curso obras portuarias idiem módulo 1 (gcavieres) (2)

39
 CURSO PARA LA DIRECCIÓN DE OBRAS PORTUARIAS DICTADO POR DIVISIÓN HORMIGONES INGENIERÍA CENTRO DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN EN ESTRUCTURAS Y MATERIALES – IDIEM – DE LA UNIVERSIDAD DE CHILE Santiago de Chile, 31 de julio, 1 y 2 de agosto de 2013. TECNOLOGÍA DEL HORMIGÓN PARA OBRAS PORTUARIAS 1

Upload: hermanmancilla

Post on 06-Oct-2015

7 views

Category:

Documents


0 download

DESCRIPTION

Alcances a considerar para la ejecución de Hormigones Marítimos en Chile.

TRANSCRIPT

  • CURSO PARA LA DIRECCIN DE OBRAS PORTUARIAS

    DICTADO POR DIVISIN HORMIGONES INGENIERA

    CENTRO DE INVESTIGACIN, DESARROLLO E INNOVACIN EN ESTRUCTURAS Y MATERIALES IDIEM DE LA UNIVERSIDAD DE CHILE

    Santiago de Chile, 31 de julio, 1 y 2 de agosto de 2013.

    TECNOLOGA DEL HORMIGN PARA

    OBRAS PORTUARIAS

    1

  • MDULO 1

    TECNOLOGA DEL HORMIGN

    Hormign Convencional y

    Hormign Marino

    Relator: Guillermo Cavieres Pizarro

    2

  • a. Introduccin Aspectos generales sobre durabilidad del hormign Condiciones de exposicin de estructuras en ambiente

    marino Especificaciones tcnicas por comportamiento y por

    descripcin. Caractersticas propias de las obras portuarias

    b. Estado del arte de estructuras martimas de hormign Anlisis de normativa chilena e internacionales Terminologa y tipologa de estructuras marinas Consideraciones para la construccin segn su tipo

    Temario

    3

  • a. Introduccin

    Aspectos Generales sobre Durabilidad

    4

  • a. Introduccin

    Hormign Mezcla artificial constituida por un aglomerante, agua, ridos y aditivos, que bajo condiciones adecuadas fragua y endurece para dar forma a diversos elementos. La principal propiedad del hormign se define normalmente por su resistencia mecnica.

    5

  • Sin embargo, los aspectos de durabilidad, que son de mayor relevancia y a mayor plazo, muchas veces se olvidan, se obvian o no se consideran. Si bien a mayor resistencia a compresin la durabilidad aumenta, existen otros factores de mayor importancia. La impermeabilidad es la propiedad que mejor puede asociarse a la durabilidad del hormign. La impermeabilidad del hormign se puede estimar a travs de ensayos, como es el caso de la penetracin de agua, permeabilidad al oxgeno y otros.

    a. Introduccin

    6

  • Una estructura de hormign poco durable sufrir daos antes de lo previsto, y los problemas pueden estar asociados a muchos factores, entre ellos: Inadecuado diseo de la mezcla Materiales no apropiados Condiciones ambientes y de exposicin Defectuosa fabricacin del hormign Defectos constructivos Cambios de uso durante su vida til. Poco o nulo mantenimiento

    a. Introduccin

    7

  • Es aquel hormign que una vez endurecido es capaz de mantener sus propiedades bajo las condiciones de exposicin previstas para su vida til. Un hormign durable es obtenido a partir de componentes de buena calidad, diseado mediante una dosificacin de la mezcla cuidadosamente estudiado, tomando en cuenta las condiciones a que estar expuesto y fabricado a travs de un proceso productivo debidamente controlado, desde la compra y recepcin de los materiales en terreno hasta su correcta colocacin, compactacin y curado en obra.

    Hormign Romano

    Dolos Caleta Higuerillas 1993

    Hormign Resistente y Durable

    a. Introduccin

  • Diseo de la Mezcla y

    Condiciones de Exposicin

    Colocacin Compactacin

    Curado Recubrimiento

    Fabricacin y Control de

    Calidad en Obra

    Calidad de Materiales

    componentes

    HORMIGON DURABLE

    Y RESISTENTE

    a. Introduccin

  • FACTORES INTERNOS 1. Cambios volumtricos debido a efectos qumicos:

    - Cal libre - Magnesio libre - Sulfatos - Reaccin lcali-agregado

    2. Cambios volumtricos debido a efectos fsicos:

    - Retraccin por secado - Hinchamiento

    3. Cambios volumtricos debido a efectos trmicos:

    - Calor de Hidratacin

    a. Introduccin

    10

  • FACTORES EXTERNOS 1. Actan sobre toda la estructura:

    - Cargas estticas o dinmicas - Fuego - Terremotos - Temperaturas y vientos extremos

    2. Actan sobre la superficie: - Desgaste mecnico

    3. Actan principalmente sobre el recubrimiento del hormign:

    - Carbonatacin - Sales descongelantes, deshielo - Ataque de sulfatos - Ciclos hielo/deshielo - Lquidos o gases agresivos

    a. Introduccin

    11

  • a. Introduccin

    12

  • Distintas Condiciones de Exposicin del Hormign

    Diseo de Mezclas y Materiales

    La condicin de uso a la que estar expuesto el hormign determina el diseo de la mezcla, los componentes (tipo cemento, tipos de aditivos, ridos), la forma de colocacin y las posibles protecciones.

    a. Introduccin

    13

  • Exposicin de estructuras en ambiente marino

    a. Introduccin

    14

  • Las estructuras martimas se ven expuestas a una serie de condiciones, especialmente agresivas, que afectan su durabilidad durante su vida til. El mayor problema lo constituyen las sales solubles presentes en el agua de mar. Cloruros Sulfatos Tambin se ven afectados por procesos abrasivos, impacto y avance de la carbonatacin. En algunas zonas tambin existen efectos por los ciclos hielo-deshielo.

    a. Introduccin

    15

  • Exposicin de estructuras en ambiente marino a. Introduccin

    22 Informes de la Construccin, Vol. 38 n. 388, marzo/abril, 1987

    en el aspecto micro-climtico. Habra, pues, que con-siderar que se trata de ambientes donde puede haber elevadas HR pero donde no hay niveles de cloruros apreciables.

    Ambiente marino

    La durabilidad del hormign en ambiente marino es de especial inters; por un lado, porque mares y ocanos ocupan el 80% del globo y buena parte de las activi-dades humanas se han ubicado en zonas costeras, siendo sta una dinmica creciente, y por otro porque el hormign es el material ms durable y econmico en el ambiente que nos ocupa (18).

    La agresividad del ambiente marino se debe en parte al incremento de humedad que puede generar y, en par-ticular, a las sales que lleva disueltas el agua de mar, cuyas concentraciones inicas medias correspondien-tes a las sales ms frecuentes, se muestran en la figu-ra 9 (10). De entre estas sales, destaca el ion cloruro, responsable del mayor nmero de casos que se cono-cen de corrosin de las armaduras (18).

    Nombre del ion

    Cloruro Sodio Sufato Magnesio Calcio Potasio otros TOTAL

    Abreviatura quinnica

    C1" Na* So Mg** Ca** K"

    Concentracin / en peso

    19.35 10.76 2.71 1.29 0.41 0.39 0.23

    35.U

    Fig. 9.Concentraciones inicas habituales en el agua de mar.

    La experiencia ha demostrado que los procesos indi-vidualizados de deterioro tienden a especializarse en las diferentes partes de la estructura, tal y como mues-tra la figura 10 (18), pudiendo establecerse diferentes tipos de exposicin (2):

    a) Zona atmosfrica, en la que la estructura recibe, an a pesar de no estar en contacto con el agua, las sa-les. El nivel de cloruros depende de la distancia al mar y de la altura, sin olvidar la velocidad y direc-cin de los vientos y otros condicionantes geogr-ficos.

    b) Zona de salpicaduras, en la que se produce una ac-cin directa del agua de mar, a causa del oleaje y de las salpicaduras que se derivan de su impacto sobre determinados obstculos o las propias cons-trucciones.

    c) Zona de oscilacin de las mareas, que es la limita-da por los niveles mximo y mnimo alcanzados por las mareas y en la que el hormign puede verse per-manentemente saturado y con una acumulacin cre-ciente de sales.

    d) Zonas sumergidas, o parte de la construccin situa-da por debajo del nivel de la marea baja y, por tanto, en rgimen de inmersin permanente.

    e) Zona de lecho marino, o parte de la estructura ente-rrada en el lecho marino.

    Hormign Armodura

    Fisuracipn debida a ia corrosin del acero Fsuracin debido o los procesos de hielo - deshielo

    PYoceso fsico de abrasin debido a la occin del oleaje, de la arena _ de IG grava y del hielo flotante

    Descomposicin qumica de! cemento hidratado

    Modelo de descomposicin qumica 1. Ataque del CO2 2. Ataque del ION Mg 3. Ataque de los sulfates

    G^A ^ rF^i^s^TK^

    Fig. 10.Procesos de deterioro del hormign en ambiente marino.

    RIESGO DE CORROSIN' Fig. 11.Tipos de exposicin marina y variacin del riesgo de corrosin de las armaduras.

    Consejo Superior de Investigaciones Cientficas Licencia Creative Commons 3.0 Espaa (by-nc)

    http://informesdelaconstruccion.revistas.csic.es16

  • Exposicin de estructuras en ambiente marino a. Introduccin

    22 Informes de la Construccin, Vol. 38 n. 388, marzo/abril, 1987

    en el aspecto micro-climtico. Habra, pues, que con-siderar que se trata de ambientes donde puede haber elevadas HR pero donde no hay niveles de cloruros apreciables.

    Ambiente marino

    La durabilidad del hormign en ambiente marino es de especial inters; por un lado, porque mares y ocanos ocupan el 80% del globo y buena parte de las activi-dades humanas se han ubicado en zonas costeras, siendo sta una dinmica creciente, y por otro porque el hormign es el material ms durable y econmico en el ambiente que nos ocupa (18).

    La agresividad del ambiente marino se debe en parte al incremento de humedad que puede generar y, en par-ticular, a las sales que lleva disueltas el agua de mar, cuyas concentraciones inicas medias correspondien-tes a las sales ms frecuentes, se muestran en la figu-ra 9 (10). De entre estas sales, destaca el ion cloruro, responsable del mayor nmero de casos que se cono-cen de corrosin de las armaduras (18).

    Nombre del ion

    Cloruro Sodio Sufato Magnesio Calcio Potasio otros TOTAL

    Abreviatura quinnica

    C1" Na* So Mg** Ca** K"

    Concentracin / en peso

    19.35 10.76 2.71 1.29 0.41 0.39 0.23

    35.U

    Fig. 9.Concentraciones inicas habituales en el agua de mar.

    La experiencia ha demostrado que los procesos indi-vidualizados de deterioro tienden a especializarse en las diferentes partes de la estructura, tal y como mues-tra la figura 10 (18), pudiendo establecerse diferentes tipos de exposicin (2):

    a) Zona atmosfrica, en la que la estructura recibe, an a pesar de no estar en contacto con el agua, las sa-les. El nivel de cloruros depende de la distancia al mar y de la altura, sin olvidar la velocidad y direc-cin de los vientos y otros condicionantes geogr-ficos.

    b) Zona de salpicaduras, en la que se produce una ac-cin directa del agua de mar, a causa del oleaje y de las salpicaduras que se derivan de su impacto sobre determinados obstculos o las propias cons-trucciones.

    c) Zona de oscilacin de las mareas, que es la limita-da por los niveles mximo y mnimo alcanzados por las mareas y en la que el hormign puede verse per-manentemente saturado y con una acumulacin cre-ciente de sales.

    d) Zonas sumergidas, o parte de la construccin situa-da por debajo del nivel de la marea baja y, por tanto, en rgimen de inmersin permanente.

    e) Zona de lecho marino, o parte de la estructura ente-rrada en el lecho marino.

    Hormign Armodura

    Fisuracipn debida a ia corrosin del acero Fsuracin debido o los procesos de hielo - deshielo

    PYoceso fsico de abrasin debido a la occin del oleaje, de la arena _ de IG grava y del hielo flotante

    Descomposicin qumica de! cemento hidratado

    Modelo de descomposicin qumica 1. Ataque del CO2 2. Ataque del ION Mg 3. Ataque de los sulfates

    G^A ^ rF^i^s^TK^

    Fig. 10.Procesos de deterioro del hormign en ambiente marino.

    RIESGO DE CORROSIN' Fig. 11.Tipos de exposicin marina y variacin del riesgo de corrosin de las armaduras.

    Consejo Superior de Investigaciones Cientficas Licencia Creative Commons 3.0 Espaa (by-nc)

    http://informesdelaconstruccion.revistas.csic.es 17

  • Zona atmosfrica: la estructura recibe sales a travs del aire salino y de la niebla. El nivel de cloruros es variable segn su distancia al mar, altura y direccin de vientos.

    Zona de salpicaduras (splash): recibe la accin directa del agua de mar por oleaje e impacto sobre las estructuras.

    Zona de oscilacin de mareas: limitada por los niveles mnimos y mximos de las mareas en que el hormign est permanentemente saturado y con acumulacin creciente de sales.

    Zona sumergida: se encuentra por debajo de la marea baja y est permanentemente saturada.

    a. Introduccin Zonas de exposicin

    18

  • a. Introduccin Zonas de exposicin

    23

    PROCESOS DE DEGRADACIN: Agua de mar

    EFECTOS DEL ATAQUE POR AGUA DE MAR

    PROCESOS DE DEGRADACIN: Agua de mar

    EFECTOS DEL ATAQUE POR AGUA DE MAR

    19

  • Especificaciones por prescripcin. En stas se tiende a definir,

    acotar y detallar todos y cada uno de los componentes del hormign proponiendo dosificaciones con las cuales se espera tener ciertos resultados. No siempre se obtiene lo que se quiere.

    Especificaciones por comportamiento. En stas se definen los resultados finales que se esperan y se deja en libertad de lograrlos de manera que sea ms eficiente, respaldando stos mediante estudios previos serios y acabados y por controles al producto final.

    a. Introduccin Tipos de Especificaciones Tcnicas

    20

  • Caractersticas propias de las obras portuarias

    a. Introduccin Las obras portuarias se construyen y desarrollan su vida til en

    un ambiente especialmente agresivo debido a la presencia de sales solubles existentes en el agua de mar que penetran en las estructuras, en un ambiente de humedad propio de la costa, saturado en sales.

    El factor ms determinante es la presencia de cloruros, los cuales en presencia de humedad y oxgeno despasivan el acero el cual entra en proceso de corrosin, generando productos expansivos de rompen el hormign. Una vez iniciada la corrosin, las barras pierden espesor y disminuyen la capacidad estructural de los elementos.

    Es tambin importante el efecto de la carbonatacin, ya que cambia el PH del hormign y despasiva tambin el acero.

    21

  • b. Estado del arte

    Anlisis de Normativa chilena e internacional

    22

  • b. Estado del arte Norma chilena NCh170.Of1985.

    23

  • b. Estado del arte Norma chilena NCh170 Anexo G

    24

  • b. Estado del arte Norma chilena NCh170 Anexo G

    25

  • b. Estado del arte

    Cdigo ACI 318 (NCh430) Sulfatos Cloruros

    26

  • b. Estado del arte

    Cdigo ACI 318 (NCh430) Sulfatos

    27

  • b. Estado del arte

    Cdigo ACI 318 (NCh430) Cloruros

    28

  • b. Estado del arte Cdigo ACI 357

    357R-4 ACI COMMITTEE REPORT

    2.7.2- Marine aggregates may be used when conformingto ASTM C 33 provided that they have been washed by freshwater so that the total chloride and sulfate content of the con-crete mix does not exceed the limits defined in Section 2.8.6.

    2.8-Concrete2.8.1- Recommended water-cement ratios and minimum

    28-day compressive strengths of concrete for the three ex-posure zones are given in Table 2.1.

    2.8.2- Measures to minimize cracking in thin sectionsand to prevent excessive thermal stresses in mass concrete arenecessary if more than 700 pounds of cement per cubic yardof concrete are used (415 kg per cubic meter). A minimumcement content of 600 pounds per cubic yard (356 kg percubic meter) is recommended to obtain high quality paste ad-jacent to the reinforcement for corrosion protection.

    2.8.3- The rise of temperature in concrete because of ce-ment heat of hydration requires strict control to prevent steeptemperature stress gradients and possible thermal cracking ofthe concrete on subsequent cooling. Reducing the tem-perature rise may be difficult in the rich mixes and thick sec-tions required in concrete sea structures.

    The control of concrete temperatures includes selection ofcements which have low heat of hydration, reduced rates ofplacement, precooling of aggregates, the use of ice to replacesome or all of the mixing water and liquid nitrogen cooling,as described in ACI 207.4R. Pozzolans may be used to re-place a portion of the cement to lower the heat of hydration.

    2.8.4- When freeze-thaw durability is required, the con-crete should contain entrained air as recommended by Table1.4.3 of ACI 201.2R. Air entrainment is the most effectivemeans of providing freeze-thaw resistance to the cementpaste. Conventional guidelines, such as those contained inTable 1.4.3 generally apply to unsaturated concrete. Whereconcrete is exposed to frost action in a marine environment,care must be taken to insure that critical water absorptiondoes not occur. Using a rich, air-entrained mix of low water-cement ratio, a pozzolan and an extended curing period arethe most effective means of producing a concrete of low per-meability, which is essential in such an environment. Light-weight aggregates behave differently from normal weight ag-gregates. The pores in lightweight aggregate particles arelarge and less likely to fill by capillary action than normalweight aggregates. However, care must be taken to preventexcessive moisture absorption in lightweight aggregates priorto mixing. Such absorption can result in critical saturationlevels if sufficient curing and drying do not take place beforethe structure is subjected to severe exposures. High strengthlightweight aggregates with sealed surfaces are effective inlimiting water absorption.

    2.8.5- Where severe surface degradation of the concreteis expected to occur, the minimum specified concretestrength should be 6000 psi (42 MPa). Additional protectioncan be achieved by using concrete aggregates having equal orhigher hardness than the abrading material or by the provi-sion of suitable coatings or surface treatments.

    2.8.6- No chlorides should intentionally be added. Totalwater soluble chloride ion (Cl-) content of the concrete priorto exposure should not exceed 0.10 percent by weight of thecement for normal reinforced concrete and 0.06 percent by

    weight of cement for prestressed concrete. A chloride ion(Cl-) content of up to 0.15 percent may be acceptable in rein-forced concrete but should only be used after evaluation ofthe potential for corrosion of the specific structure under thegiven environmental conditions.

    2.8.7- Structural lightweight concrete should conform toACI 213R. Where it will be exposed to a freeze-thaw en-vironment, it should be air entrained, and additional meas-ures contained in Section 2.8.4 should be followed.

    TABLE 2.1--WATER-CEMENT RATIOSAND COMPRESSIVE STRENGTHS FOR

    THREE EXPOSURE ZONES

    2.9-Admixtures2.9.1- Admixtures should conform to Section 3.6 of ACI

    318. Limits given in this section for calcium chloride shouldnot increase the total limits recommended for concrete asoutlined in Section 2.8.6 of this report. When two ormore admixtures are used, their compatibility should bedocumented.2.10-Reinforcing and prestressing steel

    2.10.1- Reinforcing and prestressing steel should con-form to Section 3.5 of ACI 318. Low temperature or cold cli-mate applications may require the use of special reinforcingand prestressing steel and assemblages to achieve adequateductility. To facilitate future repairs that might be necessary,only weldable reinforcement should be used in the splashzone and other areas susceptible to physical damage. Welda-ble reinforcement should conform to the chemical composi-tion of ASTM A706.2.11-Post-tensioning ducts

    2.11.1- Post-tensioning ducts should conform to Section18.15 of ACI 318.

    2.11.2- Post-tensioning ducts should be semi-rigid andwatertight and have at least 1 mm of wall thickness. Ferrousmetal ducts or galvanized metal ducts passivated by a chro-mate wash may be used. Plastic ducts are not recommended.

    2.11.3- Bends in ducts should be preformed as necessary.Joints in ducts should be bell and spigot with the ends cut bysawing so as to be free from burrs and dents.

    Joint sleeves should fit snugly and be taped with water-proofing tape. Splices should preferably be staggered butwhere this is impracticable, adequate space should be pro-vided to insure that the concrete can be consolidated aroundeach splice.

    2.11.4- If flexible metal ducts must be used in specialareas of congestion, etc., they should have a mandrel insertedduring concrete placement. Bars for supporting and holdingdown such ducts should have a curved bearing plate againstthe duct to prevent local crushing.

    FIXED OFFSHORE CONCRETE STRUCTURES 357R-5

    2.12-Grout2.12.l- Grout for bonded tendons should conform to Sec-

    tion 18.16 of ACI 318 and to applicable sections of this report.Suitable procedures and/or admixtures should be used to pre-vent pockets caused by bleeding when grouting of verticaltendons or tendons with substantial vertical components.

    2.12.2- Recommendations for mixing water outlined inSection 2.6 also apply to grout mixes.

    2.12.3- Admixtures may be used only after sufficienttesting to indicate their use would be beneficial and that theyare essentially free of chlorides, or any other material whichhas been shown to be detrimental to the steel or grout.2.13-Concrete cover of reinforcement

    2.13.l- Recommended nominal concrete covers for rein-forcement in heavy concrete walls, 20 in. (50 cm) thick orgreater are shown in Table 2.2.

    Concrete covers of reinforcement should not be signifi-cantly greater than prescribed minimums to restrict the widthof possible cracks. This would be more critical for thosemembers in flexure.

    Table 2.2-RECOMMENDED NOMINALCONCRETE COVER OVER REINFORCEMENT

    Zone

    Cover over Cover overreinforcing post-tensioning

    steel ducts

    Atmospheric zone not 2 in. (50 mm) 3 in. (75 mm)subject to salt spray

    Splash and atmospheric 2.5 in. (65 mm) 3.5 in. (90 mm)zone subject to saltspray

    Submerged 2 in. (50 mm) 3 in. (75 mm)

    Cover of stirrups M in. (13 mm)less than those listed above

    2.13.2- If possible, structures with sections less than 20in. (50 cm) thick should have covers as recommended in Sec-tion 2.13.1, but when clearances are restricted the followingmay be used with caution. Cover shall he determined by themaximum requirement listed below:

    (a) 1.5 times the nominal maximum size of aggregate, or(b) 1.5 times the maximum diameter of reinforcement, or(c) 3/ in. (20 mm) cover to all steel including stirrups.Note: Tendons and post-tensioning ducts should have 0.5

    in. (13 mm) added to the above.2.14-Details of reinforcement

    2.14.1- Reinforcement details should conform to Chap-ters 7 and 12 of ACI 318.

    2.14.2- Special consideration should be given to the de-tailing of splices used in areas subjected to significant cyclicloading. Staggered mechanical and welded splices shouldpreferably be used in these instances. Lap splices, if used,should conform to the provisions of ACI 318. In general,noncontact lap splices should be avoided unless adequate jus-tification can be developed for their use. Mechanical devices

    for positive connections should comply with the section ofACI 318 dealing with mechanical connections. Weldedsplices may be used where reinforcing steel meets the chem-ical requirements of ASTM A706.

    2.14.3- Mechanical or welded connections should beused for load-carrying reinforcing bar splices located in re-gions of multiaxial tension, or uniaxial tension that is normalto the bar splices.

    2.15-Physical and chemical damage2.15.1- In those areas of the structure exposed to possible

    collision with ships, flotsam, or ice, additional steel rein-forcement should be used for cracking control and concreteconfinement. Particular consideration should be given to theuse of additional tension reinforcement on both faces and ad-ditional shear reinforcement (transverse to walls) to reinforcefor punching shear. Unstressed tendons and unbonded ten-dons are two techniques which can be used to increase theenergy absorption of the section in the post-elastic stage.

    2.15.2- The possibility of materials and equipment beingdropped during handling on and off the platform should beconsidered. Impact resisting capacity may be provided asmentioned in Section 2.15.1. In addition, protective cover-ings may be installed such as steel or concrete grids and en-ergy-absorbing materials such as lightweight concrete.

    2.15.3- A polymer or other special coating may be usedto control ice abrasion or adfreeze between an ice feature anda structure. Compatibility between a coating and the underly-ing concrete should be assessed to preclude problems withbond development, coating delamination caused by air ormoisture migration, and freeze-thaw effects.

    2.15.4- Exposed steel work and its anchor systemsshould be electrically isolated from the primary steel rein-forcement by at least 2 in. (50 mm) of concrete. The use ofcathodic protection systems is generally not required for rein-forcing steel and prestressing steel embedded in concrete.

    2.15.5- Exposed steel work should normally be paintedor coated to reduce corrosion. Particular care should be takento insure against corrosion on the edges and horizontal sur-faces. Epoxy coatings are normally used for protection of car-bon steel plates and fittings. Cathodic protection systems forexternally exposed steel should be of the sacrificial anodetype. Impressed current should not be used unless positivecontrols are instituted to prevent embrittlement of the rein-forcing and prestressing steel.2.16-Protection of prestressed anchorages

    2.16.1- The anchorages of prestressed tendons should beprotected from direct contact with seawater, which could leadto corrosion. A desirable method is to use recessed pocketsso that the steel anchorage and tendon ends may be protectedby concrete or grout fill in the pocket. The pocket surfaceshould be thoroughly cleaned and the exposed steel shouldbe coated with bonding epoxy just prior to placing the con-crete or grout fill. Particular care should be taken to preventshrinkage and the formation of bleed lenses. Alternative de-tails are acceptable provided they are designed to limit thepenetration of seawater and oxygen to the same degree as thatprovided to the tendon proper.

    357R-4 ACI COMMITTEE REPORT

    2.7.2- Marine aggregates may be used when conformingto ASTM C 33 provided that they have been washed by freshwater so that the total chloride and sulfate content of the con-crete mix does not exceed the limits defined in Section 2.8.6.

    2.8-Concrete2.8.1- Recommended water-cement ratios and minimum

    28-day compressive strengths of concrete for the three ex-posure zones are given in Table 2.1.

    2.8.2- Measures to minimize cracking in thin sectionsand to prevent excessive thermal stresses in mass concrete arenecessary if more than 700 pounds of cement per cubic yardof concrete are used (415 kg per cubic meter). A minimumcement content of 600 pounds per cubic yard (356 kg percubic meter) is recommended to obtain high quality paste ad-jacent to the reinforcement for corrosion protection.

    2.8.3- The rise of temperature in concrete because of ce-ment heat of hydration requires strict control to prevent steeptemperature stress gradients and possible thermal cracking ofthe concrete on subsequent cooling. Reducing the tem-perature rise may be difficult in the rich mixes and thick sec-tions required in concrete sea structures.

    The control of concrete temperatures includes selection ofcements which have low heat of hydration, reduced rates ofplacement, precooling of aggregates, the use of ice to replacesome or all of the mixing water and liquid nitrogen cooling,as described in ACI 207.4R. Pozzolans may be used to re-place a portion of the cement to lower the heat of hydration.

    2.8.4- When freeze-thaw durability is required, the con-crete should contain entrained air as recommended by Table1.4.3 of ACI 201.2R. Air entrainment is the most effectivemeans of providing freeze-thaw resistance to the cementpaste. Conventional guidelines, such as those contained inTable 1.4.3 generally apply to unsaturated concrete. Whereconcrete is exposed to frost action in a marine environment,care must be taken to insure that critical water absorptiondoes not occur. Using a rich, air-entrained mix of low water-cement ratio, a pozzolan and an extended curing period arethe most effective means of producing a concrete of low per-meability, which is essential in such an environment. Light-weight aggregates behave differently from normal weight ag-gregates. The pores in lightweight aggregate particles arelarge and less likely to fill by capillary action than normalweight aggregates. However, care must be taken to preventexcessive moisture absorption in lightweight aggregates priorto mixing. Such absorption can result in critical saturationlevels if sufficient curing and drying do not take place beforethe structure is subjected to severe exposures. High strengthlightweight aggregates with sealed surfaces are effective inlimiting water absorption.

    2.8.5- Where severe surface degradation of the concreteis expected to occur, the minimum specified concretestrength should be 6000 psi (42 MPa). Additional protectioncan be achieved by using concrete aggregates having equal orhigher hardness than the abrading material or by the provi-sion of suitable coatings or surface treatments.

    2.8.6- No chlorides should intentionally be added. Totalwater soluble chloride ion (Cl-) content of the concrete priorto exposure should not exceed 0.10 percent by weight of thecement for normal reinforced concrete and 0.06 percent by

    weight of cement for prestressed concrete. A chloride ion(Cl-) content of up to 0.15 percent may be acceptable in rein-forced concrete but should only be used after evaluation ofthe potential for corrosion of the specific structure under thegiven environmental conditions.

    2.8.7- Structural lightweight concrete should conform toACI 213R. Where it will be exposed to a freeze-thaw en-vironment, it should be air entrained, and additional meas-ures contained in Section 2.8.4 should be followed.

    TABLE 2.1--WATER-CEMENT RATIOSAND COMPRESSIVE STRENGTHS FOR

    THREE EXPOSURE ZONES

    2.9-Admixtures2.9.1- Admixtures should conform to Section 3.6 of ACI

    318. Limits given in this section for calcium chloride shouldnot increase the total limits recommended for concrete asoutlined in Section 2.8.6 of this report. When two ormore admixtures are used, their compatibility should bedocumented.2.10-Reinforcing and prestressing steel

    2.10.1- Reinforcing and prestressing steel should con-form to Section 3.5 of ACI 318. Low temperature or cold cli-mate applications may require the use of special reinforcingand prestressing steel and assemblages to achieve adequateductility. To facilitate future repairs that might be necessary,only weldable reinforcement should be used in the splashzone and other areas susceptible to physical damage. Welda-ble reinforcement should conform to the chemical composi-tion of ASTM A706.2.11-Post-tensioning ducts

    2.11.1- Post-tensioning ducts should conform to Section18.15 of ACI 318.

    2.11.2- Post-tensioning ducts should be semi-rigid andwatertight and have at least 1 mm of wall thickness. Ferrousmetal ducts or galvanized metal ducts passivated by a chro-mate wash may be used. Plastic ducts are not recommended.

    2.11.3- Bends in ducts should be preformed as necessary.Joints in ducts should be bell and spigot with the ends cut bysawing so as to be free from burrs and dents.

    Joint sleeves should fit snugly and be taped with water-proofing tape. Splices should preferably be staggered butwhere this is impracticable, adequate space should be pro-vided to insure that the concrete can be consolidated aroundeach splice.

    2.11.4- If flexible metal ducts must be used in specialareas of congestion, etc., they should have a mandrel insertedduring concrete placement. Bars for supporting and holdingdown such ducts should have a curved bearing plate againstthe duct to prevent local crushing.

    357R-4 ACI COMMITTEE REPORT

    2.7.2- Marine aggregates may be used when conformingto ASTM C 33 provided that they have been washed by freshwater so that the total chloride and sulfate content of the con-crete mix does not exceed the limits defined in Section 2.8.6.

    2.8-Concrete2.8.1- Recommended water-cement ratios and minimum

    28-day compressive strengths of concrete for the three ex-posure zones are given in Table 2.1.

    2.8.2- Measures to minimize cracking in thin sectionsand to prevent excessive thermal stresses in mass concrete arenecessary if more than 700 pounds of cement per cubic yardof concrete are used (415 kg per cubic meter). A minimumcement content of 600 pounds per cubic yard (356 kg percubic meter) is recommended to obtain high quality paste ad-jacent to the reinforcement for corrosion protection.

    2.8.3- The rise of temperature in concrete because of ce-ment heat of hydration requires strict control to prevent steeptemperature stress gradients and possible thermal cracking ofthe concrete on subsequent cooling. Reducing the tem-perature rise may be difficult in the rich mixes and thick sec-tions required in concrete sea structures.

    The control of concrete temperatures includes selection ofcements which have low heat of hydration, reduced rates ofplacement, precooling of aggregates, the use of ice to replacesome or all of the mixing water and liquid nitrogen cooling,as described in ACI 207.4R. Pozzolans may be used to re-place a portion of the cement to lower the heat of hydration.

    2.8.4- When freeze-thaw durability is required, the con-crete should contain entrained air as recommended by Table1.4.3 of ACI 201.2R. Air entrainment is the most effectivemeans of providing freeze-thaw resistance to the cementpaste. Conventional guidelines, such as those contained inTable 1.4.3 generally apply to unsaturated concrete. Whereconcrete is exposed to frost action in a marine environment,care must be taken to insure that critical water absorptiondoes not occur. Using a rich, air-entrained mix of low water-cement ratio, a pozzolan and an extended curing period arethe most effective means of producing a concrete of low per-meability, which is essential in such an environment. Light-weight aggregates behave differently from normal weight ag-gregates. The pores in lightweight aggregate particles arelarge and less likely to fill by capillary action than normalweight aggregates. However, care must be taken to preventexcessive moisture absorption in lightweight aggregates priorto mixing. Such absorption can result in critical saturationlevels if sufficient curing and drying do not take place beforethe structure is subjected to severe exposures. High strengthlightweight aggregates with sealed surfaces are effective inlimiting water absorption.

    2.8.5- Where severe surface degradation of the concreteis expected to occur, the minimum specified concretestrength should be 6000 psi (42 MPa). Additional protectioncan be achieved by using concrete aggregates having equal orhigher hardness than the abrading material or by the provi-sion of suitable coatings or surface treatments.

    2.8.6- No chlorides should intentionally be added. Totalwater soluble chloride ion (Cl-) content of the concrete priorto exposure should not exceed 0.10 percent by weight of thecement for normal reinforced concrete and 0.06 percent by

    weight of cement for prestressed concrete. A chloride ion(Cl-) content of up to 0.15 percent may be acceptable in rein-forced concrete but should only be used after evaluation ofthe potential for corrosion of the specific structure under thegiven environmental conditions.

    2.8.7- Structural lightweight concrete should conform toACI 213R. Where it will be exposed to a freeze-thaw en-vironment, it should be air entrained, and additional meas-ures contained in Section 2.8.4 should be followed.

    TABLE 2.1--WATER-CEMENT RATIOSAND COMPRESSIVE STRENGTHS FOR

    THREE EXPOSURE ZONES

    2.9-Admixtures2.9.1- Admixtures should conform to Section 3.6 of ACI

    318. Limits given in this section for calcium chloride shouldnot increase the total limits recommended for concrete asoutlined in Section 2.8.6 of this report. When two ormore admixtures are used, their compatibility should bedocumented.2.10-Reinforcing and prestressing steel

    2.10.1- Reinforcing and prestressing steel should con-form to Section 3.5 of ACI 318. Low temperature or cold cli-mate applications may require the use of special reinforcingand prestressing steel and assemblages to achieve adequateductility. To facilitate future repairs that might be necessary,only weldable reinforcement should be used in the splashzone and other areas susceptible to physical damage. Welda-ble reinforcement should conform to the chemical composi-tion of ASTM A706.2.11-Post-tensioning ducts

    2.11.1- Post-tensioning ducts should conform to Section18.15 of ACI 318.

    2.11.2- Post-tensioning ducts should be semi-rigid andwatertight and have at least 1 mm of wall thickness. Ferrousmetal ducts or galvanized metal ducts passivated by a chro-mate wash may be used. Plastic ducts are not recommended.

    2.11.3- Bends in ducts should be preformed as necessary.Joints in ducts should be bell and spigot with the ends cut bysawing so as to be free from burrs and dents.

    Joint sleeves should fit snugly and be taped with water-proofing tape. Splices should preferably be staggered butwhere this is impracticable, adequate space should be pro-vided to insure that the concrete can be consolidated aroundeach splice.

    2.11.4- If flexible metal ducts must be used in specialareas of congestion, etc., they should have a mandrel insertedduring concrete placement. Bars for supporting and holdingdown such ducts should have a curved bearing plate againstthe duct to prevent local crushing.

    FIXED OFFSHORE CONCRETE STRUCTURES 357R-3

    sary to actively control conditions to insure an adequate mar-gin of safety for the structure, instrumentation should beprovided to monitor the conditions. Such conditions mightbe fluid level, temperature, soil pore water pressure, etc.

    Adequate instrumentation should be provided to insureproper installation of the structure.

    When new concepts and procedures that extend the fron-tier of engineering knowledge are used, instrumentationshould be provided to enable measured behavior to be com-pared with predicted behavior.

    1.3-Auxiliary systems and interfacesSpecial consideration should be given to planning and de-

    signing auxiliary nonstructural systems and their interfaceswith a concrete structure.

    Auxiliary mechanical, electrical, hydraulic, and controlsystems have functional requirements that may have a signifi-cant impact on structural design. Special auxiliary systemsmay be required for different design phases of an installation,including construction, transportation, installation, opera-tion, and relocation.

    Unique operating characteristics of auxiliary systemsshould be considered in assessing structural load conditions.Suitable provisions should be made for embedments andpenetrations to accommodate auxiliary equipment.

    CHAPTER 2-MATERIALS AND DURABILITY2.1-General

    All materials to be used in the construction of offshoreconcrete structures should have documentation demonstrat-ing previous satisfactory performance under similar site con-ditions or have sufficient backup test data.

    2.2-Testing2.2.1- Tests of concrete and other materials should be per-

    formed in accordance with applicable standards of ASTMlisted in the section of ACI 318 on standards cited. Completerecords of these tests should be available for inspection dur-ing construction and should be preserved by the owner duringthe life of the structure.

    2.2.2- Testing in addition to that normally carried out forconcrete Structures, such as splitting or flexural tensile tests,may be necessary to determine compliance with specified du-rability and quality specifications.

    2.3-Quality control2.3.1- Quality control during construction of the con-

    crete structure is normally the responsibility of the contrac-tor. Supervision of quality control should be the responsibil-ity of an experienced engineer who should report directly totop management of the construction firm. The owner mayprovide quality assurance verification independent of theconstruction firm.

    2.4-Durability2.4.1- Proper ingredients, mix proportioning, construc-

    tion procedures, and quality control should produce dur-able concrete. Hard, dense aggregates combined with a lowwater-cement ratio and moist curing have produced concretestructures which have remained in satisfactory condition for40 years or more in a marine environment.

    2.4.2- The three zones of exposure to be considered onan offshore structure are:

    (a) The submerged zone, which can be assumed to be con-tinuously covered by the sea water.

    (b) The splash zone, the area subject to continuous wettingand drying.

    (c) The atmospheric zone, the portion of the structureabove the splash zone.

    2.4.3- Items to be considered in the three zones are:(a) Submerged zone-Chemical deterioration of the con-

    crete, corrosion of the reinforcement and hardware, andabrasion of the concrete.

    (b) Splash zone-Freeze-thaw durability, corrosion of thereinforcement and hardware and the chemical deteriorationof the concrete, and abrasion due to ice.

    (c) Atmospheric zone-Freeze-thaw durability, corrosionof reinforcement and hardware, and fire hazards.

    2.5-Cement2.5.1- Cement should conform to Type I, II, or III port-

    land cements in accordance with ASTM C 150 and blendedhydraulic cements which meet the requirements of ASTM C595.

    2.5.2- The tricalcium aluminate content (C3A) shouldnot be less than 4 percent to provide protection for the rein-forcement. Based on past experience, the maximum tri-calcium aluminate content should generally be 10 percent toobtain concrete that is resistant to sulfate attack. The abovelimits apply to all exposure zones.

    2.5.3- Where oil storage is expected, a reduction in theamount of tricalcium aluminate (C3A) in the cement may benecessary if the oil contains soluble sulfates. If soluble sul-fides are present in the oil, coatings or high cement contentsshould be considered.

    2.5.4- Pozzolans conforming to ASTM C 618 may beused provided that tests are made using actual job materials toascertain the relative advantages and disadvantages of theproposed mix with special consideration given to sulfate re-sistance, workability of the mix, and corrosion protectionprovided to the reinforcement.

    2.6-Mixing water2.6.1- Water used in mixing concrete should be clean

    and free from oils, acids, alkalis, salts, organic materials, orother substances that may be deleterious to concrete or rein-forcement. Mixing water should not contain excessiveamounts of chloride ion. (See Section 2.8.6).

    2.7-Aggregates2.7.1- Aggregates should conform to the requirements of

    ASTM C 33 or ASTM C 330 wherever applicable.

    29

  • b. Estado del arte BS-6349-2010

    BS

    6349-1:2000

    B

    SI 24 Ju

    ly 2003205

    Section 7

    Table 22 Limiting values for composition and properties of concrete classes with normal weight aggregates of 20 mm maximumsize exposed to risk of corrosion of reinforcement induced by UK seawater conditions for a required design

    workinglifeof 50 years

    Exposure class and exposure conditions in

    the UK

    Airborne salt Frequently wetted Infequently wetted. Upper tidal, splash/spray, dry internal faces of submerged structures

    Submerged Lower tidal, back-filled

    XS1 XS2 XS2/XS3 XS3a

    Min. strength cylinder/cube (Mpa)b,c C35/45 C30/37 C25/30

    In accordance with Table 24 except as below

    In accordance with Table 24 except as below

    C40/50 C30/37 C25/30 Permitted cements BS 12d

    BS 4027

    BS 146

    Portland slag cement

    BS 6588

    Portland fly ash cement A

    BS 146

    Blastfurnace cement

    BS 6588

    Portland fly ash cement B

    BS 4246

    BS 6610

    BS 12d

    BS 4027

    BS 146

    Portland slag cement

    BS 6588

    Portland fly ash cement A

    BS 146

    Blastfurnace cement

    BS 6588

    Portland fly ash cement B

    BS 4246

    BS 6610

    Permitted proportions for combinations (% by mass)

    ggbs X35 35

  • b. Estado del arte BS-6349-2010

    BS

    6349-1:2000

    206

    BS

    I 24 July 2003

    Section 7

    Table 23 Limiting values for composition and properties of concrete classes with normal weight aggregates of 20 mm maximum size exposed to risk of corrosion of reinforcement induced by UK seawater conditions for a required design working

    lifeof 100 years

    Exposure class and exposure conditions in

    the UK

    Airborne salt Frequently wetted Infrequently wetted. Upper tidal, splash/spray, dry internal faces of submerged structures

    Submerged Lower tidal, back filled

    XS1 XS2 XS2/XS3 XS3a

    Min. strength class cylinder/cube(Mpa)b,c

    C40/50 C35/45 C30/37

    In accordance with Table 24 except as below

    In accordance with Table 24 except as below

    C55/65 C40/50 C 30/37

    Permitted cements BS 12d

    BS 4027

    BS 146

    Portland slag cement

    BS 6588

    Portland fly ash cement A

    BS 146

    Blastfurnace cement

    BS 6588

    Portland fly ash cement B

    BS 4246

    BS 6610

    BS 12d

    BS 4027

    BS 146

    Portland slag cement

    BS 6588

    Portland fly ash cement A

    BS 146

    Blastfurnace cement

    BS 6588

    Portland fly ash cement B

    BS 4246

    BS 6610

    Permitted proportions for combinations % by mass

    ggbs X35 35

  • b. Estado del arte Technical standars and commentaries for port and harbour facilities en Japan

    32

  • b. Estado del arte 54

    EH

    E/0

    8 Instruccin de H

    ormign Estructural

    Tabla 8.2.2Clases generales de exposicin relativas a la corrosin de las armaduras

    CLASE GENERAL DE EXPOSICINDESCRIPCIN EJEMPLOS

    Clase Subclase Designacin Tipo de proceso

    No agresiva I Ninguno Interiores de edifi cios, no sometidos a condensaciones. Elementos de hormign en masa.

    Elementos estructurales de edifi cios, incluido los forja-dos, que estn protegidos de la intemperie.

    Normal Humedad alta IIa Corrosin de origen diferente de los cloruros

    Interiores sometidos a humedades relativas medias altas (> 65%) o a condensaciones.

    Exteriores en ausencia de cloruros, y expuestos a llu-via en zonas con precipitacin media anual superior a 600 mm.

    Elementos enterrados o sumergidos.

    Elementos estructurales en stanos no ventilados. Cimentaciones. Estribos, pilas y tableros de puentes en zonas, sin im-

    permeabilizar con precipitacin media anual superior a 600 mm.

    Tableros de puentes impermeabilizados, en zonas con sales de deshielo y precipitacin media anual superior a 600 mm.

    Elementos de hormign, que se encuentren a la intem-perie o en las cubiertas de edifi cios en zonas con pre-cipitacin media anual superior a 600 mm.

    Forjados en cmara sanitaria, o en interiores en cocinas y baos, o en cubierta no protegida.

    Humedad media IIb Corrosin de origen diferente de los cloruros

    Exteriores en ausencia de cloruros, sometidos a la ac-cin del agua de lluvia, en zonas con precipitacin media anual inferior a 600 mm.

    Elementos estructurales en construcciones exteriores protegidas de la lluvia.

    Tableros y pilas de puentes, en zonas de precipitacin media anual inferior a 600 mm.

    Marina Area IIIa Corrosin por cloruros

    Elementos de estructuras marinas, por encima del ni-vel de pleamar.

    Elementos exteriores de estructuras situadas en las proximidades de la lnea costera (a menos de 5 km).

    Elementos estructurales de edifi caciones en las proxi-midades de la costa.

    Puentes en las proximidades de la costa. Zonas areas de diques, pantalanes y otras obras de

    defensa litoral. Instalaciones portuarias.

    Sumergida IIIb Corrosin por cloruros

    Elementos de estructuras marinas sumergidas perma-nentemente, por debajo del nivel mnimo de bajamar.

    Zonas sumergidas de diques, pantalanes y otras obras de defensa litoral.

    Cimentaciones y zonas sumergidas de pilas de puen-tes en el mar.

    En zona de ca-rrera de mareas y en zonas de salpicaduras

    IIIc Corrosin por cloruros

    Elementos de estructuras marinas situadas en la zona de salpicaduras o en zona de carrera de mareas.

    Zonas situadas en el recorrido de marea de diques, pantalanes y otras obras de defensa litoral.

    Zonas de pilas de puentes sobre el mar, situadas en el recorrido de marea.

    Con cloruros de origen diferente del medio marino

    IV Corrosin por cloruros

    Instalaciones no impermeabilizadas en contacto con agua que presente un contenido elevado de cloruros, no relacionados con el ambiente marino.

    Superfi cies expuestas a sales de deshielo no imper-meabilizadas.

    Piscinas e interiores de los edifi cios que las albergan. Pilas de pasos superiores o pasarelas en zonas de

    nieve. Estaciones de tratamiento de agua.

    02-Capitulos_2-4.indd 5402-Capitulos_2-4.indd 54

    5/1/08 11:57:515/1/08 11:57:51

    EHE-08

    33

  • b. Estado del arte EHE-08

    55

    Cap

    tulo

    2 C

    riterios de seguridad y bases de clculo

    Tabla 8.2.3.aClases especfi cas de exposicin relativas a otros procesos de deterioro distintos de la corrosin

    CLASE ESPECFICA DE EXPOSICINDESCRIPCIN EJEMPLOS

    Clase Subclase Designacin Tipo de proceso

    QumicaAgresiva

    Dbil Qa Ataque qumico Elementos situados en ambientes con contenidos de sustancias qumicas capaces de provocar la alteracin del hormign con velocidad lenta (ver tabla 8.2.3.b).

    Instalaciones industriales, con sustancias dbilmente agresivas segn tabla 8.2.3.b.

    Construcciones en proximidades de reas industria-les, con agresividad dbil segn tabla 8.2.3.b.

    Media Qb Ataque qumico Elementos en contacto con agua de mar. Elementos situados en ambientes con contenidos de

    sustancias qumicas capaces de provocar la alteracin del hormign con velocidad media (ver tabla 8.2.3.b).

    Dolos, bloques y otros elementos para diques. Estructuras marinas, en general. Instalaciones industriales con sustancias de agresivi-

    dad media segn tabla 8.2.3.b. Construcciones en proximidades de reas industria-

    les, con agresividad media segn tabla 8.2.3.b. Instalaciones de conduccin y tratamiento de aguas

    residuales con sustancias de agresividad media se-gn tabla 8.2.3.b.

    Fuerte Qc Ataque qumico Elementos situados en ambientes con contenidos de sustancias qumicas capaces de provocar la alteracin del hormign con velocidad rpida (ver tabla 8.2.3.b).

    Instalaciones industriales, con sustancias de agresi-vidad alta de acuerdo con tabla 8.2.3.b.

    Instalaciones de conduccin y tratamiento de aguas residuales, con sustancias de agresividad alta de acuerdo con tabla 8.2.3.b.

    Construcciones en proximidades de reas industria-les, con agresividad fuerte segn tabla 8.2.3.b.

    Con heladas

    Sin sales fundentes

    H Ataque hielo-deshielo

    Elementos situados en contacto frecuente con agua, o zonas con humedad relativa media ambiental en in-vierno superior al 75%, y que tengan una probabilidad anual superior al 50% de alcanzar al menos una vez temperaturas por debajo de 5 C.

    Construcciones en zonas de alta montaa. Estaciones invernales.

    Con sales fundentes

    F Ataque por sales fundentes

    elementos destinados al trfi co de vehculos o peato-nes en zonas con ms de 5 nevadas anuales o con valor medio de la temperatura mnima en los meses de invierno inferior a 0 C.

    Tableros de puentes o pasarelas en zonas de alta montaa, en las que se utilizan sales fundentes.

    Erosin E Abrasincavitacin

    Elementos sometidos a desgaste superfi cial. Elementos de estructuras hidrulicas en los que la

    cota piezomtrica pueda descender por debajo de la presin de vapor del agua.

    Pilas de puente en cauces muy torrenciales. Elementos de diques, pantalanes y otras obras de de-

    fensa litoral que se encuentren sometidos a fuertes oleajes.

    Pavimentos de hormign. Tuberas de alta presin.

    02-Capitulos_2-4.indd 5502-Capitulos_2-4.indd 55

    5/1/08 11:57:515/1/08 11:57:51

    34

  • b. Estado del arte EHE-08

    Un hormign se considera impermeable si cumple:

    35

  • b. Estado del arte Comparacin de normativas - En todas se exige relacin A/C (0,50; 0,40 ; 0,45) - Las recomendaciones japonesas son las menos exigentes en

    resistencias, relaciones A/C y dosis mnimas de cemento. - Dosis mnimas de cemento (350 a 400 kg/m3) - En algunas dosis mxima para limitar fisuracin (400 kg/m3) - Las resistencias normalmente entre 30 MPa y 35 MPa. - Recubrimientos sobre 50 mm, hasta 90 mm - Los cementos deben estar limitados en el C3A (sulfatos) - Deben ser moderadamente resistente a los sulfatos (MS) - Se recomienda uso de adiciones o cementos con stas.

    LA IMPERMEABILIDAD ES EL PRINCIPAL FACTOR QUE SE DEBE ASEGURAR PARA EVITAR LA CORROSIN DEL ACERO

    36

  • b. Estado del arte Comparacin Hormign Convencional v/s Hormign Marino

    Propiedad Hormign convencional Hormign Marino

    Resistencia Segn clculo estructural Resistencias mnimas

    Tipo de cemento Sin exigencias Resistente a los sulfatos. Uso de adiciones

    Relacin A/C Para cumplir resistencia Por durabilidad (0,50 a 0,40)

    Dosis mnimas Dosis mximas

    Sin restriccin, cumplir resistencias

    Por durabilidad Control de fisuramiento

    Aditivos Slo plastificante Plastificantes, reductores de alto rango, incorporador de aire, inhibidores de corrosin, otros

    Adiciones Sin exigencias Escoria, cenizas volantes, microslice, fibras

    EL HORMIGN MARINO ES UN HORMIGN ESPECIAL Y DEBE SER CONSIDERADO COMO TAL DESDE EL DISEO HASTA EL CURADO

    37

  • b. Estado del arte Terminologa y tipologa de estructuras marinas (Gua DOP)

    Tipo de estructura Objetivo Funcin

    Rompeolas Proteger y abrigar reas de inters Disipar energa del oleaje y/o reflejarla hacia el mar

    Muros costeros Retener el suelo, evitar deslizamientos, proteger reas terrestres de erosin por olas

    Reforzar sectores de borde costeros. Retener suelos ganados al mar.

    Obras de atraque, Amarre y fondeo

    Proveer estructura de atraque, amarre y/o ayuda a las maniobras de atraque de embarcaciones. Adems, proveen facilidades para el trfico de carga

    Transferir las cargas aplicadas desde la estructura principal al fondo marino.

    Ductos Transportar fluidos desde y/o hacia el mar.

    Estabilidad en base a la gravedad o bombas.

    Pavimentos portuarios

    Proveer estructura para el trfico de vehculos, equipos, materiales y/o pasajeros

    Transferir las cargas al suelo de fundacin o subestructura.

    Nota: Slo estructuras en que el material es hormign

    38

  • b. Estado del arte Consideraciones para la construccin segn su tipo - El diseo y tipo de hormign a usar debe ser definido en

    base al tipo de estructura y zona en que es afectado por el agua de mar.

    - Las propiedades y caractersticas de los hormigones pueden variar si son elementos hormigonados in situ o prefabricados.

    - Asimismo, las propiedades de los hormigones colocados por distintas metodologas varan de acuerdo a dichos requerimientos: Por ejemplo, hormigones para ser colocados bajo agua son distintos de los hormigones colocados por procedimientos normales.

    39