william schulz bechara

62
William Schulz Bechara Charette Group - Charette Group - Literature Literature Meeting Meeting May 2 May 2 nd nd , 2012 , 2012 Life of Synthetic CO Life of Synthetic CO 2 2 , , Environmental Impact, Environmental Impact, Chemical Synthesis and Industrial Chemical Synthesis and Industrial Applications Applications

Upload: zada

Post on 22-Jan-2016

70 views

Category:

Documents


0 download

DESCRIPTION

Life of Synthetic C O 2 , Environmental Impact, Chemical Synthesis and Industrial Applications. William Schulz Bechara. Charette Group - Literature Meeting May 2 nd , 2012. World's Top Market Value. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: William  Schulz  Bechara

William Schulz Bechara

Charette Group - Charette Group - LiteratureLiterature Meeting MeetingMay 2May 2ndnd, 2012, 2012

Life of Synthetic COLife of Synthetic CO22, Environmental Impact, , Environmental Impact,

Chemical Synthesis and Industrial ApplicationsChemical Synthesis and Industrial Applications

Page 2: William  Schulz  Bechara

World's Top Market Value

1) Oil&Gas : 5

2) Telecommunication : 2

3) Eletronics : 4

4) Pharma : 3

5) Food : 2

6) Natural Resources

Exploration : 2

7) Bank : 3

8) Consumer goods &

Retailing : 3

9) Internet :1

3117533162198178248347546

The world still relies heavily today on fossil fuels to cover

about 80% of its energy needs

Page 3: William  Schulz  Bechara

CO2 – One of the Largest Waste Product

Electricity Without Carbon, Nature News Feature, 14 August 2008, 454.

The world still relies heavily today on fossil fuels to cover

about 80% of its energy needs

Page 4: William  Schulz  Bechara

Global Warming?

Image from http://berkeleyearth.org/analysis - by Berkeley Earth Surface Temperature Institute. Retrieved 2012-05-02.

Page 5: William  Schulz  Bechara

Global Warming?

a) Briffa, K. R.; Osborn, T. J.; Schweingruber, F. H.; Harris, I. C.; Jones, P. D.; Shiyatov, S. G.; Vaganov, E. A. J. Geophys. Res. 2001, 106, 2929. b) Esper, J.; Cook, E. R.; Schweingruber, F. H. Science 2002, 295, 5563. c) Jones, P.D.; Briffa, K. R.; Barnett, T. P.; Tett, D. F. B. The Holocene, 1998, 8, 455. d) Mann, M.E., R.S. Bradley and M.K. Hughes, Nature, 1998, 392, 779.; Geophysical Research Letters, 1999, 26, 759. e) Jones, P. D.; Mann, M. E. Reviews of Geophysics, 2004, 42, RG2002 1-42. 

Year

Page 6: William  Schulz  Bechara

CO2 vs Global Warming?

Petit, J. R et al Nature 1999, 399, 429.

Page 7: William  Schulz  Bechara

CO2 and Global Warming?

a) Petit, J. R et al. Nature 1999, 399, 429. b) Barnola, J.-M.; Raynaud, d.; Korotkevich, Y. S.; Lorius C. Nature, 1987, 329, 408. c) Lorius, C.; Jouzel, J.; Raynaud, D.; Hansen, J.; Le Treut, H. Nature, 1990, 347, 139. d) Martıinez-Garcia, A. et al. Nature 2011, 476, 312. e) Tripati, A. K. et all. Science 2009, 326, 1394. f) Shakun, J. D. et al. Nature 2012, 484, 49.

[...] records suggests a close link between CO2 and climate [...] The role and relative importance of CO2 in producing these climate changes remains unclear [...]

Page 8: William  Schulz  Bechara

CO2 Emissions Going Up

Aresta, M. Carbon Dioxide as Chemical Feedstock 2010 Wiley, Weinheim.

Page 9: William  Schulz  Bechara

CO2 Emissions : Natural vs Human (Anthropogenic CO2)

Solomon, S.; Qin, D.; Manning, M. ; Chen, Z.; Marquis, M. ; Averyt, K. B.; Tignor, M.; Miller, H. L. IPCC Fourth Assessment Report: Climate Change, 2007, chap. 7, 515. at http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

3.2 GtC/y in 19903.2 GtC/y in 199024 GtC/y in 201024 GtC/y in 2010

Gigatons of C/year Gigatons of C/year 

Page 10: William  Schulz  Bechara

Life of Synthetic CO2

Image from http://www.theurbn.com/2011/06/capturing-time-bp-and-the-future by  Hayley Peacock, Capturing Time: BP And The Future, UubanTimes news. Retrieved 2012-05-02.

Page 11: William  Schulz  Bechara

CO2 Storage / Enhanced Oil recovery

a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.

Page 12: William  Schulz  Bechara

CO2 Storage / Enhanced Oil recovery

a) Image from http://www.universetoday.com/75740/carbon-capture by Matt Williams, Carbon Capture, Universe Today news. Retrieved 2012-05-02 b) Carbon Capture and Storage (CCS). Global CCS Institute. Retrieved 2012-05-02.

Page 13: William  Schulz  Bechara

CO2 Emissions – CCS Project

Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - by Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

Page 14: William  Schulz  Bechara

Carbon Capture and Storage (CCS) Project

Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

Page 15: William  Schulz  Bechara

CCS Project - Operational

Image from http://www.metoffice.gov.uk/avoid/files/washington/AVOID_Fennel.pdf - pdf presentation from Dr Paul Fennell, Dr Nick Florin, Grantham Institute for Climate Change, Imperial College Centre for CCS. Professor Nilay Shah and Dr Niall McGlashan, Centre for Process Systems Engineering

Page 16: William  Schulz  Bechara

CO2 Scrubbing (Purification)

O2, N2 and other gas

Cold Hot

AminesMgO

M-oxides

CO2, H2O, CO, O2, N2 and other gas

MacDowell, N. et al. Energy Environ. Sci. 2010, 3, 1645.

Page 17: William  Schulz  Bechara

Recycling CO2

Only 1% of the total CO2 on Earth is currently being used for chemical synthesis :- Chemical inertness,- CO2 capture and storage is expensive.

Recycling CO2 for the production of chemicals not only lower the impact on global climate changes but also provides a grand challenge in exploring new concepts and opportunities for catalytic and industrial development.

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

Other

Solvent

Biomass(Energy)

Ligand

Fine chmicals

Bulk chemicals CO2

Page 18: William  Schulz  Bechara

Other use of CO2

Aresta, M. Carbon Dioxide as Chemical Feedstock 2010 Wiley, Weinheim.

Page 19: William  Schulz  Bechara

Annual industrial use of CO2 in megatons

3.2GtC/y in 19903.2GtC/y in 199024GtC/y in 201024GtC/y in 2010

Gigatons of C/year Gigatons of C/year 

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

Page 20: William  Schulz  Bechara

Properties of CO2 as Ligand

a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. c) Ma, J.; Sun, N. N.; Zhang, X. L; Zhao, N.; Mao, F. K.; Wie, W.; Sun, Y. H. Catal.Today, 2009, 148, 221. d) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

- Thermodynamically stable- High energy substances required

O

C

O

-

+

-

Weak Lewis Acid

Weak Lewis Base

LnMO

OLnM

O

CO

OCOLnM

Coordination Modes

Page 21: William  Schulz  Bechara

CO2 Reduction

CO2 + H2

CO

CH4

Hydrocarbons

Higher alcohols

MeOHMeOMe

HCOOH

HCONR2R2NH

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

Page 22: William  Schulz  Bechara

CO2 Reduction

CO2 + H2

CO

CH4

Hydrocarbons

Higher alcohols

MeOHMeOMe

HCOOH

HCONR2R2NH

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Gibson, D. H. Chem. Rev. 1996, 96, 2063.

“Homogeneous catalysts show satisfactory activity and selectivity, but the recovery and regeneration are problematic. [...] Heterogeneous catalysts are preferable in terms of stability, separation, handling, and reuse, as well as reactor design, which reflects in lower costs for large-scale productions.”

Page 23: William  Schulz  Bechara

Reduction Potential

Reduction Potential of CO2 at pH=7CO2 + 1e- → CO2

•- E0 = -1.90 VCO2 + 2H+ 2e- → HCO2H E0 = -0.61 VCO2 + 2H+ 2e- → CO + H2O E0 = -0.53 VCO2 + 4H+ 4e- → H2CO + H2O E0 = -0.48 VCO2 + 6H+ 6e- → CH3OH + H2O E0 = -0.38 VCO2 + 8H+ 8e- → CH4 + 2H2O E0 = -0.24 V

a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja., J. M. Chem. Soc. Rev. 2009, 38, 89. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

OC

O

2e-

2H

OC

OH

H

or

C O + H2O

2e-

2H

OC

H

H

2e-

2H

HOC

H

HH

2e-

2H

HC

H

HH

1e-O

CO

Page 24: William  Schulz  Bechara

Reduction of CO2 to CO

Reverse water gas shift (RWGS) is the most promising process :

- Metal : Cu, Cu/SiO2, Cu–Ni/Al2O3, Cu/ZnO, Cu–Zn/Al2O3, Pd/Al2O3, Pt/Al2O3, Pt/CeO2, Ni/CeO2, Rh/SiO2 (from Rh2(OAc)4)

- Temperature : >600 °C

- Cu-based systems remain mostly used.

- Often reduction to CH4 occurs since CO is a better ligand than CO2

a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Kusama, H.; Bando, K. K.; Okabe, K.; Arakawa, H. Appl. Catal., A 2001, 205, 285. c) Bando, K. K.; Soga, K.; Kunimori, K.; Arakawa, H. Appl.Catal., A 1998, 175, 67. d) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Page 25: William  Schulz  Bechara

Reduction of CO2 to CO

a) Ernsta, K. H.; Campbell, C. T.; Moretti, G. J. Catal. 1992, 134, 66. b) Fujita, S. I.; Usui, M.; Takezawa, N. J. Catal. 1992, 134, 220. c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Page 26: William  Schulz  Bechara

Reduction of CO2 to CO Mechanism with Pt/CeO2

a) Goguet, A.; Meunier, F. C.; Tibiletti, D.; Breen, J. P.; Burch, R. J. Phys. Chem. B 2004, 108, 20240.c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Page 27: William  Schulz  Bechara

Photochemical Reduction of CO2 to CO

Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346

Sacrificialreducing agent

Sacrificialreducing agent

Photocatalyst(OERS)

GS = Ground State3MLCT = Triplet Metal Ligand Charge Transfer

OERS = One Electron Reduced Species

Photocatalyst(GS)

Photocatalyst

(3MLCT)

h

1 e-

Catalyst(OERS)

Catalyst2-

Catalyst2-

Catalyst(GS)

CO2

2 H+CO + H2O

1 e-

CO2

Page 28: William  Schulz  Bechara

1st Photochemical Reduction Using Ru Complex

Takeda, H.; Ishitani, O. Coordination Chemistry Reviews 2010, 254, 346

N

N

N

NN

NRuII

OH

N

N

Cl

CC

CReI

O

O

O

OH

NN

Cl

C

CC

ReI

O

O

O

OH

NNCl

CC

CReI

O

O

O

2+

CO2 CO + H2

1 ([Ru(bpy)3]Cl2), CoCl2

h > 400nm MeCN, H2O, NR3 (3 : 1 : 1)

Recent Advances :

Photocatalyst

Reducing catalyst

Page 29: William  Schulz  Bechara

Reduction of CO2 to CH4 - Sabatier Reaction

Important catalytic process for the production of syngas (CH4 and H2)

a) Lunde, P. J.; Kester, F. L.; Ind. Eng. Chem. Process Des. Dev. 1974, 13, 27. b) Du, G. A.; Lim, S.; Yang, Y. H.; Wang, C.; Pfefferle, L.; Haller, G. L. J. Catal. 2007, 249, 370. c) Park, J. N.; McFarland, E. W.; J. Catal. 2009, 266, 92. d) Chang, F. W.; Kuo, M. S.; Tsay, M. T.; Hsieh, M. C. Appl. Catal., A 2003, 247, 309. e) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

- Thermodynamically favoured.- Metal = Ni, Ru, Rh, Pd, Pt.- Oxide support : SiO2, TiO2, Al2O3, ZrO2, CeO2, MgO, ZrO2, NiO, NiAl2O2.- Temperature : 400 - 700 °C - Dispersion and surface of oxides is important.- Ni is the best catalysts at 400 °C and exhibits excellent catalytic activity and stability yielding CO2 at 76% conversion and a selectivity to CH4 (vs CO and MeOH) of 99%.- Research is being conducted by the National Aeronautics and Space Administration on the application of the reaction using Ce0.72Zr0.28O2 in pace colonization on Mars to convert the Martian CO2 into CH4 and H2O for fuel and astronaut life-support systems.

Page 30: William  Schulz  Bechara

Potential Bifunctional Model for Pd/MgO Catalysis

a) Park, J. N.; McFarland, E. W. J. Catal. 2009, 266, 92. b) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703.

Page 31: William  Schulz  Bechara

Synthesis of Hydrocarbons

- Fischer-Tropsch process :

- Metal : Cu, Fe, Co.- Support : Al2O3, Mn, Zr, Zn.- Reaction are limited to small chains, H2O formed suppresses the reaction and they are not cost effective in most cases.

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Riedel, T.; Schaub, G.; Jun, K. W.; Lee, K. W. Ind. Eng. Chem. Res. 2001, 40, 1355.

- Gasification of coal, synthesis of syngas :

300,000 barrels of hydrocarbons/year

- Modification to CO2 :

Page 32: William  Schulz  Bechara

CO2 to MeOH

- Metals : Ag, Au, Pd, Cu- Support (oxides) : Zn, Zr, Ce, Al, Si, V, Ti, Ga, B, Cr. - Temperature : 200-300 °C - Industrial use Cu/ZnO gives 99% selectivity to MeOH (vs CH4) at 260 °C 40 Mt/year for the synthesis of formaldehyde, methyl tert-butyl ether and acetic acid.

a) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. c) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43.

Page 33: William  Schulz  Bechara

Potential CO2 to MeOH in Industry

82% of conversion

a) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487. b) Shulenberger, A. M.; Jonsson, F. R.; Ingolfsson, O.; Tran, K.-C. Process for Producing Liquid Fuel from Carbon Dioxide and Water. US Patent Appl. 2007/0244208A1, 2007. c) Tremblay, J.-F. Chem. Eng. News 2008, 86, 13.d) Image from http:/newenergyandfuel/com/2008/08/29/a-new-leading-process-for-co2-to-methanol – A New Leading Process For CO2 to Methanol, Mitsui Chemicals Inc., New energy and fuel news.

Page 34: William  Schulz  Bechara

Synthesis of HCOOH

X Y

XY

Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

Synthesis of HCOOH from CO2 is still limited.

Page 35: William  Schulz  Bechara

Synthesis of HCOOH

Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

Page 36: William  Schulz  Bechara

Synthesis of HCOOH

Richardson, R. D.; Holland, E. J.; Carpenter, B. K. Nature Chem. 2011, 3, 301.

Analysis by H NMR :

Page 37: William  Schulz  Bechara

Combustion Heat of Fuels in Higher Heating Value (HHV)

a) Image from http://en.wikipedia.org/wiki/Heat_of_combustion – Wikipedia - Heat of combustion. b) Olah, G. A.; Goeppert, A. Prakash, G. K. S. J. Org. Chem. 2009, 74, 487.

George A. Olah et al. : [...] Recycling of carbon dioxide [...] however, there is only limited interest in the US [...].

Page 38: William  Schulz  Bechara

CO2 in Organic Chemistry

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

CO2

R-M

R-CO2H

RNHRHN OH

O

ROH

RO OH

O

CO2H

2 RO

O

RR

O

O O

O

R=Alk,Ar,vinyl

O

O

On

Polymers

Page 39: William  Schulz  Bechara

Industrial Synthesis of Salicylic Acid

a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

ONa OH

CO2Na

OH

CO2H

CO2 5-7 bar

125 °C

H2SO4

90%

ONa OH

CO2Na

OH

CO2H

CO2

125 °C

H2SO4

50%

Page 40: William  Schulz  Bechara

Urea Synthesis and Derivatives

a) Xiaoding, X.; Moulijn, J. A. Energy Fuels, 1996, 10, 305. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Mesoporous silica

Page 41: William  Schulz  Bechara

Reaction of CO2 with Organometallic Reagents

R

RLnM

O

R

CO2LnM

R

O

R

R

LnMO

R

CO2LnM

R

O

XLnMCO2

LnM O X

OX = H, C, O, ...

a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Page 42: William  Schulz  Bechara

Dialkyl Carbonate Synthesis

Cl Cl

O2 ROH

RO OR

O+ 2 HCl+

2 ROHRO OR

O++ CO2 H2O

With Phosgene :

With CO2 :

Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Page 43: William  Schulz  Bechara

Dimethyl Carbonate Synthesis

2 MeOHMeO OMe

O++ CO2 H2O

(300 bar)

Bu2Sn(OMe)2

180 °C, 70 hMol sieves

50% conversionfrom MeOH

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

2 MeOHMeO OMe

O++ CO2

(300 bar)

Bu2Sn(OMe)2 (2 mol%)EtNH3(OTf) (0.02 mol%)

180 °C, 70 h

OMeMeO

MeMe+

O

MeMe+ 2 MeOH

0.25 g / h / 20 mL of rx

Recycle

- H2O

Page 44: William  Schulz  Bechara

Dimethyl Carbonate Synthesis from Epoxides

O

MeO OMe

O++ CO2

Catalyst+ MeOH OHHO

a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. b) Bhanage, B. M.; Fujita, S.; Ikushima, Y.; Torii, K.; Arai, M. Green Chem. 2003, 5, 71

OO

O

via

Page 45: William  Schulz  Bechara

Polymerization

2.0 MPa

Catalyst / cocatalyst / epichlorohydrin1/1/1000 (molar ratio)

Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.

Page 46: William  Schulz  Bechara

C-C Bond Formation

Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Xu, T.-Q.; Darensbourg, D. J. J. Am. Chem. Soc., 2011, 133, 15191.

Page 47: William  Schulz  Bechara

Synthesis of a Cyclic Carbonate from an Oxirane

+ CO2

Bu3SnI2OO O

O

n

98%

O O

O

+ CO2O

100 %

Bu3SnI2

HMPA

a) Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2010, 3, 43. b) Baba, A.; Kashiwagi, H.; Matsuda, H. Organometallics 1987, 6, 137. c) Tian, J. S.; Wang, J. Q.; Chen, J. Y.; Fan, J. G.; Cai, F.; He, L. N. Appl. Catal., A 2006, 301, 215.

Page 48: William  Schulz  Bechara

Reaction of CO2 with Organometallic Reagents

R

RLnM

O

R

CO2LnM

R

O

R

R

LnMO

R

CO2LnM

R

O

XLnMCO2

LnM O X

OX = H, C, O, ...

a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Page 49: William  Schulz  Bechara

Possible Catalytic Synthesis of Acrylic Acid

“-H elimination is not favored for steric reasons: the rigid five membered ring does not allow the -H atoms to come close to the nickel center.”

a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. c) Bruckmeier, C.; Lehenmeier, M. W.; Reichhardt, R.; Vagin, S. ; Rieger, B. Organometallics 2010, 29, 2199.

Page 50: William  Schulz  Bechara

No Catalysis Possible

a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Page 51: William  Schulz  Bechara

Catalysis with MeI

a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

<56%

MeI decomposes the Ni complex

Page 52: William  Schulz  Bechara

Ni-Catalyzed Stereoselective Ring-Closing Carboxylation

a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956. a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

TsNPh

H

H

CO2Me

TsNEt

H

H

CO2Me

81%95% ee

57%94% ee

TsN

H

H

CO2Me

13%94% ee

H

H

CO2Me

100%94% ee

MeO2C

MeO2C

H

H

CO2Me

90%94% ee

O

OO

H

H

CO2Me

95%95% ee

BnO

BnO

Page 53: William  Schulz  Bechara

Ni-Catalyzed Stereoselective Ring-Closing Carboxylation

L : Phosphine ligandZnEt2 : Transmetalation & reduction of Ni

-H elimination

Reductive elimination

Bisallyl species

a) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc. 2004, 126, 5956. a) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

Page 54: William  Schulz  Bechara

Coupling of CO2 and Alkynes

a) Inoue, Y.; Itoh, Y.; Hashimoto, H. Chem. Lett. 1977, 85. b) Cokoja, M et al.. Angew. Chem. Int. Ed. 2011, 50, 8510. c) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

+ +

<10%

Page 55: William  Schulz  Bechara

Ni- Catalyzed Organozinc Coupling with CO2

R Zn X

1. [Ni(PCy3)2]2(N2)PhMe, 0 °C, 1 atm CO2, THF

2. 1 M HClR CO2H

Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

Page 56: William  Schulz  Bechara

Reaction Mechanism

Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.

NiO

O

Cy3P

Cy3P (II)

NiRCy3P

Cy3P (II)

O

O

ZnBr(Cy3)P2Ni(0)

R Zn BrCO2

RO

O ZnBrR

O

OH

H+

Transmetallation

ReductiveElimination

OxidativeCycloaddition

Page 57: William  Schulz  Bechara

Au Catalyzed Carboxylation of C-H Bonds

Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

Page 58: William  Schulz  Bechara

Au Catalyzed Carboxylation of C-H Bonds

Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858.

Page 59: William  Schulz  Bechara

Au Catalyzed Carboxylation of C-H Bonds Mechanism

a) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010, 132, 8858. b) Lckermann, L. Angew. Chem. Int. Ed. 2011, 50, 3842.

Also done with Cu(IPr)Ot-Bu

Page 60: William  Schulz  Bechara

Biomass Synthesis

Algae + CO2 + H2O + h

=

O2 + Biomass (Biofuel)

=

CO2RWE's Algae Project, The Niederaussem Coal Innovation Centre, http://www.rwe.com/web/cms/en/213188/rwe-power-ag/innovations/coal-innovation-centre/rwes-algae-project/

Page 61: William  Schulz  Bechara

Conclusion

A lot of work has been done for CO2 recycling and still a lot of work will have to be done to lower CO2 emissions.

- Elucidate mechanisms- Find more cost-effective methods- Incorporate renewable source of energy. ex. solar, etc. - Perform cyclic reactions where CO2 is formed and reduced in one reactor providing clean energy.

Fuels

Reduction Combustion EnergyRenewable

Energy

- Why not directly invest in renewable energy???

Page 62: William  Schulz  Bechara

Consolidating Phase for the Pharma

What's Really Driving The Pharma M&A Frenzy, Forbes, http://www.forbes.com/sites/davidmaris/2012/04/27/pharma-feeding-frenzy/

- AstraZeneca announced it is buying Ardea for $1 billion.- Watson Pharmaceuticals announced it is buying Actavis for $5.6 billion.- J&J stated being days away from closing on its $21 billion acquisition of Synthes.- Glaxo got rebuffed from Human Genome Sciences in a $2.6 billion bid.- Pfizer announced the $12 billion divestiture of its infant nutritional business to Nestlé.

Why?- Blockbusters going off patent- Fewer drug approvals

Consequences : - Buy companies with solid pipelines that will deliver growth- Layoff- More partnerships to save $ : ex. Merck : 75 partnerships, Lilly : > 100 partnerships, etc

One biotech CEO who had sold his first company for several hundred million dollars, who is now on his second, put it this way to me:

“Large pharma can’t develop drugs any more.  They are too slow.  They make decisions for political reasons.  Their hurdles are too high.  They have to keep buying companies like us just to stay innovative.”