# cnm ws& ¢lmq,

of 6 /6
�1 : 30 Total No. of Questions : 30 �: 3 Time: 3 Hrs. 1 I �u : General Instructions 1. "a 3a,d �, All questions are compulsory. Total No. o Pages : 1 : 8 0 Full Marks : 80 2- 3 o A, B, C 3 D A 1 o q 1 3 , 8 5 , C 1 o q� 3 3 m Q� 6 3- % I This question paper consists of 30 questions divided into 4 sec tions A, B,C and D. Section A contains 10 questions of 1 mark each, Se tion questions of 2 marks each, Section C contains 10 questions of 3 n and Section D contains 5 questions of 6 marks each. 3. 3 MQ I 4. 5. Only sketches are to be given in the answers of constructio Answers of the questions must be in the context of the instl ctio therein. " � R, 3@ MQ, 3� � I Do all rough work only on the last pages of the question-ct n ans and nowhere else. �-A i � I 1 1 0 Q� O 1 3 � I SECTION-A Question Numbers I to 10 carry O 1 mark each. , . 1 4 o 31� 01 ol 2. Express 140 as a product of its Prime factors. � P(x) , Y = P(x) , P(x) � fQ I For some polynomials P(x), ﬁnd the number of zeroes of of Y = P(x). y X y the Graph Jharkhand Board Class 10 Maths Sample Paper-Set 2

Author: others

Post on 24-Apr-2022

0 views

Category:

## Documents

Embed Size (px)

TRANSCRIPT

Jharkhand Board Class 10 Maths Sample Paper-Set 2 "Q"ciTT -81 : 30 Total No. of Questions : 30
: 3 -tie
1. ".cTa.ft "Q""Gf 3-tfG'ia,d ,
All questions are compulsory.
l£?1fo.> : 8 0 Full Marks : 80
2- "Q""cifQ3f cA" 3 o "Q""Gf "'cfR A, B, C 3ITT D cA" fu A cA" 1 o "Q""Gf q cb 1 3fcf> "cbT, 8 cA" 5 "Q"Gf
"cbT, NUs C cA" 1 o i;rGf q cb 3 3-icm- "cbT c=rm
Q cb 6 3-icm- "cbT % I
This question paper consists of 30 questions divided into 4 sec tions A, B,C and D. Section A contains 10 questions of 1 mark each, Se tion questions of 2 marks each, Section C contains 10 questions of 3 n and Section D contains 5 questions of 6 marks each.
3. c5 cA" 3fcf)Gf J1MQ I
4.
5.
Only sketches are to be given in the answers of constructio
Answers of the questions must be in the context of the instl ctio therein. ".cfa-fi cnm "Q""Gf 9,R-acb, cf) 3@ cA" WS& ¢lMQ, 3 I
Do all rough work only on the last pages of the question-ct n ans and nowhere else.
-A
"Q""Gf -2i I 1 if 1 0 cfcf5 Q cb O 1 3fcf> "cbT I
SECTION-A
Question Numbers I to 10 carry O 1 mark each.
, . 1 4 o cm- 31 <!!01ci1-8isl c5 <!!olci1QSc1 c5 cA"
2.
Express 140 as a product of its Prime factors.
P(x) c5 mt!, Y=P(x) c5 cffitf5 i-r, P(x) cf5lflJ'IQ I
For some polynomials P(x), find the number of zeroes of of Y=P(x).
y
X
y
- 2x = ( -2)(3 -x) is a quadratic equation
4. cRIGf cf>lkil! ( Evaluate)
5.
6.
7.
8.
cot25 °
tan 65 °
-2-lcHlci-2. : 6,9,12, 15, ........... cf> R1t! 3h=R:° Write the common difference of an AP: 6,9,12,15, ......... .
ocfRf d ¥ cf> tlgel"fT cf5T ?fQ5c1 kiffill! I Write the area of quadrant of circle of diameter d.
<fl- cJT\$ 3wp@ cit DE 11 BC m c=rr EC m cblfuil! 1 In given figure DE 11 BC, find EC.
1.5cm D
B C
Pcnm ¥ G5)- f nm- ¥ fcf5<'1 How many points a tangent to a circle intersects ?
9. erg U"cGlT fui-lcf>I UIBcf 6lGfT tlc=r rcF.> IDTe:fcf.>ill The probability of an event that is certain to happen is -
Name the ogive given below.
I Ge
(Upper limits)
-B
U-Gf 1 1 i-l- 1 5 cfcf>" Ocf> 0 2 3fcBT cf5T I
SECTION-B
Question Numbers 11 to 15 carry 02 marks each.
1 1. 6 3ITT 2 0 cf>f 3Hl-TT c?J,Olci-i-8105 PcrR:r i-l- LCM Find LCM of 6 and 20 by the prime factorization method.
Gftt I
-3:r(axis)
1 2. 1!c5 rnt11a \$fRl cblfu1Q .,
fu1-2icf.> icm cf.> cf2TT T: - 3 "(!cf 2 t I Find a quadratic polynomial in which the sum and product and 2 respectively.
1 3. 3 OA.OB=OC.OD t t
Tfm! rco- LA= LC 3ITT LB= LD t I In fig. OA.OB=OC.OD
A
D
sec0 = _!2 ir ill SinA cBT cfTTGf \$fRl cblfu1Q I 12
Given sec0 = _!2 Calculate SinA. 12
15. cblfu1Q rc5 <[R f cst-llcst-2 itcfl- t I Prove that the lengths of tangents drawn from an external p equal.
-C "Q'Gf 1 6 2 5 cfcf> Oc-ilc.f> 0 3 3-fcf5T cBT t I
SECTION-C Question Numbers 16 to 25 carry 03 marks each.
1 6 . qfctc1 s fua-TT6TGf Q c-vn R&FT cBT s 6 7 3ITT s s cblfu1Q I Use Euclid's division algorithm to find the HCF of 867 an 255.
3l2TTTT (OR) cbl fu1 Q rc5
5
1!c5 3-t Q R<A -li -8<-11 t I Prove that
5
• J = 5 xy
8x+ 7y = 15 xy
1 s . <il I lhl Pcmr &RT 6R cblM Q (Solve by Graphical Method)
y = 2x-2, y = 4x-4
1 9. A.P. cBT 1 7UT 1 OU 7 3TTE % I
'-2Tict3fc'17 \$fRl cbl fu1 Q I The 17st term of an A.P exceeds its 10th term by 7. Find th com difference.
C
B
312-TcTT (OR)
A.PcF.> i;rclcff 1 4 -qif- cBT -cilvT 1 050 % 1 o % m 20-df m cblRnl! 1
In the sum of the first 14 term of an A.P. is 1050 and its firs the 20th term.
2 o. Rlc& cblM Q (Prove that) :
l+sin A --- =SecA+tanA 1-sinA.
2 1. x 31 cf6 m cblRnl! un- (2., -5) 3fu (-2 i cf1 c;;_ U-<l" I Find the point on the x-axis which is equidistant from (2, -
10, Find
22. 3cT cBT ITTB m cblRnl! un- 3TT (-1 _, 7) 3ITT ( _, -3) cm
rn c1 16' cffR -8116:i s cm 2 = 3 cf> 3-1 <1 q I a rcra-rrMcr
Find the co-ordinates of the point which divides the join of -1, 7) in the ratio 2:3 .
312TTTT ( 0 R)
K cBT <ITTar cblMQ A(2, 3), B(4, K) 3ITT Find the value ofK if the points A(2, 3), B(4, K) and C(6,
( 6, - ) iW 1 ) are c llinear.
2 3. "Qcf> &3juf ABC ti!6-11\$l! f'u1cA AB = 5cm, BC= 6cm 3fu "Qcf> &3juf -cB1- cblMQ_, Mcbl 1:,AB, 3TT -cB)- 3/4 6TI Draw a triangle ABC with side BC= 6cm, AB= 5cm an construct a triangle whose sides are ¾ of the corresponding triangle ABC.
312TcTT (OR)
4 cm f31 G'4 1 cBT "Qcf> 6 cm f31 G'4 1 cf> "Qcf>
ir "[!cf> f -cB)- cblM Q I Construct a tangent to a circle of radius 4 cm from a point circle of radius 6cm.
2 4. "Qcf> "Qcf> aTcT , "Qcf> G'flill 3fu "Qcf>
"Ra-ft- "Qcf> -li I \$61 -cB)- I [email protected] cf> ir "[!cf> frii cbl c1 ct1 % \$i cB) Wefcbill % fm­ ? (ii) °c1lR ? (iii) G'flill artt ? A bag contains a red ball, a blue ball and a yellow ball, all the same size. Kritika takes out a ball from the bag withou looki What is the probability that she take out the (i) yellow ball ? (ii) e (iii) not blue ball ?
2 5 . 1 0 ira=fi f3l G'4 I cffR "Qcf> -cB)- cf5f\$ circ:rr 1 cra6:is cBT 5llhc1 m cblMQ 1
(n= 3.14 cBT cblMl!) 1 A chord of a circle of radius 10cm subtends a right angle the area of minor segment (use n= 3 .14)
3lercTT (OR)
AB 3fu CD o c==rw 8'1R.l13TT 21cm 3ITT 7cm mc_q- er> W<ffT: 7qrq % L.AOB = 30° % ill e,1iwx1 m cf5Hu-1L:! 1 AB and CD are respectively arcs of two concentric circles 7cm at centre o. If L.AOB = 30° , find the area of the shaded
A
-D
"Q"Gf -2.-l -82-11 2 6 i-f 3 0 c=rc:5 Q c=i) cf.> 0 6 3-Tcf5T cf>f % I
SECTION-D
1cm and
B
2 6. rnt.11a -2.-1ct-flcF.>-2.01 2x2-6x+3=0 cf>f RIRlmcF.>-2., cBl- -r-rb:::-+-->r rnt.11cfl
27.
cf>f 3q2..11cJ1 m cblfu-il! 1 Find out discriminant, nature of roots and root, using binor quadratic equation 2x2-6x+3=0.
3lercTT (OR) ¢cH l<llc'1 c..16'1 lccHcf.> 01fcF.> \$fR1 cB)fu-i Q M6icb cfvTT 3 6 5 it I Find two consecutive positive integers, sum of whose squa e is 3
1. 5 m clcsTT t!cf5 c1 \$cf.> I 3 Om t!cf5 cHcTG1 i-r c16 3;i) a-m cBl- 3ITT \J1Tc'1T % cfCsf 3-2_-1cB) 3rRJT cf>f 36-ui 6i q5fUf WcffT: 3 0 ° 3ITT 6 0 ° it \J1Tc'1T
cHcTG1 cAf- 3ITT Rt:>a cA7 c=rc:n 'cl c1 cF.>-2. vmi- % 1 A 1.5111 tall boy is standing at some distance from a 30111 tc l buil ng. The angle of elevations from his eyes to the top of the building increc s s from 30°
and 60° as he walks towards the building. Find the the dist nee h valked towards the building.
3lercTT (OR)
t!cf5 80111 er> 3ITT 3--2.ilcHcii :m- RcJT g"C! I :m-a-TT er> er> t!cf5
m- er> 3 6-ui 6i q5fUf Wcff T: 60° 3ITT 3 o0 % I :m-a-n ____....::::... 3ITT :m-a-it i-r q§)- cl5lMQ I
The poles of equal heights are standing opposite each othe · on e·t er side of the road, which is 80m wide from a point between them 01 the r d, the angles of the top of the poles are 60° and 30°, respectively Find e height of the poles and the distances of the point from the poles.
2s. cblfu-il! PcB- t!cn -2.-1cHcmu1 & cf.>Uf cf>f clcTT TtST cfcJTT er> mvT er> isl-2.l<il-2. irc=rT % I Prove that in a right angle triangle, the square of the hypo en use i equal to the sum of the square of the other two sides.
2 9 "(Tcf5" iRr "(Tcf5" 3, tR "(Tcf5" leg cf> 3ITTn R cf> % fui 6i cblf¾u-G11c! 1 cm % c=ren leg 3-2 cb1 blu-G11 IB- GT-c1c1-c % , iR=r cf>f 3-1,acif n cF.> TTTit <ff m cblRiil!, A solid in the shape of a cone standing on a hemisphere v ith be th their radiibeing equal to I cm and the height of the cone is equal to ts rndit s. Find thevolume of the solid in terms of n.
3f2lcTT (OR) "(Tcf5" gcAf inft leg cF.> IBciuict.> cF.> 3TTcBR % f5 cBT" Blu-G!I 10cm :, cf5l- blu-Gll 4cm 3 m @def.> 15cm %, m <ff !J,gchi "Q<TTe:f lt:>ci mcblfu-1 l! I A fez, the cap used by the Turks, is shaped like the frustu 11 of ; one. If itsradius on the open side is IO cm. radius at the upper base i 4 cm a·1d its slantheight is 15 cm, Find the area of material used for making it
3 o 3 it <il§cicf.> m cb'lfu-1 l! (Find the mode of th follo'v ng data)
qvf 3-R'R:Tcvf 10-25 2 5-40 40-55
(Class interval) cillc:sll._>_cif 2 3 7
(Frequency)
3f2lcTT (OR)
3 it cffTE \$f@ a§)R:ii (! Find the mean of the following data.
55-70 70-E 5 8 !, - 1 0 0
6 5
mf 3TT'mc'l 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 ! 0-90 9(-100
Class
Interval
Frequency 5 3 4 3 3 4 7 9 7 8