1 econ 240 c lecture 3. 2 3 4 5 6 1 white noise inputoutput 1/(1 – z) white noise input output...

83
1 Econ 240 C Econ 240 C Lecture 3 Lecture 3

Post on 19-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

11

Econ 240 CEcon 240 C

Lecture 3Lecture 3

Page 2: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

22

Page 3: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

33

Page 4: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

44

Page 5: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

55

Page 6: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

66

1

White noiseWhite noise

inputoutput

1/(1 – z)

White noise

inputoutput

Random walk

SynthesisSynthesis

1/(1 – bz)

White noise

inputoutput

First order autoregressive

Page 7: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

77

Simulated Random walkSimulated Random walk

• Eviews, sample 1 1000, gen wn = nrnd

• EViews, sample 1 1, gen rw = wn

• Sample 2 1000, gen rw = rw(-1) + wn

Page 8: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

88

-40

-30

-20

-10

0

10

20

30

200 400 600 800 1000

RW WN

Page 9: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

99

Simulated First Order Simulated First Order Autoregressive Process Autoregressive Process

• Eviews, sample 1 1000, gen wn = nrnd

• EViews, sample 1 1, gen arone = wn

• Sample 2 1000, gen arone = b*arone(-1) + wn

Page 10: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1010

SystematicsSystematics

• b =1, random walk

• b = 0.9

• b = 0.5

• b = 0.1

• b = 0, white noise

Page 11: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1111

-8

-6

-4

-2

0

2

4

6

8

200 400 600 800 1000

ARONE

arone = 0.9*arone(-1) + wn

Arone(t) = 0.9*arone(t-1) = wn(t)Arone(t) = 0.9*arone(t-1) = wn(t)

Page 12: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1212

Arone(t) = 0.5*arone(t-1) + wn(t)Arone(t) = 0.5*arone(t-1) + wn(t)

-6

-4

-2

0

2

4

6

200 400 600 800 1000

ARONE

arone = 0.5*arone(-1) + wn

Page 13: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1313

Arone(t) = 0.1*arone(t-1) + wn(t)Arone(t) = 0.1*arone(t-1) + wn(t)

-4

-2

0

2

4

200 400 600 800 1000

ARONE

arone = 0.1*aronne(-1) + wn

Page 14: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1414

Moving AveragesMoving Averages

Page 15: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1515

BloombergBloomberg

Page 16: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1616

Page 17: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1717

Page 18: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1818

Time Series ConceptsTime Series Concepts

• Analysis and Synthesis

Page 19: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

1919

AnalysisAnalysis

• Model a real time seies in terms of its components

Page 20: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

2020

Total Returns to Standard and Total Returns to Standard and Poors 500, Monthly, 1970-2003Poors 500, Monthly, 1970-2003

0

1000

2000

3000

4000

5000

70 75 80 85 90 95 00

SPRETURN

Total Returns for the Standard and Poors 500

Source: FRED http://research.stlouisfed.org/fred/

Page 21: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

2121

Trace of ln S&P 500(t) Trace of ln S&P 500(t)

4

5

6

7

8

9

0 100 200 300 400 500

TIME

LNS

P50

0

Logarithm of Total Returns to Standard & Poors 500

Page 22: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

2222

ModelModel

• Ln S&P500(t) = a + b*t + e(t)

• time series = linear trend + error

Page 23: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

2323

Dependent Variable: LNSP500Method: Least SquaresSample(adjusted): 1970:01 2003:02Included observations: 398 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 4.049837 0.022383 180.9370 0.0000TIME 0.010867 9.76E-05 111.3580 0.0000

R-squared 0.969054 Mean dependent var 6.207030 Adjusted R-squared 0.968976 S.D. dependent var 1.269965 S.E. of regression 0.223686 Akaike info criterion -0.152131 Sum squared resid 19.81410 Schwarz criterion -0.132098 Log likelihood 32.27404 F-statistic 12400.61Durbin-Watson stat 0.041769 Prob(F-statistic) 0.000000

Page 24: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

70 75 80 85 90 95 00

ERROR

Page 25: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

0

10

20

30

40

-0.50 -0.25 0.00 0.25 0.50

Series: ResidualsSample 1970:01 2003:02Observations 398

Mean 2.59E-15Median -0.036203Maximum 0.478857Minimum -0.494261Std. Dev. 0.223405Skewness 0.419110Kurtosis 2.377547

Jarque-Bera 18.07682Probability 0.000119

Page 26: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

2626

Time Series Components ModelTime Series Components Model

• Time series = trend + cycle + seasonal + error

• two components, trend and seasonal, are time dependent and are called non-stationary

Page 27: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

2727

SynthesisSynthesis

• The Box-Jenkins approach is to start with the simplest building block to a time series, white noise and build from there, or synthesize.

• Non-stationary components such as trend and seasonal are removed by differencing

Page 28: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

2828

First DifferenceFirst Difference

• Lnsp500(t) - lnsp500(t-1) = dlnsp500(t)

Page 29: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

-0.3

-0.2

-0.1

0.0

0.1

0.2

70 75 80 85 90 95 00

DLNSP500

Page 30: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

0

20

40

60

80

100

-0.2 -0.1 0.0 0.1

Series: DLNSP500Sample 1970:02 2003:02Observations 397

Mean 0.008625Median 0.011000Maximum 0.155371Minimum -0.242533Std. Dev. 0.045661Skewness -0.614602Kurtosis 5.494033

Jarque-Bera 127.8860Probability 0.000000

Page 31: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

3131

4.0

4.4

4.8

5.2

5.6

6.0

75 80 85 90 95 00

LNDNSROTM

Log of Rotterdam Inport Price: Dark Northern Spring

Page 32: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

3232

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

75 80 85 90 95 00

DLNDNSROTM

First Difference in Log of Rotterdam Import Price: Dark Northern Spring

Page 33: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

3333

0

20

40

60

80

100

120

-0.2 -0.1 0.0 0.1 0.2 0.3

Series: DLNDNSROTMSample 1971:08 2001:12Observations 365

Mean 0.002290Median 0.000000Maximum 0.277165Minimum -0.244453Std. Dev. 0.052324Skewness 0.141729Kurtosis 7.454779

Jarque-Bera 303.0323Probability 0.000000

Histogram: First Difference of Log of Rotterdam Import Price, DNS

Page 34: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

3434

Time seriesTime series

• A sequence of values indexed by time

Page 35: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

3535

Stationary time seriesStationary time series

• A sequence of values indexed by time where, for example, the first half of the time series is indistinguishable from the last half

Page 36: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

3636

Stochastic Stationary Time Stochastic Stationary Time SeriesSeries

• A sequence of random values, indexed by time, where the time series is not time dependent

Page 37: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

3737

Summary of ConceptsSummary of Concepts

• Analysis and Synthesis

• Stationary and Evolutionary

• Deterministic and Stochastic

• Time Series Components Model

Page 38: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

3838

White Noise SynthesisWhite Noise Synthesis

• Eviews: New Workfile– undated 1 1000

• Genr wn = nrnd

• 1000 observations N(0,1)

• Index them by time in the order they were drawn from the random number generator

Page 39: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

-4

-2

0

2

4

200 400 600 800 1000

WN

Page 40: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

-4

-3

-2

-1

0

1

2

3

10 20 30 40 50 60 70 80 90 100

WN

Page 41: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

0

20

40

60

80

100

120

-3 -2 -1 0 1 2 3

Series: WNSample 1 1000Observations 1000

Mean 0.002336Median 0.017618Maximum 2.967726Minimum -3.713726Std. Dev. 0.992117Skewness -0.099788Kurtosis 2.973119

Jarque-Bera 1.689727Probability 0.429616

Page 42: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

4242

SynthesisSynthesis• Random Walk

• RW(t) -RW(t-1) = WN(t) = dRW(t)

• or RW(t) = RW (t-1) + WN(t)

• lag by one: RW(t-1) = RW(t-2) + WN(t-1)

• substitute: RW(t) = RW(t-2) + WN(t) + WN(t-1)

• continue with lagging and substitutingRW(t) = WN(t) + WN (t-1) + WN (t-2) + ...

Page 43: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

4343

Part IPart I

• Modeling Economic Time Series

Page 44: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

4444

Total Returns to Standard and Total Returns to Standard and Poors 500, Monthly, 1970-2003Poors 500, Monthly, 1970-2003

0

1000

2000

3000

4000

5000

70 75 80 85 90 95 00

SPRETURN

Total Returns for the Standard and Poors 500

Source: FRED http://research.stlouisfed.org/fred/

Page 45: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

4545

Analysis (Decomposition)Analysis (Decomposition)

• Lesson one: plot the time series

Page 46: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

4646

Model One: Random WalksModel One: Random Walks

• we can characterize the logarithm of total returns to the Standard and Poors 500 as trend plus a random walk.

• Ln S&P 500(t) = trend + random walk = a + b*t + RW(t)

Page 47: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

4747

Trace of ln S&P 500(t) Trace of ln S&P 500(t)

4

5

6

7

8

9

0 100 200 300 400 500

TIME

LNS

P50

0

Logarithm of Total Returns to Standard & Poors 500

Page 48: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

4848

Analysis(Decomposition)Analysis(Decomposition)

• Lesson one: Plot the time series

• Lesson two: Use logarithmic transformation to linearize

Page 49: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

4949

Ln S&P 500(t) = trend + RW(t)Ln S&P 500(t) = trend + RW(t)

• Trend is an evolutionary process, i.e. depends on time explicitly, a + b*t, rather than being a stationary process, i. e. independent of time

• A random walk is also an evolutionary process, as we will see, and hence is not stationary

Page 50: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5050

Model One: Random WalksModel One: Random Walks

• This model of the Standard and Poors 500 is an approximation. As we will see, a random walk could wander off, upward or downward, without limit.

• Certainly we do not expect the Standard and Poors to move to zero or into negative territory. So its lower bound is zero, and its model is an approximation.

Page 51: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5151

Model One: Random WalksModel One: Random Walks

• The random walk model as an approximation to economic time series– Stock Indices– Commodity Prices– Exchange Rates

Page 52: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5252

Model Two: White NoiseModel Two: White Noise

• we saw that the difference in a random walk was white noise.

)()( tWNtRW

Page 53: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5353

Model Two: White NoiseModel Two: White Noise

• How good an approximation is the white noise model?

• Take first difference of ln S&P 500(t) and plot it and look at its histogram.

Page 54: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5454

Trace of ln S&P 500(t) – ln S&P(t-1)Trace of ln S&P 500(t) – ln S&P(t-1)

-0.3

-0.2

-0.1

0.0

0.1

0.2

70 75 80 85 90 95 00

DLNSP500

Trace of lnsp500 - lnsp500(-1)

Page 55: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5555

Histogram of Histogram of ln S&P 500(t) – ln S&P(t-1)ln S&P 500(t) – ln S&P(t-1)

0

20

40

60

80

100

-0.2 -0.1 0.0 0.1

Series: DLNSP500Sample 1970:02 2003:02Observations 397

Mean 0.008625Median 0.011000Maximum 0.155371Minimum -0.242533Std. Dev. 0.045661Skewness -0.614602Kurtosis 5.494033

Jarque-Bera 127.8860Probability 0.000000

Page 56: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5656

The First Difference of ln S&P The First Difference of ln S&P 500(t)500(t)

ln S&P 500(t)=ln S&P 500(t) - ln S&P 500(t-1) ln S&P 500(t) = a + b*t + RW(t) -

{a + b*(t-1) + RW(t-1)} ln S&P 500(t) = b + RW(t) = b + WN(t)

• Note that differencing ln S&P 500(t) where both components, trend and the random walk were evolutionary, results in two components, a constant and white noise, that are stationary.

Page 57: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5757

Analysis(Decomposition)Analysis(Decomposition)

• Lesson one: Plot the time series

• Lesson two: Use logarithmic transformation to linearize

• Lesson three: Use difference transformation to reduce an evolutionary process to a stationary process

Page 58: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5858

Model Two: White NoiseModel Two: White Noise

• Kurtosis or fat tails tend to characterize financial time series

Page 59: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

5959

The Lag Operator, ZThe Lag Operator, Z

• Z x(t) = x(t-1)• Zn x(t) = x(t-n)• RW(t) – RW(t-1) = (1 – Z) RW(t) = RW(t) = WN(t)• So the difference operator, can be written in

terms of the lag operator, = (1 – Z)

Page 60: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6060

Model Three: Model Three: Autoregressive Time Series of Autoregressive Time Series of

Order OneOrder One• An analogy to our model of trend plus

shock for the logarithm of the Standard Poors is inertia plus shock for an economic time series such as the ratio of inventory to sales for total business

• Source: FRED http://research.stlouisfed.org/fred/

Page 61: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6161

Trace of Inventory to Sales, Trace of Inventory to Sales, Total Business Total Business

1.30

1.35

1.40

1.45

1.50

1.55

1.60

92 93 94 95 96 97 98 99 00 01 02 03

RATIOINVSALE

Ratio of Inventory to Sales, Monthly, 1992:01-2003:01

Page 62: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6262

AnalogyAnalogy

• Trend plus random walk:

• Ln S&P 500(t) = a + b*t + RW(t)

• where RW(t) = RW(t-1) + WN(t)

• inertia plus shock

• Ratioinvsale(t) = b*Ratioinvsale(t-1) + WN(t)

Page 63: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6363

Model Three: Autoregressive of Model Three: Autoregressive of First OrderFirst Order

• Note: RW(t) = 1*RW(t-1) + WN(t)

• where the coefficient b = 1

• Contrast ARONE(t) = b*ARONE(t-1) + WN(t)

• What would happen if b were greater than one?

Page 64: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6464

Using Simulation to Explore Using Simulation to Explore Time Series BehaviorTime Series Behavior

• Simulating White Noise:

• EVIEWS: new workfile, irregular, 1000 observations, GENR WN = NRND

Page 65: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6565

Trace of Simulated White Noise:Trace of Simulated White Noise:100 Observations100 Observations

-3

-2

-1

0

1

2

3

10 20 30 40 50 60 70 80 90 100

WN

Simulated White Noise

Page 66: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6666

Histogram of Simulated White Histogram of Simulated White NoiseNoise

0

20

40

60

80

100

120

-3 -2 -1 0 1 2 3 4

Series: WNSample 1 1000Observations 1000

Mean 0.008260Median -0.003042Maximum 3.782479Minimum -3.267831Std. Dev. 1.005635Skewness -0.047213Kurtosis 3.020531

Jarque-Bera 0.389072Probability 0.823216

Page 67: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6767

Simulated ARONE ProcessSimulated ARONE Process

• SMPL 1 1, GENR ARONE = WN

• SMPL 2 1000

• GENR ARONE =1.1* ARONE(-1) + WN

• Smpl 1 1000

Page 68: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6868

Simulated Unstable First Order Simulated Unstable First Order Autoregressive Process Autoregressive Process

-20000

-15000

-10000

-5000

0

10 20 30 40 50 60 70 80 90 100

ARONE

First 100 Observations of ARONE = 1.1*Arone(-1) + WN

Page 69: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

6969

First 10 Observations of ARONEFirst 10 Observations of ARONE

obs WN ARONE

1 -1.204627 -1.2046272 -1.728779 -3.0538693 1.478125 -1.8811314 -0.325830 -2.3950735 -0.593882 -3.2284636 0.787438 -2.7638727 0.157040 -2.8832198 -0.211357 -3.3828989 -0.722152 -4.44334010 0.775963 -4.111711

Page 70: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7070

Model Three: AutoregressiveModel Three: Autoregressive

• What if b= -1.1?

• ARONE*(t) = -1.1*ARONE*(t-1) + WN(t)

• SMPL 1 1, GENR ARONE* = WN

• SMPL 2 1000

• GENR ARONE* = -1.1*ARONE*(-1) + WN

• SMPL 1 1000

Page 71: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7171

Simulated Autoregressive, b=-1.1Simulated Autoregressive, b=-1.1

-400

-200

0

200

400

5 10 15 20 25 30 35 40 45 50 55 60

ARONESTAR

Simulated First Order Autoregressive Process, b = -1.1

Page 72: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7272

Model Three: ConclusionModel Three: Conclusion

• For Stability ( stationarity) -1<b<1

Page 73: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7373

Part IIPart II

• Forecasting: A preview of coming attractions

Page 74: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7474

Ratio of Inventory to SalesRatio of Inventory to Sales

• EVIEWS Model: Ratioinvsale(t) = c + AR(1)

• Ratioinvsale is a constant plus an autoregressive process of the first order

• AR(t) = b*AR(t-1) + WN(t)

• Note: Ratioinvsale(t) - c = AR(t), so

• Ratioinvsale(t) - c = b*{ Ratioinvsale(t-1) - c} + WN (t)

Page 75: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7575

Ratio of Inventory to SalesRatio of Inventory to Sales

• Use EVIEWS to estimate coefficients c and b.

• Forecast of Ratioinvsale at time t is based on knowledge at time t-1 and earlier (information base)

• Forecast at time t-1 of Ratioinvsale at time t is our expected value of Ratioinvsale at time t

Page 76: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7676

One Period Ahead ForecastOne Period Ahead Forecast

• Et-1[Ratioinvsale(t)] is:

• Et-1[Ratioinvsale(t) - c] =

• Et-1[Ratioinvsale(t)] - c =

• Forecast - c = b*Et-1[Ratioinvsale(t-1) - c] + Et-1[WN(t)]

• Forecast = c + b*Ratioinvsale(t-1) -b*c + 0

Page 77: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7777

Dependent Variable: RATIOINVSALEMethod: Least SquaresDate: 04/08/03 Time: 13:56Sample(adjusted): 1992:02 2003:01Included observations: 132 after adjusting endpoints

Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.

C 1.417293 0.030431 46.57405 0.0000AR(1) 0.954517 0.024017 39.74276 0.0000

R-squared 0.923954 Mean dependent var 1.449091

Adjusted R-squared 0.923369 S.D. dependent var 0.046879

S.E. of regression 0.012977 Akaike info criterion -5.836210

Sum squared resid 0.021893 Schwarz criterion -5.792531

Log likelihood 387.1898 F-statistic 1579.487

Durbin-Watson stat 2.674982 Prob(F-statistic) 0.000000

Inverted AR Roots .95

Page 78: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7878

How Good is This Estimated How Good is This Estimated Model?Model?

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

1.30

1.35

1.40

1.45

1.50

1.55

1.60

93 94 95 96 97 98 99 00 01 02 03

Residual Actual Fitted

Page 79: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

7979

Plot of the Estimated ResidualsPlot of the Estimated Residuals

0

5

10

15

20

25

-0.050 -0.025 0.000 0.025

Series: ResidualsSample 1992:02 2003:01Observations 132

Mean -2.74E-13Median 0.000351Maximum 0.042397Minimum -0.048512Std. Dev. 0.012928Skewness 0.009594Kurtosis 4.435641

Jarque-Bera 11.33788Probability 0.003452

Page 80: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

8080

Forecast for Ratio of Inventory Forecast for Ratio of Inventory to Sales for February 2003to Sales for February 2003

• E2003:01 [Ratioinvsale(2003:02)= c - b*c + b*Ratioinvsale(2003:02)

• Forecast = 1.417 - 0.954*1.417 + 0.954*1.360

• Forecast = 0.06514 + 1.29744

• Forecast = 1.36528

Page 81: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

8181

How Well Do We Know This How Well Do We Know This Value of the Forecast?Value of the Forecast?

• Standard error of the regression = 0.0130

• Approximate 95% confidence interval for the one period ahead forecast = forecast +/- 2*SER

• Ratioinvsale(2003:02) = 1.36528 +/- 2*.0130

• interval for the forecast 1.34<forecast<1.39

Page 82: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

8282

Trace of Inventory to Sales, Trace of Inventory to Sales, Total Business Total Business

1.30

1.35

1.40

1.45

1.50

1.55

1.60

92 93 94 95 96 97 98 99 00 01 02 03

RATIOINVSALE

Ratio of Inventory to Sales, Monthly, 1992:01-2003:01

Page 83: 1 Econ 240 C Lecture 3. 2 3 4 5 6 1 White noise inputoutput 1/(1 – z) White noise input output Random walkSynthesis 1/(1 – bz) White noise input output

8383

Lessons About ARIMA Lessons About ARIMA Forecasting ModelsForecasting Models

• Use the past to forecast the future

• “sophisticated” extrapolation models

• competitive extrapolation models– use the mean as a forecast for a stationary time

series, Et-1[y(t)] = mean of y(t)

– next period is the same as this period for a stationary time series and for random walks, Et-1[y(t)] = y(t-1)

– extrapolate trend for an evolutionary trended time series, Et-1[y(t)] = a + b*t = y(t-1) + b