11 — Nick Bostrom, Professor in the Faculty of Philosophy & Oxford Martin School, Director of the Future of Humanity Institute, and Director of the Programme on the Impacts of Future Technology at the University of Oxford, recipient of the 2009 Eugene R. Gannon Award for the Continued Pursuit of Human Advancement, holds a Ph.D. in Philosophy from the London School of Economics, 2011 (“The Concept of Existential Risk,” Draft of a Paper published on ExistentialRisk.com, Available Online at http://www.existentialrisk.com/concept.html, Accessed 07-04-2011)

Holding probability constant, risks become more serious as we move toward the upper-right region of figure 2. For any fixed probability, existential risks are thus more serious than other risk categories. But just how much more serious might not be intuitively obvious. One might think we could get a grip on how bad an existential catastrophe would be by considering some of the worst historical disasters we can think of—such as the two world wars, the Spanish flu pandemic, or the Holocaust—and then imagining something just a bit worse. Yet if we look at global population statistics over time, we find that these horrible events of the past century fail to register (figure 3).

[Graphic Omitted]

Figure 3: World population over the last century. Calamities such as the Spanish flu pandemic, the two world wars, and the Holocaust scarcely register. (If one stares hard at the graph, one can perhaps just barely make out a slight temporary reduction in the rate of growth of the world population during these events.)

But even this reflection fails to bring out the seriousness of existential risk. What makes existential catastrophes especially bad is not that they would show up robustly on a plot like the one in figure 3, causing a precipitous drop in world population or average quality of life. Instead, their significance lies primarily in the fact that they would destroy the future . The philosopher Derek Parfit made a similar point with the following thought experiment:

I believe that if we destroy mankind, as we now can, this outcome will be much worse than most people think. Compare three outcomes:

Page 4: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 42011-2012 File Title

(1) Peace .(2) A nuclear war that kills 99% of the world’s existing population .(3) A nuclear war that kills 100% .(2) would be worse than (1), and (3) would be worse than (2). Which is the greater of these two differences? Most people believe that the greater difference is between (1) and (2). I believe that the difference between (2) and (3) is very much greater . … The Earth will remain habitable for at least another billion years. Civilization began only a few thousand years ago. If we do not destroy mankind, these few thousand years may be only a tiny fraction of the whole of civilized human history . The difference between (2) and (3) may thus be the difference between this tiny fraction and all of the rest of this history . If we compare this possible history to a day, what has occurred so far is only a fraction of a second . (10: 453-454)

To calculate the loss associated with an existential catastrophe, we must consider how much value would come to exist in its absence. It turns out that the ultimate potential for Earth-originating intelligent life is literally astronomical.

One gets a large number even if one confines one’s consideration to the potential for biological human beings living on Earth. If we suppose with Parfit that our planet will remain habitable for at least another billion years, and we assume that at least one billion people could live on it sustainably, then the potential exist for at least 10 18 human lives . These lives could also be considerably better than the average contemporary human life , which is so often marred by disease, poverty, injustice, and various biological limitations that could be partly overcome through continuing technological and moral progress.

However, the relevant figure is not how many people could live on Earth but how many descendants we could have in total. One lower bound of the number of biological human life-years in the future accessible universe (based on current cosmological estimates) is 10 34 years .[10] Another estimate, which assumes that future minds will be mainly implemented in computational hardware instead of biological neuronal wetware, produces a lower bound of 10 54 human-brain-emulation subjective life-years (or 1071 basic computational operations).(4)[11] If we make the less conservative assumption that future civilizations could eventually press close to the absolute bounds of known physics (using some as yet unimagined technology), we get radically higher estimates of the amount of computation and memory storage that is achievable and thus of the number of years of subjective experience that could be realized.[12]

Even if we use the most conservative of these estimates , which entirely ignore s the possibility of space colonization and software minds, we find that the expected loss of an existential catastrophe is greater than the value of 10 18 human lives . This implies that the expected value of reducing existential risk by a mere one millionth of one percent age point is at least ten times the value of a billion human lives . The more technologically comprehensive estimate of 1054 human-brain-emulation subjective life-years (or 1052 lives of ordinary length) makes the same point even more starkly. Even if we give this allegedly lower bound on the cumulative output potential of a technologically mature civilization a mere 1% chance of being correct , we find that the expected value of reducing existential risk by a mere one

Page 5: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 52011-2012 File Title

billionth of one billionth of one percent age point is worth a hundred billion times as much as a billion human lives .

One might consequently argue that even the tiniest reduction of existential risk has an expected value greater than that of the definite provision of any “ordinary” good, such as the direct benefit of saving 1 billion lives . And, further, that the absolute value of the indirect effect of saving 1 billion lives on the total cumulative amount of existential risk—positive or negative—is almost certainly larger than the positive value of the direct benefit of such an action.[13]

The role of the ballot is to decrease existential risk—even if the probability is low the stakes are too high.Anissimov 4 — Michael Anissimov, science and technology writer focusing specializing in futurism, founding director of the Immortality Institute—a non-profit organization focused on the abolition of nonconsensual death, member of the World Transhumanist Association, associate of the Institute for Accelerating Change, member of the Center for Responsible Nanotechnology's Global Task Force, 2004 (“Immortalist Utilitarianism,” Accelerating Future, May, Available Online at http://www.acceleratingfuture.com/michael/works/immethics.htm, Accessed 09-09-2011)

The value of contributing to Aubrey de Grey's anti-aging project assumes that there continues to be a world around for people's lives to be extended. But if we nuke ourselves out of existence in 2010, then what? The probability of human extinction is the gateway function through which all efforts toward life extension must inevitably pass , including cryonics, biogerontology, and nanomedicine. They are all useless if we blow ourselves up. At this point one observes that there are many working toward life extension, but few focused on explicitly preventing apocalyptic global disaster . Such huge risks sound like fairy tales rather than real threats - because we have never seen them happen before, we underestimate the probability of their occurrence . An existential disaster has not yet occurred on this planet.

The risks worth worrying about are not pollution, asteroid impact, or alien invasion - the ones you see dramaticized in movies - these events are all either very gradual or improbable. Oxford philosopher Nick Bostrom warns us of existential risks, "...where an adverse outcome would either annihilate Earth-originating intelligent life or permanently and drastically curtail its potential." Bostrom continues, "Existential risks are distinct from global endurable risks. Examples of the latter kind include: threats to the biodiversity of Earth’s ecosphere, moderate global warming, global economic recessions (even major ones), and possibly stifling cultural or religious eras such as the “dark ages”, even if they encompass the whole global community, provided they are transitory." The four main risks we know about so far are summarized by the following, in ascending order of probability and severity over the course of the next 30 years:

Biological. More specifically, a genetically engineered supervirus. Bostrom writes, "With the fabulous advances in genetic technology currently taking place, it may become possible for a tyrant, terrorist, or lunatic to create a doomsday virus, an organism that combines long latency with high virulence and mortality." There are several factors necessary for a virus to be a risk. The first is the presence of biologists with the knowledge necessary to genetically engineer a new virus of any sort. The second is access to the expensive machinery required for synthesis. Third is specific knowledge of viral genetic engineering. Fourth is a weaponization strategy and a delivery mechanism. These are nontrivial barriers, but are sure to fall in due time.

Nuclear. A traditional nuclear war could still break out, although it would be unlikely to result in our ultimate demise, it could drastically curtail our potential and set us back thousands or even millions of years technologically and ethically. Bostrom mentions that the US and Russia still have huge stockpiles of nuclear weapons. Miniaturization technology, along with improve manufacturing technologies, could make it possible to mass produce nuclear weapons for easy delivery should an escalating arms race lead to that. As rogue nations begin to acquire the technology for nuclear strikes, powerful nations will feel increasingly edgy.

Nanotechnological. The Transhumanist FAQ reads, "Molecular nanotechnology is an anticipated manufacturing technology that will make it possible to build complex three-dimensional structures to atomic specification using chemical reactions directed by nonbiological machinery." Because nanomachines could be self-replicating or at least auto-productive, the technology and its products could proliferate very rapidly. Because nanotechnology could theoretically be used to create any chemically stable object, the potential for abuse is massive. Nanotechnology could be used to manufacture large weapons or other oppressive apparatus in mere hours; the only limitations are raw materials, management, software, and heat dissipation.

Human-indifferent superintelligence. In the near future, humanity will gain the technological capability to create forms of intelligence radically better than our own. Artificial Intelligences will be implemented on superfast transistors instead of slow biological neurons, and eventually gain the intellectual ability to fabricate new hardware and reprogram their source code. Such an intelligence could engage in recursive self-improvement - improving its own intelligence, then

Page 6: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 62011-2012 File Title

directing that intelligence towards further intelligence improvements. Such a process could lead far beyond our current level of intelligence in a relatively short time. We would be helpless to fight against such an intelligence if it did not value our continuation.

So let's say I have another million dollars to spend. My last million dollars went to Aubrey de Grey's Methuselah Mouse Prize, for a grand total of billions of expected utiles. But wait - I forgot to factor in the probability that humanity will be destroyed before the positive effects of life extension are borne out. Even if my estimated probability of existential risk is very low , it is still rational to focus on addressing the risk because my whole enterprise would be ruined if disaster is not averted . If we value the prospect of all the future lives that could be enjoyed if we pass beyond the threshold of risk - possibly quadrillions or more , if we expand into the cosmos, then we will deeply value minimizing the probability of existential risk above all other considerations .If my million dollars can avert the chance of existential disaster by, say, 0.0001%, then the expected utility of this action relative to the expected utility of life extension advocacy is shocking. That's 0.0001% of the utility of quadrillions or more humans, transhumans, and posthumans leading fulfilling lives. I'll spare the reader from working out the math and utility curves - I'm sure you can imagine them. So, why is it that people tend to devote more resources to life extension than risk prevention? The follow includes my guesses, feel free to tell me if you disagree:

They estimate the probability of any risk occurring to be extremely low.

They estimate their potential influence over the likelihood of risk to be extremely low.

They feel that positive PR towards any futurist goals will eventually result in higher awareness of risk.

They fear social ostracization if they focus on "Doomsday scenarios" rather than traditional extension.

Those are my guesses. Immortalists with objections are free to send in their arguments, and I will post them here if they are especially strong. As far as I can tell however, the predicted utility of lowering the likelihood of existential risk outclasses any life extension effort I can imagine .

I cannot emphasize this enough. If a existential disaster occurs , not only will the possibilities of extreme life extension, sophisticated nanotechnology, intelligence enhancement, and space expansion never bear fruit, but everyone will be dead , never to come back . Because the we have so much to lose, existential risk is worth worrying about even if our estimated probability of occurrence is extremely low .

It is not the funding of life extension research projects that immortalists should be focusing on. It should be projects that decrease the risk of existential risk. By default, once the probability of existential risk is minimized, life extension technologies can be developed and applied. There are powerful economic and social imperatives in that direction, but few towards risk management. Existential risk creates a "loafer problem" — we always expect someone else to take care of it. I assert that this is a dangerous strategy and should be discarded in favor of making prevention of such risks a central focus.

Err affirmative—the availability heuristic and “good story bias” will make you undervalue our impactBostrom 11 — Nick Bostrom, Professor in the Faculty of Philosophy & Oxford Martin School, Director of the Future of Humanity Institute, and Director of the Programme on the Impacts of Future Technology at the University of Oxford, recipient of the 2009 Eugene R. Gannon Award for the Continued Pursuit of Human Advancement, holds a Ph.D. in Philosophy from the London School of Economics, 2011 (“The Concept of Existential Risk,” Draft of a Paper published on ExistentialRisk.com, Available Online at http://www.existentialrisk.com/concept.html, Accessed 07-04-2011)

Many kinds of cognitive bias and other psychological phenomena impede efforts at thinking clearly and dealing effectively with existential risk .[32]

For example, use of the availability heuristic may create a “good-story bias” whereby people evaluate the plausibility of existential-risk scenarios on the basis of experience , or on how easily the various possibilities spring to mind. Since nobody has any real experience with existential catastrophe, expectations may

Page 7: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 72011-2012 File Title

be formed instead on the basis of fictional evidence derived from movies and novels. Such fictional exposures are systematically biased in favor of scenarios that make for entertaining stories. Plotlines may feature a small band of human protagonists successfully repelling an alien invasion or a robot army. A story in which humankind goes extinct suddenly—without warning and without being replaced by some other interesting beings—is less likely to succeed at the box office (although more likely to happen in reality).

Reducing the probability of existential disaster through space colonization is more valuable than preventing specific impact scenarios. Overly detailed impact predictions are improbable and create false perceptions of security.Yudkowsky 6—Co-founder and Research Fellow of the Singularity Institute for Artificial Intelligence—a non–profit research institute dedicated to increasing the likelihood of, and decreasing the time to, a maximally beneficial singularity, one of the world’s foremost experts on Artificial Intelligence and rationality [Eliezer Yudkowsky, “Cognitive Biases Potentially Affecting Judgment Of Global Risks,” Draft of a chapter in Global Catastrophic Risks, edited by Nick Bostrom and Milan Cirkovic, August 31st, 2006, Available Online at http://singinst.org/upload/cognitive-biases.pdf, Accessed 11-11-2010]

According to probability theory, adding additional detail onto a story must render the story less probable . It is less probable that Linda is a feminist bank teller than that she is a bank teller, since all feminist bank tellers are necessarily bank tellers. Yet human psychology seems to follow the rule that adding an additional detail can make the story more plausible . People might pay more for international diplomacy intended to prevent nanotechnological warfare by China, than for an engineering project to defend against nanotechnological attack from any source. The second threat scenario is less vivid and alarming , but the defense is more useful because it is more vague . More valuable still would be strategies which make humanity harder to extinguish without being specific to nanotechnologic threats - such as colonizing space, or see Yudkowsky (this volume) on AI. Security expert Bruce Schneier observed (both before and after the 2005 hurricane in New Orleans) that the U.S. government was guarding specific domestic targets against "movie-plot scenarios" of terrorism, at the cost of taking away resources from emergency-response capabilities that could respond to any disaster . (Schneier 2005.) Overly detailed reassurances can also create false perceptions of safety : "X is not an existential risk and you don't need to worry about it, because A, B, C, D, and E"; where the failure of any one of propositions A, B, C, D, or E potentially extinguishes the human species. "We don't need to worry about nanotechnologic war, because a UN commission will initially develop the technology and prevent its proliferation until such time as an active shield is developed, capable of defending against all accidental and malicious outbreaks that contemporary nanotechnology is capable of producing, and this condition will persist indefinitely." Vivid , specific scenarios can inflate our probability estimates of security, as well as misdirecting defensive investments into needlessly narrow or implausibly detailed risk scenarios .

Multiplying probability and magnitude is key to ethical risk assessment—the most serious threats to humanity are the unknown and unthinkable. Rees 8 — Sir Martin J. Rees, Professor of Cosmology and Astrophysics and Master of Trinity College at the University of Cambridge, Astronomer Royal and Visiting Professor at Imperial College London and Leicester University, Director of the Institute of Astronomy, Research Professor at Cambridge, 2008 (“Foreward,” Global Catastrophic Risks, Edited by Nick Bostrom and Milan M. Cirkovic, Published by Oxford University Press, ISBN 9780198570509, p. x-xi)

Page 8: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 82011-2012 File Title

These concerns are not remotely futuristic - we will surely confront them within next 10-20 years. But what of the later decades of this century? It is hard to predict because some technologies could develop with runaway speed. Moreover, human character and physique themselves will soon be malleable, to an extent that is qualitatively new in our history. New drugs (and perhaps even implants into our brains) could change human character; the cyberworld has potential that is both exhilarating and frightening.

We cannot confidently guess lifestyles, attitudes, social structures or population sizes a century hence. Indeed, it is not even clear how much longer our descendants would remain distinctively 'human'. Darwin himself noted that 'not one living species will transmit its unaltered likeness to a distant futurity'. Our own species will surely change and diversify faster than any predecessor - via human-induced modifications (whether intelligently controlled or unintended) not by natural selection alone. The post-human era may be only centuries away. And what about Artificial Intelligence? Super-intelligent machine could be the last invention that humans need ever make. We should keep our minds open, or at least ajar, to concepts that seem on the fringe of science fiction .These thoughts might seem irrelevant to practical policy - something for speculative academics to discuss in our spare moments. I used to think this. But humans are now, individually and collectively, so greatly empowered by rapidly changing technology that we can — by design or as unintended consequences — engender irreversible global changes . It is surely irresponsible not to ponder what this could mean; and it is real political progress that the challenges stemming from new technologies are higher on the international agenda and that planners seriously address what might happen more than a century hence.

We cannot reap the benefits of science without accepting some risks - that has always been the case. Every new technology is risky in its pioneering stages. But there is now an important difference from the past . Most of the risks encountered in developing 'old' technology were localized: when, in the early days of steam, a boiler exploded, it was horrible, but there was an 'upper bound' to just how horrible. In our evermore interconnected world, however, there are new risks whose consequences could be global . Even a tiny probability of global catastrophe is deeply disquieting .

We cannot eliminate all threats to our civilization (even to the survival of our entire species). But it is surely incumbent on us to think the unthinkable and study how to apply twenty-first century technology optimally , while minimizing the 'downsides'. If we apply to catastrophic risks the same prudent analysis that leads us to take everyday safety precautions, and sometimes to buy insurance—multiplying probability by consequences—we had surely conclude that some of the scenarios discussed in this book deserve more attention that they have received .

My background as a cosmologist, incidentally, offers an extra perspective -an extra motive for concern - with which I will briefly conclude.

The stupendous time spans of the evolutionary past are now part of common culture - except among some creationists and fundamentalists. But most educated people, even if they are fully aware that our emergence took billions of years, somehow think we humans are the culmination of the evolutionary tree. That is not so. Our Sun is less than halfway through its life. It is slowly brightening, but Earth will remain habitable for another billion years. However, even in that cosmic time perspective—extending far into the future as well as into the past - the twenty-first century may be a defining moment. It is the first in our planet's history where one species—ours—has Earth's future in its hands and could jeopardise not only itself but also lifes immense potential.The decisions that we make , individually and collectively, will determine whether the outcomes of twenty-first century science s are benign or devastating . We need to contend not only with threats to our environment but also with an entirely novel category of risks —with seemingly low probability, but with such colossal consequences that they merit far more attention than they have hitherto had. That is why we should welcome this fascinating and provocative book. The editors have brought together a distinguished set of authors with formidably wide-ranging expertise. The issues and arguments presented here should attract a wide readership - and deserve special attention from scientists, policy-makers and ethicists

Page 9: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 92011-2012 File Title

Evaluate impacts through a one-thousand year lens—focus on short term impacts makes extinction inevitable.Tonn 4—Ph. D., leader of the Policy Analysis Systems Group at Oak Ridge National Laboratory, a professor in the Department of Political Science, University of Tennessee [Bruce E. Tonn, “Integrated 1000-year planning,” Futures, 36 (2004) 91–108, http://longnow.org/static/djlongnow_media/press/pdf/0200402-Tonn-Integrated1000yearplanning.pdf]

2. Why 1000 years?

Why tackle 1000 years and not shorter, more imaginable and manageable time horizons? Why worry about the long-term when there is so much suffering in the world right now? The most direct answer is that the world needs to focus both on improving the plight of the world’s poor in the short-term and protecting everyone’s well-being over the long-term. Focusing only on the short-term is like worrying only about how to arrange the chairs on the deck of the ill-fated Titanic . All the good work at improving the arrangement of the chairs was lost because the longer-term issue (the survival of the ship) was completely mis-handled , in part through misplaced overconfidence in the ability of the ship to withstand adversity. In the same way, short-term activities to improve people’s lives, whose value should not be diminished in any way, could be completely washed away (literally in the case of global warming) by problems orders of magnitude more serious and intractable if the future is not also dealt with .Short time horizons constrain if not completely mask the recognition of big picture issues and threats. For example, over the next ten years, oil supplies may be manageable; over 1000 years, oil supplies and those of natural gas will probably be completely exhausted, thereby threatening the world’s economic and political stability if a plan is not in place to develop substitutes for these fossil fuels [1]. Over the next 50 years, rising sea levels may not be devastating, but within 1000 years, large swaths of countries like Bangladesh will most certainly disappear.1 Humanity must be prepared to deal with climate change induced human tragedies, as the window to prevent global warming has now closed. Even though only a fraction of the earth’s tropical rainforests disappear each year, add those small changes up over 1000 years and the forests are gone forever. Thus, by playing out important trends past normal policy horizons, the bigger picture contains some very disturbing and dangerous potential states-of-the-world.

The longer time horizon is also needed to facilitate a qualitative change in mindset from the short-term to the long-term. In a seeming paradox, with a longer time perspective, some actions will come to be seen as more urgent , such as actions needed to protect tropical rainforests and manage energy supplies. Longer-term perspectives indict the inherent selfishness of many of today’s economic and social policies, based as they are on purportedly rational theories but in reality on irrational, self-fulfilling and dogmatic belief systems that temporally discount moral and ethical obligations to future generations. A 1000-year perspective is long enough to drive home the point that humans will most likely be living on this planet , with few or no other true alternatives, for many thousands if not millions of years into the future . The daily closing state of the Dow Jones Industrial Average as a matter of importance ought to pale in comparison with the goal of keeping the planet liveable into the very distant future. This realization should lead to another, that 1000-year planning ought to be a permanent responsibility of humanity. In other words, even though 1000-year plans will most certainly need to be systematically evaluated and revised, maybe as often as every five years, humanity must accept permanent responsibilities for wise use of energy, land, ocean, and among many important resources that sustain life on earth.

A longer-time horizon is also needed to allow humanity to achieve the next to impossible. Many of today’s habitual naysayers preach inaction because they do

Page 10: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 102011-2012 File Title

not believe success is achievable, in the near-term. For example, we do not now have the technologies to defend the planet from collision with space-based objects and will not in the short-term, so the thinking is why spend much if any money on this endeavor. Of course, with that myopic view, conditions might never arise that would support the development of such technology. With a 1000-year perspective, the odds appreciably increase that such technology could be developed and deployed, so why not start today! The relatively small amounts of global funding allocated to fusion energy, space colonization , and carbon management are to some degree the result of myopic naysaying and would probably be increased if perspectives were lengthened and broadened . The longer time frame should foster the wisdom and allow the patience needed to envision the implement ation of comprehensive, challenging and integrated global plans.

Predictions about existential risk are possible and necessary.Bostrom 9 — Nick Bostrom, Professor in the Faculty of Philosophy & Oxford Martin School, Director of the Future of Humanity Institute, and Director of the Programme on the Impacts of Future Technology at the University of Oxford, recipient of the 2009 Eugene R. Gannon Award for the Continued Pursuit of Human Advancement, holds a Ph.D. in Philosophy from the London School of Economics, 2009 (“The Future of Humanity,” Geopolitics, History and International Relations, Volume 9, Issue 2, Available Online to Subscribing Institutions via ProQuest Research Library, Reprinted Online at http://www.nickbostrom.com/papers/future.pdf, Accessed 07-06-2011, p. 2-4)

We need realistic pictures of what the future might bring in order to make sound decisions. Increasingly, we need realistic pictures not only of our personal or local near-term futures, but also of remoter global futures . Because of our expanded technological powers , some human activities now have significant global impacts . The scale of human social organization has also grown, creating new opportunities for coordination and action, and there are many institutions and individuals who either do consider, or claim to consider, or ought to consider, possible long-term global impacts of their actions. Climate change , national and international security , economic development , nuclear waste disposal, biodiversity, natural resource conservation, population policy, and scientific and technological research funding are examples of policy areas that involve long time-horizons. Arguments in these areas often rely on implicit assumptions about the future of humanity . By making these assumptions explicit , and subjecting them to critical analysis , it might be possible to address some of the big challenges for humanity in a more well-considered and thoughtful manner.

The fact that we “need” realistic pictures of the future does not entail that we can have them. Predictions about future technical and social developments are notoriously unreliable – to an extent that have lead some to propose that we do away with prediction altogether in our planning and preparation for the future. Yet while the methodological problems of such forecasting are certainly very significant, the extreme view that we can or should do away with prediction altogether is misguided . That view is expressed, to take one [end page 2] example, in a recent paper on the societal implications of nanotechnology by Michael Crow and Daniel Sarewitz, in which they argue that the issue of predictability is “irrelevant”:

preparation for the future obviously does not require accurate prediction; rather, it requires a foundation of knowledge upon which to base action, a capacity to learn from experience, close attention to what is going on in the present, and healthy and resilient institutions that can effectively respond or adapt to change in a timely manner.2

Note that each of the elements Crow and Sarewitz mention as required for the preparation for the future relies in some way on accurate prediction. A capacity to learn from experience is not useful for preparing for the future unless we can correctly assume (predict) that the lessons

Page 11: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 112011-2012 File Title

we derive from the past will be applicable to future situations. Close attention to what is going on in the present is likewise futile unless we can assume that what is going on in the present will reveal stable trends or otherwise shed light on what is likely to happen next . It also requires non-trivial prediction to figure out what kind of institution will prove healthy, resilient, and effective in responding or adapting to future changes .The reality is that predictability is a matter of degree , and different aspects of the future are predictable with varying degrees of reliability and precision.3 It may often be a good idea to develop plans that are flexible and to pursue policies that are robust under a wide range of contingencies. In some cases, it also makes sense to adopt a reactive approach that relies on adapting quickly to changing circumstances rather than pursuing any detailed long-term plan or explicit agenda. Yet these coping strategies are only one part of the solution . Another part is to work to improve the accuracy of our beliefs about the future (including the accuracy of conditional predictions of the form “if x is done, y will result”). There might be traps that we are walking towards that we could only avoid falling into by means of foresight. There are also opportunities that we could reach much sooner if we could see them farther in advance. And in a strict sense, prediction is always necessary for meaningful decision-making.4

Predictability does not necessarily fall off with temporal distance. It may be highly unpredictable where a traveler will be one hour after the start of her journey, yet predictable that after five hours she will be at her destination. The very long-term future of humanity may be relatively easy to predict, being a matter amenable to study by the natural sciences, particularly cosmology (physical eschatology). And for there to be a degree of predictability, it is not necessary that it be possible to identify one specific scenario as what will definitely happen . If there is a t least some scenario that can be ruled out, that is also a degree of predictability . Even short of this, if there is some basis for assigning different probabilities [end page 3] (in the sense of credences, degrees of belief) to different propositions about logically possible future events, or some basis for criticizing some such probability distributions as less rationally defensible or reasonable than others, then again there is a degree of predictability . And this is surely the case with regard to many aspects of the future of humanity. While our knowledge is insufficient to narrow down the space of possibilities to one broadly outlined future for humanity, we do know of many relevant arguments and considerations which in combination impose significant constraints on what a plausible view of the future could look like. The future of humanity need not be a topic on which all assumptions are entirely arbitrary and anything goes. There is a vast gulf between knowing exactly what will happen and having absolutely no clue about what will happen. Our actual epistemic location is some offshore place in that gulf.5

And Mars colonization would reduce existential risk—we need lifeboats for Spaceship EarthGott 11—Ph.D., professor of astrophysical sciences at Princeton University, recipient of the Robert J. Trumpler Award, an Alfred P. Sloan Fellowship, the Astronomical League Award, and Princeton's President's Award for Distinguished Teaching [J. Richard Gott, III, “A One-Way Trip to Mars,” Journal of Cosmology, 2011, Vol 13, http://journalofcosmology.com/Mars151.html]

I've been advocating a one-way colonizing trip to Mars for many years (Gott, 1997, 2001, 2007). Here's what I said about it in my book, Time Travel in Einstein's Universe:

Page 12: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 122011-2012 File Title

"The goal of the human spaceflight program should be to increase our survival prospects by colonizing space. ... we should concentrate on establishing the first self-supporting colony in space as soon as possible . ... We might want to follow the Mars Direct program advocated by American space expert Robert Zubrin. But rather than bring astronauts back from Mars, we might choose to leave them there to multiply, living off indigenous materials. We want them on Mars. That's where they benefit human survivability.... Many people might hesitate to sign up for a one-way trip to Mars, but the beauty is that we only have to find 8 adventurous, willing souls" (Gott 2001).

I've been stressing the fact that we should be in a hurry to colonize space, to improve our survival prospects, since my Nature paper in 1993 (Gott 1993). The real space race is whether we get off the planet before the money for the space program runs out. The human spaceflight program is only 50 years old, and may go extinct on a similar timescale. Expensive programs are often abandoned after a while. In the 1400s, China explored as far as Africa before abruptly abandoning its voyages. Right now we have all our eggs in one basket: Earth . The bones of extinct species in our natural history museums give mute testimony that disasters on Earth routinely occur that cause species to go extinct. It is like sailing on the Titanic with no lifeboats. We need some lifeboats . A colony on Mars might as much as double our long-term survival prospects by giving us two chances instead of one .Colonies are a great bargain: you just send a few astronauts and they have descendants on Mars, sustained by using indigenous materials. It's the colonists who do all the work. If one is worried that funds will be cut off, it is important to establish a self-supporting colony as soon as possible. Some have argued that older astronauts should be sent on a one-way trip to Mars since they ostensibly have less to lose. But I would want to recruit young astronauts who can have children and grandchildren on Mars: people who would rather be the founders of a Martian civilization than return to a ticker-tape parade on Earth. Founding a colony on Mars would change the course of world history. You couldn't even call it "world" history anymore. If colonizing Mars to increase the survival prospects of the human species is our goal, then, since money is short, we should concentrate on that goal. In New Scientist (Gott 1997) I said:

"And if colonization were the goal, you would not have to bring astronauts back from Mars after all; that is where we want them. Instead we could equip them to stay and establish a colony at the outset, a good strategy if one is worried that funding for the space programme may not last. So we should be asking ourselves: what is the cheapest way to establish a permanent, self-sustaining colony on Mars?"

I have argued that it is a goal we could achieve in the next 50 years if we directed our efforts toward that end. We would need to launch into low Earth orbit only about as many tons in the next 50 years as we have done in the last 50 years. But will we be wise enough to do this?

Colonization is necessary to avoid an inevitable extinction—Mars is the best placeGott 9—Professor of Astrophysics at Princeton University, recipient of the Robert J. Trumpler Award, an Alfred P. Sloan Fellowship, the Astronomical League Award, and Princeton's President's Award for Distinguished Teaching [J. Richard, July 17th, “A Goal for the Human Spaceflight Program,” NASA, http://www.nasa.gov/pdf/368985main_GottSpaceflightGoal.pdf]

The goal of the human spaceflight program should be to increase the survival prospects of the human race by colonizing space. Self-sustaining colonies in space, which could later plant still other colonies, would provide us with a life insurance policy against any catastrophes which might occur on Earth . Fossils of extinct species offer ample testimony that such catastrophes do occur. Our species is 200,000 years old; the Neanderthals went extinct after 300,000 years. Of our genus (Homo) and the entire Hominidae family, we are the only species left. Most species leave no descendant species. Improving our survival prospects is something we should be willing to spend large sums of money on governments make large expenditures on defense for the survival of their citizens. The Greeks put all their books in the great Alexandrian library. I'm sure they guarded it very well. But eventually it burnt down taking all the books with it. It's fortunate that some copies of

Page 13: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 132011-2012 File Title

Sophocles' plays were stored elsewhere, for these are the only ones that we have now (7 out of 120 plays). We should be planting colonies off the Earth now as a life insurance policy against whatever unexpected catastrophes may await us on the Earth. Of course, we should still be doing everything possible to protect our environment and safeguard our prospects on the Earth. But chaos theory tells us that we may well be unable to predict the specific cause of our demise as a species. By definition, whatever causes us to go extinct will be something the likes of which we have not experienced so far. We simply may not be smart enough to know how best to spend our money on Earth to insure the greatest chance of survival here. Spending money planting colonies in space simply give s us more chances--like storing some of Sophocles' plays away from the Alexandrian library. If we made colonization our goal, we might formulate a strategy designed to increase the likelihood of achieving it. Having such a goal makes us ask the right questions. Where is the easiest place in space to plant a colony—the place to start? Overall, Mars offers the most habitable location for Homo sapiens in the solar system outside of Earth, as Bruce Murray has noted. Mars has water, reasonable gravity (1/3rd that of the Earth), an atmosphere, and all the chemicals necessary for life. Living underground (like some of our cave dwelling ancestors) would lower radiation risks to acceptable levels. The Moon has no atmosphere, less protection against solar flares and galactic cosmic rays, harsher temperature ranges, lower gravity (1/6th that of the Earth), and no appreciable water. Asteroids are similar . The icy moons of Jupiter and Saturn offer water but are much colder and more distant. Mercury and Venus are too hot, and Jupiter, Saturn, Uranus, and Neptune are inhospitable gas giants. Free floating colonies in space, as proposed by Gerard ONeill, would need material brought up from planetary or asteroid surfaces. If we want to plant a first permanent colony in space, Mars would seem the logical place to start.

Now is the key time—decisions made now on Earth will determine the future of life in the universe. Rees 3—Martin J. Rees, Professor of Cosmology and Astrophysics and Master of Trinity College at the University of Cambridge, Astronomer Royal and Visiting Professor at Imperial College London and Leicester University, Director of the Institute of Astronomy, Research Professor at Cambridge, 2003 (“Prologue,” Our Final Hour: A Scientist's Warning: How Terror, Error, And Environmental Disaster Threaten Humankind's Future In This Century—On Earth And Beyond, Published by Basic Books, ISBN 046506826, p. 7-8)

It may not be absurd hyperbole—indeed, it may not even be an overstatement —to assert that the most crucial location in space and time (apart from the big bang itself) could be here and now . I think the odds are no better than fifty-fifty that our present civilisation on Earth will survive to the end of the present century . Our choices and actions could ensure the perpetual future of life (not just on Earth, but perhaps far beyond it, too). Or in contrast, through malign intent, or through misadventure, twenty-first century technology could jeopardise life's potential, foreclosing its human and posthuman future . What happens here on Earth, in this century, could conceivably make the difference between a near eternity filled with ever more complex and subtle forms of life and one filled with nothing but base matter .

Page 14: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 142011-2012 File Title

PlanPlan:

The United States federal government should settle Mars.

Page 15: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 152011-2012 File Title

1AC—SolvencyContention Two is Solvency:

Here is the description of the missionZubrin 5—an astronautical engineer and author, is president of Pioneer Astronautics, a research and development firm, and president of the Mars Society, a space advocacy group [Spring 2005, Robert Zubrin, “Getting Space Exploration Right,” The New Atlantis, Number 8, pp. 15-48, http://www.thenewatlantis.com/publications/getting-space-exploration-right]

How Do We Get There?

Some may say that human exploration of Mars is too ambitious a feat to select as our near-term goal, but that is the view of the faint of heart. From the technological point of view, we’re ready. Despite the greater distance to Mars, we are much better prepared today to send humans to Mars than we were to launch humans to the Moon in 1961 when John F. Kennedy challenged the nation to achieve that goal—and we got there eight years later. Given the will, we could have our first teams on Mars within a decade.The key to success is rejecting the policy of continued stagnation represented by senile Shuttle Mode thinking, and returning to the destination-driven Apollo Mode of planned operation that allowed the space agency to perform so brilliantly during its youth. In addition, we must take a lesson from our own pioneer past and adopt a “travel light and live off the land” mission strategy similar to that which has well-served terrestrial explorers for centuries. The plan to explore the Red Planet in this way is known as Mars Direct. Here’s how it could be accomplished.

At an early launch opportunity—for example 2014—a single heavy lift booster with a capability equal to that of the Saturn V used during the Apollo program is launched off Cape Canaveral and uses its upper stage to throw a 40-tonne unmanned payload onto a trajectory to Mars. (A “tonne” is one metric ton.) Arriving at Mars eight months later, the spacecraft uses friction between its aeroshield and the Martian atmosphere to brake itself into orbit around the planet, and then lands with the help of a parachute. This is the Earth Return Vehicle (ERV). It flies out to Mars with its two methane/oxygen driven rocket propulsion stages unfueled. It also ca rries six tonnes of liquid hydrogen, a 100-kilowatt nuclear reactor mounted in the back of a methane/oxygen driven light truck, a small set of compressors and an automated chemical processing unit, and axx few small scientific rovers.

As soon as the craft lands successfully, the truck is telerobotically driven a few hundred meters away from the site, and the reactor is deployed to provide power to the compressors and chemical processing unit. The ERV will then start a ten- month process of fueling itself by combining the hydrogen brought from Earth with the carbon dioxide in the Martian atmosphere . The end result is a total of 108 tonnes of methane/oxygen rocket propellant. Ninety-six tonnes of the propellant will be used to fuel the ERV, while 12 tonnes will be available to support the use of high-powered, chemically-fueled, long-range ground vehicles. Large additional stockpiles of oxygen can also be produced, both for breathing and for turning into water by combination with hydrogen brought from Earth. Since water is 89 percent oxygen (by weight), and since the larger part of most foodstuffs is water, this greatly reduces the amount of life support consumables that need to be hauled from Earth.

With the propellant production successfully completed, in 2016 two more boosters lift off from Cape Canaveral and throw their 40-tonne payloads towards Mars. One of the payloads is an unmanned fuel-factory/ERV just like the one launched in 2014 ; the other is

Page 16: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 162011-2012 File Title

a habitation module carrying a small crew, a mixture of whole food and dehydrated provisions sufficient for three years, and a pressurized methane/oxygen-powered ground rover .Upon arrival, the manned craft lands at the 2014 landing site where a fully fueled ERV and beaconed landing site await it. With the help of such navigational aids, the crew should be able to land right on the spot; but if the landing is off course by tens or even hundreds of kilometers, the crew can still achieve the surface rendezvous by driving over in their rover. If they are off by thousands of kilometers, the second ERV provides a backup.

Assuming the crew lands and rendezvous as planned at site number one, the second ERV will land several hundred kilometers away to start making propellant for the 2018 mission, which in turn will fly out with an additional ERV to open up Mars landing site number three. Thus, every other year two heavy lift boosters are launched, one to land a crew, and the other to prepare a site for the next mission , for an average launch rate of just one booster per year to pursue a continuing program of Mars exploration. Since in a normal year we can launch about six shuttle stacks, this would only represent about 16 percent of the U.S. heavy-lift capability, and would clearly be affordable. In effect, this “live off the land” approach removes the manned Mars mission from the realm of mega-spacecraft fantasy and reduces it in practice to a task of comparable difficulty to that faced in launching the Apollo missions to the Moon .The crew will stay on the surface for 1.5 years, taking advantage of the mobility afforded by the high-powered chemically-driven ground vehicles to accomplish a great deal of surface exploration. With a 12-tonne surface fuel stockpile, they have the capability for over 24,000 kilometers worth of traverse before they leave, giving them the kind of mobility necessary to conduct a serious search for evidence of past or present life on Mars. Since no one has been left in orbit, the entire crew will have available to them the natural gravity and protection against cosmic rays and solar radiation afforded by the Martian environment, and thus there will not be the strong pressure for a quick return to Earth that plagues other Mars mission plans based upon orbiting mother-ships with small landing parties. At the conclusion of their stay, the crew returns to Earth in a direct flight from the Martian surface in the ERV. As the series of missions progresses, a string of small bases is left behind on the Martian surface, opening up broad stretches of territory to human cognizance.

In essence, by taking advantage of the most obvious local resource available on Mars—its atmosphere—the plan allows us to accomplish a manned Mars mission with what amounts to a lunar-class transportation system. By eliminating any requirement to introduce a new order of technology and complexity of operations beyond those needed for lunar transportation to accomplish piloted Mars missions, the plan can reduce costs by an order of magnitude and advance the schedule for the human exploration of Mars by a generation.

And Mars is the only place in the solar system that can support civilization—natural resource abundance. The Moon is deficient.Zubrin 11—formerly a senior astronautical engineer at Lockheed Martin, chairman of the executive committee of the National Space Society, President of Pioneer Astronautics, a space-exploration research and development firm, and president of the Mars Society, a space advocacy group [Robert Zubrin, “8: THE COLONIZATION OF MARS,” Chapter 8, The Case for Mars: The Plan to Settle the Red Planet and Why We Must, Simon & Schuster, Inc., ISBN-10: 145160811X, Publication Date: June 28, 2011, pg. Kindle]

Page 17: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 172011-2012 File Title

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization . This uniqueness is illustrated most clearly if we contrast Mars with the Earth’s Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen , and oxygen , all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost . Carbon and nitrogen are only present on the Moon in parts-per-million quantities . There is some water ice, but only in permanently shaded ultracold (−230°C) polar craters—locations so frigid as to make their contents virtually inaccessible outside of such environments . Oxygen is abundant, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and alumina oxide (Al2O3), which require very high energy processes to reduce. Current knowledge indicates that if Mars were smooth and all its ice and permafrost melted into liquid water, the entire planet would be covered with an ocean over 100 meters deep . This contrasts strongly with the Moon , which is so dry that if concrete were found there, lunar colonists would mine it to get the water out . Thus, if plants could be grown in greenhouses on the Moon (an unlikely proposition, as we’ve seen) most of their biomass material would have to be imported .The Moon is also deficient in about half the metals of interest to industrial society (copper, nickel, and zinc, for example), as well as many other elements of interest such as sulfur, fluorine, bromine, phosphorus, and chlorine. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore . Indeed, the geologic history of Mars has been compared to that of Africa,43 with very optimistic implications as to its mineral wealth as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action , with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting .

Mars col provides cheap access to space—tech spin offsZubrin 11—formerly a senior astronautical engineer at Lockheed Martin, chairman of the executive committee of the National Space Society, President of Pioneer Astronautics, a space-exploration research and development firm, and president of the Mars Society, a space advocacy group [Robert Zubrin, “8: THE COLONIZATION OF MARS,” Chapter 8, The Case for Mars: The Plan to Settle the Red Planet and Why We Must, Simon & Schuster, Inc., ISBN-10: 145160811X, Publication Date: June 28, 2011, pg. Kindle]

AIR-BREATHING LAUNCH SYSTEMS

Current rocket-based launch systems are only about 2 percent as efficient in hauling cargo as jet aircraft . The reason for this difference is simple— rockets haul their own oxidizer while jets get theirs from the air . Since the oxidizer makes up about 75 percent of the total propellant weight , this enormously compromises a rocket vehicle’s performance. Launch vehicles attempting to reach orbit are flying through an ocean of oxidizer. Why don’t they try to use any of it?Unfortunately, technical difficulties and lack of will have intersected to stall the development of hypersonic air-breathing propulsion . Current ramjet engines used on some missiles can make it to Mach 5.5, but beyond this speed it becomes impossible to slow the air that enters the jet engine to subsonic speeds

Page 18: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 182011-2012 File Title

without heating the air too much in the process. Thus, the combustion inside the engine must take place in a supersonic flow. An engine that can do this is a new type of animal, a “scramjet,” and is in a sense as much of an advance over existing jet engines as jets were over propellers. The National Aerospace Plane (NASP) program—canceled in 1993 due to lack of perceived necessity—conducted extensive computer calculations showing that scramjets will work. A somewhat less technologically challenging approach that can obtain much of the scramjet’s benefits is the air-augmented rocket : a rocket that obtains part of its needed oxidizer from the atmosphere during its upward flight . Air-augmented rockets that could get a specific impulse over 1,000 seconds were demonstrated on the test stand at The Marquardt Company in 1966. Unfortunately , a change in governmental bureaucratic whims canceled the program before the engines could be flight tested.

The use of scramjets or air-augmented rockets on even part of the launch trajectory of a single-stage-to-orbit (SSTO) vehicle would greatly increase its payload . This is exactly what is needed to meet the logistics demands of a developing Mars settlement, which will call for the cheap delivery of large amounts of cargo to orbit , and beyond. The colonization of Mars is thus central to the development of the technologies that will give us cheap access to space.

And No impact to radiation—low dose ratesZubrin 11—formerly a senior astronautical engineer at Lockheed Martin, chairman of the executive committee of the National Space Society, President of Pioneer Astronautics, a space-exploration research and development firm, and president of the Mars Society, a space advocacy group [Robert Zubrin, “5: KILLING THE DRAGONS, AVOIDING THE SIRENS,” Chapter 5, The Case for Mars: The Plan to Settle the Red Planet and Why We Must, Simon & Schuster, Inc., ISBN-10: 145160811X, Publication Date: June 28, 2011, pg. Kindle]

RADIATION HAZARDS

One of the leading dragons barring the path to Mars goes by the name radiation. Radiation is deadly, we are told, and only by using ultrafast spacecraft that can speed through the supposedly radiation-infested seas of space in impossibly short times can we be sure of a safe voyage. Or alternatively, we are told that only by using huge spacecraft with masses approaching those of asteroids can we shield the crew well enough to assure their health. We are further warned that cosmic radiation is something totally new in character, and only after we have spent decades studying its long-term effects on humans in interplanetary space can a trip to Mars be risked.

But, in fact, almost all the assertions quoted in the above paragraph are sheer nonsense. The only one of them that is even close to being true is the first, that “radiation is deadly,” which it certainly is, but only if taken in excessive quantities.

Human beings have evolved in an environment featuring a significant amount of natural background radiation. In the United States today, people who live near sea level receive an annual radiation dose of about 150 millirem. (A millirem is a thousandth of a rem, the basic unit used to measure radiation doses in the United States. Europeans use Sieverts. One Sievert equals 100 rem.) Those who can afford to live in Vail or Aspen, on the other hand, take an annual dose of more than 300 millirem in consequence of their willingness to forgo a significant fraction of the cosmic ray shielding offered to them by the Earth’s atmosphere. Because we have evolved in a radiation field, humans actually need radiation to stay healthy . It may be counter to popular belief and the orientation of various governmental regulatory agencies, but numerous studies of individuals subjected to an unnaturally radiation-free environment have shown significant health deterioration relative to controls exposed to

Page 19: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 192011-2012 File Title

natural levels of ionizing radiation. This phenomenon , known as hormesis ,15,16 is caused by the fact that the human body needs a certain amount of pummeling by natural radiation in order to keep its self-repair mechanisms stimulated . It is unclear what the optimum radiation exposure level for human health is, but it is not zero.

That said, it is certainly true that very large amounts of radiation delivered over very short amounts of time, such as the exposure to a huge dose within seconds via the gamma-ray flash from an atomic bomb blast, or within minutes by exposure to unshielded release products from a disabled nuclear reactor, can and will kill. The effects of such prompt doses of radiation are well-known from studies of the victims of the Hiroshima and Nagasaki bombings. These studies have revealed that prompt doses of less than 75 rem result in no apparent health effects. If the doses are between 75 and 200 rem , radiation sickness (whose symptoms are vomiting, fatigue, and loss of appetite) will appear in from 5 percent to 50 percent of exposed individuals, with the percentages increasing from the low to high end of this range as the dose increases from 75 to 200 rem. At this level of exposure almost everyone recovers within a few weeks . At 300 rem, radiation sickness is universal, and some fatalities start to appear, rising to 50 percent at 450 rem and 80 percent at 600 rem . Almost no one survives doses of 1,000 rem or more.

These, however, are the effects of prompt doses, which is to say doses that occur on a time scale much shorter than the weeks-to-months time scale for cellular reproduction and bodily self-repair. The situation is much like drinking alcohol or any other chemical toxin. A man could drink a martini a night for years and suffer no obvious ill effects, his liver having adequate time to cleanse his body after each drink. Drinking a hundred martinis in a single night, though, would kill him. Similarly, radiation causes damage to living organisms by inducing chemical reactions within cells that create toxic substances that can kill or otherwise derange individual cells. Below a certain dose rate, the self-repair capabilities of individual cells can act fast enough to reject the radiation-induced toxin and save the cell . At significantly higher rates, human body tissues acting as a whole are able to generate replacement cells for those that have become casualties, before the loss of those cells causes problems for the body as a whole. It is only when dose rates occur at a pace that overwhelms these self-repair mechanisms that severe health impacts occur .

And No impact to zero gravity—empirics prove astronauts always recoverZubrin 11—formerly a senior astronautical engineer at Lockheed Martin, chairman of the executive committee of the National Space Society, President of Pioneer Astronautics, a space-exploration research and development firm, and president of the Mars Society, a space advocacy group [Robert Zubrin, “5: KILLING THE DRAGONS, AVOIDING THE SIRENS,” Chapter 5, The Case for Mars: The Plan to Settle the Red Planet and Why We Must, Simon & Schuster, Inc., ISBN-10: 145160811X, Publication Date: June 28, 2011, pg. Kindle]

ZERO GRAVITY

Another dragon barring the path to Mars is the menace of zero gravity . Long-duration exposure to zero gravity carries the risk of serious deterioration of human muscles and bone tissue, we are told, and, therefore, before astronauts go to Mars we must undertake a long-term program of experimentation with human subjects exposed to extended periods of zero gravity on board the Space Station. This program will require several decades, many billions of dollars in “microgravity life science research,” and a few dozen human beings willing to sacrifice their health to “scientific research.”

I find this argument bizarre. Now, it is certainly true that spending long periods in zero gravity will cause cardiovascular deterioration , decalcification and demineralization of the bones, and a general deterioration of muscular fitness

Page 20: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 202011-2012 File Title

due to lack of exercise. Zero gravity also depresses some aspects of the body’s immune system. These effects are well documented from the experiences not only of the U.S. Skylab astronauts, who spent up to three months at a time on-orbit, and crews on the International Space Station, whose standard rotation lasts six months, but of Soviet cosmonauts, some of whom have spent stints in zero gravity on their Mir space station of almost eighteen months—nearly three times the duration of the trans-Mars or trans-Earth cruises required to perform the Mars Direct mission. In all cases, near total recovery of the musculature and immune system occurs after reentry and reconditioning to a one-gravity environment on Earth . The demineralization of the bones ceases upon return to Earth, but actual restoration of the bones to preflight condition appears to be a very extended process. The Soviets have experimented with various countermeasures to zero gravity, including intensive exercise, drugs, and elastic “penguin suits” that force the body to exert significant physical effort in the course of routine movement. As might be expected, programs of intensive (three hours a day) exercise have proven effective in reducing general muscular deconditioning , and to some extent cardiovascular deterioration, but countermeasures taken to date have shown little benefit in slowing bone demineralization. It should be understood that while these effects are all quite tangible and definitely not desirable, they are not too extreme ; in no case have such zero-gravity “adaptations” prevented astronauts or cosmonauts from satisfactorily performing their duties while they are in the zero-gravity environment, and after even the longest flights, crew members recovered enough to become basically functional again within 48 hours after landing . Indeed, within a week of landing, the members of the 84-day Skylab 3 crew were able to play strong games of tennis. The recovery time to functionality upon Mars arrival after a six-month zero-gravity exposure should be swifter, because the crew will only have to deal with reacclimation to Mars’ 0.38g environment after landing, instead of the 1g shock experienced after reentry on Earth. The point, however, is that an awful lot of research has already been done in this area, and we know what the effects are . Given that is the case, we can rightly ask whether it is necessary, or even ethical, to subject further astronaut crews to such experimentation solely for the purpose of more exhaustive research on zero-gravity health deterioration effects. I don’t think it is. In fact, given what we know today, I’d have to classify the proposed program of continued experimentation on humans with long duration zero-gravity health effects as unethical and worthless, and I know a lot of astronauts who agree with me on that point. It just doesn’t make sense to expose dozens of astronauts to a larger zero-gravity dose than a Mars mission might provide in order to “ensure the safety” of a much smaller crew who actually fly there. Doing so is like training bomber pilots by having them fly their planes through real flak. If you are willing to accept the health consequences of long-duration exposure to zero gravity, you might as well take your licks in the process of actually getting to Mars.

Page 21: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 212011-2012 File Title

1AC—Impact DefenseContention Three is Impact Defense:Great power war is obsolete – cooperation is more likely than competition.Deudney and Ikenberry 9 —*Professor of Political Science at Johns Hopkins AND **Albert G. Milbank Professor of Politics and International Affairs at Princeton University [Jan/Feb, 2009, Daniel Deudney and John Ikenberry, “The Myth of the Autocratic Revival: Why Liberal Democracy Will Prevail,” Foreign Affairs]

This bleak outlook is based on an exaggeration of recent developments and ignores powerful countervailing factors and forces. Indeed, contrary to what the revivalists describe, the most striking features of the contemporary international landscape are the intensification of economic globalization, thickening institutions, and shared problems of interdependence. The overall structure of the international system today is quite unlike that of the nineteenth century. Compared to older orders, the contemporary liberal-centered international order provides a set of constraints and opportunities -of pushes and pulls- that reduce the likelihood of severe conflict while creating strong imperatives for cooperative problem solving. Those invoking the nineteenth century as a model for the twenty-first also fail to acknowledge the extent to which war as a path to conflict resolution and great-power expansion has become largely obsolete . Most important, nuclear weapons have transformed great-power war from a routine feature of international politics into an exercise in national suicide. With all of the great powers possessing nuclear weapons and ample means to rapidly expand their deterrent forces, warfare among these states has truly become an option of last resort . The prospect of such great losses has instilled in the great powers a level of caution and restraint that effectively precludes major revisionist efforts. Furthermore, the diffusion of small arms and the near universality of nationalism have severely limited the ability of great powers to conquer and occupy territory inhabited by resisting populations (as Algeria, Vietnam, Afghanistan, and now Iraq have demonstrated). Unlike during the days of empire building in the nineteenth century, states today cannot translate great asymmetries of power into effective territorial control ; at most, they can hope for loose hegemonic relationships that require them to give something in return. Also unlike in the nineteenth century, today the density of trade, investment, and production networks across international borders raises even more the costs of war. A Chinese invasion of Taiwan , to take one of the most plausible cases of a future interstate war, would pose for the Chinese communist regime daunting economic costs , both domestic and international. Taken together, these changes in the economy of violence mean that the international system is far more primed for peace than the autocratic revivalists acknowledge.

No War—empirics and longitudinal trends—the world is entering a new era of great power peaceFettweis 10—Christopher J. Fettweis, Assistant Professor of National Security Affairs in the National Security Decision Making Department at the U.S. Naval War College, holds a Ph.D. in International Relations and Comparative Politics from the University of Maryland-College Park, October 27, 2010 (Dangerous Times?: The International Politics of Great Power Peace, Georgetown University Press, ISBN 978-1-58901-710-8, Chapter 4: Evaluating the Crystal Balls, p. 83-85)

The obsolescence-of-major-war vision of the future differs most drastically from all the others, including the neorealist, in its expectations of the future of conflict in the international system. If the post– Cold War world conformed to neorealist and other pessimistic predictions, warfare ought to

Page 22: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 222011-2012 File Title

continue to be present at all levels of the system, appearing with increasing regularity once the stabilizing influence of bipolarity was removed. If the liberal-constructivist vision is correct, then the world ought to have seen not only no major wars, but also a decrease in the volume and intensity of all kinds of conflict in every region as well. The evidence supports the latter. Major wars tend to be rather memorable, so there is little need to demonstrate that there has been no such conflict since the end of the Cold War. But the data seem to support the “trickledown” theory of stability as well. Empirical analyses of war fare have consistently shown that the number of all types of wars—interstate, civil, ethnic, revolutionary, and so forth— declined throughout the 1990s and into the new century, after a brief surge of postcolonial conflicts in the first few years of that decade. 2 Overall levels of conflict tell only part of the story, however. Many other aspects of international behavior, including some that might be considered secondary effects of warfare, are on the decline as well. Some of the more important, if perhaps under reported, aggregate global trends include the following: Ethnic conflict. Ethnonational wars for independence have declined to their lowest level since 1960 , the first year for which we have data . 3

Repression and political discrimination against ethnic minorities. The Minorities at Risk project at the University of Maryland has tracked a decline in the number of minority groups around the world that experience discrimination at the hands of states, from seventy-five in 1991 to forty-one in 2003. 4

War termination versus outbreak. War termination settlements have proven to be more stable over time, and the number of new conflicts is lower than ever before. 5

Magnitude of conflict/battle deaths. The average number of battle deaths per conflict per year has been steadily declining. 6 The risk for the average person of dying in battle has been plummeting since World War II— and rather drastically so since the end of the Cold War. 7

Genocide. Since war is usually a necessary condition for genocide, 8 perhaps it should be unsurprising that the incidence of genocide and other mass slaughters declined by 90 percent between 1989 and 2005, memorable tragedies notwithstanding. 9

Coups. Armed overthrow of government is becoming increasingly rare , even as the number of national governments is expanding along with the number of states. 10 Would be coup plotters no longer garner the kind of automatic outside support that they could have expected during the Cold War, or at virtually any time of great power tension. Third party intervention. Those conflicts that do persist have less support from outside actors, just as the constructivists expected. When the great powers have intervened in local conflicts, it has usually been in the attempt to bring a conflict to an end or, in the case of Iraq’s invasion of Kuwait, to punish aggression. 11

Human rights abuses. Though not completely gone, the number of largescale abuses of human rights is also declining . Overall, there has been a clear, if uneven, decrease in what the Human Security Centre calls “one-sided violence against civilians” since 1989. 12

Global military spending. World military spending declined by one third in the first decade after the fall of the Berlin Wall. 13 Today that spending is less than 2.5 percent of global GDP, which is about two-thirds of what it was during the Cold War.

Page 23: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 232011-2012 File Title

Terrorist attacks. In perhaps the most counterintuitive trend, the number of worldwide terrorist incidents is far smaller than it was during the Cold War. If Iraq and South Asia were to be removed from the data, a clear, steady downward trend would become apparent. There were 300 terrorist incidents worldwide in 1991, for instance, and 58 in 2005. 14

International conflict and crises have steadily declined in number and intensity since the end of the Cold War. By virtually all measures, the world is a far more peaceful place than it has been at any time in recorded history. Taken together, these trends seem to suggest that the rules by which international politics are run may indeed be changing.

No risk of nuclear war or great power conflict—nuclear deterrence. Tepperman 9 — Jonathan Tepperman, Deputy Editor of Newsweek, Member of the Council on Foreign Relations, now Managing Editor of Foreign Affairs, holds a B.A. in English Literature from Yale University, an M.A. in Jurisprudence from Oxford University, and an LL.M. in International Law from New York University, 2009 (“Why Obama Should Learn to Love the Bomb,” The Daily Beast, August 28th, Available Online at http://www.thedailybeast.com/newsweek/2009/08/28/why-obama-should-learn-to-love-the-bomb.print.html, Accessed 01-27-2012)

A growing and compelling body of research suggests that nuclear weapons may not, in fact, make the world more dangerous, as Obama and most people assume. The bomb may actually make us safer. In this era of rogue states and transnational terrorists, that idea sounds so obviously wrongheaded that few politicians or policymakers are willing to entertain it. But that's a mistake. Knowing the truth about nukes would have a profound impact on government policy. Obama's idealistic campaign, so out of character for a pragmatic administration, may be unlikely to get far (past presidents have tried and failed). But it's not even clear he should make the effort. There are more important measures the U.S. government can and should take to make the real world safer, and these mustn't be ignored in the name of a dreamy ideal (a nuke-free planet) that's both unrealistic and possibly undesirable.

The argument that nuclear weapons can be agents of peace as well as destruction rests on two deceptively simple observations. First, nuclear weapons have not been used since 1945 . Second, there's never been a nuclear, or even a nonnuclear, war between two states that possess them . Just stop for a second and think about that: it's hard to overstate how remarkable it is, especially given the singular viciousness of the 20th century. As Kenneth Waltz, the leading "nuclear optimist" and a professor emeritus of political science at UC Berkeley puts it, "We now have 64 years of experience since Hiroshima. It's striking and against all historical precedent that for that substantial period, there has not been any war among nuclear states."

To understand why—and why the next 64 years are likely to play out the same way—you need to start by recognizing that all states are rational on some basic level . Their leaders may be stupid, petty, venal, even evil, but they tend to do things only when they're pretty sure they can get away with them. Take war: a country will start a fight only when it's almost certain it can get what it wants at an acceptable price. Not even Hitler or Saddam waged wars they didn't think they could win . The problem historically has been that leaders often make the wrong gamble and underestimate the other side—and millions of innocents pay the price.

Nuclear weapons change all that by maki ng the costs of war obvious , inevitable, and unacceptable. Suddenly, when both sides have the ability to turn the other to ashes with the push of a button—and everybody knows it— the basic math shifts . Even the craziest tin-pot dictator is forced to accept that war with a nuclear state is unwinnable and thus not worth the effort . As Waltz puts it, "Why fight if you can't win and might lose everything?"

Why indeed? The iron logic of deterrence and m utually a ssured d estruction is so compelling , it's led to what's known as the nuclear peace : the virtually unprecedented stretch since the end of World War II in which all the world's major powers have avoided coming to blows . They did fight proxy wars, ranging from Korea to Vietnam to Angola to Latin America. But these never matched the furious destruction of full-on, great-power war (World War II alone was responsible for some 50 million to 70 million deaths). And since the end of the Cold War, such bloodshed has declined precipitously. Meanwhile, the nuclear powers have scrupulously avoided direct combat, and there's very good reason to think they always will . There have been some near misses, but a close look at these cases is fundamentally

Page 24: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 242011-2012 File Title

reassuring —because in each instance , very different leaders all came to the same safe conclusion .

Take the mother of all nuclear standoffs: the Cuban missile crisis. For 13 days in October 1962, the United States and the Soviet Union each threatened the other with destruction. But both countries soon stepped back from the brink when they recognized that a war would have meant curtains for everyone. As important as the fact that they did is the reason why: Soviet leader Nikita Khrushchev's aide Fyodor Burlatsky said later on, "It is impossible to win a nuclear war, and both sides realized that, maybe for the first time."

The record since then shows the same pattern repeating: nuclear-armed enemies slide toward war , then pull back , always for the same reasons . The best recent example is India and Pakistan, which fought three bloody wars after independence before acquiring their own nukes in 1998. Getting their hands on weapons of mass destruction didn't do anything to lessen their animosity. But it did dramatically mellow their behavior. Since acquiring atomic weapons, the two sides have never fought another war, despite severe provocations (like Pakistani-based terrorist attacks on India in 2001 and 2008). They have skirmished once. But during that flare-up, in Kashmir in 1999, both countries were careful to keep the fighting limited and to avoid threatening the other's vital interests. Sumit Ganguly, an Indiana University professor and coauthor of the forthcoming India, Pakistan, and the Bomb, has found that on both sides, officials' thinking was strikingly similar to that of the Russians and Americans in 1962. The prospect of war brought Delhi and Islamabad face to face with a nuclear holocaust, and leaders in each country did what they had to do to avoid it.

Nuclear pessimists—and there are many—insist that even if this pattern has held in the past, it's crazy to rely on it in the future, for several reasons. The first is that today's nuclear wannabes are so completely unhinged, you'd be mad to trust them with a bomb. Take the sybaritic Kim Jong Il, who's never missed a chance to demonstrate his battiness, or Mahmoud Ahmadinejad, who has denied the Holocaust and promised the destruction of Israel, and who, according to some respected Middle East scholars, runs a messianic martyrdom cult that would welcome nuclear obliteration. These regimes are the ultimate rogues, the thinking goes—and there's no deterring rogues.

But are Kim and Ahmadinejad really scarier and crazier than were Stalin and Mao? It might look that way from Seoul or Tel Aviv, but history says otherwise. Khrushchev, remember, threatened to "bury" the United States, and in 1957, Mao blithely declared that a nuclear war with America wouldn't be so bad because even "if half of mankind died … the whole world would become socialist." Pyongyang and Tehran support terrorism—but so did Moscow and Beijing. And as for seeming suicidal, Michael Desch of the University of Notre Dame points out that Stalin and Mao are the real record holders here: both were responsible for the deaths of some 20 million of their own citizens.

Yet when push came to shove, their regimes balked at nuclear suicide , and so would today's international bogeymen. For all of Ahmadinejad's antics, his power is limited, and the clerical regime has always proved rational and pragmatic when its life is on the line. Revolutionary Iran has never started a war, has done deals with both Washington and Jerusalem, and sued for peace in its war with Iraq (which Saddam started) once it realized it couldn't win. North Korea, meanwhile, is a tiny, impoverished, family-run country with a history of being invaded; its overwhelming preoccupation is survival, and every time it becomes more belligerent it reverses itself a few months later (witness last week, when Pyongyang told Seoul and Washington it was ready to return to the bargaining table). These countries may be brutally oppressive, but nothing in their behavior suggests they have a death wish.

No impact to resource wars – decline will spur cooperation, not warBennett and Nordstrom 2K—department of political science at Penn State [D Scott and Timothy, The Journal of Conflict Resolution, 44:1, “Foreign policy substitutability and internal economic problems in enduring rivalries”, ProQuest]

Conflict settlement is also a distinct route to dealing with internal problems that leaders in rivalries may pursue when faced with internal problems. Military competition between states requires large amounts of resources , and rivals require even more attention. Leaders may choose to negotiate a settlement that ends a rivalry to free up important resources that may be reallocated to the domestic economy . In a "guns versus butter" world of economic trade-offs, when a state can no longer afford to pay the expenses associated with competition in a rivalry, it is quite rational for leaders to reduce costs by ending a rivalry. This gain (a peace dividend) could be achieved at any time by ending a rivalry. However, such a gain is likely to be most important and attractive to leaders when internal conditions are bad and the leader is seeking ways to alleviate active problems. Support for policy change away from continued rivalry is more likely to develop when the economic situation sours and elites and masses are looking for ways to improve a worsening situation. It is at these times that the pressure to cut military investment will be greatest and that state leaders will be forced to recognize the difficulty of continuing to pay for a rivalry. Among other things, this argument also encompasses the view that the cold war ended because

Page 25: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 252011-2012 File Title

the U nion of S oviet S ocialist R epublics could no longer compete economically with the United States.

“Nuclear Winter” theory is incorrect—it’s based on flawed dataBall 6— Professor at the Strategic and Defense Studies Centre at the Australian National University, former Head of the Strategic & Defence Studies Centre, former Co-chairman of the Steering Committee of the Council for Security Cooperation in Asia-Pacific [Desmond, May, “The Probabilities of On the Beach: Assessing ‘Armageddon Scenarios’ in the 21st Century,” http://rspas.anu.edu.au/papers/sdsc/wp/wp_sdsc_401.pdf]

In the early 1980s, various scientists and scientific organisations questioned the simplicity of these calculations, and especially their neglect of longer-term ecological and environmental consequences. Atmospheric physicists and biologists/ecologists demonstrated that the sudden injection of a couple of hundred million tonnes of smoke, soot and other particulate matter into the upper atmosphere would have catastrophic environmental consequences, characterised as ‘Nuclear Winter’. They argued that an all-out exchange would involve expenditure of 5,000 to 10,000 megatons. The most widely cited baseline scenario involved some 14,750 warheads with a total of 5,750 megatons, with almost every city in the world with a population of three million or more being attacked with fifteen warheads totalling ten megatons and those with populations of 1-3 million each being allocated three 1 megaton weapons. A baseline counter-force scenario allocated 4,000 megatons to strategic counterforce targets, which ignited wildfires over 500,000 square kilometres of forest, brush and grasslands, consuming some 0.5 grams per square centimetre of fuel in the process and producing some 76.5 million tonnes of smoke. This was said to ‘follow statistically’ from the fact that ‘approximately 50 percent of the land areas in the countries likely to be involved in a nuclear exchange are covered by forest or brush, which are flammable about 50 percent of the time’ . 6 The leading populariser of the ‘Nuclear Winter’ hypothesis was Carl Sagan, the brilliant planetary scientist and humanist. He had noticed in 1971, when Mariner 1 was examining Mars, that the planet was subject to global dust storms which markedly affected the atmospheric and surface temperatures. Large amounts of dust in the upper atmosphere absorbed sunlight, heating the atmosphere but cooling the surface, spreading ‘cold and darkness’ over the planet. He recognised that wholesale ground-bursts of nuclear weapons and the incineration of hundreds of cities could produce sufficient dust and smoke to cause a similar effect on the Earth. Sagan even postulated the existence of some threshold level— around 100 million tonnes of smoke—for production of ‘Nuclear Winter’. 7 I argued vigorously with Sagan about the ‘Nuclear Winter’ hypothesis, both in lengthy correspondence and, in August-September 1985, when I was a guest in the lovely house he and Ann Druyan had overlooking Ithaca in up-state New York. I argued that, with more realistic data about the operational characteristics of the respective US and Soviet force configurations (such as bomber delivery profiles, impact footprints of MIRVed warheads) and more plausible exchange scenarios, it was impossible to generate anywhere near the postulated levels of smoke . The megatonnage expended on cities (economic/industrial targets) was more likely to be around 140-650 than over 1,000; the amount of smoke generated would have ranged from around 18 million tonnes to perhaps 80 million tonnes. In the case of counter-force scenarios, most missile forces were (and still are) located in either ploughed fields or tundra and, even where they are generally located in forested or grassed areas, very few of the actual missile silos are less than several kilometres from combustible material. A target-by-target analysis of the actual locations of the strategic nuclear forces in the U nited S tates and the Soviet Union showed that the actual amount of smoke produced even by a 4,000 megaton counter-force scenario would range from only 300 tonnes (if the exchange occurred in January) to 2,000 tonnes (for an exchange in July)—the worst case

Page 26: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 262011-2012 File Title

being a factor of 40 smaller than that postulated by the ‘Nuclear Winter’ theorists . I thought that it was just as wrong to overestimate the possible consequences of nuclear war, and to raise the spectre of extermination of human life as a serious likelihood, as to underestimate them (e.g., by omitting fallout casualties).

Global warming is not an existential threat—adaptation solvesLomborg 10—Bjorn Lomborg, Adjunct Professor at the Copenhagen Business School, Director of the Copenhagen Consensus Centre, former director of the Environmental Assessment Institute in Copenhagen, holds a Ph.D. in Political Science from the University of Copenhagen, 11-17-2010 (“Cost-effective ways to address climate change,” Washington Post, November 17th, Available Online at http://www.washingtonpost.com/wp-dyn/content/article/2010/11/16/AR2010111604973.html)

Since 1930, excessive groundwater withdrawal has caused Tokyo to subside by as much as 15 feet . Similar subsidence has occurred over the past century in numerous cities, including Tianjin, Shanghai, Osaka, Bangkok and Jakarta. And in each case, the city has managed to protect itself from such large relative sea-level rises without much difficulty. The process is called adaptation, and it's something we humans are very good at . That isn't surprising, since we've been doing it for millennia. As climate economist Richard Tol notes, our ability to adapt to widely varying climates explains how people live happily at both the equator and the poles. In the debate over global warming, in which some have argued that civilization as we know it is at stake, this is an important point. Humankind is not completely at the mercy of nature . To the contrary, when it comes to dealing with the impact of climate change, we've compiled a pretty impressive track record . While this doesn't mean we can afford to ignore climate change, it provides a powerful reason not to panic about it either. There is no better example of how human ingenuity can literally keep our heads above water than the Netherlands . Although a fifth of their country lies below sea level - and fully half is less than three feet above it - the Dutch maintain an enormously productive economy and enjoy one of the world's highest standards of living. The secret is a centuries-old system of dikes, supplemented in recent decades by an elaborate network of floodgates and other barriers. All this adaptation is not only effective but also amazingly inexpensive. Keeping Holland protected from any future sea-level rises for the next century will cost only about one-tenth of 1 percent of the country's gross domestic product. Coping with rising sea levels is hardly the only place where low-cost, high-impact adaptation strategies can make a huge difference. One of the most pernicious impacts of global warming is the extent to which it exacerbates the phenomenon known as the urban "heat island effect" - the fact that because they lack greenery and are chockablock with heat-absorbing black surfaces such as tar roofs and asphalt roads, urban areas tend to be much warmer than the surrounding countryside. Ultimately, we're not going to solve any of these problems until we figure out a way to stop pumping greenhouse gases into the atmosphere. But in the meantime, there are simple adaptive measures we can employ to cool down our cities : We can paint them. Hashem Akbari, a senior scientist at Lawrence Berkeley National Laboratory who specializes in cost-effective methods of combating the effects of climate change in urban areas, has shown that by painting roofs white, covering asphalt roadways with concrete-colored surfaces and planting shade trees, local temperatures could be reduced by as much as 5 degrees Fahrenheit. Akbari and colleagues reported in the journal Climatic Change last year that for every 100 square feet of black rooftop converted to white surface, the effects of roughly one ton of carbon dioxide would be offset. Painting streets and rooftops white may sound impractical, if not silly, but it's a realistic strategy - which is to say, it's effective and affordable. Indeed, for an initial expenditure of $1 billion, we could lighten enough Los Angeles streets and rooftops to reduce temperatures in the L.A. Basin more than global warming would increase them over the next 90 years. Obviously, whether it involves dikes or buckets of white paint, adaptation is not a long-term solution to global warming. Rather, it will enable us to get by while we figure out the best way to address the root causes of man-made climate change . This may not seem like much, but at a time when fears of a

Page 27: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 272011-2012 File Title

supposedly imminent apocalypse threaten to swamp rational debate about climate policy, it's worth noting that coping with climate change is something we know how to do .

Nuclear war doesn’t cause extinctionMartin 84, physicist whose research interests include stratospheric modeling. He is a research associate in the Dept. of Mathematics, Faculty of Science, Australian National University, and a member of SANA (Brian, May 16th, http://www.uow.edu.au/arts/sts/bmartin/pubs/84sana1.html)

By the 1950s, a large number of people had come to believe that the killing of much or all of the world's population would result from global nuclear war. This idea was promoted by the peace movement, among which the idea of 'overkill' - in the sense that nuclear arsenals could kill everyone on earth several times over - became an article of faith. Yet in spite of the widespread belief in nuclear extinction, there was almost no scientific support for such a possibility. The scenario of the book and movie On the Beach, [2] with fallout clouds gradually enveloping the earth and wiping out all life, was and is fiction. The scientific evidence is that fallout would only kill people who are immediately downwind of surface nuclear explosions and who are heavily exposed during the first few days. Global fallout has no potential for causing massive immediate death (though it could cause up to millions of cancers worldwide over many decades). [3] In spite of the lack of evidence, large sections of the peace movement have left unaddressed the question of whether nuclear war inevitably means global extinction. The next effect to which beliefs in nuclear extinction were attached was ozone depletion. Beginning in the mid-1970s, scares about stratospheric ozone developed, culminating in 1982 in the release of Jonathan Schell's book The Fate of the Earth.[4] Schell painted a picture of human annihilation from nuclear war based almost entirely on effects from increased ultraviolet light at the earth's surface due to ozone reductions caused by nuclear explosions. Schell's book was greeted with adulation rarely observed in any field. Yet by the time the book was published, the scientific basis for ozone- based nuclear extinction had almost entirely evaporated. The ongoing switch by the military forces of the United States and the Soviet Union from multi-megatonne nuclear weapons to larger numbers of smaller weapons means that the effect on ozone from even the largest nuclear war is unlikely to lead to any major effect on human population levels, and extinction from ozone reductions is virtually out of the question.[3] The latest stimulus for doomsday beliefs is 'nuclear winter': the blocking of sunlight from dust raised by nuclear explosions and smoke from fires ignited by nuclear attacks. This would result in a few months of darkness and lowered temperatures, mainly in the northern mid-latitudes.[5] The effects could be quite significant, perhaps causing the deaths of up to several hundred million more people than would die from the immediate effects of blast, heat and radiation. But the evidence, so far, seems to provide little basis for beliefs in nuclear extinction. The impact of nuclear winter on populations nearer the equator, such as in India, does not seem likely to be significant. The most serious possibilities would result from major ecological destruction, but this remains speculative at present. As in the previous doomsday scenarios, antiwar scientists and peace movements have taken up the crusading torch of extinction politics. Few doubts have been voiced about the evidence about nuclear winter or the politics of promoting beliefs in nuclear extinction. Opponents of war, including scientists, have often exaggerated the effects of nuclear war and emphasized worst cases . Schell continually bends evidence to give the worst impression. For example, he implies that a nuclear attack is inevitably followed by a firestorm or conflagration. He invariably gives the maximum time for people having to remain in shelters from fallout. And he takes a pessimistic view of the potential for ecological resilience to radiation exposure and for human resourcefulness in a crisis. Similarly, in several of the scientific studies of nuclear winter, I have noticed a strong tendency to focus on worst cases and to avoid examination of ways to overcome the effects. For example, no one seems to have looked at possibilities for migration to coastal areas away from the freezing continental temperatures or looked at people changing their diets away from grain-fed beef to direct consumption of the grain, thereby greatly extending reserves of food. Nuclear doomsdayism should be of concern because of its effect on the political strategy and effectiveness of the peace movement. While beliefs in nuclear extinction may stimulate some people into antiwar action, it may discourage others by fostering resignation. Furthermore, some peace movement activities may be inhibited because they allegedly threaten the delicate balance of state terror. The irony here is that there should be no need to exaggerate the effects of nuclear war, since, even well short of extinction, the consequences would be sufficiently devastating to justify the greatest efforts against it. The effect of extinction politics is apparent in responses to the concept of limited nuclear war. Antiwar activists, quite justifiably, have attacked military planning and apologetics for limited nuclear war in which the effects are minimized in order to make them more acceptable. But opposition to military planning often has led antiwar activists to refuse to acknowledge the possibility that nuclear war could be 'limited' in the sense that less than total annihilation could result. A 'limited' nuclear war with 100 million deaths is certainly possible, but the peace movement has not seriously examined the political implications of such a war. Yet even

Page 28: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 282011-2012 File Title

the smallest of nuclear wars could have enormous political consequences, for which the peace movement is totally unprepared.[6]

*** 2AC

Page 29: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 292011-2012 File Title

AT: Econ ImpactsAnd empirics proveFerguson 6—Laurence A. Tisch Professor of History at Harvard University and a Senior Fellow at the Hoover Institution at Stanford University, (Niall, September/October 2006 “The next war of the world”, Foreign Affairs. V85. No 5, http://www.foreignaffairs.com/articles/61916/niall-ferguson/the-next-war-of-the-world)

Nor can economic crises explain the bloodshed . What may be the most familiar causal chain in modern historiography links the Great Depression to the rise of fascism and the outbreak of World War II. But that simple story leaves too much out. Nazi Germany started the war in Europe only after its economy had recovered . Not all the countries affected by the Great Depression were taken over by fascist regimes, nor did all such regimes start wars of aggression. In fact, no general relationship between economics and conflict is discernible for the century as a whole. Some wars came after periods of growth , others were the causes rather than the consequences of economic catastrophe, and some severe economic crises were not followed by wars .

Page 30: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 302011-2012 File Title

AT: Free Market CP1. Perm do both

3. The free market can’t and won’t solve space development—too long termHickman 99—Ph. D. Associate Professor of Government, Department of Government and International Relations at Berry College [John Hickman, “The Political Economy of Very Large Space Projects,” Journal of Evolution and Technology, Volume 4, November 1999, http://www.jetpress.org/volume4/space.pdf] **long time period=5 years

Attempting to persuade investors to risk enough capital to finance the construction of a very large space development project would run up against the same capitalization problems now faced by entrepreneurs seeking capital for ordinary space development projects such as launching communication satellites. Investors and lenders seek to maximize economic returns from capital while avoiding risk. The cost of capital is higher for riskier investments. Persuading investors and lenders to part with their capital requires making credible promises that they will receive better returns than they would have received from making alternative investments during the same time period commensurate with risk . While investors often accept higher levels of risk than do lenders, they do so in the expectation of even better returns. Ordinary space development projects confront not only the risks that their businesses might not make money and that the technology might fail to work as projected, but also that they might not attract enough investment because the necessary capital investment is too “chunky.” In other words, the “up−front” capital investment necessary to proceed with even an ordinary space development project tends to be relatively large and to take a relatively long time period before generating cash flows or profits (Simonoff 1997: 73−74; U.S. Department of Commerce 1990: 55−60; McLucas 1991). It is important for the subsequent discussion that the reader note that many investors typically understand the phrase “long time period” to mean “5 years” (Marshall and Bansal 1992: 99−100).

If attracting capital for projects using proven technologies like communications satellites remains difficult, imagine the difficulty of attracting sufficient capital to construct a mining facility on the Moon or terraforming Mars or Venus. Such projects are extraordinarily “chunky” in that they would require massive amounts of capital to be invested “up front” and would take long or very long time periods before generating economic returns. The total amount of capital available for investment in anything is finite and the private investors and lenders who control most of it normally enjoy multiple investment opportunities . Investors and lenders are typically reluctant to concentrate their risks on a single project . Investors and lenders are also reluctant to lock up their capital in very long time investments or loans because this increases their opportunity costs .

4. Free market can’t solve colonization—up-front costs are too large. Government is key—empirics.Hickman 99—Ph. D. Associate Professor of Government, Department of Government and International Relations at Berry College [John Hickman, “The Political Economy of Very Large Space Projects,” Journal of Evolution and Technology, Volume 4, November 1999, http://www.jetpress.org/volume4/space.pdf] **long time period=5 years

The lesson is that, ceteris paribus, very large space development projects are probably too unattractive as investments for private investors and lenders. For the

Page 31: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 312011-2012 File Title

current generation of space development enthusiasts, indoctrinated in the principles of neo−classical or free market economics popularized in the Reagan years, this is a very disquieting conclusion. Many exhibit a fierce libertarianism. They share an ideological conviction that private enterprise and unfettered markets are capable of overcoming almost any technological or economic obstacle.[4] Government appears less as the driving force for space exploration than as the political and bureaucratic obstacle to technological innovation and the commercial development of space. Given the disappointing performance of NASA in the 1970's and 1980's, convictions such as these are hardly surprising (Kay 1995:161−171). Space development enthusiasts watched as government funding for NASA programs declined steadily while important opportunities for commercial launch capability and space industrialization in near Earth space were lost. Yet the “lessons” drawn about from the disappointments of the 1970's and 1980's are probably the wrong lessons for space development. Government participation in the economic development of space is essential . Why else would promoters combine libertarian denunciations of the government’s role in space development with political demands for indirect subsidies in the form of tax credits for space commerce and the privatization of public assets in the form of the International Space Station (Lehrer 1999). Complaints about the role of government in space development would be more convincing if private sector efforts in space had produced comparable results. Government space programs can point to records of successfully launching interplanetary probes and spacecraft with human crews. Even after all the excuses have been made, the record of private sector accomplishments in space is unimpressive. Of course, identifying space sector efforts as “private” is somewhat problematic because many employ technology developed with government funds, or employ castoff parts and borrowed facilities from government programs, or anticipate that the government will be their primary buyer.

The fundamental problem in opening any contemporary frontier , whether geographic or technological, is not lack of imagination or will, but lack of capital to finance initial construction which makes the subsequent and typically more profitable economic development possible. Solving this fundamental problem involves using one or more forms of direct or indirect government intervention in the capital market.

When space development enthusiasts describe how permanent human communities might be established in space, they often draw analogies to the European colonization of the Americas and to the “winning” of the western frontiers of the United States and Canada, analogies which are often given a very contemporary libertarian spin. Complex historical processes are offered up as examples of the triumph of individualism and private enterprise.

The unspun truth about European colonization in the Americas, and in Asia and Africa, is that the state played a central role in all colonial enterprises. European colonies often emerged out of trading ventures organized as joint stock companies chartered by the colonizing state and in which the crown invested both its prestige and its capital. Colonial territory was conquered and defended by soldiers and sailors paid either by the colonizing state or the local colonial state. Plantations and mines were often directly owned by the local colonial state. Trading monopolies and tax privileges granted by the colonizing state to the local colonial state were used to attract capital investment. Indeed, conceptual distinctions between public and private economic activity which seem so clear today were much less clear in the heyday of colonialism.

The unspun truth about the “winning” of the western frontiers of the United States and Canada make for even poorer libertarian dramas. Notwithstanding all the hardy pioneers in their covered wagons, the western frontier of

Page 32: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 322011-2012 File Title

the U nited S tates was really “won” by the U.S. Army and the construction of the railroads which were capitalized by enormous Federal land grants.[5] Similarly, the western frontier of Canada was “won” by cash grants, subsidies, loans, and the guarantee of bond issues by the Canadian government to finance the construction of the railroads.

A better historical analogy for establishing permanent human communities in space is actually provided by one of the greatest civil engineering project of this century−−the construction of the Panama Canal. As would be true with any very large space development project, constructing the Panama Canal required that tough new engineering and science problems had to be overcome in an unforgiving environment, a labor force had to be imported and supported, and sufficient capital had to be invested despite the fact that private investors could not or would not provide the financing necessary to complete the task. After twenty years of failed efforts by private French firms to dig a canal across the isthmus of Panama and the failure of a private American firm to dig a canal through Nicaragua, it was the United States government that successfully completed the construction of the Panama Canal.[6] Financing by the United States government and management by U.S. Army engineers succeeded where the private sector failed. Engineering problems more difficult than those which were encountered in constructing the Suez Canal were solved, yellow fever and malaria were effectively controlled, a new sovereign nation−state was created, and world commerce was facilitated.[7] Not bad for government work.

Very large space development projects should be understood as massive public works projects constructed to provide the environmental and economic requirements for permanent human settlement beyond Earth. If these new human settlements are to attract and keep the kind of people needed, then they will have to be livable communities. Making them livable will provide plenty of scope for private firms to profit from the provision of goods and services. But private firms will not do the heavy lifting necessary to finance the construction of the very large space project within which and around which such a livable community may grow.

6. Perm do the counterplan—have the private sector build the tech and the USFG own the settlement. ‘Commercial’ doesn’t mean ‘private’ – ownership is the key variable.OECD, 5 – Organization for Economic Cooperation and Development (“Space 2030 Tackling Society’s Challenges http://www.space-library.com/0505OECD_Space2030-2_2To1.pdf)

As the case studies in the third phase of the project demonstrated, one major difficulty at the conceptual level, when considering the status of operating agencies, is that the definitions of some key terms such as “commercial” or “private” are often not clear, and may vary from country to country. For instance, the term “commercial” may have meanings ranging from government enterprise to private-sector activity.A government enterprise could be said to operate on a commercial basis if it generates most of its revenue from the sale of goods or services to the general public. This applied, for instance, to a company like the automobile manufacturer Renault when it was wholly owned by the French government and competed with private-sector firms. A government enterprise that sells goods and services to final consumers as a public monopoly can also be said to operate on a commercial basis, although the profit motive may be missing. A government enterprise may operate on a partially commercial basis if it derives part of its revenue from the sale of goods to the general public and receives at the same time public funds to complete its budget.22

By contrast, privatisation implies the transfer of ownership of assets from the government to a private company, which can address either a business and consumer market or a government market. In the former case, the entrepreneur assumes the business risks of the activity. However, questions arise regarding the status of companies that operate under an anchor tenancy contract or are the main or even the sole provider of critical products to governments. In such cases, the client may end up bearing the risk, even if nominally it is supposed to be borne by the supplier.23

Page 33: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 332011-2012 File Title

2AC—Mars Prize CPMars Prize fails and links to politics. Whittington 11 — Mark R. Whittington, has written on space subjects for a variety of periodicals including The Houston Chronicle, The Washington Post, USA Today, the L.A. Times, and The Weekly Standard, 2011 (“Newt Gingrich's Space Policy -- Politically Dubious, Practically Unworkable,” Yahoo! News, November 12th, Available Online at http://news.yahoo.com/newt-gingrichs-space-policy-politically-dubious-practically-unworkable-221100532.html, Accessed 04-28-2012)

Would a moon and/or Mars prize work ? Likely it would not, for a couple of reasons. First, someone, probably Congress, would have to put up the prize money. That would be $20 billion for the Mars Prize and some lesser number-perhaps $5 billion-for the moon prize. Just a few moments of thought would lead to the realization of how unlikely Congress would appropriate that amount of money all at once for a space prize competition. It has starved the Centennial Challenges, NASA's space technology competitions, since they started . The Centennial Challenges cost is in the millions, not billions . Second, private companies would still be faced with the prospect of raising funds in the private market, a dubious prospect at best even with a government financed purse in the offing .

Links to dip cap—asks for intl funds for space

No solvency—won’t generate enough revenue:A. It’s too risky for companies to invest—in the context of the counterplan.Fox News 11 — Fox News, 2011 (“Advertising Could Pay for a Mission to Mars, Scientist Says,” Byline Alec Liu and Jeremy A. Kaplan, January 17th, Available Online at http://www.foxnews.com/scitech/2011/01/17/advertising-pay-mission-mars-scientist-says/?test=faces, Accessed 04-28-2012)

Welcome to the manned mission to Mars -- brought to you with limited interruptions by Bud Light.

It's not so crazy, actually: One of the biggest obstacle to a potential space mission is finding the almost $150 billion dollars needed to develop the program. And tagging a future spaceship with the word “Drinkability” may seem ridiculous, but it's exactly what Rhawn Joseph has proposed in the latest issue of the Journal of Cosmology.

“With clever marketing and advertising and the subsequent increase in public interest, between $30 billion to $90 billion can be raised through corporate sponsorships, and an additional $1 billion a year through individual sponsorships,” wrote Joseph, a scientist with the Brain Research Laboratory in California.

Just as Tang became associated in the public's eye with space travel in the 70s and 80s, Joseph suggests selling the naming rights to Mars landing craft, the Mars Colony, the spaceship itself and more. Television broadcasting rights alone would bring in $30 billion, and that doesn't include the sale of real estate and mineral rights on Mars.

“Other than paying for one of the greatest achievements of all time and the technological revolution that would result, is it worth $145 billion in expenditures, over a 10-year period, to conquer an entire planet and to lay claim to the vast wealth which may lay beneath the surface?” he wonders rhetorically.

Two straight years of intense worldwide scrutiny seems like the opportunity of a lifetime, yet the dozen or so companies FoxNews.com contacted were hesitant to speculate about their potential involvement.

A Greyhound spokesman admitted that the company would consider the idea if it were mutually beneficial when the time comes -- but for now, it's simply too early to say . AT&T spokesman Mark Siegel echoed these sentiments, noting that the "biggest and most important challenge is serving our customers here on Earth."

Page 34: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 342011-2012 File Title

Microsoft had no comment , and other companies such as Amtrak, Facebook, Google, Apple, Verizon Wireless, and Tesla Motors either declined to commit or did not immediately respond. But there's a big difference between naming Wrigley Field and branding a spaceship, explained Brian Collins, the former chief creative officer of the branding division within Ogilvy & Mather and now the creative director and designer of private firm Collins. What happens if something goes wrong?"People aren’t harnessing baseball players to explosives to send them to another planet,” he joked. The risk is serious, though, Collins notes, and a possible reason for hesitation among businesses. Sure, the connection to space travel has positive connotations, but it's also a risk .

Page 35: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 352011-2012 File Title

AT: Dip Cap DAChina crisis thumps the disad.News Tribune 4/30 — The News Tribune, 2012 (“U.S. sends diplomat to China to quell crisis,” Byline Steven Lee Myers and Jane Perlez, April 30 th, Available Online at http://www.thenewstribune.com/2012/04/30/2125701/us-sends-diplomat-to-china-to.html, Accessed 04-30-2012)

The Obama administration scrambled Sunday to contain a burgeoning diplomatic crisis between the U nited States and China, dispatching a senior diplomat to Beijing to discuss the fate of a blind dissident who fled house arrest last week.

Amid intense secrecy, including a nearly blanket refusal to comment, the administration sought to negotiate over the safety of the dissident, Chen Guangcheng, who is apparently in U.S. hands in Beijing – though it remained unclear late Sunday whether he was in the embassy, in a diplomatic residence or somewhere else.

Kurt M. Campbell, an assistant secretary of state, arrived in Beijing on Sunday to meet with Chinese officials concerning Chen’s case, and to try to keep the matter from undermining the administration’s long effort to improve economic and security relations with China, senior officials and diplomats in Washington and Beijing said.

A senior American official said that China’s leadership met Sunday to work out their response to Chen’s escape before scheduled meetings this week with Secretary of State Hillary Rodham Clinton and Treasury Secretary Timothy F. Geithner. Clinton is scheduled to leave Washington for China tonight, assuming the trip proceeds.

“They’re trying to figure out what they’re going to tell Hillary Clinton,” the official said of the Chinese leaders, speaking on condition of anonymity because of the diplomatic sensitivity surrounding the case. “We’d like to know as much as we can before she leaves.”

The administration’s effort to contain the crisis underscored the fraught political challenge facing President Barack Obama , at home and abroad .“This is the greatest test in bilateral relations in years , probably going back to ’89,” said Christopher K. Johnson, until recently a senior China analyst at the CIA, referring to the year of the brutal crackdown on student protests in Tiananmen Square.

Page 36: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 362011-2012 File Title

AT: Iran Strikes ImpactTheir evidence is worthless—quotes from Israeli officials are meaningless. Walt 12 — Stephen M. Walt, Robert and Rene Belfer Professor of International Relations at Harvard University, 2012 (“Israel's not going to attack Iran – yet,” Stephen Walt’s Foreign Policy Blog, January 30th, Available Online at http://walt.foreignpolicy.com/posts/2012/01/30/Israel%27s_not_going_to_attack_Iran_yet, Accessed 04-24-2012)

Having written a fair bit about the pros and cons (mostly the latter) of a war with Iran, I feel compelled to offer a brief comment on Ronan Bergman's alarmist article in yesterday's New York Times Magazine. I say this even though I think the article was essentially worthless . It 's a vivid and readable piece of reportage, but it doesn't provide readers with new or interesting information and it tells you almost nothing about the likelihood of an Israeli strike on Iran .First off, the article is essentially a reprise of Jeffrey Goldberg's September 2010 Atlantic Monthly article on the same subject. The research method is identical: a reporter interviews a lot of big-shots in the Israeli security establishment, writes down what they say, and concludes that that Israel is very likely to attack. Bergman doesn't present new evidence or arguments , pro or con; it's just an updated version of the same old story.

Second, the central flaw in this approach is that there is no way of knowing if the testimony of these various officials reflects their true beliefs or not. There are lots of obvious reasons why Israeli officials might want to exaggerate their willingness to use force against Iran, and this simple fact makes it unwise to take their testimony at face value. Maybe they really mean what they say. Or maybe they just want to keep Tehran off-balance Maybe they want to distract everyone from their continued expansion of West Bank settlements and other brutalities against Palestinians. Maybe they want to encourage Europe to support tougher economic sanctions against Iran, and they know that occasional saber-rattling helps makes sanctions look like an attractive alternative. Maybe it's several of these things at once, depending on who's talking. Who knows?

By the way, I'm not accusing the officials that Bergman interviewed of doing anything wrong. I don't expect top officials of any country to tell the truth all the time, and I'm neither surprised nor upset when foreign officials try to manipulate fears of war in order to advance what they see as their interests. My point is that it is impossible to tell if they mean what they are saying or not , which is why an article based on interviews of this kind just isn't very informative . They might be telling the truth, or they might be lying, and nobody knows for sure .

Neither Israel nor the U.S. will attack Iran—their evidence is wrong.Karon 11 — Tony Karon, Senior Editor and World Affairs Commentator at Time.com, holds a degree in Economic History from the University of Cape Town, 2011 (“A moratorium for military action but not for settlements,” The National, January 3rd, Available Online at http://www.thenational.ae/thenationalconversation/news-comment/a-moratorium-for-military-action-but-not-for-settlements?pageCount=0, Accessed 01-03-2011)

Republicans in Congress berate the US president Barack Obama for failing to respond adequately to this "crisis". Those in the US military and intelligence establishments who push back with a more realistic picture of Iran's capabilities are often painted as appeasers. But the recent news that Iran's nuclear programme is not the immediate peril that some suggest comes from a n impeccably hawkish source : Israel's deputy prime minister, the former general Moshe Yaalon, who advocates military action to stop Iran getting hold of the bomb. Iran had encountered difficulties in its nuclear efforts, Mr Yaalon told Israeli radio last week, and would not pass any point of no return for the next three years, adding, "Iran does not currently have the ability to make a nuclear bomb on its own".

Contrast that with the suggestion in a widely-read article by pro-Israel commentator Jeffrey Goldberg in the Atlantic Monthly last spring - based on interviews with some 50 top Israeli officials - that Israel would bomb Iran before the coming summer if the Obama administration had failed to force

Page 37: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 372011-2012 File Title

Tehran to abandon its nuclear programme by the end of 2010. That deadline has passed with no change in Iran's posture , but here is one of Israel's most senior security officials publicly extending the "deadline" by another three years.

The conspiracy-minded may be tempted to see Mr Yaalon's remarks as a rope-a-dope trick to lull the Iranians into a false sense of complacency over Israel's intentions so as to give it an edge of surprise in the coming air raid. Then again, there's always been a certain elasticity in the deadlines Israel has cited over Iran's nuclear programme. A US diplomatic cable in 2005 released by WikiLeaks quoted an Israeli government official as warning US officials to take Israeli time-lines on Iranian capabilities with a pinch of salt. The cable quotes a senior Israeli foreign ministry official as noting wryly that his government, in 1993, had "predicted that Iran would possess an atomic bomb by 1998 at the latest".

A second cable covering a 2009 meeting in which an Israeli general warns that Iran will be able to build its first weapon by 2012, a US official observes: "It is unclear if the Israelis firmly believe this or are using worst-case estimates to raise greater urgency from the United States."

The assessments offered by Israeli leaders to American officials over the past two decades have certainly been heavy on unfounded alarmism. "The best estimates at this time place Iran between three and five years away from possessing the prerequisites required for the independent production of nuclear weapons," the current Israeli prime minister Benjamin Netanyahu wrote in 1995. Nor was such scare-mongering confined to his Likud party. Ehud Barak, leader of the Labour party and then foreign minister, warned members of the UN Security Council in February 1996 that Iran would have nuclear weapons within eight years. The then prime minister Shimon Peres in April 1996 put the timeline at just four years.

And when those deadlines were passed with no sign of Iranian nukes, Israeli leaders simply updated their time-lines. In February 2009, Mr Netanyahu told a US Congressional delegation that Iran is "one to two years away" from nuclear weapons capability; in June of the same year Mr Barak told US legislators that the world had "between 6 and 18 months" to stop Iran from acquiring nuclear weapons.

And so, as 2011 dawns with no sign of an Iranian nuclear arsenal, Mr Yaalon steps forward to extend the deadline and concede that Iran will not be able to build nuclear weapons for at least another three years. What has prompted this sudden outburst of sobriety?

Americans have often heard the message that Israel will be forced to plunge the Middle East into a disastrous war if the US doesn't force Iran to heel. Americans are routinely told that Israel sees Iran as a reincarnation of Nazi Germany, seeking the means to annihilate the Jewish state. But that message carries great risks for Israel's own leaders.

Washington remains unlikely to launch an unprovoked attack on Iran over its nuclear programme. The US defence secretary Robert Gates has long argued that the potentially catastrophic risks of such action outweigh the gains , which are temporary at best. Therein lies the problem: Israel's voters have been told, to quote Mr Netanyahu in 2006, that "it's 1938 and Iran is Germany". So they'll expect their leaders to act if Washington doesn't. After all, the very idea of Israel is that Jews can't depend on others to save them from annihilation, so if its citizens believe that Iran is a reincarnation of Auschwitz, they will demand action.

Alarmist Israeli rhetoric may be designed to press Washington, but it potentially paints Israel's own leaders into a corner. They, too, know that Iran is not the threat painted in the more apocalyptic rhetoric. A little over a year ago, Mr Barak said publicly that "Iran does not constitute an existential threat against Israel," adding that "Israel is strong, I don't see anyone who could pose an existential threat."

Then again, Mr Barak had made clear to Goldberg that he believed that the greatest danger was that alarm at the idea of an Iranian nuclear weapon would prompt Israel's best and brightest to emigrate. If Israeli voters believe, as Goldberg suggests, that a "point of no return" was passed with the New Year and there are no air strikes in the spring, they may begin to doubt their government's ability to protect them.

But now some in the Israeli leadership are resetting the clock . While Mr Obama failed to convince the Israelis to extend their moratorium on settlement construction, they may be signing up , unprompted, to a moratorium on bombing Iran for the next three years .

No Israeli attack. CSM 4/2 — Christian Science Monitor, 2012 (“Why Israel is even less likely to strike Iran now,” Byline Dan Murphy, April 2nd, Available Online at http://www.csmonitor.com/layout/set/print/content/view/print/489042, Accessed 04-24-2012)

All the recent data points in the "will they, won't they" speculation about an Israeli strike on Iran point to this: The already slim odds have gotten slimmer .

Sure, a long piece in Foreign Policy this month, sourced entirely to unnamed US officials, makes the case that Israel has extensive influence in Azerbaijan, which could make a unilateral Israeli attack on Iran easier.

Page 38: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 382011-2012 File Title

But that story appears to be but one salvo in a broader Obama administration strategy to signal through the press that it doesn't want Israel to strike Iran's nuclear program, even as it seeks to assure Israel that it is committed to its defense.

At every turn, the US has hemmed Israel in (probably the reason so many "anonymous" officials fed the Azerbaijan story to FP). They have made it clear that they will truly be on their own if they attack unilaterally (read: You won't force us into a war of your own choosing).

John Bolton, the hawkish former US ambassador to the UN, characterized the story as an intentional Obama effort to undermine Israel. "Clearly, this is an administration-orchestrated leak.... it's just unprecedented to reveal this kind of information about one of your own allies,” he told Fox.

Mr. Bolton is wrong about the "unprecedented" part; the US has frequently acted to hem in close allies, like Britain or France, when it deemed their military activities a threat to its interests, as the Eisenhower administration did against the joint Israeli-French-British invasion of Egypt during the Suez Crisis in 1956.

But he's certainly right that the Obama administration is worried about the damage to US interests that could be done by a solo Israeli attack on Iran.

In that context, it's hard not to see the Foreign Policy piece as anything other than an Obama administration attempt to stave off an Israeli attack through highlighting growing Israeli ties with the country. (Israel has certainly been seeking warm relations with Azerbaijan; in February, Israel said it had signed a $1.6 billion deal to provide drones and missile defense systems to the country.)

No carte blanche for Israel in Azerbaijan

The piece didn't say that Israel has been given bases of its own in Azerbaijan, or that it has been given carte blanche to use Azeri bases when it sees fit. The piece's central claim is that "four senior diplomats and military intelligence officers say that the United States has concluded that Israel has recently been granted access to airbases on Iran's northern border. To do what, exactly, is not clear."

The FP story led to immediate denials from Azeri officials. An Azeri defense spokesmen told a press conference on Friday that Israel will not be allowed to use the country's territory to attack Iran and said that unspecified press reports were designed to increase tensions between Iran and Azerbaijan.

That makes sense. While Iran's conventional military is puny compared to the US military, it dwarfs Azerbaijan's. Iran is a major trading partner for the country, and has a variety of means at its disposal to make life difficult for its northern neighbor in retaliation for an attack.

The story generated plenty of heavy breathing in the press. The Sydney Morning Herald says: "Unlikely alliance between Israel and Azerbaijan raises heat over Iran." Haaretz writes: "Azerbaijan granted Israel access to air bases on Iran border." A headline in this paper asks "Did US just torpedo Israeli deal for a base in Azerbaijan?"

Another leak

The FP story is far from the first emanating from unnamed US officials that appear designed to push Israel farther away from war. On March 19, The New York Times reported that the US military had just finished a secret war game to test the repercussions of an Israeli attack, and concluded that the chances were high that the US would end up drawn into a broader regional war that would leave hundreds of Americans dead.

"The results of the war game were particularly troubling to Gen. James N. Mattis, who commands all American forces in the Middle East, Persian Gulf and Southwest Asia, according to officials who either participated in the Central Command exercise or who were briefed on the results," the Times wrote. "When the exercise had concluded earlier this month, according to the officials, General Mattis told aides that an Israeli first strike would be likely to have dire consequences across the region and for United States forces there."

The message was clear: The US is highly unlikely to support a n Israeli strike .Amir Oren, writing in Haaretz, concludes that that war-game, coupled with renewed American promises to fund Israel's Iron Dome missile defense system (mostly deployed with great success against the unsophisticated rockets fired at Israel from the Gaza Strip), guarantees that Israel won't attack Iran until the spring of next year, at the earliest.

"Israelis may be the world champions of chutzpah, but even biting the hand that feeds you has its limits when the bitten hand is liable to hit back," he writes. "When [Israeli Defense Minister Ehud] Barak thanked the Obama administration 'for helping strengthen Israel's security,' he was abandoning the pretension to act against Iran without permission before the US presidential elections in November."

The US spent $204 million on Israel's Iron Dome system in fiscal year 2011, and last week the Pentagon indicated that more money should be provided in the current budget year, a plan that has bipartisan support in Congress. The Pentagon says the system successfully shot down 80 percent of rockets recently fired from Gaza. The continued US commitment to Israel's defense can be seen as the carrot in this scenario.

Why the US is worried about an Israeli strike

Gary Sick, who coordinated the White House response to the Iran hostage crisis in 1979-80 and who served on the National Security Councils of presidents Ford, Carter, and Reagan, made the case for why the US is worried about

Page 39: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 392011-2012 File Title

unilateral Israeli action in an opinion piece Friday. He says it could lead to the collapse of the sanctions regime that President Bush and President Obama have constructed against Iran, and leave the US on the hook for the aggression in the eyes of much of the world.

Whether the US gave the green light or not, "for Iran and just about everyone else, the fact that most of the Israeli aircraft and bombs were made in the US would be all they needed to know," Sick writes. "On that first morning, the UN Security Council would convene in emergency session to consider a resolution denouncing the Israeli raid. If the United States vetoed the resolution, that would remove any lingering doubt of U.S. complicity.

"Perhaps more significant, however, would be European support of the resolution. This would signal the beginning of the collapse of the sanctions coalition against Iran that had been so laboriously assembled over the past several years. Both the Europeans and the Americans had operated on the tacit belief that crippling sanctions were an alternative to war. With the outbreak of war, that assumption would no longer be valid."

Everything is tea-leaf reading at the moment. Israeli Prime Minister Benjamin Netanyahu and many on the country's right insist that Iran is a major threat to the Jewish state's existence, and fear can push people to do surprising things. But the leaves are almost overwhelmingly telling us no war soon .

Page 40: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 402011-2012 File Title

AT: Student LoansObama will veto.U.S. Election News 4/28 — U.S. Election News, 2012 (“White House Say Obama Will Veto Student loan Bill by Republicans,” Byline Alexandra Taylor, April 28th, Available Online at http://uselectionnews.org/polls-2012-white-house-say-obama-will-veto-student-loan-bill-by-republicans/858321/, Accessed 04-28-2012)

The fierce political battle on the student loans is not over yet. The White House has on Friday threatened to veto a bill to prevent the interest rates from doubling from July 1 on a special kind of student loan as the bill proposed by the Republicans pays for it by cutting funds from the health care bill proposed by Obama.

Their PC key evidence is out of context and about immigration and tax increases.

The disad is not an opportunity cost to the plan – a rational policy maker controls both impacts

No link—a human mission can be done in NASA’s human spaceflight budget.Zubrin 11 [July 1, 2011, Ira Flatow interview with Robert Zubrin, “Is Settling Mars Inevitable, Or An Impossibility?” http://www.npr.org/2011/07/01/137555244/is-settling-mars-inevitable-or-an-impossibility]

ZUBRIN: I think we could do a humans to Mars program within NASA's existing budget. NASA's currently getting 19 billion a year . That is the same amount , in inflation-adjusted dollars, as NASA's average budget was from '61 to '73, when we flew astronauts to the moon starting from zero space capability at the beginning of the program.

I think we simply have to spend NASA's budget better. I think the Obama administration, in, you know, canceling Bush's moon push without replacing it with anything and just doing a disorganized set of random programs, have done NASA an extreme disservice.

They're going to be spending three billion a year refurbishing the shuttle launch pads after the shuttle stops flying. That's pointless. They're going to be spending billions on researching orbital propellant depots to refuel interplanetary spacecraft that don't exist.

They're going to be spending billions researching a new electric thruster that's no better than the ones we already have while not developing the power source needed to drive either.

The way NASA can accomplish things, if it's given focus, it has enough money.

Page 41: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 412011-2012 File Title

AT: Loans Solve EconomyLoans don’t solve the economyCSM 4/24 — Christian Science Monitor, 2012 (“Student debt: How big a risk does it pose to the economy?,” Byline Mark Trumbull, April 24th, Available Online at http://www.csmonitor.com/layout/set/print/content/view/print/500136, Accessed 04-28-2012)

Surging student-loan debt has become a burden on the US economy – and President Obama is warning of a "tremendous blow" that could occur for millions of students in the form of an interest-rate hike in July.

So how big is this issue? Does student debt represent a brewing crisis?

Student loans pose a significant financial challenge for America, some economists say, but in a way that's different from the big buildup in mortgage debt that ended in a housing bust and deep recession.

"It's not a bubble that will burst ," says Chris Christopher, an economist at IHS Global Insight in Lexington, Mass. "People still need to go to college .... The [ financial] returns of education are still very vast ."Yet the debts resulting from college are a high and rising burden that now totals more than $1 trillion, by one official estimate. For a graduate, the burden can be like paying a second rent check each month. And the job market is still in poor shape, meaning that many grads face the loan payments while unemployed or underemployed.

The result is additional weakness in the economy. "People are delaying marriage," postponing having children, and taking a pass on home purchases, Mr. Christopher says. "They're living with their parents. They're not spending as much as they otherwise would have."

The problem is big enough that it's putting pressure on the US government – the nation's major provider of college loans and financial aid – to provide some sort of relief.

In an appearance at the University of North Carolina in Chapel Hill on Tuesday, Mr. Obama proposed that one major step should be to keep interest rates on federal college loans from jumping on July 1, when a government-orchestrated discount is set to expire.

More than 7.4 million students would see their interest rate on federally subsidized loans double if Congress fails to act, the White House says, with the rate climbing from 3.4 percent to 6.8 percent.

"Stopping this from happening should be a no-brainer," Obama said. "The Stafford loans we're talking about, they're named after a Republican senator.... This shouldn't be a partisan issue."

Mitt Romney, the expected Republican presidential nominee, said he also supports preventing the July interest-rate boost, but so far it is unclear how Republicans in Congress will address the issue.

Although the problem is large, the $1 trillion in student loans is only about one- tenth the scale of America's home mortgage debts . And fewer than 10 percent of recent graduates are defaulting on their federal loans , finance experts say. That means this isn't the kind of issue that's likely to cause a new recession or cause a fiscal crisis for the federal government .

Page 42: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 422011-2012 File Title

AT: CCrewCommercial crew—is being cutClark 4/23 (Stephen, Spaceflight Now, “Congress wary of fully funding commercial crew”, http://www.spaceflightnow.com/news/n1204/24commercialcrew/)

Senate and House budget bills would cut up to 40 percent from NASA's requested budget to pay for new commercial spacecraft to ferry astronauts to the International Space Station and end U.S. reliance on Russia for crew transportation. The Senate's appropriations subcommittee for NASA marked up a spending plan with $525 million allocated for commercial crew. The House's budget calls for the program to receive $500 million in fiscal year 2013, which begins Oct. 1.

Dev more tech solves

Space X vehicles solve.USA Today 4/26 (“SpaceX’s mission: Pick up where NASA left off”, http://tucsoncitizen.com/usa-today-news/2012/04/26/spacexs-mission-pick-up-where-nasa-left-off/)

Less than four years ago, SpaceX had yet to launch a rocket successfully. Today, the company is on the verge of a historic attempt to send the first private spacecraft to the I nternational Space Station. SpaceX founder Elon Musk’s goals to dramatically lower launch costs and eventually send people to Mars remain ambitious for a company that has reached orbit only four times — the last time nearly 17 months ago. But many believe a successful launch from Cape Canaveral, targeted now for May 7, and docking at the ISS would represent a paradigm shift in spaceflight operations and validate Musk’s conviction that a small , entrepreneurial company could upset the status quo . “They’re coming in and saying we can do this better , we can do this cheaper , and we’re going to make a go of it,” said Jim Muncy, a space-policy analyst whose clients include SpaceX. “It is absolutely the quintessential American business story.” Riding on Musk’s vision Musk’s wealth, vision and partnership with NASA have propelled SpaceX’s rise, from its birth in 2003 through a series of failed launches. He started the company after making millions from the 2002 sale of the Internet payment service PayPal, which he co-founded. Interested in flying a science experiment to Mars, Musk explored buying U.S. and Russian rockets but was shocked at the prices. “If you look at the space industry, the one constant over the last 50 years is the cost of launch — it hasn’t changed,” said Chris Quilty, an equity analyst at Raymond James in St. Petersburg, Fla., citing a cost of about $10,000 to launch 1 kilogram to orbit. Musk, 31 at the time, decided he could do better, and committed $100 million of his fortune to the cause. Starting from scratch, Musk sought to mass-produce rockets using more modern technology and relatively simple, modular designs. The company’s small Falcon 1 rocket would test the liquid-fueled engines that would power both stages of a larger Falcon 9 rocket. Several Falcon 9 boosters could be grouped to create a heavy-lift rocket. “It was a fresh, new, bold approach to a traditional, archaic aerospace industry,” said Space Florida President Frank DiBello, who then led a space venture capital firm. Visitors to SpaceX’s Hawthorne, Calif., headquarters in a former Boeing 747 fuselage factory see Silicon Valley culture being applied to spaceflight. Musk occupies a cubicle on the factory floor. Vehicle designers and builders work side by side, in a structure less hierarchical than at traditional aerospace contractors like the Boeing Co. and Lockheed Martin Corp. And the company’s workforce is noted for the large number of 20-somethings in its engineering corps. There’s no bigger difference than Musk himself, whose business track record and outsize personality lend the company a swagger unusual in the industry. In addition to being CEO, he takes pride in being “chief designer” of SpaceX’s vehicles, which he says is no vanity title. “There’s nobody that knows more about the rocket than I do,” he said. Credit to NASA Musk credits NASA with helping SpaceX get where it is today. The space agency in 2006 selected SpaceX as one of two partners to develop commercial cargo resupply services to the station and has paid SpaceX $381 million to date to advance its cargo capability, with another $15 million due if this month’s planned flight is a

Page 43: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 432011-2012 File Title

success. At the end of 2008, not long after SpaceX’s first successful Falcon 1 launch, NASA awarded the company a $1.6 billion contract to haul cargo to the space station, providing the relatively new company an anchor customer for years. A successful Dragon visit to the space station would set the stage for SpaceX to start executing its $1.6 billion resupply contract . But many challenges remain for the company to achieve its longer-term ambitions. SpaceX’s ability to sustain lower costs depends on a high volume of launches that may not materialize.

Quarantines solve disease – Empirically provenAltman, et. al. 5 [Lawrence, reporter for The New York Times, Jeff Bailey, reporter for the New York Times in Chicago, "CDC Proposes New RUles in Effort to Prevent Disease Outbreak", section A; column 1, National Desk, p. 22 http://query.nytimes.com/gst/fullpage.html?sec=health&res=9802E7DF1631F930A15752C1A9639C8B63]

Federal officials yesterday proposed the first significant changes in quarantine rules in 25 years in an effort to broaden the definition of reportable illnesses, to centralize their reporting to the federal government and to require the airline and shipping industries to keep passenger manifests electronically for 60 days. The proposals would also clarify the appeals process for people subjected to quarantines to allow for administrative due process and give health officials explicit authority to offer vaccination, drugs and other appropriate means of prevention on a voluntary basis to those in quarantine. The proposals could cost the beleaguered airline industry hundreds of millions of dollars, officials of the Centers for Disease Control and Prevention said. The officials are inviting public comment on the proposals, which are to be published in the Federal Register on Nov. 30, they told reporters in a telephone news conference. The proposals are part of a broader Bush administration plan to improve the response to current and potential communicable disease threats that may arise anywhere in the world. If adopted, the new regulations ''will allow the C.D.C. to move more swiftly'' when it needs to control outbreaks, said Dr. Martin Cetron, who directs the agency's division of global migration and quarantine. The outbreak of severe acute respiratory syndrome (SARS) in 2003 underscored how fast a disease could spread through the world and the need to modernize and strengthen quarantine measures by pointing out gaps in health workers' ability to respond quickly and effectively, Dr. Cetron said. As the C.D.C. joined with cooperative airlines to meet flights and later collect information about passengers who had contact with others who developed SARS, the epidemiologists had to compile and process by hand data collected from flight manifests, customs declarations and other sources. But manifests contained only the name and seat number; customs declarations were illegible, and when readable, the names did not match those on the manifests. 'The time required to track passengers was routinely longer than the incubation period,'' which was two to 10 days for SARS, Dr. Cetron said. ''That was really quite shocking,'' Dr. Cetron said. One proposed change would require airline and ship manifests to be kept electronically for 60 days and made available to the C.D.C. within 12 hours when ill passengers arrive on international and domestic flights. The proposed changes include provisions for maintaining confidentiality and privacy of health information. The outbreak of SARS was stopped in part because of quarantines imposed in some affected countries. Quarantine restricts the movement of a healthy person exposed to someone who has a communicable disease . The quarantine period is determined by the usual length of time that passes from exposure to an infectious agent to the onset of illness. An executive order of the president limits quarantine to nine diseases: cholera, diphtheria, infectious tuberculosis, plague, smallpox, yellow fever, viral hemorrhagic fevers like Ebola, SARS and influenza caused by new strains that could cause a pandemic .

Page 44: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 442011-2012 File Title

2AC—AT: Fear Critique3. Turn—fear representations are key to motivate colonization—we have to replace an unconscious fear of space with a conscious fear of staying on the planetEngdahl 6—Lifeboat Foundation Scientific Advisory Board member, degree from the University of California at Santa Barbara, graduate studies at Portland State University [October, 2006, Sylvia Engdahl, “Achieving Human Commitment to Space Colonization: Is Fear the Answer?” http://lifeboat.com/ex/fear.and.space]

Recently, however, I have come to believe that people are never going to support a sufficient space effort for positive reasons, or even to prevent a distant prospect of extinction. We wouldn’t have gotten to the moon without the immediate fear of the Soviets, and we haven’t gotten far since without fear as a motive . Over the past thirty-five years I have watched one space advocacy organization after another fail to gain significant public support despite great enthusiasm on the part of its founders and activists. There have been dozens of them, and for the most part their efforts, like my own, have proved to be mere “preaching to the converted.” They have won few if any new converts from among the apathetic majority.

And so I think perhaps the Lifeboat Foundation has the answer. It is not a “space advocacy” organization despite its advocacy of self-sufficient colonies. It focus es on threats of extinction and on multiple ways of combating them, thus appeal ing to a far wider assortment of people than space enthusiasts. Its emphasis is on potential near-term threats. Many of its supporters believe in the imminent coming of the Singularity, which personally I do not because I don’t believe machine intelligence will surpass the as-yet-incomprehensible powers of the human mind. But differences of opinion on this issue don’t affect the need to establish ourselves off-world for insurance purposes.

There is another reason why I’m convinced that fear may be the only impetus strong enough to produce public support for a large-scale space effort. I have long suspected that it is fear , rather than apathy, that has been holding the majority back — not conscious fear, but the stirring of an unconscious recognition that the universe is very much vaster, and more scary, than most people like to think . Pascal’s famous statement, “The eternal silence of these infinite spaces terrifies me,” is the earliest formal expression of a human reaction that is widespread, though seldom acknowledged. But in Pascal’s time and long after, humans were insulated from the universe by a gulf assumed by most to be unbridgeable. Space was an abstraction, a topic studied by astronomers that was in no way connected to people’s lives. With Apollo 8’s voyage to the moon in 1968, the public was suddenly jolted into awareness that our access to space is real.

Much is said about the positive effect of the photos of Earth obtained by Apollo 8, which for the first time showed our planet as a globe, a fragile refuge amid barren surroundings, and thereby launched the environmental movement. The concomitant negative impact — spread of gut-level knowledge that space is an actual place containing little that’s familiar to us and perhaps much that we’d rather not meet — is not spoken of. But it may be no less significant.

Could this be one of the reasons why interest in space died so soon after the first moon landing, resulting in the cancellation of the last few planned Apollo missions? Is it the cause of the rise of belief in UFO contacts, and could the experience of being abducted by aliens (which in most cases is neither faked nor a manifestation of mental illness, but a perception that emerges in a form indistinguishable from memory) be an unconsciously-formed metaphor for the unknown terrors that may await us in space? Is the decline of positive space imagery in science fiction movies and corresponding rise of fantasy and disaster films a sign that space is less appealing to the public, and nameless evils are more frightening , when the universe is open to humans than it was when it could be classed with the never-never land?

Page 45: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 452011-2012 File Title

Very probably, it is. This would explain much that has been puzzling to space enthusiasts, who have long sought an answer to what happened to the vision that offered such promise and evaporated so suddenly. Expansion into the new ecological niche of space is clearly a new stage of human evolution, yet after brief acknowledgement at the time of the first moon landings, our society as a whole has been blind to this … or perhaps not. Perhaps underneath people know it all too well.

Even space advocates often feel no urgency about bringing off-world settlements into existence; they dream of them as symbols of a hopeful future, but like almost everyone else, they may be reluctant to take the plunge. Only a small minority of adventurers really enjoy the thought of being on the cutting edge of a major step in human evolution, for who knows where that may lead? At the time of Columbus, many thought venturesome ships would fall off the edge of the world, a prospect they viewed with great dismay; others (according to legend), knowing the world extended beyond their maps, marked the edges with the warning “Here Be Dragons”. Figuratively speaking, most people of our time may feel the same way about space exploration.

If this is true, then the only way to overcome unconscious fear may be to replace it with conscious fear — fear not of the “dragons” whose nature we cannot imagine, but of the disastrous scenarios we can imagine all too clearly. Paradoxically, fear may be the answer both to why we haven’t progressed in space and how we can motivate a push outward. For the danger we face is real . One way or another, whether or not terrorists employ dangerous technologies or asteroids strike Earth, to remain confined to our home forever would mean our extinction . And we don’t have forever to make up our minds about it; as has often been pointed out, we have only a narrow window of opportunity in which the resources for getting started will remain available.

Therefore, if the public must be motivated by fear to bring about commit ment to space colonization, then so be it . Even in the conclusion of The Far Side of Evil, written at the height of my optimism about Apollo, I acknowledged that fear can be the saving grace that leads a world to develop space technology . And after all, as David Tamm has said in his master’s thesis on the potential benefits of space development by European nations, “Luckily, preparing for the worst actually carries the great good fortune of being the best means of furthering our common humanity.”

Page 46: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 462011-2012 File Title

AT: You Ignore Current ProblemsEmphasizing existential risks doesn’t mean ignoring current problems—their argument is a reduction ad absurdum.Matheny 7—Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics at Johns Hopkins University, holds a Master’s in Public Health from the Bloomberg School of Public Health at Johns Hopkins University and an M.B.A. from the Fuqua School of Business at Duke University [2007, Jason G. Matheny, “Reducing the Risk of Human Extinction,” Risk Analysis, Volume 27, Issue 5, October, Available Online at http://jgmatheny.org/matheny_extinction_risk.htm, Accessed 07-04-2011]

It might be feared that consideration of extinction risks would lead to a reductio ad absurdum : we ought to invest all our resources in asteroid defense or nuclear disarmament, instead of AIDS, pollution, world hunger, or other problems we face today. On the contrary, programs that create a healthy and content global population are likely to reduce the probability of global war or catastrophic terrorism. They should thus be seen as an essential part of a portfolio of risk- reducing projects.

*** 1AR

Page 47: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 472011-2012 File Title

AT: Radiation—Solar FlaresNo risk of pathogens—3 reasons (sterile environment, pathogen adaptation, empirics from Martian meteorites)Zubrin 10—an astronautical engineer and author, is president of Pioneer Astronautics, a research and development firm, and president of the Mars Society, a space advocacy group [Editor: Joel Levin is the Principal Investigator of the Aerial Regional-scale Environmental Survey (ARES) of Mars; is Senior Research Scientist in the Science Directorate at the NASA Langley Research Center and has a BS in physics, an MS in aeronomy and planetary atmospheres, and a Ph.D. in atmospheric science. Editor: Robert Zubrin is an astronautical engineer and author, is president of Pioneer Astronautics, a research and development firm, and president of the Mars Society, a space advocacy group. Editor: Paul Davies is a theoretical physicist, cosmologist, astrobiologist and author, a College Professor at Arizona State University, and Director of BEYOND. Author: Zubrin, “Human Mars Exploration: The Time Is Now,” Chapter One, Colonizing Mars The Human Mission to the Red Planet, Cosmology Science Publishers, ISBN-10: 0982955235, Publication Date: December 3, 2010, pg. Kindle]

4.3. Back Contamination: Recently some people have raised the issue of possible back-contamination as a reason to shun human (or robotic sample return) missions to Mars. Such fears have no basis in science. The surface of Mars is too cold for liquid water, is exposed to near vacuum, u ltra v iolet, and cosmic radiation, and contains an antiseptic mixture of peroxides that have eliminated any trace of organic material. It is thus a s sterile an environment as one could ask for . Furthermore, pathogens are specifically adapted to their hosts . Thus, while there may be life on Mars deep underground, it is quite unlikely that these could be pathogenic to terrestrial plants or animals , as there are no similar macrofauna or macroflora to support a pathogenic life cycle in Martian subsurface groundwater. In any case, the Earth currently receives about 500 kg of Martian meteoritic ejecta per year. The trauma that this material has gone through during its ejection from Mars , interplanetary cruise, and re-entry at Earth is insufficient to have sterilized it, as has been demonstrated experimentally and in space studies on the viability of microorganisms following ejection and reentry (Burchell et al. 2004; Burchella et al. 2001; Horneck et al. 1994, 1995, 2001, Horneck et al. 1993; Mastrapaa et al. 2001; Nicholson et al. 2000). So if there is the Red Death on Mars, we’ve already got it . Those concerned with public health would do much better to address their attentions to Africa.

Shielding solves solar flare radiationZubrin 11—formerly a senior astronautical engineer at Lockheed Martin, chairman of the executive committee of the National Space Society, President of Pioneer Astronautics, a space-exploration research and development firm, and president of the Mars Society, a space advocacy group [Robert Zubrin, “5: KILLING THE DRAGONS, AVOIDING THE SIRENS,” Chapter 5, The Case for Mars: The Plan to Settle the Red Planet and Why We Must, Simon & Schuster, Inc., ISBN-10: 145160811X, Publication Date: June 28, 2011, pg. Kindle]

Solar flares are composed of floods of protons that burst forth from the Sun at irregular and unpredictable intervals on the order of once per year . The amount of radiation dose a solar flare would deliver to a completely unshielded astronaut can be hundreds of rem in the course of several hours, which as we have seen would be enough to cause radiation sickness or even death. However, the particles composing solar flares individually each have energies of about one million volts, and can be stopped relatively easily by a modest amount of shielding. For example, if we look at the three largest solar flares recorded in history , those of February 1956, November 1960, and August 1972, we find that the dose they would have delivered to an astronaut protected only by the hull of an interplanetary

Page 48: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 482011-2012 File Title

spacecraft like our hab (which with its hull, furniture, miscellaneous engineering systems, fittings, and other objects has about 5 grams per square centimeter of mass spread around its periphery to shield its occupants) would have averaged about 38 rem , while if the astronaut had gone into an onboard pantry storm shelter (where the Mars Direct hab has about 35 grams per square centimeter of shielding see Figure 5.1) he could have been shielded by stacked provisions reducing the dose to about 8 rem .18,19,20 If he had been sitting in the hab on Mars during an event representing the average of these flares, he would have taken about 10 rem if outside the shelter, or 3 rem within the shelter . (The Mars surface doses are much lower because the planet’s atmosphere and surface shields out most of the flare.)

Page 49: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 492011-2012 File Title

AT: ConstitutionNo impact—Constitution is flexible.Litchwick 11 — Dahlia Lithwick, journalist covering courts and the law for Slate, 2011 (“Read It and Weep,” Slate, January 4th, Available Online at http://www.slate.com/articles/news_and_politics/jurisprudence/2011/01/read_it_and_weep.single.html, Accessed 04-30-2012)

This newfound attention to the relationship between Congress and the Constitution is thrilling and long overdue. Progressives, as Greg Sargent points out, are wrong to scoff at it. This is an opportunity to engage in a reasoned discussion of what the Constitution does and does not do. It's an opportunity to point out that no matter how many times you read the document on the House floor, cite it in your bill, or how many copies you can stuff into your breast pocket without looking fat, t he Constitution is always going to raise more questions than it answers and confound more readers than it comforts. And that isn't because any one American is too stupid to understand the Constitution. It's because the Constitution wasn't written to reflect the views of any one American.

The problem with the Tea Party's new Constitution fetish is that it's hopelessly selective. As Robert Parry notes, the folks who will be reading the Constitution aloud this week can't read the parts permitting slavery or prohibiting cruel and unusual punishment using only their inside voices, while shouting their support for the 10th Amendment. They don't get to support Madison and renounce Jefferson, then claim to be restoring the vision of "the Framers." Either the Founders got it right the first time they calibrated the balance of power between the federal government and the states, or they got it so wrong that we need to pass a "Repeal Amendment" to fix it. And unless Tea Party Republicans are willing to stand proud and announce that they adore and revere the whole Constitution as written, except for the First, 14, 16th, and 17th amendments, which totally blow, they should admit right now that they are in the same conundrum as everyone else: This document no more commands the specific policies they espouse than it commands the specific policies their opponents support.

This should all have been good news. The fact that the Constitution is sufficiently open- ended to infuriate all Americans almost equally is part of its enduring genius . The Framers were no more interested in binding future Americans to a set of divinely inspired commandments than any of us would wish to be bound by them. As Justice Stephen Breyer explains in his recent book, Making Our Democracy Work: A Judge's View, Americans cannot be controlled by the "dead hands" of one moment frozen in time . The Constitution created a framework, not a Ouija board , precisely because the Framers understood that the prospect of a nation ruled for centuries by dead prophets would be the very opposite of freedom .

Page 50: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 502011-2012 File Title

1AR—Won’t Generate Enough Revenue***B. Can’t sell property rights—violates OST and links to dip capCooper 3 (Lawrence A. Cooper is the Deputy Chief, DIA Forward Element - US Cyber Command at United States Department of Defense, a Space Policy & Requirements Offficer at United States Department of Defense, Sr Principal Analyst, Space & Intelligence Programs at Kepler Research Inc, and Program Management Analyst at ANSER Inc, “Encouraging space exploration through a new application of space property rights”, Space Policy, Issue 19 pgs 111-118, 2003, pg online @ http://www.sciencedirect.com.proxy.lib.umich.edu/science_ob=MImg&_imagekey=B6V5248DXTN421&_cdi=5774&_user=99318&_pii=S026596460300016X&_origin=&_coverDate=05%2F312F2003&_sk=999809997&view=c&wchp=dGLzVzzzSkWB&md5=dd59b237c98333b085f21058852b7a23&ie=/sdarticle.pdf)

The OST was intended to prevent conflict in space and ensure free access to space for all by prohibiting weapons of mass destruction and preventing States from exercising territorial sovereignty. No state may claim any part of space or a celestial body, but no mention is made regarding resources removed from their original place. States are the parties to the treaty and responsible for activities in space. Therefore, people or organizations may only act under the aegis of a State which bears international responsibility and liability for those actions; states maintain jurisdiction over their personnel and objects they launch; and their activities are protected because any exploration as well as use of space is free from interference of other parties. The intent of these broad statements is to prevent competition that could lead to war, but leave more specific provisions to follow-on treaties. The OST did not define what constituted space nor did it define exactly what was meant to by “use of outer space…shall be carried out for the benefit and in the interests of all countries…” although it has been interpreted to mean “equal access”. Some have argued that OST’s broad definitions allow individual appropriation of space and celestial bodies because it only specifically prohibits appropriation by states; however, States are responsible for the actions of individuals, and property claims must occur through the state’s property laws. Therefore individuals may not claim space or celestial bodies.

Any revenue stream failure means CP doesn’t solve—here’s the math—worldwide support key.Joseph 10 — Ph.D. – Brain Research Laboratory (Rhawn, “Marketing Mars: Financing the Human Mission to Mars and the Colonization of the Red Planet,” Journal of Cosmology, August, Volume 12, http://journalofcosmology.com/Mars110.html)

The sole mission of The Human Mission to Mars Corporation should be to raise $150 billion to fund a Human Mission to Mars and the colonization of the Red Planet, and this can be accomplished by initiating and following the detailed plans discussed in this article.

It is estimated that $ 10 billion a year can be raised through clever advertising and marketing and the sale of merchandise. Following a massive advertising campaign which increases public interest, between $30 billion to $90 billion can be raised through corporate sponsorships , and an additional $ 1 billion a year through individual sponsorships. The sale of naming rights would yield an estimated $30 billion. Television broadcasting rights would bring in an estimated $30 billion. This comes to a total of between $100 billion to $160 billion, and does not include other commercial ventures and the sale of real estate and mineral rights.

NASA can't do it. The United States government can't do it. An International effort can.

Page 51: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 512011-2012 File Title

AsteroidsSQ solves- current detection and tech sufficient to divert NEOsVasile and Colombo 11 (Massimiliano and Camilla, Lecturer Ph.D., Department of Aerospace Engineering; and Ph.D. Candidate, Department of Aerospace Engineering at Glasgow, University, Optimal Impact Strategies for Asteroid Deflection, http://arxiv.org/ftp/arxiv/papers/1104/1104.4670.pdf)

The European Space Agency in particular is now assessing the feasibility of the Don Quijote mission1, due to launch in the first half of next decade, which is intended to impact a spacecraft with a high relative velocity onto an asteroid and measure its deflection. Should this mission fly, this would be the first technological demonstration of our capability to deviate an asteroid if needed. Prevention strategies against a potential hazardous object in collision route with the Earth usually consider a change in momentum of the asteroid, with a consequent variation in the semi-major axis which results in an increase of the Minimum Orbit Intersection Distance (MOID), between the Earth and the object. Several different strategies have been considered to achieve this goal; among them the simplest one is the kinetic impact. In fact, as will be shown in this paper, effective kinetic impacts resulting in a variation of the MOID even of thousand of kilometers seem to be already achievable with the current launch technology with a relatively small spacecraft, provided that the time difference between the momentum change and the potential Earth impact is large enough .

NASA has effective asteroid response plan.Green 7 (James, November 8, Dr. Green received his Ph.D. in Space Physics from the University of Iowa in 1979 and began working in the Magnetospheric Physics Branch at NASA's Marshall Space Flight Center (MSFC) in 1980. At Marshall, Dr. Green developed and managed the Space Physics Analysis Network, which provided many scientists, all over the world, with rapid access to data, other scientists, and specific NASA computer and information resources NEAR-EARTH OBJECTS (NEOS)-STATUS OF THE SURVEY PROGRAM AND REVIEW OF NASA'S 2007 REPORT TO CONGRESS, http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_house_hearings&docid=f:38057.pdf)//DT

NASA has an NEO contingency notification plan to be utilized in the very un - likely event an object is detected with significant probability of impacting the Earth. The plan establishes procedures between the detection sites , the Minor Planet Cen ter, the NASA NEO Program Office at JPL, and NASA Headquarters to first quickly verify and validate the data and orbit on the object of interest, and then up-channel confirmed information in a timely manner to the NASA Administrator. These procedures were first exercised with the discovery of the object now known as Apophis, which was found in December 2004 in a hazardous orbit but determined to not have a significant probability of impacting the Earth in the near-term. NASA will con tinue to refine this internal contingency plan, and begin work with other U.S. Gov ernment agencies and institutions when directed.

Quarantines SolveAltman, et. al. 5 [Lawrence, reporter for The New York Times, Jeff Bailey, reporter for the New York Times in Chicago, "CDC Proposes New RUles in Effort to Prevent Disease Outbreak", section A; column 1, National Desk, p. 22 http://query.nytimes.com/gst/fullpage.html?sec=health&res=9802E7DF1631F930A15752C1A9639C8B63]

Federal officials yesterday proposed the first significant changes in quarantine rules in 25 years in an effort to broaden the definition of reportable illnesses, to centralize their reporting to the federal government and to require the airline and shipping industries to keep passenger manifests electronically for 60 days. The proposals would also clarify the appeals process for people subjected to quarantines to allow for administrative due process and give health officials explicit authority to offer vaccination, drugs and

Page 52: tocteach.files.wordpress.com · Web viewMatheny 7 — Jason G. Matheny, Research Associate at the Future of Human Institute at Oxford University, Ph.D. Candidate in Applied Economics

Woodward Academy 522011-2012 File Title

other appropriate means of prevention on a voluntary basis to those in quarantine. The proposals could cost the beleaguered airline industry hundreds of millions of dollars, officials of the Centers for Disease Control and Prevention said. The officials are inviting public comment on the proposals, which are to be published in the Federal Register on Nov. 30, they told reporters in a telephone news conference. The proposals are part of a broader Bush administration plan to improve the response to current and potential communicable disease threats that may arise anywhere in the world. If adopted, the new regulations ''will allow the C.D.C. to move more swiftly'' when it needs to control outbreaks, said Dr. Martin Cetron, who directs the agency's division of global migration and quarantine. The outbreak of severe acute respiratory syndrome (SARS) in 2003 underscored how fast a disease could spread through the world and the need to modernize and strengthen quarantine measures by pointing out gaps in health workers' ability to respond quickly and effectively, Dr. Cetron said. As the C.D.C. joined with cooperative airlines to meet flights and later collect information about passengers who had contact with others who developed SARS, the epidemiologists had to compile and process by hand data collected from flight manifests, customs declarations and other sources. But manifests contained only the name and seat number; customs declarations were illegible, and when readable, the names did not match those on the manifests. 'The time required to track passengers was routinely longer than the incubation period,'' which was two to 10 days for SARS, Dr. Cetron said. ''That was really quite shocking,'' Dr. Cetron said. One proposed change would require airline and ship manifests to be kept electronically for 60 days and made available to the C.D.C. within 12 hours when ill passengers arrive on international and domestic flights. The proposed changes include provisions for maintaining confidentiality and privacy of health information. The outbreak of SARS was stopped in part because of quarantines imposed in some affected countries. Quarantine restricts the movement of a healthy person exposed to someone who has a communicable disease . The quarantine period is determined by the usual length of time that passes from exposure to an infectious agent to the onset of illness. An executive order of the president limits quarantine to nine diseases: cholera, diphtheria, infectious tuberculosis, plague, smallpox, yellow fever, viral hemorrhagic fevers like Ebola, SARS and influenza caused by new strains that could cause a pandemic .