week 1 - introduction to metal forming processes

80
Week 1 – Introduction to Metal Forming Processes

Upload: senura-seneviratne

Post on 21-Apr-2015

108 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Week 1 - Introduction to Metal Forming Processes

Week 1 – Introduction to Metal Forming Processes

Page 2: Week 1 - Introduction to Metal Forming Processes

Unit of study code HES3281

Unit of study name Materials and Manufacturing 2

Teaching Term/Semester & Year

Semester 1 / 2012

Contact Hours (hrs/wk) or total contact hours

5 Hours / Week

Prerequisites HES2281 Materials and Manufacturing 1

Corequisites Nil

Credit Points 12.5

Page 3: Week 1 - Introduction to Metal Forming Processes

AimsThe unit aims to provide students the understanding of avariety of metal and polymeric manufacturing processes andthe importance of fatigue failure and failure of materialsLearning ObjectivesAfter successfully completing this unit, you should be able to:1.To demonstrate an understanding in the manufacturing ofplastic components by recognising the processes andcalculating the forces required to produce such components2.To develop an understanding in fatigue and failure bycalculating the stress and strain involved3.To demonstrate an understanding in the manufacturing ofmetal components by recognising the processes andcalculating the forces required to produce such components

Page 4: Week 1 - Introduction to Metal Forming Processes

ContentMetal Forming Processes: • Extrusion, wire drawing, strip forming, forging,rolling, sheet metal forming – mathematical modelling and process parameters.Polymers and composite: manufacture and processes: • Crystalline andamorphous microstructures, physical properties, Mechanical properties ofpolymers and composites. Forming and moulding techniques, extrusion andinjection moulding: effect of process parameters. Blow moulding: output dierequirements, parisons dimensions, swelling considerations.Fatigue Failure and Failure of Materials: • Static failure of materials, Fatiguefailure, fatigue/fracture, life estimation. Analysis and prediction of failure, Non‐destructive testing.Advanced Manufacturing Processes: • Materials selection, powder metallurgy.Laboratory experiments: Cold rolling, stress concentration and polymerprocessing.

Page 5: Week 1 - Introduction to Metal Forming Processes

AssessmentThis subject contains the following assessments: Examination (50%) ‐ 3 hrs. at the end of the semester Tests (2 written test) (10%) – 5% each Case study (Oral Presentation ) (10%)Practical laboratory work (20%) – attendance (5%) and lab reports (15%). Tutorial Participation (10%) – Attendance is compulsory.

Page 6: Week 1 - Introduction to Metal Forming Processes

Minimum requirements to pass this unit of study:In order to achieve a pass in this unit of study, you must:(a) at least 35% of the possible final marks for eachAssessment Component plus(b) an aggregate mark for the subject of 50% or more.If you do not achieve at least 35% of the possible finalmarks for each Major Assessment Component you willreceive a maximum of 44% as your mark for the subjectconcerned. The Major Assessment Components carries aweighting of at least 15% of the total mark available.

Page 7: Week 1 - Introduction to Metal Forming Processes

Resources and Reference Material

TEXT There is no specific text for this subject. However, most notes are obtained from Groover, M.P., Fundamentals of Modern Manufacturing Methods‐Materials, Processes and Systems, Prentice Hall Inc, 2007, and other references listed below.This text (Groover, M.P., Fundament….) is also used in the subject HES2281 Materials and Manufacturing 1REFERENCESGroover, M.P., Fundamentals of Modern Manufacturing Methods‐Materials, Processes and Systems, Prentice Hall Inc, 2007Tlusty, J., Manufacturing Processes and Equipment, Prentice Hall 2000.Schey, J.A., Introduction to Manufacturing Processes, 3rd Edn., McGrawHill, 2000.El‐Wakil, S.D., Processes and Design for Manufacturing, 2nd Edn., PWS Pub. Company, 1998Crawford, R.J., Plastic Engineering, 3rd Edn., Maxwell Macmillan, 1997Kalpakjian, S., and Schmid, S.R., Manufacturing Engineering and Technology, Prentice Hall, 5th Edition, 2006Jones, D. R. H., Ashby, M., Engineering Materials, Volume 1, 3rd Edn., Elsevier, London, 2005

Page 8: Week 1 - Introduction to Metal Forming Processes
Page 9: Week 1 - Introduction to Metal Forming Processes

1. Solidification processes ‐ starting material is a heated liquid or semifluid

2. Particulate processing ‐ starting material consists of powders

3. Deformation processes ‐ starting material is a ductile solid (commonly metal)

4. Material removal processes ‐ starting material is a ductile or brittle solid 

Page 10: Week 1 - Introduction to Metal Forming Processes
Page 11: Week 1 - Introduction to Metal Forming Processes

Large group of manufacturing processes in whichplastic deformation is used to change the shape ofmetal work pieces.» The tool, usually called a die, applies stresses that exceed the yield strength of the metal 

» The metal takes a shape determined by the geometry of the die

Page 12: Week 1 - Introduction to Metal Forming Processes

Deformation processes exploit a remarkableproperty of metals, which is their ability toflow plastically in the solid state withoutdeterioration of their properties.

With the application of suitable pressures, thematerial is moved to obtain the desiredshape with almost no wastage.

Page 13: Week 1 - Introduction to Metal Forming Processes

FormingProcesses

Forming processes tend to be complexsystems consisting

Independent variables,Dependent variables, andIndependent-dependent interrelations.

Page 14: Week 1 - Introduction to Metal Forming Processes

» Stresses to plastically deform the metal are usually compressive˃ Examples: rolling, forging, extrusion

» However, some forming processes ˃ Stretch the metal (tensile stresses)˃ Others bend the metal (tensile and compressive)˃ Still others apply shear stresses

Page 15: Week 1 - Introduction to Metal Forming Processes
Page 16: Week 1 - Introduction to Metal Forming Processes
Page 17: Week 1 - Introduction to Metal Forming Processes

Independent Variables

Starting materialThe engineer is often free to specify the chemistryand condition. These may also be chosen forease in fabrication or they may be restrictedby the final properties desired for the product.

Starting geometry of the workpieceThis may be dictated by previous processing or itmay be selected by the engineer from a variety ofavailable shapes. Economics often influence thisdecision.

Page 18: Week 1 - Introduction to Metal Forming Processes

Independent Variables

Tool or die geometryThis are has many aspects such as the diameter of arolling mill roll, the die angle in wire drawing and the cavitydetails when forging. Since tooling will produce andcontrol the metal flow, success or failure of a processoften depends on tool geometry.

Page 19: Week 1 - Introduction to Metal Forming Processes

Independent Variables

LubricationSince lubricants also acts as coolants, thermal barriers, corrosion inhibitors, and parting compounds, their selection is an aspect of great importance. Specification includes type of lubricant amount to be applied and the method of application.

Page 20: Week 1 - Introduction to Metal Forming Processes

Independent Variables

Starting temperatureMany material properties vary greatly with temperature,so its selection and control may well dictate the successor failure of an operation.

Speed of operation Since speed can directly influence the lubricanteffectiveness, the forces required for deformationand the time available for heat transfer. It isobvious that its selection would be significant in aforming operation.

Page 21: Week 1 - Introduction to Metal Forming Processes

Independent Variables

Amount of deformation while some processes control this variable through die design, others, such as rolling permits its selection at the discretion of the engineer.

Page 22: Week 1 - Introduction to Metal Forming Processes

Dependent Variables

Force or power requirements Engineers cannot directly specify the force or power;

they can only specify the independent variables andthen experience the consequences of the selection.The ability to predict the forces or powers however isextremely important for only by having this knowledgewill the engineer be able to specify or select the

equipment for the process.

Page 23: Week 1 - Introduction to Metal Forming Processes

Dependent Variables

Material properties of the productThe customer is not interested in the starting

properties but is concerned with our ability to produce thedesired final shape with the desired final properties

Exit temperatureEngineering properties can be altered by both themechanical and thermal history of the material thusit is important to know and control the temperatureof the material throughout the process

Page 24: Week 1 - Introduction to Metal Forming Processes

Dependent Variables

Surface finish and precision Both are characteristics of the resultant product that are dependent on the specific details of the process.

Nature of the material flowsince properties depend on deformation history,control here is vital the customer is satisfied only ifthe desired geometric shape is produced with theright set of companion properties and withoutsurface or internal defects.

Page 25: Week 1 - Introduction to Metal Forming Processes

Independent-Dependent Interrelations

ExperienceThis requires long time exposure to the process and isgenerally limited to the specific materials, equipmentand products encountered in the realm of past contact.

ExperimentWhile possibly the least likely in error directexperiment is both time consuming and costly.

Page 26: Week 1 - Introduction to Metal Forming Processes

Independent-Dependent Interrelations

Process modelingHere one approaches the problem with a high speedcomputer and one or more mathematical models of theprocess numerical values are provided for the variousindependent variables and the models are used to

compute predictions for the dependent variables

Page 27: Week 1 - Introduction to Metal Forming Processes
Page 28: Week 1 - Introduction to Metal Forming Processes
Page 29: Week 1 - Introduction to Metal Forming Processes
Page 30: Week 1 - Introduction to Metal Forming Processes
Page 31: Week 1 - Introduction to Metal Forming Processes

» Desirable material properties: ˃ Low yield strength 

˃ High ductility

» These properties are affected by temperature: ˃ Ductility increases and yield strength decreases when work temperature is raised

» Other factors: ˃ Strain rate and friction

Page 32: Week 1 - Introduction to Metal Forming Processes

1. Bulk deformation˃ Rolling˃ Forging˃ Extrusion˃ Wire and bar drawing

2. Sheet metalworking˃ Bending˃ Deep drawing˃ Cutting˃ Miscellaneous processes

Page 33: Week 1 - Introduction to Metal Forming Processes

» Characterized by significant deformations and massive shape changes

» "Bulk" refers to workparts with relatively low surface area‐to‐volume ratios

» Starting work shapes include cylindrical billets and rectangular bars

Page 34: Week 1 - Introduction to Metal Forming Processes
Page 35: Week 1 - Introduction to Metal Forming Processes

Figure 18.2 Basic bulk deformation processes: (a) rolling

Rolling

Page 36: Week 1 - Introduction to Metal Forming Processes

Figure 18.2 Basic bulk deformation processes: (b) forging

Forging

Page 37: Week 1 - Introduction to Metal Forming Processes

Figure 18.2 Basic bulk deformation processes: (c) extrusion

Extrusion

Page 38: Week 1 - Introduction to Metal Forming Processes

Figure 18.2 Basic bulk deformation processes: (d) drawing

Wire and Bar Drawing

Page 39: Week 1 - Introduction to Metal Forming Processes

» Forming and related operations performed on metal sheets, strips, and coils

» High surface area‐to‐volume ratio of starting metal, which distinguishes these from bulk deformation 

» Often called pressworking because presses perform these operations˃ Parts are called stampings˃ Usual tooling: punch and die

Page 40: Week 1 - Introduction to Metal Forming Processes

Figure 18.3 Basic sheet metalworking operations: (a) bending

Sheet Metal Bending

Page 41: Week 1 - Introduction to Metal Forming Processes

Figure 18.3 Basic sheet metalworking operations: (b) drawing

Deep Drawing

Page 42: Week 1 - Introduction to Metal Forming Processes

Figure 18.3 Basic sheet metalworking operations: (c) shearing

Shearing of Sheet Metal

Page 43: Week 1 - Introduction to Metal Forming Processes
Page 44: Week 1 - Introduction to Metal Forming Processes
Page 45: Week 1 - Introduction to Metal Forming Processes
Page 46: Week 1 - Introduction to Metal Forming Processes
Page 47: Week 1 - Introduction to Metal Forming Processes
Page 48: Week 1 - Introduction to Metal Forming Processes
Page 49: Week 1 - Introduction to Metal Forming Processes

» Plastic region of stress‐strain curve is primary interest because material is plastically deformed 

» In plastic region, metal's behavior is expressed by the flow curve: 

nK

where K = strength coefficient; and n = strain hardening exponent

Flow curve based on true stress and true strain

Page 50: Week 1 - Introduction to Metal Forming Processes

» For most metals at room temperature, strength increases when deformed due to strain hardening

» Flow stress = instantaneous value of stress required to continue deforming the material

where Yf = flow stress, that is, the yield strength as a function of strain

nf KY

Page 51: Week 1 - Introduction to Metal Forming Processes

» Determined by integrating the flow curve equation between zero and the final strain value defining the range of interest 

where       = average flow stress; and  = maximum strain during deformation process

nKY

n

f

1_

_fY

Page 52: Week 1 - Introduction to Metal Forming Processes

» For any metal, K and n in the flow curve depend on temperature˃ Both strength (K) and strain hardening (n) are reduced at higher temperatures

˃ In addition, ductility is increased at higher temperatures

Page 53: Week 1 - Introduction to Metal Forming Processes
Page 54: Week 1 - Introduction to Metal Forming Processes
Page 55: Week 1 - Introduction to Metal Forming Processes
Page 56: Week 1 - Introduction to Metal Forming Processes
Page 57: Week 1 - Introduction to Metal Forming Processes
Page 58: Week 1 - Introduction to Metal Forming Processes
Page 59: Week 1 - Introduction to Metal Forming Processes

» Any deformation operation can be accomplished with lower forces and power at elevated temperature 

» Three temperature ranges in metal forming: ˃ Cold working˃ Warm working˃ Hot working

Page 60: Week 1 - Introduction to Metal Forming Processes
Page 61: Week 1 - Introduction to Metal Forming Processes

» Performed at room temperature or slightly above 

» Many cold forming processes are important mass production operations

» Minimum or no machining usually required˃ These operations are near net shape or net shapeprocesses 

Page 62: Week 1 - Introduction to Metal Forming Processes

» Better accuracy, closer tolerances» Better surface finish» Strain hardening increases strength and hardness

» Grain flow during deformation can cause desirable directional properties in product

» No heating of work required

Page 63: Week 1 - Introduction to Metal Forming Processes

» Higher forces and power required in the deformation operation

» Surfaces of starting workpiece must be free of scale and dirt

» Ductility and strain hardening limit the amount of forming that can be done˃ In some cases, metal must be annealed to allow further deformation

˃ In other cases, metal is simply not ductile enough to be cold worked

Page 64: Week 1 - Introduction to Metal Forming Processes

» Performed at temperatures above room temperature but below recrystallization temperature

» Dividing line between cold working and warm working often expressed in terms of melting point: ˃ 0.3Tm, where Tm = melting point (absolute temperature) for metal

Page 65: Week 1 - Introduction to Metal Forming Processes

» Lower forces and power than in cold working» More intricate work geometries possible» Need for annealing may be reduced or eliminated 

Page 66: Week 1 - Introduction to Metal Forming Processes

» Deformation at temperatures above therecrystallization temperature

» Recrystallization temperature = about one‐half of melting point on absolute scale ˃ In practice, hot working usually performed somewhat above 0.5Tm

˃ Metal continues to soften as temperature increases above 0.5Tm, enhancing advantage of hot working above this level 

Page 67: Week 1 - Introduction to Metal Forming Processes

Capability for substantial plastic deformation of the metal ‐ far more than possible with cold working or warm working

» Why?˃ Strength coefficient (K) is substantially less than at room temperature

˃ Strain hardening exponent (n) is zero (theoretically)˃ Ductility is significantly increased 

Page 68: Week 1 - Introduction to Metal Forming Processes

» Workpart shape can be significantly altered» Lower forces and power required» Metals that usually fracture in cold working can be hot formed

» Strength properties of product are generally isotropic

» No strengthening of part occurs from work hardening ˃ Advantageous in cases when part is to be subsequently processed by cold forming

Page 69: Week 1 - Introduction to Metal Forming Processes

» Lower dimensional accuracy» Higher total energy required (due to the thermal energy to heat the workpiece)

» Work surface oxidation (scale), poorer surface finish

» Shorter tool life 

Page 70: Week 1 - Introduction to Metal Forming Processes

» Theoretically, a metal in hot working behaves like a perfectly plastic material, with strain hardening exponent n = 0˃ The metal should continue to flow at the same flow stress, once that stress is reached

˃ However, an additional phenomenon occurs during deformation, especially at elevated temperatures: Strain rate sensitivity

Page 71: Week 1 - Introduction to Metal Forming Processes

» Strain rate in forming is directly related to speed of deformation v

» Deformation speed v = velocity of the ram or other movement of the equipment

» Strain rate is defined:

where = true strain rate; and h = instantaneous height of workpiece being deformed

hv

.

.

Page 72: Week 1 - Introduction to Metal Forming Processes

» In most practical operations, valuation of strain rate is complicated by ˃ Workpart geometry˃ Variations in strain rate in different regions of the part

» Strain rate can reach 1000 s‐1 or more for some metal forming operations

Page 73: Week 1 - Introduction to Metal Forming Processes

» Flow stress is a function of temperature» At hot working temperatures, flow stress also depends on strain rate˃ As strain rate increases, resistance to deformation increases 

˃ This effect is known as strain‐rate sensitivity

Page 74: Week 1 - Introduction to Metal Forming Processes

Figure 18.5 (a) Effect of strain rate on flow stress at an elevated work temperature. (b) Same relationship plotted on log-log coordinates.

Strain Rate Sensitivity

Page 75: Week 1 - Introduction to Metal Forming Processes

where C = strength constant (similar but not equal to strength coefficient in flow curve equation), and m = strain‐rate sensitivity exponent

mf CY ε=

Page 76: Week 1 - Introduction to Metal Forming Processes

Figure 18.6 Effect of temperature on flow stress for a typical metal. The constant C, as indicated by the intersection of each plot with the vertical dashed line at strain rate = 1.0, decreases, and m (slope of each plot) increases with increasing temperature.

Effect of Temperature on Flow Stress

Page 77: Week 1 - Introduction to Metal Forming Processes

» Increasing temperature decreases C and increases m˃ At room temperature, effect of strain rate is almost negligible+ Flow curve is a good representation of material behavior

˃ As temperature increases, strain rate becomes increasingly important in determining flow stress

Page 78: Week 1 - Introduction to Metal Forming Processes

» In most metal forming processes, friction is undesirable: ˃ Metal flow is retarded ˃ Forces and power are increased˃ Tooling wears faster

» Friction and tool wear are more severe in hot working

Page 79: Week 1 - Introduction to Metal Forming Processes

» Metalworking lubricants are applied to tool‐work interface in many forming operations to reduce harmful effects of friction 

» Benefits: ˃ Reduced sticking, forces, power, tool wear˃ Better surface finish˃ Removes heat from the tooling

Page 80: Week 1 - Introduction to Metal Forming Processes

» Type of forming process (rolling, forging, sheet metal drawing, etc.)

» Hot working or cold working» Work material» Chemical reactivity with tool and work metals » Ease of application» Cost