cmos analog design lect 3

21
EE 290C CMOS Analog Design Using All-region MOSFET Modeling Lecture 3: Charge control compact MOSFET model

Upload: carlosgalup

Post on 21-Jul-2015

1.040 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CMOS Analog Design  Lect 3

EE 290C

CMOS Analog Design Using All-region MOSFET Modeling

Lecture 3: Charge control compact MOSFET

model

Page 2: CMOS Analog Design  Lect 3

CMOS Analog Design Using All-Region MOSFET Modeling 2

The Unified Charge Control Model (UCCM) 1

1 1I C

ox b i

dQ dVC C C

′ + =

′ ′ ′+

Approximations:

1) depletion capacitance per unit area is constant along the

channel and is calculated neglecting inversion charge

2) Charge sheet model /i I tC Q φ′ ′= −

Page 3: CMOS Analog Design  Lect 3

The Unified Charge Control Model

(UCCM) 2

CMOS Analog Design Using All-Region MOSFET Modeling 3

1 1I C

ox b i

dQ dVC C C

′ + =

′ ′ ′+

/i I tC Q φ′ ′= −

1 tI C

ox I

dQ dVnC Q

φ ′ − =

′ ′

( )1 bGB

ox

Cn n V

C

′= + =

′where

Integrating from an arbitrary channel potential VC to a

reference potential VP yields the unified charge control

model (UCCM)

lnIP I IP C t

ox t IP

Q Q QV V

nC Qφ

φ

′ ′ ′−− = +

′ ′ is the value of

for V=VP. IPQ′

IQ′

Page 4: CMOS Analog Design  Lect 3

The “Regional” Strong and Weak

Inversion Approximations

CMOS Analog Design Using All-Region MOSFET Modeling 4

lnIP I IP C t

ox t IP

Q Q QV V

nC Qφ

φ

′ ′ ′−− = +

′ ′

( )I ox P CQ nC V V′ ′− ≅ −

P C tV V φ− � P C tV V φ− −�

ln 1IP C t

IP

QV V

Qφ ′

− ≅ − ′

or, equivalently

P C t

t

V V

I IPQ Q e

φ

φ

− +

′ ′=

strong inversion weak inversion

Page 5: CMOS Analog Design  Lect 3

Example

CMOS Analog Design Using All-Region MOSFET Modeling

5

(a) Calculate the value of the inversion charge density,

normalized to , for which the value of the voltage

VP-VS calculated using the SI approximation differs from

that calculated using UCCM by 10 %; (b) Same using

the WI approximation ; (c) comment on ‘moderate’

inversion (MI)

(b) Answer: a)

SI approximation error of less than 10 % for q’I > 20

b) WI approximation

WI approximation error of less than 10 % for q’I < 0.22.

(c) MI region : SI and WI approximations give errors greater

than 10 % for the control voltage VP-VS. The inversion

charge density variation from the lower to the upper limit of

the MI region is approximately two orders of magnitude

(20/0.22).

ox tnC φ′−

( ) /I P C t

q V V φ′ ≅ −

P C t

t

V V

Iq e

φ

φ

− +

′ =

Page 6: CMOS Analog Design  Lect 3

The Pinch-off Voltage Charge Density

CMOS Analog Design Using All-Region MOSFET Modeling 6

The channel charge density corresponding to the

effective channel capacitance times the thermal

voltage, or thermal charge, defines pinch-off

( )IP ox b t ox t

Q C C nCφ φ′ ′ ′ ′= − + = −

The name pinch-off is retained herein for historical

reasons and means the channel potential

corresponding to a small (but well-defined)

amount of carriers in the channel.

Page 7: CMOS Analog Design  Lect 3

The Pinch-off Voltage VP

CMOS Analog Design Using All-Region MOSFET Modeling 7

The channel-to-substrate voltage (VC) for which the

channel charge density equals is called the pinch-off

voltage VP.

UCCM is asymptotically

correct in weak inversion if

in weak

inversion( ) ( )2 / 2 /

( 1)sa F C t sa F C tV V

I b t ox tQ C e C n eφ φ φ φ φ φ

φ φ− − − −′ ′ ′− = = −

2 1 ln1

P sa F t

nV

nφ φ φ

= − − + −

2P sa FV φ φ≅ −

Page 8: CMOS Analog Design  Lect 3

Threshold Voltage

Equilibrium threshold

voltage VT0, for VC=0,

gate voltage for which

Q’I = Q’IP = -nC’oxφt

or gate voltage for which

VP=0 2

P sa FV φ φ≅ −

G FB sa ox sa tV V Cφ γ φ φ′− = + −Recalling that

0 2 2 T FB F FV V φ γ φ≅ + +it follows that

8CMOS Analog Design Using All-Region MOSFET Modeling

Page 9: CMOS Analog Design  Lect 3

Example

CMOS Analog Design Using All-Region MOSFET Modeling

9

Estimate VT0 for an n-channel transistor with n+ polysilicon

gate, NA=1017 atoms/cm3 and tox=5 nm.

Answer:

(a) The flat-band voltage (Lec 2) is -0.98 V; φF=0.419;

C’ox= 690 nF/cm2.

For this low value of the threshold voltage, the off-current (for

VGS=0) is too high for digital circuits. Solution to control the

magnitude of the threshold voltage without an exaggerated

increase in the slope factor -> a non-uniform high-low channel

doping.

2 / 0.264 Vs A oxq N Cγ ε ′= =

0 0.98 0.838 0.264 0.838= 0.1VTV ≅ − + +

Page 10: CMOS Analog Design  Lect 3

CMOS Analog Design Using All-Region MOSFET Modeling n

VVV 0TGBP

−−−−≅≅≅≅

Pinch-off Voltage vs. Gate Voltage

Useful approximation:

-1.00E+00

0.00E+00

1.00E+00

2.00E+00

3.00E+00

4.00E+00

0.00E+00 1.00E+00 2.00E+00 3.00E+00 4.00E+00 5.00E+00 6.00E+00

pinch-off voltage

0

0.5

1

1.5

2

slope factor

4.0

3.0

2.0

1.0

0

-1.0

0 1.0 2.0 3.0 4.0 5.0

2.0

1.5

1.0

0.5

0

VG (V)

VP

VT0 (equilibrium threshold voltage)

1sa oxP

G G b ox

d CdV

dV dV C C n

φ ′≅ = =

′ ′+

10

Page 11: CMOS Analog Design  Lect 3

MOS Transistor

0 0 0

i ix xW

D n nI J dxdz W J dx= − = −∫ ∫ ∫

11CMOS Analog Design Using All-Region MOSFET Modeling

Page 12: CMOS Analog Design  Lect 3

‘Exact’ I-V Model of the MOSFET 1

CMOS Analog Design Using All-Region MOSFET Modeling 12

n nn

d dnJ qn qD

dy dy

φµ

= − +

( )

0 0

C

C

q V

u ukTn n e n e

φ −−= =

C

t

dVdn n d

dy dy dy

φ

φ

= −

Using the Einstein

relationship

n n tD µ φ= C Cn n n n

dV dVd dJ qn qn qn

dy dy dy dy

φ φµ µ µ

= − + − = −

drift +diffusion current

S C DV V V≤ ≤

Page 13: CMOS Analog Design  Lect 3

‘Exact’ I-V Model of the MOSFET 2

CMOS Analog Design Using All-Region MOSFET Modeling 13

0 0 0

i ix xW

D n nI J dxdz W J dx= − = −∫ ∫ ∫

0

xiC C

D n In

dV dVI qW n dx QW

dy dyµ µ ′= = −∫

Cn n

dVJ qn

dyµ= −

0

xi

IQ q ndx′ = − ∫

D

S

Vn

D I CV

WI Q dV

L

µ′= − ∫

L is the channel length

Since the current is constant along the channel

Page 14: CMOS Analog Design  Lect 3

CMOS Analog Design Using All-Region MOSFET Modeling 14

IC s t

I

dQdV d

Qφ φ

′= −

( )I i C sdQ C dV dφ′ ′= −

CdVsdφ

GVI

i

t

QC

φ

′′ = −

IdQ′+ _

Charge-Sheet Formula for the Current

D drift diff

s In I n t

I I I

d dQWQ W

dy dy

φµ µ φ

= + =

′′− +

Cn n

dVJ qn

dyµ= −

Page 15: CMOS Analog Design  Lect 3

Charge Control Compact Model 1

sdφ

BdQ′

+_

GV

bC′ +

_

IdQ′

iC′

oxC′

CdV

( )I ox b s ox sdQ C C d nC dφ φ′ ′ ′ ′= + =

s ID n I n t

d dQI WQ W

dy dy

φµ µ φ

′′= − +

( )n ID I t ox

ox

W dQI Q nC

nC dy

µφ

′′ ′= − −

Integrating along the channel yields

( )2 2

2

n IS IDD t IS ID

ox

W Q QI Q Q

L nC

µφ

′ ′−′ ′= − −

′ 15CMOS Analog Design Using All-Region MOSFET Modeling

Page 16: CMOS Analog Design  Lect 3

MOSFET Modeling for Circuit Analysis and Design

16

Charge Control Compact Model - 2

( )2 2

2 2

n IS ID IS ID IS IDD t IS ID ox tn

ox ox

W Q Q Q Q Q QI Q Q W nC

L nC nC L

µφ φµ

′ ′ ′ ′ ′ ′− + − ′ ′ ′= − − = − ′ ′

drift + diffusion

0

2

IS ID s sLD ox tn

Q QI W nC

L

φ φφµ

′ ′+ − ′= −

average

charge average field

“virtual” charge

Page 17: CMOS Analog Design  Lect 3

Charge Control Compact Model 3

To emphasize the symmetry of the

rectangular geometry MOSFET

D F RI I I= −

2( )

( ) ( )2

IS D

F R t IS Dnox

QWI Q

L nCφµ

′′= −

(compare with Ebers-Moll model of the BJT)

17CMOS Analog Design Using All-Region MOSFET Modeling

Page 18: CMOS Analog Design  Lect 3

MOSFET Modeling for Circuit Analysis and Design 18

Drain Current vs. Gate-to-Bulk

Voltage

Page 19: CMOS Analog Design  Lect 3

MOSFET Modeling for Circuit Analysis and Design 19

Comparing UCCM and the Surface Potential

Model with Exact Numerical Solution of

Poisson Equation

Page 20: CMOS Analog Design  Lect 3

Modeling the Bulk Charge from

Accumulation to Inversion

CMOS Analog Design Using All-Region MOSFET Modeling

20

/sgn( ) ( 1)s t

B s ox s tQ C eφ φφ γ φ φ −′ ′= − + −

( )( ) ( )

/1

1 12sgn 1

sa t

sa t

b

oxsa sa t

eCn

C e

φ φ

φ φ

γ

φ φ φ

−′= + = +

′ + −

( ) ( )[ ]122−+=−− − tsaeVV tsasaFBG

φφφφγφ

Page 21: CMOS Analog Design  Lect 3

Modeling from Accumulation to Inversion: Surface Potential and Pinch-off Voltage (VP)

CMOS Analog Design Using All-Region MOSFET Modeling 21